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Abstract. We develop an individual simulation technique that explic-
itly makes use of particular properties/structures of a given adversary’s
functionality. Using this simulation technique, we obtain the following
results.

1. We construct the first protocols that break previous black-box bar-
riers under the standard hardness of factoring, both of which are
polynomial time simulatable against all a-priori bounded polynomial
size distinguishers:
• Two-round selective opening secure commitment scheme.
• Three-round concurrent zero knowledge and concurrent witness

hiding argument for NP in the bare public-key model.
2. We present a simpler two-round weak zero knowledge and witness

hiding argument for NP in the plain model under the sub-exponential
hardness of factoring. Our technique also yields a significantly sim-
pler proof that existing distinguisher-dependent simulatable zero
knowledge protocols are also polynomial time simulatable against
all distinguishers of a-priori bounded polynomial size.

The core conceptual idea underlying our individual simulation technique
is an observation of the existence of nearly optimal extractors for all
hard distributions: For any NP-instance(s) sampling algorithm, there
exists a polynomial-size witness extractor (depending on the sampler’s
functionality) that almost outperforms any circuit of a-priori bounded
polynomial size in terms of the success probability.

1 Introduction

1.1 Background

The simulation paradigm [GMR89] plays a pivotal role in complexity-based cryp-
tography, which takes the reductionist approach to prove the security of a given
cryptosystem. In a typical security proof, we devise a reduction algorithm, which
invokes as a subroutine the adversary that claims to break the target cryptosys-
tem, to crack the underlying hard problem. In this process, the reduction algo-
rithm needs to simulate the honest parties for the adversary in order to exploit its
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power. For most interactive cryptographic protocols, simulating the adversary’s
view is actually the essential part of the reduction.

The most commonly used simulation strategy is black-box simulation,
which appears very restrictive since the black-box simulator ignores the inter-
nal workings of the adversary completely. Indeed, starting from the seminal
work of Impagliazzo and Rudich [IR89], a lot of impossibility results regard-
ing black-box simulation were proved in a variety of settings. In the last
two decades, several new simulation techniques, notably the PCP-based non-
black-box simulation [Bar01] and the recently distinguisher-dependent simula-
tion [JKKR17,BKP19] techniques, were developed to get around certain black-
box barriers on the round-complexity of cryptographic protocols. However, for
many basic protocols, it still remains unclear whether the known black-box
impossibility results on their round-complexity might be overcome using new
(non-black-box) reduction/simulation techniques. In this paper, we consider the
round-complexity of several related fundamental protocols: selective opening
secure commitments and zero knowledge protocols.

Commitment Scheme Secure Under the Selective Opening Attacks. In
a selective opening attack against a commitment scheme, the receiver observes
many commitments and is allowed to ask the committer to open some of them.
Dwork et al. [DNRS03] put foward the notion of selective opening security and
asked if we can construct such a commitment that the unopened commitments
in the selective opening attack still stay hiding. As showed in [DNRS03], this
problem has a deep connection with the existence of 3-round zero knowledge and
the soundness of the Fiat-Shamir heuristics.

Bellare et al. [BHY09] constructed the first selective opening secure commit-
ment. The high-level idea of their construction (and the follow-up from [ORSV13]
by Ostrovsky et al.) is as follows. The receiver generates a trapdoor for an equiv-
ocal trapdoor commitment scheme, and proves of knowledge of the trapdoor via
a cut-and-choose type protocol; the committer then uses this trapdoor commit-
ment scheme to commit to a value. In simulation, the simulator first extracts
the trapdoor by rewinding the receiver, and then can open a commitment to any
value it wishes. So far, the best known construction of (simulation-based notion
of) selective opening secure commitment requires three rounds [ORSV13].

There is an obstacle to further reduce the round-complexity of selective
opening secure commitment. Note that in a two-round scheme1 the receiver
sends only one message and the standard black-box simulator/extractor that
treats the (possibly malicious) receiver as a black-box would fail. Indeed,
Xiao [Xia11,Xia13] proved that it is impossible to achieve selective opening secu-
rity in 2 rounds with a black-box simulator.

1 The round-complexity of a commitment scheme refers to the one of its committing
phase. In this paper we focus on commitment schemes with a non-interactive opening
phase.
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Zero Knowledge Protocols in Two and Three Rounds. Early construc-
tions of zero knowledge proofs (with statistical soundness) [GMR89] and argu-
ments (with computational soundness) [BCC88] are quite simple and round-
efficient: only three messages are exchanged in a session. However, this round
efficiency is achieved at the cost of huge soundness error. The work [FLS99]
provides a very popular method–the so-called FLS-paradigm– to construct four
round zero knowledge argument with negligible soundness error. In the FLS-
paradigm, a zero knowledge protocol for proving some NP statement x ∈ L
proceeds in two phases. In the first phase, the verifier generates two puzzles and
proves to the prover that he knows a solution to one of these puzzles; In the
second phase, the prover proves to the verifier that either the statement being
proven is true or he knows a solution to one of puzzles. Both proofs are car-
ried out using a witness indistinguishable proof of knowledge. In simulation, an
efficient simulator is able to extract a solution to one of these puzzles from a
malicious verifier and then carry out the second phase using the solution just
extracted as a witness.

Whether there are 3-round zero knowledge protocols with negligible sound-
ness error based on standard assumptions for non-trivial languages is still a
widely open problem. On the negative side, the work [GK96] showed that it is
impossible to achieve 3-round zero knowledge argument or proof via black-box
simulation. Similar impossibility result [Pas11] hold even for a relaxed notion
of zero knowledge–witness hiding protocol [FS90]. Recently, Fleischhacker et
al. [FGJ18] and Canetti et al. [CCH+19] extended this impossibility result to
non-black-box simulation technique, and gave very strong negative evidence
against the existence of 3-round zero knowledge proofs for non-trivial languages.

In their recently work [JKKR17], Jain et al. observed that a good dis-
tinguisher may leak some useful secrets of the verifier in certain settings,
which will enable a successful simulation of the verifier’s view. They developed
a distinguisher-dependent simulation technique and constructed three-round
delayed-input weak ε-distributional zero knowledge [DNRS03] from standard
assumptions in a model where the simulator is allowed to depend on the distin-
guisher. Very recently, Bitansky et al. [BKP19] introduced a homomorphic trap-
door paradigm and presented a three-round weak ε-zero knowledge argument in
the same model, but their simulator works for any individual statement (rather
than in the distributional setting). Both constructions of [JKKR17,BKP19] can
be made into two rounds assuming certain sub-exponential hardness.

Concurrent Zero Knowledge Protocols and the Bare Public Key
(BPK) Model. Dwork et al. [DNS98] formalized the notion of concurrent
zero knowledge in a setting where multiple sessions of the same protocol take
place, and a malicious verifier is allowed to fully control the message scheduling.
A protocol is called concurrent zero knowledge if it preserves zero knowledge
even in this concurrent setting. Prabhakaran et al. [PRS02] refined the analysis
of the simulators of [KP01,RK99] and proved (almost) logarithmic ( ˜O(log n))
round-complexity is sufficient for concurrent zero knowledge protocol, which
almost matches the black-box lower bound of [CKPR01]. In his breakthrough
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work [Bar01], Barak introduced a non-black-box simulation technique that makes
use of the malicious verifier’s code in simulation, and generated a long-line follow-
up works (e.g., [DGS09,CLP13,BP15], just to name a few) to reduce the round-
complexity of concurrent zero knowledge. However, despite decades of intensive
research, the known constant-round constructions [CLP15a,FKP19] of concur-
rent zero knowledge still require non-standard assumptions.

Canetti et al. [CGGM00] introduced a very attracting model–the BPK
model–to further reduce the round-complexity of stronger notions of zero knowl-
edge, such as concurrent zero knowledge and resettable zero knowledge (which
allows a verifier to reset the prover). In this model, each verifier deposits a public
key in a public file and stores the associated secret key before any interaction with
the prover begins. A huge advantage of this model is that, the trapdoors/secret
keys useful for the simulator are fixed in advance, and if a simulator obtained
all these trapdoors, it can simulate any session in a straight-line manner. Many
constructions [YZ07,DFG+11,SV12] of concurrent/resettable zero knowledge in
this model follows the FLS paradigm in which the verifier proves knowledge of
his secret key in the first phase, and thus they require at least four rounds.

The question of whether we can achieve concurrent zero knowledge in fewer
rounds in the BPK model is also subject to black-box limitations: As showed
in [MR01,APV05], it is impossible to achieve concurrent black-box zero knowl-
edge with concurrent (even sequential) soundness in three rounds in this model.

1.2 Motivation

In black-box simulations mentioned above, a simulator is usually to extract a
piece of secret information from the adversary and then use it to mimic the
honest parties (without knowing their private inputs). For such an extraction
to go through, we usually design protocols so that the adversary is required to
provide a proof of knowledge of such a piece of secret information. This incurs
several additional rounds of interaction given the state-of-the-art constructions
of proof of knowledge.

