
The Direction of Updatable Encryption
Does Not Matter Much

Yao Jiang(B)

Norwegian University of Science and Technology, NTNU, Trondheim, Norway
yao.jiang@ntnu.no

Abstract. Updatable encryption schemes allow for key rotation on
ciphertexts. A client outsourcing storage of encrypted data to a cloud
server can change its encryption key. The cloud server can update the
stored ciphertexts to the new key using only a token provided by the
client.

This paper solves two open problems in updatable encryption, that of
uni-directional vs. bi-directional updates, and post-quantum security.

The main result in this paper is to analyze the security notions based
on uni- and bi-directional updates. Surprisingly, we prove that uni- and
bi-directional variants of each security notion are equivalent.

The second result in this paper is to provide a new and efficient
updatable encryption scheme based on the Decisional Learning with
Error assumption. This gives us post-quantum security. Our scheme is
bi-directional, but because of our main result, this is sufficient.

Keywords: Updatable encryption · Cloud storage · Key rotation ·
Lattice-based cryptography · Post-quantum cryptography

1 Introduction

Consider the following scenario: a client wishes to outsource data to a cloud
storage provider with a cryptoperiod (client key lifetime). The cryptoperiod is
decided by the client or the cloud storage provider or both. If the key lifetime is
expired, the old key is no longer available for either encryption or decryption, a
new key must be used in the new cryptoperiod. However, the client might still
want to keep the data in the cloud storage in the new cryptoperiod and needs
to update the data. The above requirement implies a need to update ciphertexts
from the old key to the new key. During this process, it is also reasonable to
expect that no information of plaintexts are leaked while updating. Another
benefit to consider in such a scenario is that it can be used to protect the data
and reduce the risk of key compromise over time.

Key rotation is the process of generating a new key and altering ciphertexts
from the old key to the new key without changing the underlying massage.

Key rotation can be done by downloading the old ciphertext, decrypting with
the old key, re-encrypting with a new key and reuploading the new ciphertext.
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However, this is expensive. Updatable encryption (UE) [5,6,8,11,14,15] provides
a better solution for key rotation. A client generates an update token and sends
it to the cloud server, the cloud server can use this update token to update the
ciphertexts from the old key to the new key. In recent years there has been con-
siderable interest in understanding UE, including defining the security notions
for UE and constructing UE schemes (we make a detailed comparison of related
work in Sect. 1.1).

Consider the following two variants of UE schemes: ciphertext-dependent
schemes and ciphertext-independent schemes. If the generation of update token
depends on the ciphertext to be updated then the UE scheme is ciphertext-
dependent. In ciphertext-dependent schemes, the updating process of a cipher-
text requires a specific token which forces the client to download the old cipher-
text before this token can be generated. Therefore, ciphertext-dependent schemes
are less practical. If the token is independent of the old ciphertext then the UE
scheme is ciphertext-independent. Hence, a single token can be used to update
all ciphertexts a client owns. As ciphertext-independent schemes are consider-
ably more efficient than ciphertext-dependent schemes, in terms of bandwidth,
most recent works [7,8,14,15] focus on ciphertext-independent schemes. In this
paper, we will focus on such schemes.

Consider the following four variants of updates for ciphertext-independent
UE schemes: uni-directional ciphertext updates, bi-directional ciphertext
updates, uni-directional key updates and bi-directional key updates. If the
update token can only move ciphertexts from the old key to the new key then
ciphertext updates in such UE schemes are uni-directional. If the update token
can additionally downgrade ciphertexts from the new key to the old key then
ciphertext updates in such UE schemes are bi-directional. On the other hand,
the update token can potentially be used to derive keys from other keys. In
the uni-directional key update setting, the update token can only infer the new
key from the old key. While in the bi-directional key update setting, the update
token can both upgrade and downgrade keys. Prior works [7,8,14,15] focus on
UE schemes with bi-directional updates, and no security notion was introduced
in uni-directional update setting. We close this gap. Intuitively, UE schemes with
uni-directional updates are desirable, such schemes leak less ciphertext/key infor-
mation to an adversary compared to schemes with bi-directional updates. In this
paper, we analyze the relationship between security notions with uni- and bi-
directional updates. We show that the (confidentiality and integrity) security of
UE schemes are not influenced by uni- or bi-directional updates.

No-directional key updates is another key update setting to consider, where
the update token cannot be used to derive keys. A UE scheme with optimal
leakage, discussed in [15], is a scheme where no token inference (no token can be
inferred via keys), keys cannot be updated via a token, and ciphertext updates
are only uni-directional. We do not consider no token inference, instead in this
work an update token can be computed via two consecutive epoch keys. We
show that the no-directional key update variant of a security notion is strictly
stronger than the uni- and bi-directional update variant of the same security
notion.
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While the study of security notions appears promising, existing ciphertext-
independent UE schemes are either vulnerable to quantum computers or only
achieve weak security. The schemes of Lehmann and Tackmann [15], Klooß
et al. [14] and Boyd et al. [8] base their security on the DDH problem, and
thus are only secure in the classical setting. Boneh et al. [6] constructed key
homomorphic PRFs, based on the learning with errors (LWE) problem, and it
can be used to construct UE schemes. However, all of these schemes of Boneh
et al. [6] cannot achieve IND-UPD security (introduced in [15]).

In this work, we construct a post-quantum secure UE scheme and the security
of our construction is based on hard lattice problems. In particular, our scheme
provides the randIND-UE-CPA security (introduced in [8], stronger than IND-UPD
and IND-ENC security).

Efficiency. All of the previous known ciphertext-independent UE schemes with
security proofs (RISE, E&M, NYUE (NYUAE), SHINE) have computation cost
that are comparable to PKE schemes that rely on the DDH problem, while our
scheme has a computation cost that is comparable to PKE schemes that rely on
lattice problems.

1.1 Related Work

Security Notions. Boneh et al. [6] introduced a security definition for UE, how-
ever, this notion is less adaptive than the later works [8,14,15] which allows the
adversary to adaptively corrupt epoch keys and update tokens at any point in
the game.

In the ciphertext-dependent setting, Everspaugh et al. [11] provided two
security notions, a weak form of ciphertext integrity and re-encryption indistin-
guishability, that strengthen the security notion in [6]. Recently, Boneh et al. [5]
introduced new definitions for updatable encryption in the ciphertext-dependent
setting to further strengthen the confidentiality property and the integrity defi-
nition in [11]. Boneh et al. [5] stated that for authenticated updatable encryption
schemes it is necessary to expect that ciphertexts will not reveal how many times
they have been updated, which was a desired property independently presented
in [8].

Lehmann and Tackmann [15] introduced two notions to achieve CPA security
for ciphertext-independent UE schemes. Their IND-ENC notion requires that
ciphertexts output by the encryption algorithm are indistinguishable from each
other. Their IND-UPD notion ensures ciphertexts output by the update algorithm
are indistinguishable from each other.

Klooß et al. [14] attempted to provide stronger security notions for ciphertext-
independent UE than LT18, specifically, CCA security and integrity protection.

Boyd et al. [8] provided a new notion IND-UE which states that a ciphertext
output by the encryption algorithm is indistinguishable from a ciphertext output
by the update algorithm. They showed that the new notion is strictly stronger
than any combinations of prior notions, both under CPA and CCA. They also
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tweaked the CTXT and CCA notions in [14] and showed the following generic
composition result: CPA + CTXT =⇒ CCA.

Constructing Ciphertext-Independent Updatable Encryption Schemes. The UE
scheme BLMR in [6] is an application of key homomorphic PRFs, however, the
encrypted nonce in the ciphertext can be decrypted by an update token which
makes it impossible for BLMR to achieve IND-UPD security.

In the classical setting, RISE in [15] is built from (public-key) ElGamal
encryption, which only uses the public key in the update token. The security
of RISE is based on the DDH assumption. Klooß et al. [14] provided two generic
constructions, based on encrypt-and-MAC (E&M) and the Naor-Yung paradigm
(NYUE and NYUAE). The security of E&M is based on the DDH assumption,
and the security of NYUE and NYUAE are based on the SXDH assumption.
Boyd et al. [8] constructed three permutation-based UE schemes, SHINE, which
achieves strong security notions based on DDH.

Post-Quantum Secure Schemes. In the past decade, much work has been
done on constructing lattice-based post-quantum secure PKE schemes, specif-
ically the NIST Post-Quantum Standardization Project, round 2, submissions:
CRYSTALS-KYBER [3], FrodoKEM [1], LAC [16], NewHope [2], NTRU [4,9],
Round5 [18], SABER [10] and Three Bears [12]. A natural question is if we can
turn a PKE scheme into a UE scheme, where the security of the UE follows
from the PKE. We provide a specific UE scheme that is built form an LWE-
based PKE scheme, and prove the security. The LWE-based scheme we use is
in some sense very similar to RISE (which is based on ElGamal), however, as
with most lattice-based constructions, there are significant technical problems
in turning it into a UE scheme (see Sect. 5.2). Our LWE-based UE construction
suggests that there is a limit to how generic any efficient construction can be, a
generic construction that abstracts both our construction and RISE remains to
be done.

1.2 Our Contributions

Our first contribution is defining six variants of security notions (a combination
of three versions of key updates and two versions of ciphertext updates) for
updatable encryption and analyzing the relations among these six variants of
the same notion.

Our main result is that we demonstrate that our security notions with uni-
and bi-directional updates are equivalent. When we analyze the security, we can
treat UE schemes with uni-directional updates as with bi-directional updates,
the security will not be influenced by the update direction. This means that
UE schemes with uni-directional updates will not provide more security than
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UE schemes with bi-directional updates. This is a surprising result.1 This result
implies that the search for uni-directional updatable encryption scheme seems
less important.

Furthermore, we show that security notions with no-directional key updates
are strictly stronger than uni- and bi- directional update variants of the corre-
sponding notions. Finding UE schemes with no-directional key updates would be
good, but it is much more challenge than finding UE schemes with uni-directional
key updates (which is already believed to be difficult). We leave this as an open
problem.

