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Abstract. Modern attribute-based anonymous credential (ABC) sys-
tems benefit from special encodings that yield expressive and highly effi-
cient show proofs on logical statements. The technique was first proposed
by Camenisch and Groß, who constructed an SRSA-based ABC system
with prime-encoded attributes that offers efficient AND, OR and NOT
proofs. While other ABC frameworks have adopted constructions in the
same vein, the Camenisch-Groß ABC has been the most expressive and
asymptotically most efficient proof system to date, even if it was con-
strained by the requirement of a trusted message-space setup and an
inherent restriction to finite-set attributes encoded as primes. In this
paper, combining a new set commitment scheme and an SDH-based sig-
nature scheme, we present a provably secure ABC system that supports
show proofs for complex statements. This construction is not only more
expressive than existing approaches, but it is also highly efficient under
unrestricted attribute space due to its ECC protocols only requiring a
constant number of bilinear pairings by the verifier; none by the prover.
Furthermore, we introduce strong security models for impersonation and
unlinkability under adaptive active and concurrent attacks to allow for
the expressiveness of our ABC as well as for a systematic comparison
to existing schemes. Given this foundation, we are the first to compre-
hensively formally prove the security of an ABC with expressive show
proofs. Specifically, building upon the q-(co-)SDH assumption, we prove
the security against impersonation with a tight reduction. Besides the set
commitment scheme, which may be of independent interest, our security
models can serve as a foundation for the design of future ABC systems.

1 Introduction

An anonymous attribute-based credential (ABC) system allows a user to obtain
credentials, that is, certified attribute set A from issuers and to anonymously
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prove the possession of these credentials as well as properties of A. Anonymous
credentials were first proposed by Chaum [25] but it does not draw much atten-
tion until Brands [12] constructed a pragmatic single-show ABC system and
Camenisch and Lysyanskaya (CL) [21] presented a practical multi-show ABC
system. CL-ABC system uses the signer’s signature on a committed, and there-
fore blinded, attribute as the user credential. The proof of possession of a valid
credential is a zero-knowledge proof of knowledge on the validity of the signa-
ture and the wellformedness of the commitment. This commit-and-sign technique
has been employed by ABC systems from RSA-based signature scheme [22] and
pairing-based signature schemes [4,5,7,9,15,19,20,23,24,42] on blocks of mes-
sages in which the i-th attribute is fixed as the exponent to the i-th base. There-
fore, the show proofs have a computational complexity linear to the number of
attributes in the credential, in terms of the modular exponentiations and scalar
multiplications, respectively.

In contrast to the technique above which is termed as traditional encoding by
Camenisch and Groß [17,18], they suggested a prime encoding for the SRSA-CL
signature scheme [22] to offer show proofs on AND, OR and NOT statements
with constant complexity for the prime-encoded attributes. Specifically, the
Camenisch-Groß (CG) construction separates the unrestricted attribute space S
into string attributes space and finite-set attributes space such that S = SS ∪SF .
The CG encoding uses a product of prime numbers to represent a finite-set
attribute set AF ∈ SF in a single exponent, a technique subsequently applied
to graphs as complex data structures [32,33]. Prime encoding results in highly
efficient show proofs: each execution only requires a constant number of modular
exponentiations. However, the construction constrains SF to a set of pre-certified
prime numbers and increases the public key size1. Furthermore, the security of
the CG ABC system was only established on the properties of its show proofs
and not formally on the overall properties of the ABC system. Despite these
drawbacks, to the best of our knowledge, CG ABC system [18,32] is the only
ABC system in the standard model that has show proof for AND, OR, and NOT
statements with constant complexity.