Indeed, Barak showed the adversary’s code and internal workings allow us
to break black-box barriers in certain settings. His non-black-box simulation
technique relies on the PCP mechanism and often gives rise to complicated and
(relatively) round-inefficient constructions. So far, for almost all known simula-
tion techniques (including Barak’s non-black-box simulation), the simulator is
universal and is able to work for any adversary. This is in sharp contrast to the
individual simulators, as required in most of security definitions, which switches
the order of qualifiers ∃ Sim ∀ Adv:

– Universal Simulation: ∃ Sim ∀ Adv, Sim fools all efficient distinguishers.
– Individual Simulation: ∀ Adv ∃ Sim, Sim fools all efficient distinguishers.

Literally, an individual simulator is only required to work for a given individ-
ual adversary, thus we can assume that the simulator “knows/hardwires” any
useful properties/structures (if exists) of this adversary’s functionality, not just
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its code. This makes individual simulators more powerful than universal/black-
box ones. Under the widely believed hardness of reverse engineering2, we can-
not expect an efficient universal simulator to be able to figure out some useful
property/structure about the adversary’s functionality from its code. A natural
question arises:

Can we develop individual simulations to break the known black-box barriers?

A motivating example is the black-box lower bound on round-complexity of
concurrent zero knowledge [CKPR01], in which Canetti et al. constructed an
explicit concurrent verifier strategy (for an arbitrary almost logarithmic round
proof system) whose view cannot be simulated by any efficient black-box simu-
lator (unless the statement being proven is trivial). However, as already showed
in [Den17], an individual simulator can simulate this adversary’s view in a
straightforward way when given as input a certain crucial subfunctionality of
the adversary. This demonstrates the potential power of individual simulations,
but does not give a proof of the concurrent zero knowledge of the underlying pro-
tocol, which requires us to show for any efficient verifier we can build a successful
individual simulator.

1.3 Summary of Our Results

In this paper we develop an individual simulation technique that explicitly
makes use of particular properties/structures of the adversary’s functionality,
and achieve several constructions for selective opening secure commitment and
zero knowledge arguments that break the known black-box lower bounds on their
round-complexity.

As our main conceptual contribution, we show that for any NP-instance(s)
sampling algorithm, there exists a nearly optimal individual witness extractor
(depending on the sampler’s functionality) that almost outperforms any circuit
of a-priori bounded size. Combining this extraction strategy with an algebraic
technique for Blum’s encryption scheme, we obtain the following results.

The First Protocols That Break Previous Black-Box Barriers. We con-
struct the first protocols that break black-box barriers mentioned above under the
standard hardness of factoring, both of which are polynomial time simulatable
against all a-priori bounded polynomial size distinguishers:

– Two-round selective opening secure commitment scheme.
– Three-round concurrent zero knowledge and concurrent witness hiding argu-

ment for NP in the bare public-key model.

All these protocols are quasi-polynomial time simulatable against all polynomial-
size distinguishers with a negligible distinguishing gap.

Simpler Construction and Analysis of Zero Knowledge Protocols. We
present a construction of two-round weak zero knowledge and witness hiding
2 Under this assumption, the work [DGL+16] showed a limitation of universal simu-

lation in a particular setting.
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argument for NP in the plain model under the sub-exponential hardness of fac-
toring, which is much simpler than the constructions in [JKKR17,BKP19,DK18,
BGI+17]. Our technique also yields a significantly simpler proof of the equiv-
alence theorem of [CLP15b]) for existing distinguisher-dependent simulatable
zero knowledge protocols in [JKKR17,BKP19], showing that these protocols are
also polynomial time simulatable against all distinguishers of a-priori bounded
polynomial size.

1.4 Individual Extractions and Simulations: An Overview

Recall that the standard simulation-based security definitions only require that
for every adversary, there exists a simulator that can fool all efficient distinguish-
ers. This means such an existential simulator, like distinguishers, can depend on
any properties/structures of the functionality of a given specific verifier.

Imagine that we have a two-round FLS-type protocol (A,B) in which B sends
an NP instance y in the first round, with these properties:

1. A solution to the instance y generated by a adversary B enables the simu-
lator to efficiently generate B’s view that is indistinguishable from the real
interaction;

2. Distinguishing the honest A’s message from even a dummy message is equiv-
alent to extracting a solution to y from B.

In this scenario, for a given adversary B, there are only two cases in which
an efficient simulator will win3: a) the simulator succeeds to extract a solution
to y from B, or, b) no efficient algorithm can extract a solution to y except
for negligible probability. In the former case, by the first property of (A,B),
regardless of whether the distinguisher knows the solution, the simulator can
reconstruct B’s view successfully; in the latter case, the distinguisher does not
know the solution either, and thus by the second property of (A,B), a simulator
can easily fool the distinguisher.

Nearly Optimal Extractors for Single-instance Samplers. Note that the
above solution extraction algorithm– the key subroutine of the simulator–can
also be individual : It can depend on any property/structure of the individual
adversary B, besides being given the same input as B.

To simulate B’s view, one naive approach is to apply the best possible extrac-
tor (in terms of success probability) to extract a solution then simulate. An
issue with this approach is that the success probability of an extractor may
increase with its size. This makes it hard to control the size of the extractor
(and the simulator). In this paper, we consider a weak simulation security–(T, ε)-
simulatability: The simulation is required only against distinguishers of size T
with distinguishing gap less than ε. Note that this notion is stronger than the

3 Here we are aiming to construct a normal simulator, not a distinguisher-dependent
simulator like the ones in [JKKR17,BKP19].
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distinguisher-dependent simulatability defined in [CLP15b,JKKR17], where the
simulator depends on the specific distinguishing algorithm, not just its size.

We view B as a single-instance sampler, and show that for any B there exists
of a good extractor that outperforms all circuits of size T (given the same input
as the extractor) with at most gap ε. The basic proof strategy is to keep iterating
to include new powerful circuits into the extractor until we have a desired one.

Subtleties. One should be careful when carrying out this proof strategy. First,
the number of iterations in this process may depend on the security parameter
n, and this may cause some difficulties in controlling the size of the final circuit
family Ext; second, in the asymptotic setting, when we add a new circuit family
to the extractor, this family may work only when the security parameter n is
greater than a specific n0. Thus, it is possible that the iterative procedure keeps
increasing the number n0, and therefore we are not able to specify any n′

0 so
that the final circuit family Ext works for all n > n′

0.
To get around these difficulties, we use the a-priori fixed T and ε as a global

guideline, and do local iterations at each parameter n4: In each iteration of this
process, we have an extractor Ext at the beginning and ask: Does there exist
another instance solver C of size T , given the same input as Ext, such that

Pr [y ← B : C extractsasolutionto y but Ext fails] > ε?

If so, then we have a new extractor: On input y, it runs the Ext first, and if Ext
fails then runs C to extract a solution to y. This will increase the success prob-
ability of the extractor by at least ε; otherwise, we return the current extractor
Ext.

It is not hard to verify that, after at most 1
ε steps, we will have an extractor

Ext of size at most O(T 1
ε ) such that, the event that Ext fails to extract a solution

to y but some other circuit of size T succeeds happens with probability at most
ε.

The Dependence on the Functionality of the Sampler. We give two examples to
illustrate how the nearly optimal extractor Ext intrinsically depends on the func-
tionality of the sampler. Consider the following two image-sampling algorithms
for some one-way permutation g: (a) use randomness y and then generate an
image x = g(y), and (b) sample a random string x from the co-domain of g.
Then, for the former sampler, there is a nearly optimal extractor (taking the
sampler’s randomness y) that can simply output the pre-image y of the given
sampled image x with probability 1; for the latter, a dummy algorithm (with
success probability 0) is also an optimal extractor (this is almost best possible
since g is one-way).

With this nearly optimal extractor, we now have an individual simulator for
B: it first applies this nearly optimal individual extractor Ext to extract a solution
to y generated by B and then simulates in a somewhat straightforward manner
(see below). Note that this simulator inherently depends on the functionality of

4 We would like to stress that one cannot expect this process to be constructive.
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the adversary (instance sampler) since the nearly optimal extractor does, and
that it will fool all distinguishers5 of size T except for probability at most ε.

Now, if the protocol (A,B) satisfies the above two properties, we have a good
individual simulator against all distinguishers of size T . Our remaining task is
to construct protocols with such properties.

A suitable building block for such protocols is the well-known encryption
scheme based on the hardness of factoring. The public key of the encryption
scheme is a Blum integer N , and the secret key is a prime factor of N . A cipher-
text of a bit b is given by c = (fN (s), h(s) ⊕ b), where fN : QRN → QRN

defined by fN (s) = s2 mod N and h is the hardcore of fN . A key property
(implied by [TW87]) of this encryption scheme we will make use of is the equiv-
alence between distinguishing ciphertexts and extracting a secret key, even if the
public key N is not a Blum integer6.

Constructions. With these extraction and construction ideas in mind, we con-
struct selective opening secure commitment and zero knowledge arguments as
follows.

Two-Round Selective Opening Secure Commitment: In the committing phase, we
have the receiver generate a Blum integer N for the committer; upon receiving N ,
the committer uses the trapdoor commitment scheme (a prime factor of N serves
as a trapdoor) [FS89] to compute a commitment c, encrypts it bit-wise under the
public-key N and sends these encryptions to the receiver; In the opening phase,
the committer sends the opening of c to the receiver, and the latter decrypts the
encryptions received in the first phase and accepts if the plaintext is c and the
opening received is a valid opening of c. This construction relies on polynomial
hardness of factoring.