Our second major contribution is constructing an efficient post-quantum
secure UE scheme. We analyze how to construct LWE-based updatable encryp-
tion schemes and provide one construction. Our construction follows the re-
randomization idea of RISE, using public key in the update token to update
ciphertexts. We build a suitable post-quantum secure PKE scheme to construct
our UE scheme so that the encryption and update algorithms can use a public
key as input instead of the secret key. We also show the difficulties of turning a
PKE scheme into a UE scheme.

We show that our LWE-based UE scheme is randIND-UE-CPA secure under
the DLWE assumption. In the randomized update setting, we show the difference
between previous work (RISE, NYUE,NYUAE) and our scheme, and state that
the method used in proving the security of LWE-based updatable encryption
scheme is different from the previous approach.

1.3 Open Problems

Ideally we want UE schemes with no-directional key updates, no such UE
schemes have been constructed so far. Whether such UE schemes exist and how
to construct such UE schemes are still open problems.

Furthermore, not that many efficient UE schemes with strong security exist
so far. It remains an open challenge to construct UE schemes with chosen cipher-
text2 post-quantum security.

1 It is possible to construct a scenario where this result will not be true. Let’s assume
there exists a UE scheme with a leakage function that helps the adversary win
the security game. This leakage function could, for example, give the adversary
information about plaintexts when it knows enough keys. In this scenario, a UE
scheme with uni-directional updates has better security than a UE scheme with
bi-directional updates. Because the scheme with uni-directional updates has less
key leakage and the leakage function provides less data to the adversary. However,
this and similar constructions cannot capture the security we wish to have for UE
schemes. In terms of the security expectation of key rotation, the keys used in the
past should not reveal any data.

For constructions that do follow the security model and update mechanism for
UE schemes, we have this surprising result.

2 It is ideal to achieve detIND-UE-CCA security for UE schemes with deterministic
updates and to achieve INT-PTXT and randIND-UE-CCA security for UE schemes
with randomized updates.
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2 Preliminaries

In this section we describe the notation used in this paper and present the nec-
essary background material of updatable encryption. In the full version [13], we
provide the real or random variant of indistinguishability under chosen-plaintext
attack (IND$-CPA) for encryption schemes and the background of hard lattice
problems.

2.1 Notations

Let λ be the security parameter throughout the paper. Let negl denote as a
negligible function. Let U(S) denote the uniform distribution over set S.

2.2 Updatable Encryption

Updatable encryption (UE) scheme is parameterized by a tuple of algorithms
{UE.KG,UE.TG,UE.Enc, UE.Dec,UE.Upd} that operate in epochs, the epoch
starts at 0. The key generation algorithm UE.KG outputs an epoch key ke. The
token generation algorithm UE.TG takes as input two epoch keys ke and ke+1

and outputs an update token Δe+1, the update token can be used to move cipher-
texts from epoch e to e + 1. The encryption algorithm UE.Enc takes as input
an epoch key ke and a message m and outputs a ciphertext ce. The decryption
algorithm UE.Dec takes as input an epoch key ke and a ciphertext ce and outputs
a message m′. The update algorithm UE.Upd takes as input an update token
Δe+1 and a ciphertext ce from epoch e and outputs an updated ciphertext ce+1.

We stress that an update token can be computed via two consecutive epoch
keys by token generation algorithm in this paper.

2.3 Existing Security Notions for Updatable Encryption

Klooß et al. [14] and Boyd et al. [8] defined the confidentiality and the integrity
notions for updatable encryption schemes using experiments that are running
between an adversary and a challenger. In each experiment, the adversary may
send a number of oracle queries. The main differences between an experiment
running the confidentiality game and one running the integrity game are the
challenge and win condition. In the confidentiality game, the adversary tries
to distinguish a fresh encryption from an updated ciphertext. In the integrity
game, the adversary attempts to provide a valid forgery. At the end of an exper-
iment the challenger evaluates whether or not the adversary wins, if a trivial win
condition was triggered the adversary will always lose.

We follow the notation of security notions from Boyd et al. [8]. An overview of
the oracles the adversary has access to in each security game is given in Fig. 1.
A generic description of all confidentiality experiments and integrity experi-
ments described in this paper is detailed in Fig. 2 and Fig. 3, resp.. Our oracle
algorithms, see Fig. 4, are stated differently than in [8] and [14], however, con-
ceptually they are the same. The oracles we use in our security games are as
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Notions O.Enc O.Dec O.Next O.Upd O.Corr O.Chall O.UpdC̃ O.Try

detIND-UE-CPA � × � � � � � ×
randIND-UE-CPA � × � � � � � ×
detIND-UE-CCA � � � � � � � ×
randIND-UE-CCA � � � � � � � ×
INT-CTXT � × � � � × × �
INT-PTXT � × � � � × × �

Fig. 1. Oracles given to the adversary in different security games for updatable encryp-
tion schemes. × indicates the adversary does not have access to the corresponding
oracle, � indicates the adversary has access to the corresponding oracle.

follows, encrypt O.Enc, decrypt O.Dec, move to the next epoch O.Next, update
ciphertext O.Upd, corrupt key or token O.Corr, ask for the challenge cipher-
text O.Chall, get an updated version of the challenge ciphertext O.UpdC̃, or test
if a ciphertext is a valid forgery O.Try. The detailed discussion of trivial win
conditions are discussed in Sect. 2.6.

For the confidentiality game we have the following additional definitions that
we will frequently use. While the security game is running, the adversary may
query O.Enc or O.Upd oracles or corrupt tokens to know some (updated) versions
of ciphertexts, we call them non-challenge ciphertexts. In addition, the adversary
may query O.Chall or O.UpdC̃ oracles or corrupt tokens to infer some (updated)
versions of the challenge ciphertext, we call them challenge-equal ciphertexts.

Definition 1. Let UE = {UE.KG,UE.TG,UE.Enc, UE.Dec,UE.Upd} be an
updatable encryption scheme. Then the notion advantage, for notion ∈
{detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA}, of an
adversary A against UE is defined as

Advnotion
UE, A(1λ) =

∣
∣
∣Pr[Expnotion-1

UE, A = 1] − Pr[Expnotion-0
UE, A = 1]

∣
∣
∣,

where the experiment Expnotion-b
UE, A is given in Fig. 2 and Fig. 4.

Definition 2. Let UE={UE.KG,UE.TG,UE.Enc, UE.Dec,UE.Upd} be an updat-
able encryption scheme. Then the notion advantage, for notion ∈ {INT-CTXT,
INT-PTXT}, of an adversary A against UE is defined as

Advnotion
UE, A(1λ) = Pr[Expnotion

UE, A = 1],

where the experiment Expnotion
UE, A is given in Fig. 3 and Fig. 4.

2.4 Notations of the Leakage Sets

In this section, we describe the definition of leakage sets given by [15] and [14],
these sets will later be used to check whether the leaked information will allow
the adversary trivially win the security game. We analyze some properties of
leakage sets and trivial win conditions in Sect. 3.1.
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ExpxxIND-UE-atk-b
UE, A :

do Setup; phase ← 0
b′ ← Aoracles(1λ)
if

(
(K∗ ∩ C∗ �= ∅) or xx=det and

(ẽ∈T ∗ or O.Upd(c̄) is queried)
))

then
twf ← 1

if twf = 1 then
b′ $←− {0, 1}

return b′

Fig. 2. Generic description of the confi-
dentiality experiment ExpxxIND-UE-atk-b

UE, A for
updatable encryption scheme UE and
adversary A, for xx ∈ {det, rand} and atk ∈
{CPA,CCA}. The flag phase tracks whether
or not A has queried the O.Chall oracle,
ẽ denotes the epoch in which the O.Chall
oracle happens, and twf tracks if the trivial
win conditions are triggered. Figure 1 shows
the oracles the adversary have access to in
a specific security game. How to compute
the leakage sets K∗, T ∗, C∗ are discussed in
Sect. 2.5.

ExpINT-atk
UE, A

do Setup; win ← 0
Aoracles(1λ)
if twf = 1 then
win ← 0

return win

Fig. 3. Generic description
of the integrity experiment
ExpINT-atk

UE, A for updatable encryp-
tion scheme UE and adversary A,
for atk ∈ {CTXT,PTXT}. The
flag win tracks whether or not the
adversary provided a valid forgery
and twf tracks if the trivial win
conditions are triggered. Figure 1
shows the oracles the adversary
have access to in a specific security
game.

Epoch Leakage Sets. We use the following sets that track epochs in which the
adversary corrupted a key or a token, or learned a version of challenge-ciphertext.

– K: Set of epochs in which the adversary corrupted the epoch key (from
O.Corr).

– T : Set of epochs in which the adversary corrupted the update token (from
O.Corr).

– C: Set of epochs in which the adversary learned a challenge-equal ciphertext
(from O.Chall or O.UpdC̃).

We use K∗, T ∗ and C∗ as the extended sets of K, T and C in which the
adversary has learned or inferred information via its known tokens. We show
how to compute K∗, T ∗ and C∗ in Sect. 2.5.

Information Leakage Sets. We use the following sets to track ciphertexts and
their updates that can be known to the adversary.

– L: Set of non-challenge ciphertexts (c, c, e;m), where query identifier c is a
counter incremented with each new O.Enc query. The adversary learned these
ciphertexts from O.Enc or O.Upd.