Related Works. The SDH-CL signature scheme [19,23,44] is a popular candi-
date for the ABC system based on the traditional encoding. It is also referred
as the BBS+ signature scheme [1,4,5,11,45,48] or the Okamoto signature
scheme [2,39]. Au et al. [4] and Akagi et al. [2] constructed provably secure ABC
systems on this foundation while Camenisch et al. [19] integrated a pairing-based
accumulator to yield an ABC system that supports revocation. Later, Sudarsono
et al. [45] applied the accumulator on SF as in prime encoding and showed that
the resulting ABC system can support show proofs for AND and OR statements
with constant complexity. Yet, the accumulator requires a large public key size:
|SF | finite-set attributes plus the corresponding |SF | signatures. Inspired by
the concept of attribute-based signature, Zhang and Feng [48] solved the large

1 If the prime numbers are not pre-certified by a signature each, the show proofs have
to include expensive interval proofs.
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public key problem, while additionally supporting threshold statements (ANY)
in show proofs, at the cost of having the credential size linear to |AF |. Compar-
ing the traditional encoding-based ABC systems to the accumulator-based ABC
systems, the latter require more bilinear pairing operations in the show proofs,
and having either large public key or credential sizes.

There were some attempts to apply Camenisch et al.’s accumulator [19] and
its variants on P-signatures [35], LRSW-CL signature [34] and structure pre-
serving signatures [6,40,43] to support complex non-interactive zero-knowledge
(NIZK) show proofs. Among all, Sadiah et al.’s ABC system [43] offers the most
expressive show proofs. Considering only S = SF , their ABC system allows
constant-size and constant-complexity NIZK show proofs for monotone formu-
las at the cost of issuing |P(AF )| credentials to every user where P(AF ) is
the power set of the user attribute set AF . Instead of performing this expen-
sive process during the issuing protocol, Okishima and Nakanishi’s ABC sys-
tem [40] generates P(SF ) during key generation and inflates the public key
size with |P(SF )| signatures to enable constant-size non-interactive witness-
indistinguishable (NIWI) show proofs for conjunctive composite formulas. There
are also ABC systems [7,9] that were built on Pointcheval and Sanders’ signa-
ture [41]. The ABC system proposed by Bemmann et al. [7] combines both
traditional encoding and accumulator [38] to support monotone formulas under
the non-interactive proof of partial knowledge protocol [3]. Although it has sig-
nificantly shorter credential and supports unrestricted attribute space compared
to that of Sadiah et al.’s [43], its show proofs complexity is linear to the number
of literals in the monotone formula.

The findings on the use of accumulator in constructing ABC system cor-
respond to the observations in the ABC transformation framework proposed
by Camenisch et al. [16]. They discovered that the CL signatures are not able
to achieve constant-size NIZK show proofs without random oracle. The frame-
work takes in a structure-preserving signature scheme and a vector commit-
ment scheme to produce an UC-secure ABC system. Their instantiation sup-
ports constant-size NIZK show proofs on subset statements and provably secure
under the common reference string model. Using the similar ingredients, Fuchs-
bauer et al. [31] constructed an ABC system that offers constant-size NIZK show
proofs on subset statement. The security models in the two works, however, are
not designed to cover expressive show proofs. Other frameworks [9,20] that for-
malized the commit-and-sign technique and even those [7,40,43] support show
proofs on complex statements also fall short in this aspect.

Research Gap. Existing constructions yield considerable restrictions when
expressive show proofs are concerned: The SRSA-based CG scheme [17] as
well as accumulator-based schemes [6,34,35,40,43,45] constrain the attribute
space to finite-set attributes (AF ∈ SF ) and require a trusted setup that
inflates either the public-key size or the credential size. Their expressiveness and
the computational complexity are no better than the pairing-based construc-
tions [2,4,7,31,48] and the general ABC frameworks [9,16,20] alike, when only
string attributes (AS ∈ SS) are considered. Expressive proofs for large attribute
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set are desirable in privacy-preserving applications such as direct anonymous
attestation [13,14,26–29]. Also, we observe a need for a systematic canonicaliza-
tion of security models for all mentioned schemes. In short, an ideal ABC system
should have:

1. strong security assurance, and
2. appropriate public key size, and
3. expressive show proofs with low complexity regardless of the attribute space.