Three-Round Weak Concurrent Zero Knowledge in the BPK Model: In the key
registration phase, each verifier generates two Blum integers (N0, N1) as its
public-key, and stores two prime factors (q0, q1), qi|Ni for i ∈ {0, 1}. In the
proof phase, the prover and the verifier execute the three round parallel version
of Blum’s protocol (Let a session be of the form (a, e, z)) in which the prover
proves “the statement to be proven is true or I know a prime factor of one of the
two integers”, and in addition, the prover encrypts the last message z bit-wise
under each of verifier’s public key. The verifier decrypts all these ciphertexts and
obtains ẑ and z̃, and accepts if ẑ = z̃ and the underlying transcript is accepting.
This construction relies on polynomial hardness of factoring.

Two-Round Weak Zero Knowledge in the Plain Model: The verifier sends a Blum
integer N (and stores one prime factor) to the prover, and the prover computes
a commitment c to n zeros, sends back c together with ciphertexts (encrypted
bit-wise under N) of a NIWI proof for “the statement to be proven is true or I
know a prime factor of N”. The verifier decrypts the ciphertexts, and accepts

5 One can think of a distinguisher as a solution extractor since they are essentially
equivalent because of the property 2. of (A,B).

6 In this case, we view any prime factor of N as a secret key.
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if the plaintexts forms an accepting NIWI proof. This construction relies on
sub-exponential hardness of factoring.

A Difficulty in the Individual Simulations for Composable Protocols.
At a high level, our simulation strategy for these protocols are quite simple: The
simulator first applies the nearly optimal extractor to obtain the corresponding
witness for each session, and if the extractor succeeds, then it can simulate this
session in a straightforward manner; otherwise, it sends a dummy message in
the last round of the protocol.

The Simulator for the Commitment Scheme. Suppose that a malicious receiver
R∗ initiates k sessions in parallel. In the committing phase, for each i ∈ [k],
the simulator first runs the nearly optimal extractor and tries to obtain a prime
factor of Ni sent by R∗, and commits to 0 via the trapdoor commitment scheme
and obtains a commitment ci, then sends encryptions of ci; In the opening phase,
upon receiving {bi}i∈I and the index set I, then the simulator opens ci in the
following way: If bi = 0, open it in an honest way; if bi = 1 and the extractor
succeeds to extract a prime factor of Ni, then use it as trapdoor and open ci

to value 1; else send (bi = 1, dec′) to R∗, where the decommiment (bi = 1, dec′)
is a valid opening of some commitment c′

i. (In other words, in the third case,
the simulator pretends that the ciphertexts it sent in the committing phase is
bit-wise encryptions of c′

i).

The Simulators for zero knowledge protocols are much simpler. For concurrent
zero knowledge protocol in the BPK model, after the key registration phase,
for each pair (N0, N1) registered by a malicious V ∗, the simulator first tries to
extract a prime factor of one of (N0, N1) using the nearly optimal extractor; if
this extraction is successful, then the simulator can simulate any session under
(N0, N1) successfully; otherwise, the simulator simply computes encryptions of
all zeros under both public keys in the last round. The same simulation strategy
works also for the protocol in the plain model.

One must be careful in proving that these simulations are indistinguishable
from the real interaction against any distinguisher of a-priori bounded size T
except for small probability ε. A technical difficulty arises in such proofs due to
the composition of the first two protocols. Let us take the example of the simu-
lator for the commitment scheme. As usual, the proof of (T, ε)-simulatability is
done by a hybrid argument. We construct a sequence of hybrid non-uniform sim-
ulators, gradually switching from the simulation to the real interaction, so that a
consecutive pair of simulators, say the i-th and the (i+1)-th simulators, behave
differently only in the i-th session in the case that the extractor fails to factor
Ni, and then prove that any two consecutive simulations are indistinguishable
except for a very small probability by contradiction: For any Dn of size T that
distinguishes the i-th and the (i + 1)-th simulations with a large distinguishing
gap, we use Dn to construct a circuit An that contradicts the optimality of the
nearly optimal extractor. However, to exploit the power of Dn, An needs also to
simulate other sessions for Dn, which in turn requires An to know prime factors
for some other Nj ’s (j �= i) obtained by the extractor. (otherwise An needs to
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run the extractor on its own, which results in the circuit An of size larger than
the extractor and thus makes no sense).

Nearly Optimal Extractors for Multi-instance Samplers. We prove a
stronger result of the existence of nearly optimal extractors for all multiple-
instance sampling algorithms to address the above issue. Specifically, for any
polynomial t and any t-instance sampler, we show there exists a nearly optimal
extractor such that, for every i ∈ [t], for any circuit C of a-prior bound size that
is given the output of the extractor, the probability that C solves the i-th instance
but the extractor fails is small. This result is proved by a similar argument as
above, but a more delicate iterative procedure is requried.

Binding/Soundness: Trust the Adversary. At first glance, the binding and
soundness properties of the first two protocols seem to be problematic. For the
binding of our commitment scheme, a usual proof-by-contradiction approach is
to construct a reduction with oracle access to the cheating committer to fac-
tor the public key N . A problem with this approach is that the reduction itself
does not know the corresponding secret key (i.e., a prime factor of N), and as
a consequence, it cannot decrypt the message from the committer to obtain the
commitment c and determine whether the opening sent by the cheating com-
mitter is a valid decommitment of c. Here we use a “trust the adversary” trick
to save the proof: Since the cheating committer can make the honest receiver
(who knows the secret key) accept two different decommitments, these decom-
mitments should be valid for the same commitment c. Hence, in reduction, the
reduction algorithm can trust the committer and simply assume that the two
decommitments are both valid for some unknown c.

A similar but more subtle problem occurs in the proof of soundness of the zero
knowledge protocol in the BPK model. In this case, a usual reduction algorithm
keeps one secret key of Ni (for a random i ∈ {0, 1}) in the public key pair
(N0, N1), and wants to use the power of the cheating prover to factor N1−i.
However, such a reduction seems to fail for the following cheating P ∗: At the
begining P ∗ somehow magically factors both N0 and N1 and obtains q0 and q1;
in its last step, it compute z0 and z1 using witnesses q0 and q1 respectively,
and sends to the verifier encryptions of z0 and z1 under the public keys N0

and N1 respectively. Note that the reduction can decrypt only the encryptions
under public key Ni, and hence it can only obtain a prime factor of Ni by
rewinding P ∗ (using the special soundness of Blum’s protocol). However, this
issue is taken care by the verification step in which the honest verifier decrypts
all encryptions and check if the two last round messages z0 and z1 are equal
and both acceptable. Thus, such a cheating P ∗ cannot make an honest verifier
accept at all, and therefore is not a successful cheating prover. In other words,
for a successful cheating prover, the reduction algorithm can trust that the two
last round messages of Blum’s protocol encrypted under both public keys are
equal. This is the key to the proof of soundness.
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1.5 Related Work and Discussion

On Upgrading the Distinguisher-Dependent Simulatable Zero Knowl-
edge. As mentioned earlier, it is proved in [CLP15b] that, in the plain
model, distinguisher-dependent simulatable zero knowledge protocols (such
as [JKKR17,BKP19]) satisfy the stronger notion of (T, ε)-simulatabibility. How-
ever, this “distinguisher-dependent simulation then upgrade” approach to (T, ε)-
simulatability seems to work only for standalone zero knowledge protocols in the
plain model. Note that the equivalence theorem of [CLP15b] says nothing about
zero knowledge in other models/settings, or other cryptographic primitives, like
the commitment schemes under parallel composition and concurrent zero knowl-
edge in the BPK model considered in this paper.

The equivalence theorem of [CLP15b] was proved via the minimax theorem,
which leads to a complicated proof7. Our proof of existence of a nearly optimal
extractor is quite simple and easy to understand, and it can also be used to
upgrade existing constructions of [JKKR17,BKP19]. However, it is unclear if
our technique could be used to prove the full version of the equivalence theorem
of [CLP15b].

Other Notions of Selective Opening Security for Commitments. The
work of [BHY09] also introduced the notion of selective opening security under
concurrent composition, where a malicious receiver is allowed to interact with
the committers concurrently. This notion is stronger than the selective opening
security under parallel composition considered in this paper. However, as proved
in [ORSV13], we cannot achieve such a security in the full-fledged concurrent
setting if the simulator does not know the distribution of the message committed
to by the honest committer. Another related notion is the indistinguishability-
based selective opening security, which can be achieved by any statistical hiding
(standalone) commitment scheme [BHY09].

Conditional Disclosure Schemes. A conditional disclosure scheme can be
thought of as interactive version of witness encryption [AIR01,BP12,PA17]. It
is a useful tool for constructing protocols of low round-complexity, such as the
three round zero knowledge protocol of [BKP19], but the usage of such a scheme
often requires an additional sub-protocol to make sure a (malicious) party indeed
knows a relevant witness. The protocols in this paper do not need such an extra
sub-protocol, and therefore is significantly simpler than previous constructions.