– L̃: Set of challenge-equal ciphertexts (c̃e, e). The adversary learned these
ciphertexts from O.Chall or O.UpdC̃.
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Setup(1λ)

k0
$←− UE.KG(1λ)

Δ0 ←⊥; e, c, twf ← 0
L, L̃, C, K, ← ∅

O.Enc(m) :
c ← c + 1
c $←− UE.Enc(ke,m)
L←L∪{(c, c, e;m)}
return c

O.Dec(c) :
m′ or ⊥ ← UE.Dec(ke, c)
if

(
(xx = det and (c, e) ∈ L̃∗) or

(xx = rand and (m′, e) ∈ Q̃∗)
)
then

twf ← 1
return m′ or ⊥

O.Next() :
e ← e+ 1
ke

$←− UE.KG(1n)
Δe ←UE.TG(ke-1,ke)
if phase = 1 then
c̃e ← UE.Upd(Δe, c̃e-1)

O.Upd(ce−1) :
if (j, ce−1, e − 1;m) /∈ L then
return ⊥

ce ← UE.Upd(Δe, ce−1)
L ← L ∪ {(j, ce, e;m)}
return ce

O.Corr(inp, ê) :
if ê > e then
return ⊥

if inp = key then
K ← K ∪ {ê}
return kê

if inp = token then
←  ∪ {ê}

return Δê

O.Chall(m̄, c̄) :
if phase = 1 then
return ⊥

phase ← 1; ẽ ← e
if (·, c̄, ẽ − 1; m̄1) /∈ L then
return ⊥

if b = 0 then
c̃ẽ ← UE.Enc(kẽ, m̄)

else
c̃ẽ ← UE.Upd(Δẽ, c̄)

C ← C ∪ {ẽ}
L̃ ← L̃ ∪ {(c̃ẽ, ẽ)}
return c̃ẽ

O.UpdC̃ :
if phase �= 1 then
return ⊥

C ← C ∪ {e}
L̃ ← L̃ ∪ {(c̃e, e)}
return c̃e

O.Try(c̃) :
m′ or ⊥ ← UE.Dec(ke, c̃)
if

(
(atk = CTXT and (c̃, e) ∈ L∗) or

(atk = PTXT and (m′, e) ∈ Q∗) or
e ∈ K∗

)
then

twf ← 1
if m′ �= ⊥ then
win ← 1

Fig. 4. Oracles in security games for updatable encryption. How to compute the leakage
sets K∗, T ∗, C∗, L̃∗, Q̃∗,L∗,Q∗ are discussed in Sect. 2.5 and Sect. 2.6.

In the deterministic update setting, we use L∗ and L̃∗ as the extended (cipher-
text) sets of L and L̃ in which the adversary has learned or inferred ciphertexts
via its known tokens. In particular, we only use partial information of L∗: the
ciphertext and the epoch. Hence, we only track the set L∗ = {(c, e)}.
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In the randomized update setting, we use Q∗ and Q̃∗ as the extended (plain-
text) sets of L and L̃, that contain messages that the adversary can provide a
ciphertext of - i.e. a forgery. Similarly, only partial information is needed: the
plaintext and the epoch. Hence, we track sets Q∗ and Q̃∗ as follows.

– Q∗: Set of plaintexts (m, e). The adversary learned or was able to create a
ciphertext in epoch e with the underlying message m.

– Q̃∗: Set of challenge plaintexts {(m̄, e), (m̄1, e)}, where (m̄, c̄) is the input of
challenge query O.Chall and m̄1 is the underlying message of c̄. The adversary
learned or was able to create a challenge-equal ciphertext in epoch e with the
underlying message m̄ or m̄1.

Remark 1. Based on the definition of these sets, we observe that

a. (c̃e, e) ∈ L̃ ⇐⇒ e ∈ C,
b. (c̃e, e) ∈ L̃∗ ⇐⇒ e ∈ C∗ ⇐⇒ (m̄, e), (m̄1, e) ∈ Q̃∗.

We will use this remark to discuss how to compute L∗, L̃∗, Q∗ and Q̃∗ in
Sect. 2.6.

2.5 Epoch Leakage Sets of Keys, Tokens and Ciphertexts

We follow the bookkeeping techniques and base our notations of the work of
Lehmann and Tackmann [15], where we further analyze the epoch leakage sets.
Specifically, we add a no-directional key update setting. Suppose a security game
ends at epoch l, then, for any sets K, T , C ⊆ {0, ..., l}, the following algorithms
show how to compute the extended sets K∗, T ∗ and C∗ in different update set-
tings.

Key Leakage. The adversary learned all keys in epochs in K. In the no-directional
key update setting, the adversary does not have more information about keys
except for this set. In the uni-directional key update setting, if the adversary
knows a key ke and an update token Δe+1 then it can infer the next key ke+1. In
the bi-directional key update setting, the adversary can additionally downgrade
a key by a known token. In the kk-directional key update setting, for kk ∈
{no, uni, bi}, we denote the set K∗

kk as the extended set of corrupted key epochs.
We compute these sets as follows.

No-directional key updates: K∗
no = K.

Uni-directional key updates:

K∗
uni ← {e ∈ {0, ..., l}|CorrK(e) = true}
true ← CorrK(e) ⇐⇒ (e ∈ K) ∨ (CorrK(e-1) ∧ e ∈ T ). (1)

Bi-directional key updates:

K∗
bi ← {e ∈ {0, ..., l}|CorrK(e) = true}
true ← CorrK(e) ⇐⇒

(e ∈ K) ∨ (CorrK(e-1) ∧ e ∈ T ) ∨ (CorrK(e+1) ∧ e+1 ∈ T ). (2)
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Token Leakage. A token is known to the adversary is either a corrupted token or a
token inferred from two consecutive epoch keys, so the extended set of corrupted
token epochs is computed by information in set T and set K∗

kk. The set K∗
kk is

computed as above depending on the key updates is no- or uni- or bi-directional.
Hence, we denote T ∗

kk as the extended set of corrupted token epochs.

T ∗
kk ← {e ∈ {0, ..., l}|(e ∈ T ) ∨ (e ∈ K∗

kk ∧ e-1 ∈ K∗
kk)}. (3)

Challenge-Equal Ciphertext Leakage. The adversary learned all challenge-equal
ciphertexts in epochs in C. Additionally, the adversary can infer challenge-
equal ciphertexts via tokens. In the uni-directional ciphertext update setting,
the adversary can upgrade ciphertexts. In the bi-directional ciphertext update
setting, the adversary can additionally downgrade ciphertexts.

We compute the extended set of challenge-equal epochs using the information
contained in C and T ∗

kk. The set T ∗
kk is computed as above depending on the key

updates is no- or uni- or bi-directional. In the cc-directional ciphertext update
setting, for cc ∈ {uni, bi}, denote the set C∗

kk,cc as the extended set of challenge-
equal epochs. We compute these sets as follows.

Uni-directional ciphertext updates:

C∗
kk,uni ← {e ∈ {0, ..., l}|ChallEq(e) = true}
true ← ChallEq(e) ⇐⇒ (e ∈ C) ∨ (ChallEq(e-1) ∧ e ∈ T ∗

kk). (4)

Bi-directional ciphertext updates:

C∗
kk,bi ← {e ∈ {0, ..., l}|ChallEq(e) = true}
true ← ChallEq(e) ⇐⇒

(e ∈ C) ∨ (ChallEq(e-1) ∧ e ∈ T ∗
kk) ∨ (ChallEq(e+1) ∧ e+1 ∈ T ∗

kk). (5)

2.6 Trivial Win Conditions

The main benefit of using ciphertext-independent updatable encryption scheme
is that it offers an efficient way for key rotation, where a single token can be used
to update all ciphertexts. However, this property provides the adversary more
power, the tokens can be used to gain more information, and gives the adversary
more chances to win the security games. We again follow the trivial win analysis
in [8,14,15] and exclude these trivial win conditions in the security games for
UE. An overview of the trivial win conditions the challenger will check in each
security game is given in Fig. 5.

Checking Trivial Win Conditions at the End of a Game

Trivial Wins via Keys and Ciphertexts. The following is used for analyzing all
confidentiality games. If there exists an epoch e ∈ K∗∩C∗ in which the adversary
knows the epoch key ke and a valid update of the challenge ciphertext c̃e, then
the adversary can use this epoch key to decrypt the challenge-equal ciphertext
and know the underlying plaintext to win the confidentiality game. The trivial
win condition “K∗ ∩ C∗ 
= ∅” is checked in the end of a confidentiality game.
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detIND-UE-CPA � � × × × × ×
randIND-UE-CPA � × × × × × ×
detIND-UE-CCA � � � × × × ×
randIND-UE-CCA � × × � × × ×
INT-CTXT × × × × � � ×
INT-PTXT × × × × � × �

Fig. 5. Trivial win conditions considered in different security games for updatable
encryption schemes. × indicates the security notion does not consider the corresponding
trivial win condition, � indicates the security notion considers the corresponding trivial
win condition.

Trivial Wins via Direct Updates. The following is used for analyzing all confi-
dentiality games with deterministic updates. If the adversary knows the update
token Δẽ in the challenge epoch ẽ or the adversary queried an update oracle on
the challenge input ciphertext O.Upd(c̄) in epoch ẽ, then it knows the updated
ciphertext of c̄ in epoch ẽ and it can compare the updated ciphertext with the
challenge ciphertext to win the confidentiality game. The trivial win condition
“ẽ∈T ∗ or O.Upd(c̄) is queried” is checked in the end of a confidentiality game.

Checking Trivial Win Conditions While Running a Game. The fol-
lowing overview of trivial win conditions are checked by an oracle. The sets
L̃∗, Q̃∗,K∗,L∗ and Q∗ are defined in Sect. 2.4.

– “(c, e) ∈ L̃∗” are checked by O.Dec oracles in the detIND-UE-CCA game,
– “(m′, e) ∈ Q̃∗” are checked by O.Dec oracles in the randIND-UE-CCA game,
– “e ∈ K∗” are checked by O.Try oracles in the INT-CTXT game or the
INT-PTXT game,

– “(c, e) ∈ L∗” are checked by O.Try oracles in the INT-CTXT game
– “(m′, e) ∈ Q∗” are checked by O.Try oracles in the INT-PTXT game.

General Idea. At the moment when the adversary queries a decryption query
O.Dec or a try query O.Try, the challenger computes the knowledge the adversary
currently has, which is used to check if the adversary can trivially win a security
game. More precisely, the challenger uses information in the sets L, L̃, C,K, T to
compute the leakage sets L̃∗, Q̃∗,K∗,L∗ and Q∗. Note that the sets L, L̃, C,K, T
contains information the adversary learns at such a moment.