Our Contribution. We present a perfectly hiding and computationally binding
set commitment scheme, called MoniPoly, which supports set membership proofs
and disjointness proofs on the committed messages. Following the commit-and-
sign methodology, we combine the MoniPoly commitment scheme tracing back
to Kate et al.’s work [36] with SDH-based Camenisch-Lysyanskaya signature
scheme [23,44] to present an efficient ABC system that support expressive show
proofs for AND, OR and k-out-of-n threshold (ANY) clauses as well as their
respective complements (NAND, NOR and NANY). Our ABC system is the most
efficient construction for the unrestricted attribute space to-date. And it is at
least as expressive as the existing constructions specially crafted for the restricted
attribute space.

To the best of our knowledge, neither the constructions nor security mod-
els of existing ABC systems allow for complex interactive show proofs. As an
immediate contribution, we rigorously define the necessary and stronger security
notions for ABC systems. Our notions for security of impersonation resilience
and unlinkability under adaptive active and concurrent attacks are stronger than
those of the state-of-the-art ABC systems [16,20,31,40]. We prove the security of
our construction with respect to the security against impersonation and linkabil-
ity in the standard model, especially offering a tight reduction for impersonation
resilience under the q-(co-)SDH assumption.

Organization. We organize the paper as follows. In Sect. 2, we briefly intro-
duce the underlying SDH-based CL signature scheme. In Sect. 3, we present the
MoniPoly commitment scheme. We present our ABC system which is a combina-
tion of the MoniPoly commitment scheme with SDH-based CL signatures [23,44]
in Sect. 4. Section 5 offers an evaluation of the MoniPoly ABC in terms of secu-
rity properties, expressivity as well as computational complexity in comparison
to other schemes in the field.

2 Preliminaries

The MoniPoly commitment and ABC schemes are based on standard mathe-
matical foundations in elliptic curves and bilinear maps as well as notions on
signature schemes and proof systems. Readers may refer to the full version [46]
for this information.
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2.1 The SDH-Based CL Signature Scheme

Camenisch and Lysyanskaya [23] introduced a technique to construct secure
pairing-based signature schemes which support signing on committed messages.
They also showed that their technique can extract an efficient SDH-based sig-
nature scheme from Boneh et al.’s group signature [11] scheme but no security
proof was provided. This scheme was later proven to be seuf-cma-secure with a
tight reduction [44] to the SDH assumption in the standard model. We describe
the SDH-CL signature scheme [19,23,44] as follows:

KeyGen(1k): Construct three cyclic groups G1,G2,GT of order p based on an
elliptic curve whose bilinear pairing is e : G1 × G2 → GT . Select random gen-
erators a, b, c ∈ G1, g2 ∈ G2 and a secret value x ∈ Z

∗
p. Output the public key

pk = (e,G1,G2,GT , p, a, b, c, g2,X = gx
2 ) and the secret key sk = x.

Sign(m, pk, sk): On input m, choose the random values s, t ∈ Z
∗
p to compute

v = (ambsc)
1

x+t . In the unlikely case in which x + t = 0 mod p occurs, reselect
a random t. Output the signature as sig = (t, s, v).

Verify(m, sig, pk): Given sig = (t, s, v), output 1 if the equation:

e(v,Xgt
2) = e((ambsc)

1
x+t , gx+t

2 )
= e(ambsc, g2).

holds and output 0 otherwise.

Theorem 1. [44] SDH-based CL signature scheme is seuf-cma-secure in the
standard model if the Strong Diffie-Hellman problem is (tsdh, εsdh)-hard.