(T, ε)-Security in Practice. A silent feature of the notion of (T, ε)-
simulatability is that the we need not embed the parameters T and ε into the
protocol instructions. That is, we can have a single construction that achieves
(T, ε)-simulatability for any polynomial T and any inverse polynomial ε, which
stands in sharp contrast to Barak’s n-bounded concurrent zero knowledge argu-
ment, whose construction depends on the a-priori upper-bound n on the number
of total sessions allowed. From a practical point of view, we think the weak notion

7 See https://eprint.iacr.org/2013/260.pdf for the detailed proof.

https://eprint.iacr.org/2013/260.pdf
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of (T, ε)-simulatability is good enough in practice: For any fixed security param-
eter λ, any constants κ and ε, it already achieves a concrete (κ, ε)-simulatability,
since there always exist T and ε satisfying T (λ) > κ and ε(λ) < ε.

1.6 Organization

We present relevant definitions in Sect. 2. In Sect. 3, we prove the existence of
nearly optimal extractors for all hard distributions. In Sect. 4, we give a for-
mal proof of the equivalence between distinguishing ciphertexts and extracting
a secret key for the factoring-based encryption scheme. In the last three sections,
we give our main results on selective opening secure commitment, weak concur-
rent zero knowledge in the BPK model and the two-round weak zero knowledge
respectively.

2 Preliminaries

Throughout the paper, we let n be the security parameter. We write the
set {1, 2, ...,m} as [m], and the set {i, i + 1, ..., j} as [i, j]. We denote by
x̄ = {xi}i∈[k] ← D̄k the process of sampling k times x from D independently. A
function negl(n) is called negligible if it vanishes faster than any inverse poly-
nomial. We write {Xn}n∈N

c≈ {Yn}n∈N to indicate that the two distribution
ensembles {Xn}n∈N and {Yn}n∈N are computationally indistinguishable. A Blum
integer N is a product of two primes p, q satisfying p, q ≡ 3 mod 4. We denote
by Blum(1n) the algorithm that on input a security parameter n outputs a Blum
integer N and one of its prime factors q, where the corresponding two prime
factors are of length n. Due to space limitations, we refer readers to [Gol01] for
definitions of witness indistinguishability, witness hiding.

Commitment and Trapdoor Commitment Schemes. Commitment
schemes are “digital” safes. Formally, a commitment scheme (C,R) is a two-
phase protocol between a committer C and a receiver R. To commit to a bit
b ∈ {0, 1}, C(b) and R execute the committing phase of (C,R) (denoted by
(C,R)Com) and generate a commitment transcript Com(b); To decommit Com(b),
C and R execute the opening phase of (C,R) (denoted by (C,R)Open) and reveal
a decommitment (b, dec), and R accepts if the decommitment is valid.

Definition 1 (Commitment Scheme). A two-phase protocol (C,R) is called
a commitment scheme if it satisfies the following two properties:

– Binding: For every committer C∗ of polynomial-size, the probability of the
following event is negligible: C∗ interacts with R and generates a commit-
ment Com(b) in the committing phase, and then produces two decommitments
(b, dec) and (b′, dec′) with b �= b′ in two executions of the opening phase.

– Hiding: For every receiver R∗ of polynomial size, the commitments Com(0)
and Com(1) are computational indistinguishable.
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A trapdoor commitment scheme is a commitment scheme with an additional
property: Given a trapdoor, C can later open a commitment to different values.
In [FS89], Feige and Shamir showed how to transform Blum’s 3-round interac-
tive proof into a trapdoor commitment scheme. In our construction of selective
opening secure commitment, we need a version of Feige-Shamir trapdoor com-
mitment based on factoring. Using a standard commitment (built from the fac-
toring assumption) Com as a building block, our trapdoor commitment scheme
(TDGen,TDCom,Open, Fakeopen) proceeds as follows.

– TDGen: On input the security parameter n, TDGen generates (N, q) ←
Blum(1n). Define an NP relation {(N, q) : q|N}, and transform (N, q) into
a graph G and an associated Hamiltonian cycle H ⊆ G. Output ((N,G), q).

– TDCom: On input G, a bit b and randomness r, if b = 0, pick a random
permutation π and commit to the adjacency matrix of π(G); if b = 1, pick a
random cycle H ′ and commit to the adjacency matrix of H ′. In both cases,
we use commitment scheme Com when committing to the adjacency matrix.

– Open: On input (G,TDCom(G, b, r), b, r), if b = 0, send π and open the entire
adjacency matrix of π(G); if b = 1, open the non-zero entries in the adjacency
matrix of H ′ (i.e., open the cycle H ′). We denote by (b, dec) the decommit-
ment of the commiment TDCom(G, b, r).

– Fakeopen: On input (G,H,TDCom(G, 0, r), b, r), open to b in the same way
as Open by setting H ′ = π(H). Note that only when TDCom commits to 0,
the commitment can be opened to both 0 and 1.

A Crucial Property. Our construction of a selective opening secure commit-
ment scheme relies on the following property of the above trapdoor commitment
scheme, which can be easily proved by applying standard hybrid argument to
the underlying commitment scheme Com:
{(c, (1, dec)) :c←TDCom(G, 1, r);(1, dec) ← Open(G,TDCom(G, 1, r), 1, r)} and
{(c, (1, dec)) :c ← TDCom(G, 0, r);(1, dec)←Fakeopen(G,H,TDCom(G,0,r),1,r)}
are indistinguishable.

(T, ε)-Secure Under Selective Opening Attacks. Consider a k-parallel com-
position of a commitment scheme (C,R). A committer Ck and a receiver R∗

execute the committing phase k times in parallel and generate k commitments
{ζi}i∈[k] to b̄ = b1||b2||···||bk, each ζi is a commitment to bi. In a selective opening
attack, R∗ chooses a set I ∈ I (possibly depending the commitments received)
and asks the committer Ck to open the commitments {ζi}i∈I , where I is the
family of subset of [k]. Informally, the commitment scheme (C,R) is said to be
secure under selective opening attacks if the remaining unopened commitments
still stay secret.

Definition 2 ((T, ε)-secure under selective opening attacks). Let k be an
arbitrary polynomial in n, and B be a distribution on {0, 1}k, and I be the fam-
ily of subset of [k]. A commitment scheme (C,R) is (T, ε)-secure under selective
opening attacks if for any polynomial T , any inverse polynomial ε, any polyno-
mial size B, and any polynomial size R∗, there exists a polynomial size Sim such
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that for any distinguisher Dn of size T , Dn cannot tell apart the following two
distributions

– (Ck(b̄), R∗): b̄ ← B; {ζi}i∈[k] ← (Ck(b̄), R∗)Com; I ← R∗({ζi}i∈[k]);
{(bi, deci)}i∈I ← (Ck(b̄), R∗)Open; OutR∗ ← R∗({(bi, deci)}i∈I). Output
(b̄, I, OutR∗);

– SIM: b̄ ← B; I ← Sim; OutSim ← Sim({bi}i∈I)). Output (b̄, I, OutSim),

with probability greater than ε, i.e.,

|Pr[Dn((Ck(b̄), R∗)) = 1] − Pr[Dn(SIM) = 1]| < ε.

Delayed Input Argument and (T, ε)-ZK. Let L be an NP language and RL

be its associated relation. An interactive argument system (P, V ) for L is a pair
of parties of polynomial size, in which the prover P wants to convince the verifier
V of some statement x ∈ L. We denote by (P, V )(x) the output of V at the end
of interaction on common input x, and by ViewP

V (x) the view of the verifier in
the real interaction. Without loss of generality, we have the verifier V outputs 1
(resp. 0) if V accepts (resp. rejects).

In this paper we consider delayed-input interactive arguments, in which the
common input to both parties is the size of the statement x, and the verifier
receives x only in the last round. Note that in a delayed-input interactive argu-
ment, a malicious prover may choose statement depending on the history, and
thus such an argument needs to satisfy a stronger notion of adaptive soundness
(cf. [JKKR17]).

A delayed-input argument system is zero knowledge if the view of the (even
malicious) verifier in an interaction can be efficiently reconstructed. In this paper,
we consider a weak version of zero knowledge–(T, ε)-zero knowledge [CLP15b],
in which the indistinguishability gap between the real interaction and the simu-
lation is at most ε against any T -size distinguisher.

Definition 3 (Delayed-input (T, ε)-zero knowledge). We say that a
delayed-input interactive argument (P, V ) for language L is (T, ε)-zero-knowledge
if for any polynomial T , any inverse polynomial ε, any polynomial-size V ∗, there
exists a circuit Sim of polynomial size such that for any x ∈ L and any proba-
bilistic T -size circuit {Dn}n∈N and sufficiently large n, it holds that

∣

∣

∣Pr[Dn(ViewP
V ∗(x)) = 1] − Pr[Dn(Sim(x)) = 1]

∣

∣

∣ < ε.

Concurrent Zero Knowledge with Concurrent Soundness in the BPK
Model. The bare public-key model (BPK model) simply works in two phases:
the key-registration phase and the proof phase. In the key-registration phase,
each verifier registers a public-key pk (the honest verifier is supposed to store
the corresponding secret key sk) on a public-file F before the proof phase. In the
proof phase, on a common input x, the prover and the verifier interact under the
verifier’s public key. The completeness of an interactive argument is normally
defined.
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Concurrent Soundness in the BPK Model. A malicious concurrent prover P ∗ is
allowed to launch the following attack: In the proof phase, on input a pubic
key pk, P ∗ initiates polynomially many sessions, in each of which it chooses
a statement x adpatively (based on the history so far), and fully controls the
message scheduling in the entire interaction with V .