Trivial Wins via Decryptions in the Deterministic Update Setting. The following
is used for analyzing the detIND-UE-CCA security notion. In the deterministic
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for i ∈ {0, ..., e} do
if i ∈ C∗

kk,cc then
L̃∗

kk,cc ← L̃∗
kk,cc ∪ {(c̃i, i)}

Fig. 6. Algorithm for comput-
ing the set L̃∗

kk,cc, where kk ∈
{no, uni, bi} and cc ∈ {uni, bi}.

for i ∈ {0, ..., e} do
if i ∈ C∗

kk,cc then
Q̃∗

kk,cc ← Q̃∗
kk,cc ∪ {(m̄, i)} ∪ {(m̄1, i)}

Fig. 7. Algorithm for computing the set Q̃∗
kk,cc,

where kk ∈ {no, uni, bi} and cc ∈ {uni, bi}.

update setting, if the adversary knows a challenge-equal ciphertext (c̃e0 , e0) ∈ L̃
and tokens from epoch e0 + 1 to epoch e, then the adversary can compute the
updated challenge-equal ciphertext c̃e and send it to the decryption oracle to
get the underlying message. Eventually, the adversary compares the received
message with the challenge plaintexts to trivially win the security game.

We use the set L̃∗ to check this trivial win condition, recall that L̃∗ includes
all challenge-equal ciphertexts the adversary has learned or inferred. Suppose the
adversary queries a decryption oracle O.Dec(c) in epoch e, if (c, e) ∈ L̃∗ then the
response of the decryption oracle leads to a trivial win to the adversary, hence,
the challenger will set the trivial win flag to be 1.

By Remark 1, we have (c̃e, e) ∈ L̃∗ ⇐⇒ e ∈ C∗, using this method we can
easily compute the set L̃∗. In Fig. 6 we show how the set L̃∗ is computed, where
the set C∗ is computed by the algorithms discussed in Sect. 2.5.

Trivial Wins via Decryptions in the Randomized Update Setting. The following
is used for analyzing the randIND-UE-CCA security notion. In the randomized
update setting, if the adversary knows a challenge-equal ciphertext (c̃e0 , e0) ∈ L̃
and tokens from epoch e0+1 to epoch e, then the adversary can create arbitrary
number of ciphertexts by updating c̃e0 from epoch e0 to epoch e. Let ce denote
a ciphertext generated in such a way. Notice that the ciphertext ce has the same
underlying message as the challenge-equal ciphertext c̃e0 . The adversary can
send the computed ciphertext ce to the decryption oracle to get the underlying
message and trivially win the security game.

We use the set Q̃∗ to check this trivial win condition, recall that Q̃∗ includes
information about challenge plaintexts that the adversary has learned or can
create challenge-equal ciphertexts of. Suppose the adversary queries a decryption
oracle O.Dec(c) in epoch e, if UE.Dec(ke, c) = m′ and (m′, e) ∈ Q̃∗ then the
response of the decryption oracle leads to a trivial win to the adversary, hence,
the challenger will set the trivial win flag to be 1.

By Remark 1, we have (m′, e) ∈ Q̃∗ ⇐⇒ e ∈ C∗, using this method we
can easily compute the set Q̃∗. Suppose the challenge input is (m̄, c̄) and the
underlying message of c̄ is m̄1. In Fig. 7 we show how the set Q̃∗ is computed.

Remark 2. Our definition of this trivial win restriction is more generous than
that of [14], they disallow the decryption of any ciphertext that decrypts to
either of the two challenge plaintexts. We allow the decryption of a ciphertext
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for i ∈ {0, ..., e} do
for (·, c, i; ·) ∈ L do

L∗
kk,cc ← L∗

kk,cc ∪ {(c, i)}
if i ∈ ∗

kk then
for (ci−1, i − 1) ∈ L∗

kk,cc do
ci ← UE.Upd(Δi, ci−1)
L∗

kk,cc ← L∗
kk,cc ∪ {(ci, i)}

if cc = bi then
for (ci, i) ∈ L∗

kk,cc do
ci−1 ← UE.Upd−1(Δi, ci)
L∗

kk,cc ← L∗
kk,cc ∪ {(ci−1, i − 1)}

Fig. 8. Algorithm for computing the
set L∗

kk,cc, where kk ∈ {no, uni, bi} and
cc ∈ {uni, bi}.

for i ∈ {0, ..., e} do
for (·, ·, i;m) ∈ L do

Q∗
kk,cc ← Q∗

kk,cc ∪ {(m, i)}
if i ∈ ∗

kk then
for (m, i − 1) ∈ Q∗

kk,cc do
Q∗

kk,cc ← Q∗
kk,cc ∪ {(m, i)}

if cc = bi then
for (m, i) ∈ Q∗

kk,cc do
Q∗

kk,cc ← Q∗
kk,cc ∪ {(m, i − 1)}

Fig. 9. Algorithm for computing the
set Q∗

kk,cc, where kk ∈ {no, uni, bi} and
cc ∈ {uni, bi}.

that decrypts to a challenge plaintext as long as the adversary cannot learn
(from O.Chall or O.UpdC̃) or infer (from tokens) a valid ciphertext of challenge
plaintext in that epoch.

Trivial Forgeries by Keys. The following is used for analyzing all integrity games.
If the adversary knows an epoch key ke, then the adversary can create arbitrary
number of valid forgeries of arbitrary messages under this epoch key ke.

We use the set K∗ to check this trivial win condition, recall that K∗ includes
all epochs the adversary learned or inferred an epoch key. Suppose the adversary
queries a try oracle O.Try(c) in epoch e, if e ∈ K∗ then the challenger will set
the trivial win flag to be 1. We use algorithms discussed in Sect. 2.5 to compute
the set K∗.

Trivial Ciphertext Forgeries by Tokens. The following is used for analyzing the
INT-CTXT security notion. From [14] we know that only UE schemes with deter-
ministic updates can possibly achieve INT-CTXT security. In the deterministic
update setting, if the adversary knows a ciphertext (c, c, e0;m) ∈ L and tokens
from epoch e0 + 1 to epoch e, then the adversary can create a valid updated
ciphertext by updating c from epoch e0 to epoch e.

We use the set L∗ to check this trivial win condition, recall that L∗ includes
all ciphertexts that can be known or inferred to the adversary. Suppose the
adversary queries a try oracle O.Try(c) in epoch e, if (c, e) ∈ L∗ then the chal-
lenger will set the trivial win flag to be 1. In Fig. 8 we show how the set L∗ is
computed.

Trivial Plaintext Forgeries by Tokens. The following is used for analyzing the
INT-PTXT security notion. In the randomized update setting, if the adversary
knows a ciphertext (c, c, e0;m) ∈ L and tokens from epoch e0 + 1 to epoch e,
then the adversary can create arbitrary number of valid forgeries of message m
by updating c from epoch e0 to epoch e.
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We use the set Q∗ to check this trivial win condition, recall that Q∗ includes
information about plaintexts that the adversary has learned or can create cipher-
texts of. Suppose the adversary queries a try oracle O.Try(c) in epoch e, if
UE.Dec(ke, c) = m′ and (m′, e) ∈ Q∗ then the challenger will set the trivial win
flag to be 1. In Fig. 9 we show how the set Q∗ is computed.

3 Six Variants of Security Notions

In this section we first define six variants of security notions for updatable encryp-
tion schemes. In the end of this section, we compare the relationship among all
these variants of each security notion.

For kk ∈ {no, uni, bi} and cc ∈ {uni, bi}, we define (kk, cc)- variants of security
notions, where kk refers to UE schemes with kk-directional key updates and cc
to cc-directional ciphertext updates.

Definition 3 (The (kk, cc)- variant of confidentiality notions). Let
UE = {UE.KG, UE.TG,UE.Enc, UE.Dec,UE.Upd} be an updatable encryp-
tion scheme. Then the (kk, cc)-notion advantage, for kk ∈ {no, uni, bi}, cc ∈
{uni, bi} and notion ∈ {detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA,
randIND-UE-CCA}, of an adversary A against UE is defined as

Adv(kk,cc)-notion
UE, A (1λ) =

∣
∣
∣Pr[Exp(kk,cc)-notion-1

UE, A = 1] − Pr[Exp(kk,cc)-notion-0
UE, A = 1]

∣
∣
∣,

where the experiment Exp(kk,cc)-notion-b
UE, A is the same as the experiment Expnotion-b

UE, A
(see Fig. 2 and Fig. 4) except for all leakage sets are both in the kk-directional
key update setting and cc-directional ciphertext update setting.

Remark 3. Recall that we compute all leakage sets with kk-directional key
updates and cc-directional ciphertext updates in Sect. 2.5 and Sect. 2.6.

Remark 4. The security notion RCCA, which we denote as randIND-UE-CCA, is
from [14]. In our definition of this notion is stronger - the adversary has fewer
trivial win restrictions - we discuss this difference in Remark 2.

Definition 4 (The (kk, cc)- variant of integrity notions). Let UE =
{UE.KG, UE.TG, UE.Enc, UE.Dec,UE.Upd} be an updatable encryption scheme.
Then the (kk, cc)-notion advantage, for kk ∈ {no, uni, bi}, cc ∈ {uni, bi} and
notion ∈ {INT-CTXT, INT-PTXT}, of an adversary A against UE is defined as

Adv(kk,cc)-notion
UE, A (1λ) = Pr[Exp(kk,cc)-notion

UE, A = 1],

where the experiment Exp(kk,cc)-notion
UE, A is the same as the experiment Expnotion

UE, A
(see Fig. 3 and Fig. 4) except for all leakage sets are both in the kk-directional
key update setting and cc-directional ciphertext update setting.
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3.1 Properties of Leakage Sets and Trivial Win Conditions

In this section, we prove some essential properties of key leakage, which will be
used to analyze the trivial win conditions. We will use these trivial win properties
to prove the relations among six variants of the same security notion in Sect. 3.2.

Properties of Key Updates. Here we look at some properties of sets K, T ,K∗

and T ∗ in terms of uni- and bi-directional key updates.

Firewall and Insulated Region. We first describe the definition of firewall and
insulated region, which will be widely used in this paper. Firewall technique
(see [8,14,15]) is used for doing cryptographic seperation. We follow the firewall
definition in [8] and use firewall set FW (defined in [8]) to track each insulated
region and its firewalls.

Definition 5. An insulated region with firewalls fwl and fwr is a consecutive
sequence of epochs (fwl, . . . , fwr) for which:

– {fwl, . . . , fwr} ∩ K = ∅;
– fwl, fwr + 1 /∈ T ;
– {fwl + 1, . . . , fwr} ⊆ T .

Remark 5. Based on Definition 5, we notice that all firewalls or all insulated
regions (in other words, set FW) are uniquely determined by K and T . In
particular, we denote the union of all insulated regions as set IR, i.e. IR =
∪(fwl,fwr)∈FW{fwl, ..., fwr}.

Then we look at the structure of the set IR. Lemma 1 states that IR is
the complementary set of K∗

bi. Furthermore, Lemma 3 shows that the comple-
mentary set of IR is the union of two types of epoch sets (see Definition 6 and
Definition 7).

Lemma 1. For any sets K, T ⊆ {0, ..., l}, we have K∗
bi = {0, ..., l} \ IR.

Proof. Note that Δ0 and Δl+1 do not exist, however, 0 and l can possibly be
firewalls. For convenience, we just assume Δ0 and Δl+1 exist and the adversary
is not allowed to corrupt these two tokens. Thus the set of epochs in which
the adversary never corrupted the update token is: {0, ..., l + 1} \ T = {ē0 :=
0, ē1, ..., ēt, ēt+1 := l + 1}, where t ≥ 0.

In the bi-directional key update setting, if the adversary has corrupted a key
in an epoch e, where e ∈ {ēi−1, ..., ēi − 1}, then the adversary can infer all keys
from epoch ēi−1 to epoch ēi −1, that is {ēi−1, ..., ēi −1} ⊆ K∗

bi, because all tokens
from epoch ēi−1 + 1 to epoch ēi − 1 are corrupted. Otherwise, when no key in
the sequence of epochs {ēi−1, ..., ēi − 1} is corrupted, then {ēi−1, ..., ēi − 1} is
an insulated region . Therefore, for any i, {ēi−1, ..., ēi − 1} is either an insulated
region or a subset of K∗

bi.
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Epoch estart estart+1... eend−1 eend
K × × ... × �

� � ... � �

Epoch estart estart+1... eend
K∗

uni � � ... �
∗
uni � � ... �

Fig. 10. Type 1 set of epochs (left), type 2 set of epochs (right). × indicates the
keys/tokens are not revealed to the adversary, � indicates the keys/tokens are revealed
to the adversary.

We define two types of epoch sets in Definition 6 and Definition 7, which will
later be used to analyze the structure of IR. An overview of the corruption
model of these two epoch sets are shown in Fig. 10.

Definition 6. A set of type1 epochs is a consecutive sequence of epochs (estart,
. . . , eend) for which:

– {estart, . . . , eend − 1} ∩ K = ∅;
– eend ∈ K;
– {estart + 1, . . . , eend} ⊆ T .

Definition 7. A set of type2 epochs is a consecutive sequence of epochs (estart,
. . . , eend) for which:

– {estart, . . . , eend} ⊆ K∗
uni;

– {estart + 1, . . . , eend} ⊆ T ∗
uni.

The following Lemma explains that if a key is revealed in the bi-directional
key update setting but not in the uni-directional key update setting then the
revealed key epoch can stretch to a type 1 epoch set. We use this property to
prove Lemma 3.

Lemma 2. If e ∈ K∗
bi \ K∗

uni, then there exists an epoch (say eu) after e such
that eu ∈ K, {e, . . . , eu − 1} ∩ K = ∅ and {e + 1, ..., eu} ⊆ T .

Proof. As the assumption and Eqs. (1, 2), we have e ∈ K∗
bi is inferred from the

next epoch key ke+1 via token Δe+1. That is e + 1 ∈ K∗
bi and e + 1 ∈ T . If

e + 1 
∈ K∗
uni, then e + 2 ∈ K∗

bi and e + 2 ∈ T . Iteratively, we know that there
exists an epoch after e, say eu, such that {e, . . . , eu − 1} ∩ K∗

uni = ∅, eu ∈ K∗
uni

and e + 1, ..., eu ∈ T . Hence, {e, . . . , eu − 1} ∩ K ⊆ {e, . . . , eu − 1} ∩ K∗
uni = ∅. In

particular, we know that eu ∈ K since eu − 1 
∈ K∗
uni.

Lemma 3. For any sets K, T ⊆ {0, ..., l}, we have {0, ..., l}\IR = (∪type 1{estart,
..., eend}) ∪ (∪type 2{estart, ..., eend}), where the two types of epoch sets are defined
in Definition 6 and Definition 7.

Proof. Suppose e ∈ {0, ..., l} \ IR, by Lemma 1, we have e ∈ K∗
bi. If e 
∈ K∗

uni, we
can apply Lemma 2 and have a set of type 1 epochs, assume {e, ..., eu}. For all
e ∈ K∗

bi \ K∗
uni, we can find a set of type 1 epochs. Hence, the rest epochs are in

the type 2 epoch sets.
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Remark 6. As a conclusion of Lemma 1 and Lemma 3, we have the sequence of
all epochs are a union of three types of epoch sets, that are insulated regions,
type 1 epochs and type 2 epochs. {0, ..., l} = (∪(fwl,fwr)∈FW{fwl, ..., fwr}) ∪
(∪type 1{estart, ..., eend}) ∪ (∪type 2{estart, ..., eend}).

Trivial Win Equivalences in the Uni- and Bi-Directional Update Set-
ting. We now prove seven equivalences of the trivial win conditions. As a
result, we have that in any security game if the trivial win conditions in the
uni-directional update setting are triggered then the same trivial win conditions
in the bi-directional update setting would be triggered as well. We will use these
trivial win equivalences to prove the relation between uni- and bi-directional
variants of security notions in Theorem 2.

The following two lemmas show that UE schemes with uni-directional
updates has less leakage than UE schemes with bi-directional updates.

Lemma 4. For any sets K, T , C and any kk ∈ {uni, bi}, we have C∗
kk,uni ⊆ C∗

kk,bi,
L̃∗
kk,uni ⊆ L̃∗

kk,bi, Q̃∗
kk,uni ⊆ Q̃∗

kk,bi, L∗
kk,uni ⊆ L∗

kk,bi, and Q∗
kk,uni ⊆ Q∗

kk,bi.

Proof. For any fixed kk-directional key updates, uni-directional ciphertext
updates has less leakage than bi-directional ciphertext updates. More precisely,
for any K, T , C and a fixed kk, we compute K∗

kk, T ∗
kk, C∗

kk,uni and C∗
kk,bi using Eqs. (1,

2, 3, 4, 5). Then we have C∗
kk,uni ⊆ C∗

kk,bi. Furthermore, we use algorithms discussed
in Sect. 2.6 to compute ciphertext/message leakage sets L̃∗, Q̃∗,L∗,Q∗. Similarly
we get L̃∗

kk,uni ⊆ L̃∗
kk,bi, Q̃∗

kk,uni ⊆ Q̃∗
kk,bi, L∗

kk,uni ⊆ L∗
kk,bi, and Q∗

kk,uni ⊆ Q∗
kk,bi.

Lemma 5. For any sets K, T , C and any cc ∈ {uni, bi}, we have K∗
uni ⊆ K∗

bi,
T ∗
uni ⊆ T ∗

bi , C∗
uni,cc ⊆ C∗

bi,cc, L̃∗
uni,cc ⊆ L̃∗

bi,cc, Q̃∗
uni,cc ⊆ Q̃∗

bi,cc, L∗
uni,cc ⊆ L∗

bi,cc and
Q∗

uni,cc ⊆ Q∗
bi,cc.

Proof. The proof is similar to the proof of Lemma4. For any fixed cc-
directional ciphertext updates, uni-directional key updates has less leakage than
bi-directional key updates. More precisely, for any K, T , C and a fixed cc, we
compute K∗

uni, K∗
bi, T ∗

uni, T ∗
bi , C∗

uni,cc and C∗
bi,cc using Eqs. (1, 2, 3, 4, 5). Then we

have K∗
uni ⊆ K∗

bi, T ∗
uni ⊆ T ∗

bi , and therefore C∗
uni,cc ⊆ C∗

bi,cc. Furthermore, we use
algorithms discussed in Sect. 2.6 to compute ciphertext/message leakage sets
L̃∗, Q̃∗,L∗,Q∗. Similarly we get L̃∗

uni,cc ⊆ L̃∗
bi,cc, Q̃∗

uni,cc ⊆ Q̃∗
bi,cc, L∗

uni,cc ⊆ L∗
bi,cc

and Q∗
uni,cc ⊆ Q∗

bi,cc.

Equivalence for Trivial Win Condition “ K∗ ∩ C∗ 
= ∅” .

Lemma 6. For any sets K, T , C ⊆ {0, ..., l}, we have K∗
uni ∩ C∗

uni,uni 
= ∅ ⇐⇒
K∗

bi ∩ C∗
bi,bi 
= ∅.

Proof. For any K, T , C, we compute K∗
uni, C∗

uni,uni,K∗
bi and C∗

bi,bi using Eqs. (1, 2,
4, 5).
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Note that K∗
uni ⊆ K∗

bi and C∗
uni,uni ⊆ C∗

bi,bi, so K∗
uni ∩ C∗

uni,uni ⊆ K∗
bi ∩ C∗

bi,bi. It
suffices to prove

K∗
bi ∩ C∗

bi,bi 
= ∅ =⇒ K∗
uni ∩ C∗

uni,uni 
= ∅.

Suppose K∗
bi∩C∗

bi,bi 
= ∅. We know that firewalls provide cryptographic separa-
tion, which make sure insulated regions are isolated from other insulated regions
and the complementary set of all insulated regions. If the adversary never asks
for any challenge-equal ciphertext in an epoch in the set {0, ..., l} \ IR, then
the adversary cannot infer any challenge-equal ciphertext in this set even in
the bi-directional update setting. That is, C∗

bi,bi ∩ ({0, ..., l} \ IR) = ∅. However,

{0, ..., l} \ IR Lemma 1= K∗
bi, then K∗

bi ∩ C∗
bi,bi = ∅, which contradicts with the

assumption. Therefore, there exists an epoch e′ ∈ {0, ..., l} \ IR such that the
adversary has asked for a challenge-equal ciphertext in this epoch, that is e′ ∈ C.