Definition 4 (Concurrent Soundness in the BPK model). An interactive
argument (P, V ) for a language L in the BPK model is called concurrent sound
if for all malicious concurrent prover P ∗, the probability that it makes V accept
a false statement x /∈ L is negligible.

Concurrent (T, ε)-Zero Knowledge in the BPK Model. A malicious concurrent
verifier V ∗ is allowed to generate an arbitrary file F of polynomially many public
keys in the key-registration phase. In the proof phase, it receives s (for some
polynomial s) statements x̄ = {xi}i∈[s], and initiates at most s sessions under
public keys on F . During the entire interaction, V ∗ fully controls the message
scheduling.

Definition 5 (Concurrent (T, ε)-zero knowledge In the BPK model).
An interactive argument (P, V ) for language L is called concurrent (T, ε)-zero-
knowledge if for any polynomial T , any inverse polynomial ε, any polynomial-size
concurrent V ∗, any polynomial s, there exists a circuit Sim of polynomial size
such that for any Yes instances x̄ = {xi}i∈[s], for any probabilistic T -size circuit
{Dn}n∈N and sufficiently large n it holds that

∣

∣

∣Pr[Dn(ViewP (F )
V ∗ (x̄)) = 1] − Pr[Dn(Sim(x̄)) = 1]

∣

∣

∣ < ε.

3 The Existence of Nearly Optimal Extractors for All
Hard Distribution

In this section we prove the existence of nearly optimal extractors for all
NP-instance(s) sampling algorithms. Essentially, we show that, for any NP-
instance(s) sampler, any polynomial T , any inverse polynomial ε, and any circuit
family Cn of size T , there exists an efficient extractor such that the probability
that Cn extracts a witness for an instance generated by the sampler but the
extractor fails is at most ε. Furthermore, if the extractor is allowed to be of
quasi-polynomial size, then the same result holds with respect to negligible ε.

Let Samp be an arbitrarily sampling algorithm over an NP language L and
{Yn}n∈N be its input distribution ensemble. Throughout this paper, we assume
that the input y ← Yn to Samp includes its randomness. (Thus one can view
Samp as a deterministic algorithm.)

Lemma 1 [nearly optimal (T, ε)-Extractor]. Let Samp be as above. Let f :
{0, 1}∗ → {0, 1}∗ be an arbitrary (not necessarily efficient-computable) function.
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1. For every polynomial T , every inverse polynomial ε, there exists a probabilis-
tic circuit family Ext := {Extn}n∈N of polynomial size such that for every
probabilistic circuit family {Cn}n∈N of size T ,

Pr

[

y ← Yn;x ← Samp(y);
w ← Extn(x, y, f(y));

w′ ← Cn(x, y, f(y))
:

(x,w) /∈ RL ∧
(x,w′) ∈ RL

]

< ε(n) (1)

We call Ext a (T, ε)-extractor.
2. There exists a probabilistic circuit family Ext := {Extn}n∈N of quasi-

polynomial size such that for every probabilistic circuit family {Cn}n∈N of
polynomial size, the above probability is negligible.

Remark 1. Jumping ahead, in our protocols the receiver/verifier will play the
role of the hard instance sampler. For all our constructions, we need not take
the function f into account since they just compute a hard instance based solely
on their random tape. However, when our protocols are used as a sub-protocol in
some big protocols or in the settings of [JKKR17,BKP19], the receiver/verifier
may compute a hard instance based on some history y, and the simulator may
need certain secret information f(y) (e.g., an opening of a commitment in history
y) to go through. In such cases, it is more flexible to allow the extractor to take
as additional input f(y).

As mentioned in the introduction, the basic idea underlying the proof is to
keep iterating to include new powerful circuits into the extractor until we have a
desired one. For applications, we need a stronger and robust version of Lemma 1
for samplers that output multiple instances, which we prove below.

Fix a polynomial t and consider a t-instance sampler Samp that is given y as
input and outputs t instances of NP language L, (x1, x2, ·, ·, ·, xt) ← Samp(y),
where y is drawn from distribution Yn.

Lemma 2 [nearly optimal (T, ε)-Extractor for t-Instance Sampler]. Let L be an
NP language and poly be the size of the circuits for deciding the NP-relation
RL. Let Samp be an arbitrarily t-instance sampling algorithm over L with input
distribution ensemble {Yn}n∈N. Let f : {0, 1}∗ → {0, 1}∗ be an arbitrary (not
necessarily efficient-computable) function.

1. For every polynomial T , every inverse polynomial ε, there exists a probabilistic
circuit family Ext := {Extn}n∈N of size O( t

ε (T + poly)), such that for every
j ∈ [t], every probabilistic circuit family {Cn}n∈N of size T ,

Pr

[ y ← Yn; {xk}k∈[t] ← Samp(y);
{wk}k∈[t] ← Extn({xk}k∈[t], y, f(y));

w′
j ← Cn({xk}k∈[t], {wk}k∈[t], y, f(y))

:
(xj , wj) /∈ RL ∧
(xj , w

′
j) ∈ RL

]

< ε(n), (2)

where the probability takes over the randomness choice of y, and the random
tapes for that for Extn and Cn.
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2. There exists a probabilistic circuit family Ext := {Extn}n∈N of quasi-
polynomial size such that for every j ∈ [t] and every probabilistic circuit
family {Cn}n∈N of polynomial size, the above probability is negligible.

Remark 2. Notice that in the above lemma we allow the circuit Cn to take the
output of Extn as input. This does not matter for a single-instance sampler.
However, as we shall see in Sect. 5 and 6, this property is critical for hybrid
arguments to go through in the composable settings.

Lemma 2 says there is an extractor for the multi-instance sampler that is
nearly optimal for solving instances in every coordinate j ∈ [t]. We argue the
existence of such a nearly optimal extractor via the following delicate iterative
procedure. In each outer iteration i ∈ [ t

ε ], for every j ∈ [t] we ask if there is
circuit C

(i)
n,j that, taking as input the output of the current Extn, can be used to

increase the success probability of solving the j-th instance xj by (at least) ε,
and if so, then we add Cn,j to Extn.

Proof (of Lemma 2). For every j ∈ [t], we define j composition of two circuits
Extn and Cn,j in the following way:
Extnj Cn,j({xk}k∈[t], y, f(y)):
1. Sampling a random tape for Extn, obtain {wk}k∈[t] ←
Extn({xk}k∈[t], y, f(y));
2. If (xj , wj) ∈ RL, return {wk}k∈[t];
3. Sampling a random tape for Cn,j , obtain
w′

j ←Cn,j({xk}k∈[t],{wk}k∈[t],y,f(y));
4. If (xj , w

′
j) ∈ RL, then wj ← w′

j and return {wk}k∈[t]; otherwise, return
{wk}k∈[t].
Note that the order of executions of these two circuits matters here since we

have the second circuit take as input the output of the first circuit. This applies
to each iteration of the following construction, and the final circuit Extn will
execute all these Ci

n,j in the order of their appearance. Let Ext(0)n be a dummy
circuit that outputs t zeros. For an arbitrary t-instance Samp, we construct a
nearly optimal extractor Extn as follows8.

Constructing circuit Extn for the t-instance Samp:
1. Extn ← Ext(0)n ;
2. For i = 1 to t

ε , do:
2.1 For j = 1 to t, do:

8 We would like to stress that in this construction the number of outer iterations may
reach t

ε
. Notice that in each iteration, the quality of the current extractor may have

impact on the answer to the question of whether or not there exists a new satisfactory
circuit C

(i)
n,j since the new target circuit is given the output of the current extractor.

Thus, even if there does not exists a satisfactory C
(i)
n,j in the i-th outer iteration, we

cannot rule out the possibility that we will find a satisfactory C
(i+1)
n,j in the (i + 1)-

th outer iteration, because the extractor would become more powerful as iterations
proceed.
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If ∃ a circuit C
(i)
n,j of size T s.t.

Pr

⎡

⎣

y ← Yn; {xk}k∈[t] ← Samp(y);
{wk}k∈[t] ← Extn({xk}k∈[t], y, f(y));

w′
j ← C

(i)
n,j({xk}k∈[t], {wk}k∈[t], y, f(y))

:
(xj , wj) /∈ RL ∧
(xj , w

′
j) ∈ RL

⎤

⎦ ≥ ε(n),

(3)

then Extn ← Extnj C
(i)
n,j ;

2.2 If for any j ∈ [t], � C
(i)
n,j satisfying (3), then break and return Extn.

3. Return Extn
We now show that the Extn constructed above satisfies Lemma 2. We first

make the following two observations:

1. For any j′ �= j, the circuit Extnj′C
(i)
n,j′ solves the j-th instance xj with exactly

the same probability of Extn. This is because in the above composition Cn,j

is only invoked to correct the witness wj obtained by Extn.
2. For each new C

(i)
n,j , the circuit Extn j C

(i)
n,j increases the success probability

of solving the j-th instance xj by (at least) ε.