By Lemma 3, we know that e′ is located in an epoch set which is either
type 1 or type 2. Suppose e′ ∈ {estart, ..., eend}, we know that the epoch key keend

is known to the adversary even in the uni-directional key update setting, i.e.
eend ∈ K∗

uni. Furthermore, all tokens Δe′+1, ...,Δeend are known to the adversary
even in the uni-directional key update setting. Hence, the adversary can update
the challenge-equal ciphertext c̃e′ from epoch e′ to epoch eend to know c̃eend .
Which means eend ∈ K∗

uni ∩ C∗
uni,uni, we have K∗

uni ∩ C∗
uni,uni 
= ∅.

As a corollary of Lemma 4 to 6, we have the following equivalence. We only
provide Corollary 1 with a fully detailed proof, since we will use similar proof
techniques for Corollary 2 to 5.

Corollary 1. For any sets K, T , C ⊆ {0, ..., l}, we have K∗
uni ∩ C∗

uni,uni 
= ∅ ⇐⇒
K∗

uni ∩ C∗
uni,bi 
= ∅ ⇐⇒ K∗

bi ∩ C∗
bi,uni 
= ∅ ⇐⇒ K∗

bi ∩ C∗
bi,bi 
= ∅.

Proof. By Lemma 4, we have C∗
uni,uni ⊆ C∗

uni,bi. By Lemma 5, we have C∗
uni,bi ⊆

C∗
bi,bi. Hence, K∗

uni ∩ C∗
uni,uni ⊆ K∗

uni ∩ C∗
uni,bi ⊆ K∗

bi ∩ C∗
bi,bi. By Lemma 6, we have

K∗
uni ∩ C∗

uni,uni 
= ∅ ⇐⇒ K∗
bi ∩ C∗

bi,bi 
= ∅ ⇐⇒ K∗
uni ∩ C∗

uni,bi 
= ∅.

Similarly, we have K∗
uni ∩ C∗

uni,uni

Lemma 5
⊆ K∗

bi ∩ C∗
bi,uni

Lemma 4
⊆ K∗

bi ∩ C∗
bi,bi and

therefore K∗
uni ∩ C∗

uni,uni 
= ∅ ⇐⇒ K∗
bi ∩ C∗

bi,bi 
= ∅ ⇐⇒ K∗
bi ∩ C∗

bi,uni 
= ∅.

Remark 7. If the trivial win condition “K∗ ∩ C∗ 
= ∅” is never triggered in the
uni- or bi-directional update setting, then by Corollary 1 we have K∗

bi∩C∗
bi,bi = ∅.

By Lemma 1, we have {0, ..., l}\K∗
bi = IR. Therefore, C∗

uni,uni ⊆ C∗
bi,bi ⊆ {0, ..., l}\

K∗
bi = IR. The relationship among the sets C∗

uni,uni, C∗
bi,bi, IR,K∗

uni,K∗
bi is shown

in Fig. 11.

K∗
bi IRK∗

uni C∗
bi,biC∗

uni,uni

Fig. 11. The relationship among the sets C∗
uni,uni, C∗

bi,bi, IR,K∗
uni,K∗

bi if the trivial win
condition “K∗

kk ∩ C∗
kk,cc �= ∅” is never triggered for any kk, cc ∈ {uni, bi}.
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Equivalence for Trivial Win Condition “ ẽ∈T ∗ or O.Upd(c̄) is queried”. The
event “O.Upd(c̄) is queried” is independent of the key and ciphertext updates,
so this trivial win condition is either triggered or not triggered in all variants
of a security notion. The following Lemma shows that if the challenge token is
known to the adversary in the bi-directional key update setting, then it is also
known to the adversary in the uni-directional key update setting.

Lemma 7. For any K, T , C. Suppose K∗
kk ∩ C∗

kk,cc = ∅, where kk, cc ∈ {uni, bi},
then ẽ∈T ∗

no ⇐⇒ ẽ∈T ∗
uni ⇐⇒ ẽ∈T ∗

bi

Proof. We know that the challenge epoch ẽ ∈ C, so ẽ 
∈ K∗
kk for any kk-key

updates, where kk ∈ {uni, bi}. Since the adversary does not know the key kẽ,
which is needed to infer the update token Δẽ, so token Δẽ cannot be inferred
by the adversary. Therefore, ẽ ∈ T ∗

kk if and only if ẽ ∈ T . Hence ẽ ∈ T ⇐⇒ ẽ∈
T ∗
no ⇐⇒ ẽ∈T ∗

uni ⇐⇒ ẽ∈T ∗
bi .

From now on until the end of this section, we assume the adversary queries
a decryption oracle O.Dec(c) or a try oracle O.Try(c) in epoch e. We consider
trivial win conditions which are checked in these oracles.

Equivalence for Trivial Win Condition “ (c, e) ∈ L̃∗” .

Lemma 8. For any sets K, T , C ⊆ {0, ..., e}. Suppose K∗
bi ∩ C∗

bi,bi = ∅, then
(c, e) ∈ L̃∗

uni,uni ⇐⇒ (c, e) ∈ L̃∗
bi,bi.

Proof. By Remark 7 we have C∗
uni,uni ⊆ C∗

bi,bi ⊆ IR. By Remark 1 we have (c̃e, e) ∈
L̃∗ ⇐⇒ e ∈ C∗. Therefore, if (c, e) ∈ L̃∗

uni,uni we have e ∈ C∗
uni,uni ⊆ C∗

bi,bi and
(c, e) ∈ L̃∗

bi,bi.
If (c, e) ∈ L̃∗

bi,bi, then e ∈ C∗
bi,bi ⊆ IR. Suppose {fwl, ..., e} is the last insulated

region. If the adversary never asks for any challenge-equal ciphertext in this
region, then {fwl, ..., e}∩C∗

bi,bi = ∅, which contradicts with e ∈ C∗
bi,bi ∩{fwl, ..., e}.

Hence, {fwl, ..., e} ∩ C 
= ∅, and we can assume e′ ∈ {fwl, ..., e} ∩ C. By the
definition of insulated region we have {fwl+1, ..., e} ⊆ T , and the adversary can
update the challenge-equal ciphertext c̃e′ from epoch e′ to epoch e to know c̃e,
i.e. e ∈ C∗

uni,uni. Therefore, (c, e) ∈ L̃∗
uni,uni as well.

As a corollary of Lemma 4, Lemma 5 and Lemma 8, we have the following
result. The proof is similar to the proof of Corollary 1.

Corollary 2. For any sets K, T , C ⊆ {0, ..., e}. Suppose K∗
bi ∩ C∗

bi,bi = ∅, then
(c, e) ∈ L̃∗

uni,uni ⇐⇒ (c, e) ∈ L̃∗
uni,bi ⇐⇒ (c, e) ∈ L̃∗

bi,uni ⇐⇒ (c, e) ∈ L̃∗
bi,bi.

Equivalence for Trivial Win Condition “ (m′, e) ∈ Q̃∗” .

Lemma 9. For any sets K, T , C ⊆ {0, ..., e}. Suppose K∗
bi ∩ C∗

bi,bi = ∅, then
(m′, e) ∈ Q̃∗

uni,uni ⇐⇒ (m′, e) ∈ Q̃∗
bi,bi.
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Proof. The proof is similar to the proof of Lemma 8. We use the property that
(m′, e) ∈ Q̃∗ ⇐⇒ e ∈ C∗.

As a corollary of Lemma 4, Lemma 5 and Lemma 9, we have the following
result. The proof is similar to the proof of Corollary 1.

Corollary 3. For any sets K, T , C ⊆ {0, ..., e}. Suppose K∗
bi ∩ C∗

bi,bi = ∅, then
(m′, e)∈Q̃∗

uni,uni ⇐⇒ (m′, e)∈Q̃∗
uni,bi ⇐⇒ (m′, e)∈Q̃∗

bi,uni ⇐⇒ (m′, e)∈Q̃∗
bi,bi.

Equivalence for Trivial Win Condition“ e ∈ K∗” .

Lemma 10. For any sets K, T , C ⊆ {0, ..., e}, we have e ∈ K∗
uni ⇐⇒ e ∈ K∗

bi.

Proof. The adversary never knows any information in the future, that is, the
adversary does not know a key in an epoch ê > e. If the adversary knows the
current epoch key ke, then it is either a corrupted key or a key inferred from
prior epoch key, thus e ∈ K∗

uni ⇐⇒ e ∈ K∗
bi.

Equivalence for Trivial Win Condition“ (c, e) ∈ L∗” .

Lemma 11. For any sets K, T , C ⊆ {0, ..., e}. Suppose e 
∈ K∗
bi, then (c, e) ∈

L∗
uni,uni ⇐⇒ (c, e) ∈ L∗

bi,bi.

Proof. By assumption and Lemma 10 the current epoch e 
∈ K∗
kk for any kk ∈

{uni, bi}. We know that, by Remark 6, e is located in an insulated region, assume
it is in {fwl, ..., e}. Thus tokens Δfwl+1, ...,Δe are known to the adversary in any
update setting, that is, {fwl + 1, ..., e} ⊆ T ⊆ T ∗

uni ⊆ T ∗
bi . If the adversary never

asks for any ciphertext in this region, then there is no ciphertext in epoch e
located in the set L∗

kk,cc for any (kk, cc). For all ciphertexts the adversary learns
in an epoch i with i ∈ {fwl, ..., e}, the adversary can update them to epoch e
using tokens. Hence, we have (c, e) ∈ L∗

uni,uni ⇐⇒ (c, e) ∈ L∗
bi,bi.

As a corollary of Lemma 4, Lemma 5 and Lemma 11, we have the following
result. The proof is similar to the proof of Corollary 1.