Note that if in some outer iteration i ≤ t
ε , no new circuit is added to Extn

in any inner iteration j ∈ [t], then the iterative process will return a desirable
circuit Extn as required in Lemma 2; otherwise, the following two events must
happen during the entire iterative process: (a) There are (at least) t

ε circuits C
(i)
n,j

of size T that are added to Extn, and (b) For each j ∈ [t] the number of circuits
C

(im)
n,j (im ∈ [ t

ε ]) added to Extn is at most 1
ε . The latter event (b) holds because

of the two observations mentioned above, which imply that adding more than
1
ε circuits C

(im)
n,j would yield an extractor with success probability of solving the

j-th instance greater than 1.
Putting (a) and (b) together, we have that, for every j, exactly 1

ε circuits
C

(im)
n,j are added to Extn, and the final circuit Extn returned solves the j-th

instance with probability 1. It is easy to verify that the size of the final Extn is
of at most O( t

ε (T + poly)). This concludes Lemma 2.
For the second part of this lemma, one can set T and ε to be nω(1) and

1
nω(1) respectively, construct the circuit family Ext = {Extn}n∈N of size nω(1) in
a similar way. ��

4 Extracting the Secret Key of a Variant of Rabin’s
Encryption Scheme

We are now going to apply Lemma 2 to a variant of a factoring-based encryption
scheme, and show the existence of a nearly optimal secret-key extractor, such
that the probability that an arbitrary bounded-size circuit family succeeds in
distinguishing ciphertexts but the extractor fails to extract a secret key is very
small.
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We consider an encryption scheme based on Rabin’s trapdoor one-way per-
mutations. Let N be a Blum integer of length n, and QRN be the set of quadratic
residues (mod N). Rabin’s trapdoor one way permutation fN : QRN → QRN

(with a prime factor of N as its trapdoor) is defined as fN (s) = s2 mod N . The
one-wayness of fN is based on the fact that different square roots lead to factor
N . Specifically, given a circuit A of size T that inverts fN (s) with probability
ε, by Lemma 10 in [TW87], we have a circuit of size O(T 1

ε ) that can factor N
with probability negligibly close to 1.

Let h(·) be an arbitrary hard-core function of fN (·)9. We follow the classic
approach and obtain the following semantically secure bit encryption scheme
(Gen = Blum,Enc,Dec). The public key is a randomly generated Blum integer
N , and the secret key is a prime factor of N :

– EncN : To encrypt a bit b, the encryption algorithm Enc selects a random
s ∈ QRN (which can be done by selecting a random t ∈ ZN and then set s to
be t2 mod N), and computes fN (s) and h(s) ⊕ b. Enc outputs the ciphertext
c = (fN (s), h(s) ⊕ b);

– DecN : To decrypt a ciphertext c, the decryption algorithm Dec uses the secret
key to invert the first part of c, and then computes h(s) and outputs b.

The semantic security follows from the hardness of factoring assumption: A
good ciphertext distinguisher will give rise to an efficient algorithm that finds
square roots modulo N , which can be used to factor N .

In our constructions of commitment and zero knowledge protocols, we will
have one party generate one (or two) public key(s) of the above encryption
scheme and use one secret key to decrypt the messages from the other party. We
would like to stress that, in case that a malicious party generates a non-Blum
integer as its public key, the function fN in the encryption may no longer be
a permutation. Fortunately, such a malicious behavior only causes difficulty for
the malicious party to decrypt the ciphertext computed by the honest party, and
does not affect the property –the equivalence between distinguishing ciphertexts
and factoring– that is required to establish simulatability of our protocols.

We now give a formal statement of this property with respect to the
encryption scheme above. Here we slightly abuse these notations, and define
fN : QRN → QRN and the “encryption” function EncN (b) := (fN (s), h(s) ⊕ b)
over an arbitrary (positive) integer N .

Lemma 3 [Implied by [GL89,ACGS88,TW87]]. For any positive integer N of
length n and any inverse polynomial δ(n), if there exists a probabilistic circuit
family {An}n∈N of size T such that for any auxiliary input α ∈ {0, 1}∗,

9 The constructions of the hardcore of fN (·) appeared in [ACGS88,GL89]. Note that,
when using the Goldreich-Levin hardcore function [GL89], we need to change the
description of our encryption scheme a little bit, since the Goldreich-Levin hardcore
function is actually constructed for the permutation f ′

N (s, r) = (fN (s), r) (where
|r| = |s|). We ignore such changes in the description of our encryption scheme for
the sake of simplifying the presentation.
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Pr[b ← {0, 1}; c ← EncN (b);An(c,N, α) = b′ : b = b′] ≥ 1
2

+ δ(n)

then there exists a probabilistic circuit family {Bn}n∈N of size O( 1
δ5 n3T ) that

can factor N with probability

Pr[q ← Bn(N,α) : q|N ] ≥ 1 − negl(n).

Proof Sketch. The hardcore theorems [GL89,ACGS88] state that, given a success-
ful distinguisher An of size T for the “encryption” function EncN with advantage
δ, we can construct a new circuit of size O( 1

δ4 n3T ) that computes the square
roots modulo N with roughly the same successful probability. If δ is an inverse
polynomial, then by [TW87] such a square root circuit can be used to factor the
integer N in size O( 1

δ5 n3T ) with probability negligibly close to 1. ��
Applying Lemma 2 to a t-integer sampler {Ni}i∈[t] ← Samp, we can show

that there exists a nearly optimal extractor Ext for Samp such that for every j if
Ext fails to extract a prime factor of Nj , then no circuit of a-prior bounded size
can distinguish a ciphertext (except for small advantage). Formally, we obtain
the following result (and defer the proof of this lemma to the full version).

Lemma 4. Let t be a polynomial, and Samp be an arbitrarily t-integer sampling
algorithm with input distribution ensemble {Yn}n∈N. Let f : {0, 1}∗ → {0, 1}∗ be
an arbitrary (not necessarily efficiently computable) function.

1. For any polynomial T , any inverse polynomial ε, there exists a probabilistic
circuit family Ext := {Extn}n∈N of polynomial-size such that for every proba-
bilistic circuit family {An}n∈N of size T , for every j ∈ [t], we have

Pr

⎡

⎢

⎢

⎣

y ← Yn; {Ni}i∈[t] ← Samp(y);
{qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y));

b ← {0, 1}; c ← EncNj
(b);

b′ ← An(c, {qi}i∈[t], {Ni}i∈[t], j, y, f(y))

:
b = b′ ∧
qj � Nj

⎤

⎥

⎥

⎦

<
1
2

Pr
[

y ← Yn; {Ni}i∈[t] ← Samp(y);
{qi}i∈[t] ← Extn({Ni}i∈[t], y, f(y)) : qj � Nj

]

+ ε(n)

2. There exists a probabilistic circuit family Ext of quasi-polynomial size such
that for every probabilistic circuit family {Cn}n∈N of polynomial size, the
above holds with respect to a negligible function ε.

5 Selective Opening (T, ε)-Secure Commitment Scheme

We use the following ingredients in our construction of a selective opening secure
commitment scheme:

– The trapdoor commitment (TDGen,TDCom,Open,Fakeopen) described in
Sect. 2;
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– The variant of Rabin’s encryption scheme presented in Sect. 4.

With these two building blocks, we construct a selective opening secure com-
mitment scheme as follows. In the committing phase, we have the receiver run the
trapdoor generator and produce (N, q) (q|N) and transform (N, q) into (G,H),
then send N and the graph G to the committer; upon receiving N , the commit-
ter invokes TDCom and generates a commitment c, encrypts c bit-by-bit under
the public key N , and sends all these encryptions to the receiver. In the opend-
ing phase, the committer simply sends the opening of c to the receiver, who
decrypts the ciphertexts received in the committing phase using secret keys q
and obtains c, and checks whether the opening received from the committer is
a valid decommitment of c.

Formally, our selective opening secure commitment scheme proceeds as fol-
lows.

Protocolsoa:

Committing phase:
R −→ C: ((N,G), q) ← TDGen(1n). Send (N,G).
C −→ R: c = c1||c2|| · · · ||c� ← TDCom(G, b, r), {ζi ← EncN (ci)}i∈[�].

Send {ζi}i∈[�].
Opening Phase:
C −→ R: Send (b, dec) ← Open(G,TDCom(G, b, r), b, r).

R: c ← {DecN (ζi, q)}i∈[�]. Accept iff (b, dec) is a valid opening of c.

Theorem 1. Assuming the standard hardness of factoring, Protocolsoa is a
commitment scheme that satisfies the following properties:

1. (T, ε)-security under selective opening attacks.
2. Full security under selective opening attacks with a quasi-polynomial simula-

tor.

Proof. Note that the second property follows directly from the first property and
the second part of Lemma 4. Here we just prove the first property.

Computational Binding Property. Suppose that there is a malicious adver-
sary C∗ that can open a random commitment to two different values with notice-
able probability δ. We construct an efficient algorithm Factor, which uses C∗ as
a subroutine, to break the factoring assumption.

Factor plays the role of the honest receiver R, except that it doesn’t check if
a decommitment is consistent with the plaintext c encrypted in the ciphertexts
received in the committing phase. More specifically, given a Blum integer N
as input, Factor transforms it into a graph G, and sends (N,G) to C∗ as its
first message; upon receiving C∗’s committing phase message and two different
decommitments (b, dec) and (b′, dec′) (with b �= b′), Factor applies the standard
extractor to these decommitments, and if it extracts a prime factor q of N ,
outputs it.
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Note that a successful opening in a real interaction implies at least that the
decommitment received by R is a valid opening of the plaintext c encrypted by
C∗ in the committing phase. That means, in case C∗ successfully opens a com-
mitment to two different decommitments (b, dec) and (b′, dec′) in the real world,
one can alway extract a prime factor of N from only the two decommitments
(without the need for knowledge of the plaintext c). Thus, the above algorithm
Factor will output a prime factor of N with probability δ, breaking the factoring
assumption.