Corollary 4. For any sets K, T , C ⊆ {0, ..., e}. Suppose e 
∈ K∗
bi, then (c, e) ∈

L∗
uni,uni ⇐⇒ (c, e) ∈ L∗

uni,bi ⇐⇒ (c, e) ∈ L∗
bi,uni ⇐⇒ (c, e) ∈ L∗

bi,bi.

Equivalence for Trivial Win Condition“ (m′, e) ∈ Q∗” .

Lemma 12. For any sets K, T , C ⊆ {0, ..., e}. Suppose e 
∈ K∗
bi, then (m′, e) ∈

Q∗
uni,uni ⇐⇒ (m′, e) ∈ Q∗

bi,bi.

Proof. The proof is similar to the proof of Lemma 11. As e 
∈ K∗
kk for any

kk ∈ {uni, bi}, we know that e is located in an insulated region. Assume it is
in {fwl, ..., e}, then the adversary has corrupted the tokens Δfwl+1, ...,Δe. If the
adversary never asks for any ciphertext with the underlying message m′ in this
region, then (m′, e) 
∈ Q∗

kk,cc for any (kk, cc). Otherwise, suppose (·, ci, i;m′) ∈ L
with i ∈ {fwl, ..., e}, then the adversary can update ci, via tokens Δi+1, ...,Δe,
to a ciphertext in epoch e with the underlying message m′ and we have (m′, e) ∈
Q∗

kk,cc for any (kk, cc).
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As a corollary of Lemma 4, Lemma 5 and Lemma 12, we have the following
result. The proof is similar to the proof of Corollary 1.

Corollary 5. For any sets K, T , C ⊆ {0, ..., e}. Suppose e 
∈ K∗
bi, then (m′, e) ∈

Q∗
uni,uni ⇐⇒ (m′, e) ∈ Q∗

uni,bi ⇐⇒ (m′, e) ∈ Q∗
bi,uni ⇐⇒ (m′, e) ∈ Q∗

bi,bi.

3.2 Relations Among Security Notions

In Fig. 12, Fig. 13 and Fig. 14, we show the relationship among six variants of
the same security notion for UE schemes.

Figure 12 demonstrates that the uni- and bi-directional update variants of the
same security notion are equivalent, which means that the security notions (con-
fidentiality and integrity) in the uni-directional update setting are not strictly
stronger than the corresponding security notions in the bi-directional update
setting. Hence, the security of a UE scheme is not influenced if the update set-
ting is uni- or bi-directional. In terms of confidentiality and integrity, when we
analyze the security of a UE scheme we can analyze the security based on the
UE scheme with bi-directional updates.

The six variants of confidentiality notions have the relationship shown in
Fig. 13, where we present that the (no, uni)- variant of any confidentiality notion
is strictly stronger than the other five variants of the corresponding confidential-
ity notion.

The six variants of integrity notions have the relationship shown in Fig. 14.
No-directional key update variants of the same integrity notion is strictly
stronger than the uni- or bi-directional key update variants. However, the
two variants of no-directional key update notions are equivalent, that is, for
the integrity notions uni- or bi-directional ciphertext update setting (with no-
directional key updates) does not matter much.

It is ideal to construct an efficient UE scheme with no-directional key updates
and uni-directional ciphertext updates. However, whether such a scheme exists
is an open problem.

Theorem 1 (Informal Theorem). The relations among the six variants of the
same security notion are as in Fig. 12, Fig. 13 and Fig. 14. The precise results
are stated and proven in the full version [13] and due to space constraints we
only show Theorem2.

(bi, bi)-notion (bi, uni)-notion (uni, bi)-notion (uni, uni)-notion
Thm. 2 Thm. 2Thm. 2

Fig. 12. Relations among the uni- and bi-directional update variants of the same secu-
rity notion, where notion ∈ {INT-CTXT, INT-PTXT, detIND-UE-CPA, randIND-UE-CPA,
detIND-UE-CCA, randIND-UE-CCA}.
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(no, uni)-notion (no, bi)-notion (kk, cc)-notion
*

*

*

\

*

Fig. 13. Relations among the six variants of the same confidentiality notion, where
kk, cc ∈ {uni, bi} and notion ∈ {detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA,
randIND-UE-CCA}. Results that are given only in the full version [13] are marked with
∗.

(no, uni)-notion (no, bi)-notion (kk, cc)-notion
*

*

*

\

*

Fig. 14. Relations among the six variants of the same integrity notion, where kk, cc ∈
{uni, bi} and notion ∈ {INT-CTXT, INT-PTXT}. Results that are given only in the full
version [13] are marked with ∗.

Remark 8 (Informal intuition of these relations). Consider the following confi-
dentiality game, where we have an adversary against some variant of the con-
fidentiality game for a UE scheme. The adversary corrupts a key k1 and a
token Δ2, and asks for a challenge ciphertext in epoch 2. For both uni- and
bi-directional key update settings, the adversary can move the key k1 to epoch
2 and decrypt the challenge ciphertext to trivially win the confidentiality game.
If the UE scheme has no-directional key updates and bi-directional ciphertext
updates, the adversary can move the challenge ciphertext back to epoch 1 and
decrypt it to trivially win the confidentiality game. However, if the UE scheme
has no-directional key updates and uni-directional ciphertext updates, the adver-
sary cannot trivially win the confidentiality game in this action.

Similarly, we consider the following integrity game, where we have an adver-
sary against some variant of the integrity game for a UE scheme. The adversary
corrupts a key k1 and a token Δ2, and queries a try oracle in epoch 2. For both
uni- and bi-directional key update settings, the adversary can move the key k1

to epoch 2 and provide forgeries in epoch 2 to trivially win the integrity game.
However, if the UE scheme has no-directional key updates the adversary does
not know k2, and cannot trivially win the integrity game.

The following Theorem shows that for any kk, cc, kk′, cc′ ∈ {uni, bi}, (kk′, cc′)-
notion implies (kk, cc)-notion. Consequently, all four uni- and bi-directional
update variants of the same notion are equivalent.

Theorem 2. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updat-
able encryption scheme and notion ∈ {INT-CTXT, INT-PTXT, detIND-UE-CPA,
randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA}. For any kk, cc, kk′, cc′ ∈
{uni, bi} and any (kk, cc)-notion adversary A against UE, there exists a (kk′, cc′)-
notion adversary B2 against UE such that

Adv(kk,cc)-notion
UE, A (1λ) = Adv(kk′,cc′)-notion

UE, B2
(1λ).
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Proof. We construct a reduction B2 running the (kk′, cc′)-notion experiment
which will simulate the responses of queries made by the (kk, cc)-notion adver-
sary A. The reduction will send all queries received from A to its (kk′, cc′)-notion
challenger, and forwarding the responses to A. Eventually, the reduction receives
a guess from A and forwards it to its own challenger. In the end, the
(kk′, cc′)-notion challenger evaluates whether or not the reduction wins, if a triv-
ial win condition was triggered the reduction is considered as losing the game.
This final win evaluation will be passed to the adversary A.

By the analysis of trivial win equivalences in Sect. 3.1 (Corollary 1 to 5,
Lemma 7 and Lemma 10), we have that if A does not trigger the trivial win
conditions in the (kk, cc)-notion game, then the reduction will not trigger the
trivial win conditions in the (kk′, cc′)-notion game either. Similarly, if A does
trigger the trivial win conditions in the (kk, cc)-notion game, then the reduction
will also trigger the trivial win conditions in the (kk′, cc′)-notion game. Hence,
the reduction perfectly simulates the (kk, cc)-notion game to adversary A. And
we have Adv(kk′,cc′)-notion

UE, B2
(1λ) = Adv(kk,cc)-notion

UE, A (1λ).

Remark 9. For any
notion ∈ {detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA,
randIND-UE-CCA, INT-CTXT, INT-PTXT}, all four uni- and bi-directional
update variants of the same notion are equivalent. We will use the (bi, bi)-notion
variant to prove notion security for a specific UE schemes. For simplicity, we will
denote the notion (bi, bi)-notion as notion.

4 LWE-based PKE Scheme

In this section, we look at an LWE-based PKE scheme LWEPKE, which is detailed
in Fig. 15. We prove that LWEPKE is IND$-CPA-secure, if the underlying LWE
problem is hard. We will later use this PKE scheme to construct an updatable
encryption scheme in Sect. 5.

4.1 PKE Construction

In the setup phase, the scheme LWEPKE randomly chooses a matrix A $←− Z
m×n
q .

The key generation algorithm samples a secret s from the uniform distribution
U(Zn

q ) and computes p = A · s+e, where the error e is chosen from the discrete
Gaussian distribution Dm

Z,α. The matrix A and the vector p form the public key.
Encryption takes a bit string m ∈ {0, 1}1×t as input, and outputs a ciphertext
(Aᵀ · R,pᵀ · R + e′ + q

2m mod q). Decryption is performed by computing d =
c2 − sᵀ · C1. For each entry di of d, the decryption algorithm outputs 0 if di is
close to 0 mod q, and outputs 1 if di is close to q

2 mod q.

Parameter Setting. The parameter setting of the scheme LWEPKE is as follows:

– n = λ is the security parameter,
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LWEPKE.Setup(1λ) :

A $←− Z
m×n
q

LWEPKE.KG(1λ) :
s ← U(Zn

q )
e ← Dm

Z,α

p ← A · s+ e mod q
return (s,p)

LWEPKE.Enc(p,m) :
R ← Dt

r

e′ ← D1×t
Z,β

C1 ← Aᵀ · R
c2 ← pᵀ · R+ e′ + q

2
m mod q

return (C1, c2)

LWEPKE.Dec(s, c) :
parse c = (C1, c2)
d ← c2 − sᵀ · C1

parse d = (d1, ..., dt)
for i ∈ {1, 2, ..., t} do
if di ∈ ( 3q

8
, 5q

8
) then

m′
i ← 1

else if di ∈ (− q
8
, q
8
) then

m′
i ← 0

else
return ⊥

m′ ← (m′
1, ..., m′

t)
return m′

Fig. 15. The algorithms of the LWE-based LWEPKE scheme. The randomness distribu-
tion Dr is defined over Zm

q . DZ,α, DZ,β are discrete Gaussian distributions. The message
m lies in {0, 1}1×t.