(T, ε)-Security Under Selective Opening. Our simulation strategy for a k-
parallel selective opening attacker R∗ is quite simple in spirit. When receiving the
first k integers N1, N2, ..., Nk, the simulator applies the nearly optimal extrac-
tor against T -size circuits and tries to extract a prime factor for each Ni, if it
succeeds for some Ni, then the i-th commitment becomes equivocal and can be
opened to different values; if it fails for Ni, then, in the eye of a T -size distin-
guisher, the i-th commitment is also “equivocal”, since it is unable to extract a
secret key of Ni either, and hence unable to tell whether the commitment c deter-
mined by the decommitment (b′, dec′) received is the very plaintext encrypted
in the ciphertexts.

To give a formal description of the simulator, we introduce the following
notations. (In what follows, we ignore the function f considered in Sect. 3 and 4.)

– {Yn}n∈N : the distribution ensemble of the randomnesses for the k-parallel
selective opening receiver R∗.

– Algorithm Samp is defined to be the committing phase of R∗: y ← Yn,
{Ni, Gi}i∈[k] ← R∗(y), output {Ni}i∈[k].

– (T ′, δ) := ((kTc + T ), ε
k� ). Here Tc and T denote the size of the committer C

and the distinguisher Dn respectively. ε is the advantage of the distinguisher
that we tolerate. Note that our goal is to show that an arbitrary circuit of size
T cannot distinguish a simulation from the real interaction with advantage
greater than ε.

For the above sampling algorithm Samp, Lemma 4 guarantees that there
exists a nearly optimal (T ′, δ = ε

k� )-extractor Ext := {Extn}n∈N against any
plaintext-extractor of size T ′. Let B be a k-bit message distribution.

Consider the following distribution SIM generated by Sim.
SIM:
1. y ← Yn; {Ni, Gi}i∈[k] ← R∗; b̄ = b1||b2|| · · · ||bk ← B;
2. Sim runs Extn({Ni}i∈[k], y) and obtains {qi}i∈[k].
3. Sim computes k commitments to 0 independently, ci ← TDcom(Gi, 0, ri),

1 ≤ i ≤ k, ζi ← {EncNi
(ci

j)}j∈[�], and sends {ζi}i∈[k] to R∗.
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4. Upon receiving I ← R∗({ζi}i∈[k]) and {bi}i∈I , Sim opens {ζi}i∈I in the
following way:

(a) If bi = 0, open ζi to (bi = 0, deci) in an honest way;
(b) If qi|Ni and bi = 1, run Fakeopen(Gi,Hi, c

i, 0, ri) to open ζi to (bi =
1, deci), where Hi is a simple cycle of Gi, transformed from (Ni, qi);

(c) If qi � Ni and bi = 1, compute a commitment c̃i ← TDcom(Gi, 1, r̃i)
to 1, and set the opening of ζi to be the decommitment (1, deci) of
c̃i.

5. Run OutSim ← R∗({(bi, deci))}i∈I), and output (b̄, I, OutSim).

We use hybrid argument to prove that SIM is indistinguishable from the
real interaction between R∗ and Ck. Consider the following sequence of hybrid
experiments, in each of which we allow Sim to take the message b̄ as an auxiliary
input.

Define SIM0 be identical to SIM. For 1 ≤ m ≤ k, SIMm acts in the same way
as SIMm−1 except that Sim in SIMm computes the m-th commitment cm to bm

in step 3 and opens it honestly in step 4 when m ∈ I.
Note that SIMk is identical to the real interaction. To conclude the proof of

Theorem 1, it remains to show that, for every distinguisher Dn of size T , for all
1 ≤ m ≤ k,

|Pr[Dn(SIMm−1) = 1] − Pr[Dn(SIMm) = 1]| <
ε

k
. (4)

We now construct a sequence of sub-hybrids to establish the inequality (4).
Fix an m ∈ [k]. For 0 ≤ t ≤ 
, consider the hybrid SIMm

t :
SIMm

t :
1. Run step 1 and 2 of SIM and obtain b̄, {Ni, Gi}i∈[k] and {qi}i∈[k].
2. On input b̄, Sim runs TDcom and generates the first m − 1 commit-

ments to b1, b2, ..., bm−1, and the last k − m − 1 commitments to 0, and
then encrypts these commitments bit-wise and obtains {ζi}i∈[k]\m. Sim
computes the m-th commitment in the following way:

(a) If qm|Nm or bm = 0, Sim computes a commitment cm to 0 and gen-
erates ζm correspondingly.

(b) If qm � Nm and bm = 1, it computes a commitment cm to 0 and
a commitment c̃m to 1, and the bit-wise encryptions ζm of ĉm =
cm
1 || · · · ||cm

t ||c̃m
t+1|| · · · ||c̃m

� , where cm
j and c̃m

j are the j-th bit of cm

and c̃m respectively.

Sim sends {ζi}i∈[k] to R∗.
3. Upon receiving I ← R∗({ζi}i∈[k]), Sim does the following: for i ∈ [m −

1] ∩ I, open ζi in an honest way; for i ∈ [m + 1, k] ∩ I, open ζi according
to the step 4 of SIM; for i = m ∈ I, Sim opens ζi according to the step
4 of SIM except that, in the case of qm � Nm and bm = 1, it sets the
opening of ζm to be the decommitment of c̃m (already computed in the
previous step).
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4. Run OutSim ← R∗({(bi, deci))}i∈I), and output (b̄, I, OutSim).
Observe that when t = 0, SIMm

0 computes the commitment cm to 0 in case
qm � Nm and bm = 1, and sets its opening to be the decommitment of an
independent commitment c̃m to 1. That is, SIMm

0 acts exactly in the same way
as SIMm−1. We conclude the inequality (4) (and the Theorem 1) by the following
two lemmas.

Lemma 5. SIMm
�

c≈ SIMm.

Lemma 6. For all 1 ≤ t ≤ 
, and for all distingshuier Dn of size T ,

|Pr[Dn(SIMm
t−1) = 1] − Pr[Dn(SIMm

t ) = 1]| <
ε

k

.

Due to space limitations, the proof of these two lemmas are provided in the
full verison of this paper. ��

6 Concurrent (T,ε)-Zero Knowledge and Witness Hiding
in the BPK Model

In this section we present a very simple three-round concurrent (T, ε)-zero knowl-
edge and witness hiding argument for NP in the BPK model. The construction
relies on the polynomial hardness of factoring, and makes use of only two sim-
ple building blocks: the factoring-based encryption and the three round parallel
version of Blum’s protocol (PB, VB). Let a transcript of (PB, VB) be of the form
(a, e, z), and P 1

B and P 2
B be the first and the second prover steps respectively.

In the key registration phase, an honest verifier generates two Blum inte-
gers N0 and N1 of length n, and stores two prime factors q0 and q1, qi|Ni for
each i ∈ {0, 1}. It registers (N0, N1) as his public-key. In the proof phase, on
input the verifier’s public key (N0, N1) and the statement x ∈ L, the prover
and the verifier execute (PB, VB) in which PB proves the statement “x ∈ L OR
∃q s.t. q|N0 or q|N1”. Denote such a prover by PB(x∨N0∨N1)).

The formal description of our protocol follows.
Protocolczk:

Common input: x ∈ RL, (N0, N1).
Private input to P : w s.t. (x,w) ∈ RL.
P −→ V : Send a ← P 1

B (x ∨ N0 ∨ N1)).
V −→ P : Send e ← VB.
P −→ V : z = z1||z2||···||z� ← P 2

B (x∨N0∨N1), {ζi,j ← EncNi
(zj)}i∈{0,1}j∈[�].

Send {ζ0,j}j∈[�] and {ζ1,j}j∈[�].
V : ẑ ← {DecN (ζ0,j , q0)}j∈[�], z̃ ← {DecN (ζ1,j , q1)}j∈[�]. Accept iff

ẑ = z̃ and (a, e, ẑ) is accepting.

Theorem 2. Under the standard hardness assumption of factoring, Protocolczk

is an argument that satisfies the following properties:
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1. Concurrent (T, ε)-zero knowledge with concurrent soundness.
2. Concurrent witness hiding.
3. Concurrent zero knowledge with quasi-polynomial time simulator.

Proof. Completeness is obvious.

Concurrent Soundness. Suppose, towards a contradiction, that a cheating
concurrent prover P ∗ initiates k sessions and makes the verifier accept a false
statement x /∈ L with noticeable probability δ in one session. We can then
construct an efficient algorithm Factor using P ∗ as a subroutine to factor a
randomly chosen Blum integer with noticeable probability. Factor takes a Blum
integer N as input, chooses two primes p, q (≡ 3 mod 4) and a random i ∈ {0, 1},
sets Ni to be pq, N1−i to be N . In the key registration phase, Factor registers
(N0, N1) as his public key and keeps q as its secret key. In the proof phase, Factor
chooses a random session, and try to obtain two accepting accpeting transcripts
(a, e, z) and (a, e′, z′) and compute a witness q′(i.e., a prime factor of N0 or N1)
from them.

It is not hard to show that q′ is a prime factor of N1−i with high probabiity,
and this contradicts the hardness of factoring. The actual proof can be done
by combining the standard analysis with a crucial observation, as mentioned in
the introduction, that a successful cheating on session s means it will pass an
honest verifier’s check, which in turn implies that at least the both collections
of ciphertexts in the last message can be decrypted to the same accepting z.

Concurrent (T, ε)-Zero Knowledge. Consider an arbitrary concurrent adver-
sary V ∗ of polynomial size. We show there exists a simulator of polynomial size
to establish the weak zero knowledge property.

Suppose that V ∗ registers k public keys {(N i
0, N

i
1)}i∈[k] and initiates at most

s sessions. As before, the simulator applies the nearly optimal extractor to factor
all integers registered by V ∗ in the key registration phase. Once the simulator
extracts a prime factor of one of (N i

0, N
i
1), it can complete any session under

the public key (N i
0, N

i
1) successfully; if it fails for a public key (N i

0, N
i
1), the

simulator computes encryptions of zeros as its last message in the sessions under
the public key (N i

0, N
i
1).

Let Yn be the distribution of V ∗’s randomness, and the sampling algorithm
Samp to be the V ∗’s registration step. Set (T ′, δ) to be ((s(2
Tenc+Tp)+T ), ε

4s� ),
where Tenc, Tp and T are the size of Enc, the honest prover of the Blum protocol
(PB, VB) and the distinguisher respectively, and ε is the advantage of the distin-
guisher that we tolerate. By Lemma 4 we have a polynomial-size (T ′, δ = ε

4� )-
extractor Ext := {Extn}n∈N against any circuit family of size T ′.

On input s Yes instances x̄ = {xi}i∈[s], the simulator proceeds as follows.
Sim(x̄):
1. y ← Yn, {(N i

0, N
i
1)}i∈[k] ← V ∗(y).

2. {(qi
0, q

i
1)}i∈[k] ← Extn({(N i

0, N
i
1)}i∈[k], y).
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3. For a session under the public key (N i
0, N

i
1), do the following:

(a) If qi
0|N i

0 or qi
1|N i

1, complete this session using the extracted prime
factor as witness.

(b) Otherwise, produce an honest message a in its first step. Upon receiv-
ing a challenge e, set z = 0�, and compute {EncNi

0
(zj)}i∈[�] and

{EncNi
1
(zj)}i∈[�] as the last message of this session.

4. Output the entire history when V ∗ terminates.
We are ready to prove the first part of Theorem 2. Suppose, towards a con-

tradiction, that there exists a distinguisher Dn of size T such that

|Pr[Dn(ViewP
V ∗)(x̄)) = 1] − Pr[Dn(Sim(x̄)) = 1]| > ε. (5)

We order all s sessions according to its appearance, and construct the fol-
lowing hybrid simulators with all witnesses hardwired: Define Sim0(x̄, w̄) be the
Sim(x̄, w̄), and Simk(x̄, w̄) as in the same way except that in each of the first
k sessions it uses the real witness to complete a proof. Clearly, Sims(x̄, w̄) is
identical to the real interaction. From (5), there must exist a m ∈ [s] such that

|Pr[Dn(Simm−1(x̄, w̄)) = 1] − Pr[Dn(Simm(x̄, w̄)) = 1]| >
ε

s
. (6)

Fix such a m, and for t ∈ [2
], consider the sub-hybrid simulator Simm
t (x̄, w̄):

Simm
t (x̄, w̄):

1. Run step 1,2 of Simm(x̄, w̄) and obtain {(N i
0, N

i
1)}i∈[k] and {(qi

0, q
i
1)}i∈[k].

2. For the session m under the public key (Nm
0 , Nm

1 ), do the following:

(a) If qi
0|N i

0 or qi
1|N i

1, act in the same way as Simm(x̄).
(b) Otherwise, produce an honest message a in its first step. Upon receiv-

ing a challenge e, produce an accepting z using the real witness, set
z′ = 0t||z2�−t, where z2�−t is the suffix of z||z, and encrypt the first
half bits of z′ under N i

0, their second half bits under N i
1.

For any other session, act in the same way as Simm−1(x̄, w̄).
3. Output the entire history when V ∗ terminates.
Observe that Simm

2�(x̄, w̄) = Simm(x̄, w̄). It follows from the witness indis-
tinguishability of the Blum protocol that Simm

0 (x̄, w̄)
c≈ Simm−1(x̄, w̄) (with a

negligible distinguishing gap). By (6), there must exist a t ∈ [2
] such that

|Pr[Dn(Simm
t−1(x̄)) = 1] − Pr[Dn(Simm

t (x̄)) = 1]| >
ε

4s

. (7)

Note that the only difference between Simm
t−1(x̄) and Simm

t (x̄) lies in the t-th
ciphertext in case that the extractor fails to find any prime factors of the public
key. Hence, if the inequality (7) holds, we can construct a size-T ′ circuit An with
(barx, w̄) hardwired, and show that it constradicts the (nearly) optimality of
the extractor Extn. (The detailed proof can be found in the full version of this
work.) This concludes the first part of Theorem 2.
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The second part of Theorem 2 follows from the fact that (concurrent)
(T, ε)-zero knowledge implies (concurrent) witness hiding (see [JKKR17] for the
detailed proof). Here we just describe the underlying idea. For a given malicious
verifier V ∗ of size T that can output a witness of a statement drawn from Xn at
the end of a session with probability greater than some inverse polynomial ε, as
we showed above, there exists a simulator of polynomial size such that V ∗ cannot
distinguish the real interaction from simulation with probability greater than ε

2 .
Combining the simulator and V ∗, we will have a circuit family of polynomial size
that breaks the hardness of Xn. Quasi-polynomial simulatability follows again
from the second part of Lemma 4 directly. ��

7 Simpler (T,ε)-Zero Knowledge and Analysis
in the Plain Model

In this section we present a very simple delayed-input 2-round (T, ε)-zero knowl-
edge argument for NP, and then sketch how to use our individual simulation tech-
nique to give a significantly simpler proof that the distinguisher-dependent sim-
ulatable zero knowledge protocols of [JKKR17,BKP19] also satisfy the stronger
notion of (T, ε)-zero knowledge.

We build such an argument on a quasi-polynomial extractable perfectly bind-
ing commitment scheme Com [Pas03] (which can be based on sub-exponential
hardness of factoring) and a NIWI proof system (PWI, VWI)10.

As usual, we denote by PWI(x ∨ (N, c)) the prover of the NIWI proof that
proves to the verifier the statement “x ∈ L OR ∃ q such that c is a commitment
to q and q|N”

Protocolzk:

Private input to P : w s.t. (x,w) ∈ RL.

V −→ P : (N, q) ← Blum(1n). Send N to P .
P −→ V : c←Com(0n), z=z1||z2||· · ·||z� ←PWI(x∨(N,c)),{ζj ←EncN (zj)}j∈[�].

Send x, c and {ζj}j∈[�] to V .
V : z ← {DecN (ζj , q)}j∈[�]. Accept iff (x, z) is accepting.

Theorem 3. Under the sub-exponential hardness assumption of factoring,
Protocolzk is a delayed-input interactive argument that satisfies all the following
properties:

1. Delayed-input (T, ε)-zero knowledge.
2. Delayed-input witness hiding.
3. Delayed-input zero knowledge with quasi-polynomial time simulator.

10 One can also use two-round WI (such as [DN00]) here. We use NIWI (such
as [GOS06]) to simplify our construction.
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The soundness of this protocol is also straightforward. Note that a cheating
prover P ∗ on a false statement x /∈ L with noticeable success probability δ implies
that the message c sent by P ∗ is a commitment to a prime factor of N . This leads
to a simple quasi-polynomial factoring algorithm Factor with success probability
at least δ that contradicts the sub-exponential hardness of factoring: On input
an integer N , it plays the role of the verifier and sends it to P ∗; upon receiving
the message c, it extracts a prime factor of N from c in quasi-polynomial time.

The proof of (T, ε)-zero knowledge, witness hiding and quasi-polynomial sim-
ulatability are essentially the same as in the previous section, we omit it here.

Upgrade the Distinguisher-Dependent Simulations. The work of
[CLP15b] implies that existing distinguisher-dependent simulatable weak zero
knowledge protocols of [JKKR17,BKP19] are also (T, ε)-zero knowledge. We
note that both constructions of [JKKR17,BKP19] enjoy the two properties of
(A,B) listed in Sect. 1.4, hence our individual simulation technique can also be
applied to prove that they satisfy the stronger notion of (T, ε)-zero knowledge.
For their 3-round protocols, one can view the verifier step as an NP instance (to
which a solution will enable a successful simulation) sampler that takes as input
its randomness and the first prover message a and outputs an instance (verifier
message). To show the (T, ε)-zero knowledge property, we can construct an indi-
vidual simulator in a similar way. The simulator applies a nearly optimal extrac-
tor (which is also given certain secret information f(a) about the message a as an
additional input11) to the sampler/verifier and tries to extract the corresponding
witness, and then follows the residual strategy of the distinguisher-dependent
simulator in [JKKR17,BKP19] after their extraction from the distinguisher
oracle.
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