– q = q(n) ≥ 2 be a prime,
– m = poly(n) and t = poly(n) be two integers,
– Dr be a distribution over Z

m
q with min-entropy k such that n ≤ (k −

2 log(1/ε) − O(1))/ log(q) for negligible ε > 0, the infinite norm of the vector
outputted by this distribution is at most B = poly(n) with overwhelming
probability,

– α, β > 0 be two numbers such that β ≤ q
8 and αB/β = negl(n).

– DZ,α and DZ,β be two discrete Gaussian distributions.

Remark 10. We specify that all operations in this paper are done in field Zq,
and stop writing mod q for the rest of this paper.

4.2 Correctness and Security

Correctness. We claim that LWEPKE.Dec decrypts correctly with overwhelming
probability. The decryption algorithm computes d = c2 − sᵀ ·C1 = eᵀ ·R+ e′ +
q
2m, and outputs m if eᵀ · R + e′ has distance at most q

8 from 0 mod q. The
detailed analysis of the correctness is provided in the full version [13].

Security. We now show that LWEPKE is IND$-CPA-secure under the assumption
that the DLWEn,q,α problem is hard.

Theorem 3. Let LWEPKE be the public key encryption described in Fig. 15,
using the parameter setting described in Sect. 4.1. Then for any adversary
IND$-CPA A against LWEPKE, there exists an adversary B against DLWEn,q,α

such that
AdvIND$-CPA

LWEPKE, A(1λ) ≤ tε + AdvDLWE
n,q,α (B) + negl(n).
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Proof sketch. We sketch the main idea of the proof and provide the full details
in the full version [13]. We claim that the real challenge ciphertext (C1, c2) is
statistically close to the ciphertext generated as (C1, sᵀ · C1 + e′). Then first
entry C1 is statistically close to a random element because of the leftover hash
lemma, and therefore the whole ciphertext (C1, sᵀ ·C1 + e′) is computationally
indistinguishable from a random ciphertext based on the hardness of the learning
with error.

5 LWE-based Updatable Encryption Scheme

We construct an LWE-based updatable encryption scheme LWEUE and prove
that it is randIND-UE-CPA secure if the underlying LWE problem is hard.

5.1 UE Construction

We now introduce our updatable encryption scheme LWEUE, which is param-
eterized by an LWE-based PKE scheme LWEPKE (see Fig. 15). LWEUE uses
algorithms from LWEPKE to do key generation, encryption and decryption. To
generate a new key from an old key in the next algorithm, our UE scheme uses
the homomorphic property of the LWE pairs. In particular, suppose the old key
is (se,pe), LWEUE.KG samples a new pair of LWE pairs (Δs

e+1,Δ
p
e+1) and sets

(se+Δs
e+1,pe+Δp

e+1) as the new epoch key, where (Δs
e+1,pe+Δp

e+1) is the update
token. To update ciphertexts, LWEUE uses the re-randomization idea that was
similar to the idea from RISE in the work by Lehmann and Tackmann [15]. As
the ciphertext can be re-randomized by the update token, the update algorithm
uses the update token to update ciphertext from an old one to a new one. More
precisely, the scheme LWEUE is described in Fig. 16.

Parameter Setting We use the parameter setting of the scheme LWEPKE,
described in Sect. 4.1. Additionally, we require β ≤ q

8
√

l
, where l = poly(n) is

an upper bound on the last epoch.

5.2 Construction Challenges in LWE-based UE Schemes

In this section, we discuss leakage from tokens due to bad UE construction and
show how to solve this leakage problems.

Secret Key Distribution. We first state that a binary secret does not work in the
UE scheme, as an update token might reveal the secret information. Suppose
an entry of the update token Δs

e+1(= se+1 − se) is -1 (1, resp.), then we can
conclude the corresponding entry of the previous secret se is 1 (0, resp.) and the
corresponding entry of the new secret se+1 is 0 (1, resp.).

We choose that secret keys and update tokens are sampled from the uniform
distribution over Zn

q , which ensures that any corrupted token will not reveal any
information about the relevant secret keys.
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Setup(1λ) :
A ← LWEPKE.Setup(1λ)

LWEUE.KG(1λ) :
if e = 0 then
(s0,p0) ← LWEPKE.KG(1λ)

else
parse ke−1 = (se−1,pe−1)
(Δs

e , Δ
p
e ) ← LWEPKE.KG(1λ)

se ← se−1 + Δs
e

pe ← pe−1 + Δp
e

ke ← (se,pe)
return ke

LWEUE.TG(ke,ke+1) :
parse ke = (se,pe)
parse ke+1 = (se+1,pe+1)
Δs

e+1 ← se+1 − se
Δe+1 ← (Δs

e+1,pe+1)
return Δe+1

LWEUE.Enc(ke,m) :
parse ke = (se,pe)
ce ← LWEPKE.Enc(pe,m)
return ce

LWEUE.Dec(ke, ce) :
parse ke = (se,pe)
m′ ← LWEPKE.Dec(se, ce)
return m′

LWEUE.Upd(Δe+1, ce) :
parse Δe+1 = (Δs

e+1,pe+1)
parse ce = (C1

e , c
2
e )

(C1, c2) $←− LWEPKE.Enc(pe+1,0)
C1

e+1 ← C1
e +C1

c2e+1 ← c2e + (Δs
e+1)ᵀ · C1

e + c2

ce+1 ← (C1
e+1, c

2
e+1)

return ce+1

Fig. 16. The algorithms of LWE-based updatable encryption scheme LWEUE, which is
parameterized by an LWE-based PKE scheme LWEPKE.

Epoch Key Generation. Intuitively, it is natural to consider generating the epoch
keys by sampling a secret si ← U(Zn

q ) and setting the public key to be pi =
A ·si +ei, where ei ← Dm

Z,α. Then the update token is set as Δi = (si −si−1,pi).
In a confidentiality game for such UE schemes, suppose the adversary knows

two consecutive tokens Δi−1 and Δi. Using these tokens the adversary can com-
pute pi − pi−1 − A · Δs

i = ei − ei−1, and knows ei − ei−1. Which means if
the adversary knows a set of consecutive tokens Δi,Δi+1, ...,Δi+j then it will
also know {ei+1 − ei, ei+2 − ei, ..., ei+j − ei}, the values in this set are sampled
from a discrete Gaussian distribution centered at ei. Through evaluating these
errors the adversary can possibly find the error value ei and therefore knows
the secret value si. Furthermore, the adversary is allowed to ask for a challenge-
equal ciphertext in epoch i, which will not trigger the trivial win condition, and
can therefore break this confidentiality game. The above attack shows that this
epoch key generation approach is not safe, it might leak the secret epoch key
information.

We choose to generate a fresh pair (Δs
e+1,Δ

p
e+1) to compute the new

epoch key and the update token, which makes sure the update token Δe+1 =
(Δs

e+1,pe+1) is independent from the previous epoch key. Additionally, this pair
is computationally indistinguishable from a uniformly random pair as long as
the underlying LWE problem is hard.
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5.3 Correctness

Errors in updated ciphertexts increase when they are updated. Since the total
number of epochs is bounded with a comparatively small integer l, the UE
scheme supports a limited number of ciphertext updates. As a result, errors in
updated ciphertexts will not grow too big and the decryption will be correct with
overwhelming probability for some parameter setting. The correctness analysis
is discussed in the full version [13].

5.4 Challenges of the Security Proof in LWE-based UE Schemes

In this section we highlight the difficulties when proving that LWEUE is a secure
UE scheme, specifically, our UE scheme has a randomized update algorithm.
Lehmann and Tackmann [15] and Klooß et al. [14] both described a method,
similar to each other, to prove that updatable encryption schemes with random-
ized update algorithms are secure. Their technique can be seen when they prove
that RISE and NYUE (NYUAE) are secure, resp. However, this method can not
be directly used to prove that LWEUE is secure. The method introduced requires
that UE schemes have perfect re-encryption, which means the distribution of
updated ciphertexts has the same distribution as fresh encryptions. In their
proof, they replace updated ciphertexts by fresh encryptions of the underlying
messages. However, in the LWEUE scheme, we cannot simply replace updated
ciphertexts by a fresh encryption because the randomness terms and the error
terms grow while updating and an updated ciphertext does not have the same
distribution as a fresh encryption.

5.5 Security

If LWEPKE is IND$-CPA-secure then the output of the encryption algorithm is
computationally indistinguishable from a pair of uniformly random elements.
Hence, the fresh encryption in the LWEUE scheme is computationally indistin-
guishable from a pair of uniformly random elements as well. Furthermore, the
update algorithm LWEUE.Upd runs the encryption algorithm of LWEPKE to re-
randomize the old ciphertext to a new ciphertext, therefore, the updated cipher-
text is also computationally indistinguishable from a pair of uniformly random
elements. So, a fresh encryption is computationally indistinguishable from an
updated ciphertext and LWEUE is randIND-UE-CPA secure (see Definition 1).
This provides the underlying intuition for the security proof.

The full proof of Theorem 4 is given in the full version [13].

Theorem 4 (LWEUE is randIND-UE-CPA). Let LWEUE be the updatable
encryption scheme described in Fig. 16, using parameter setting described in
Sect. 5.1. For any randIND-UE-CPA adversary A against LWEUE, there exists
an adversary B4 against DLWEn,q,α such that

AdvrandIND-UE-CPA
LWEUE, A (1λ) ≤ 2(l + 1)3 ·

(

tε + 3AdvDLWE
n,q,α (B4) + negl(n)

)

.
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Remark 11. Klooß et al. [14] introduced a generic construction of transform-
ing CPA-secure UE schemes to UE schemes with PTXT and RCCA security.
The main idea is to use the extended Naor-Yung (NY) CCA-transform [17]
(for public-key schemes). The NY approach is to encrypt a message under two
(public) keys of a CPA-secure encryption scheme. The extended NY approach
additionally includes a proof that shows the owner knows a valid signature that
contains the NY ciphertext pair and the underlying message. A potential future
work would be to incorporate LWEUE to their construction to create a UE scheme
that achieves PTXT and RCCA security.
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