3 MoniPoly Set Commitment Scheme

The key idea of set commitment scheme traces back to the polynomial commit-
ment scheme [36] which can commit to a polynomial and support opening at
indexes of the polynomial. Inheriting this nature, our MoniPoly set commitment
scheme and similar ones [16,31] transform a message m ∈ Zp into (x′ +m) where
x′ ∈ Zp is not known to the user and multiple messages form a monic polyno-
mial f(x′) =

∏n
i=1(x

′ + mi). This monic polynomial, in turn, can be rewritten
as f(x′) =

∑n
i=0 mix

′i. Its coefficients mi ∈ Z
∗
p can be efficiently computed, for

instance, using the encoding algorithm MPEncode() : Zn
p → Z

n+1
p described in

the full version [46].
Our commitment scheme’s unique property is that it treats the opening value

as one of the roots in the monic polynomial. Hence, the name MoniPoly. Fold-
ing the opening value into the monic polynomial yields compelling advantages,
especially, enabling a greater design space for presentation proofs.

While related schemes [16,31,36] realize subset opening, our scheme supports
the opening of intersection sets and difference sets, in addition. Thus, MoniPoly
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is more expressive. Furthermore, the presentation proofs created on MoniPoly are
more efficient than other commitment-based frameworks. Finally, treating the
opening value as a root of the monic polynomial yields a scheme that is closely
aligned with well-established commitment scheme paradigms, which, in turn,
fits into a range of popular signature schemes and enables signing committed
messages.

3.1 Interface

We define the MoniPoly set commitment scheme as the following algorithms:

MoniPoly = (Setup,Commit,Open,OpenIntersection,

VerifyIntersection,OpenDifference,VerifyDifference)

1. Setup(1k, n) → (pk, sk). A pair of public and secret keys (pk, sk) are generated
by a trusted authority based on the security parameter input 1k. The message
domain D is defined and n−1 is the maximum messages allowed. If n is fixed,
sk is not required in the rest of the scheme.

2. Commit(pk,A, o) → (C). On the input of pk, a message set A ∈ Dn−1 and a
random opening value o ∈ D, output the commitment C.

3. Open(pk,C,A, o) → b. Return b = 1 if C is a valid commitment to A with
the opening value o under pk, and return b = 0 otherwise.

4. OpenIntersection(pk,C,A, o, (A′, l)) → (I,W ) or ⊥. If |A′ ∩ A| ≥ l holds,
return an intersection set I = A′ ∩ A of length l with the corresponding
witness W , and return an error ⊥ otherwise.

5. VerifyIntersection(pk,C, (I,W ), (A′, l)) → b. Return b = 1 if W is a witness
for S being the intersection set of length l for A′ and the set committed to in
C, and return b = 0 otherwise.

6. OpenDifference(pk,C,A, o, (A′, l̄)) → (D,W ). If |A′ −A| ≥ l̄ holds, return the
difference set D = A′ − A of length l̄ with the corresponding witness W , and
return ⊥ otherwise.

7. VerifyDifference(pk,C, (D,W ), (A′, l̄)) → b. Return b = 1 if W is the witness
for D being the difference set of length l̄ for A′ and the set committed to in
C, and return b = 0 otherwise.

3.2 Security Requirements

Definition 1. A set commitment scheme is perfectly hiding if every commit-
ment C = Commit(pk,A, o) is uniformly distributed such that there exists an
o′ �= o for all A′ �= A where Open(pk,C,A′, o′) = 1.

Definition 2. An adversary A is said to (tbind, εbind)-break the binding security
of a set commitment scheme if A runs in time at most tbind and furthermore:

Pr[Open(pk,C,A1, o1) = Open(pk,C,A2, o2) = 1] ≥ εbind.

for a negligible probability εbind and any two pairs (A1, o1), (A2, o2) output by A.
We say that a set commitment scheme is (tbind, εbind)-secure wrt. binding if no
adversary (tbind, εbind)-breaks the binding security of the set commitment scheme.
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3.3 Construction

We describe the MoniPoly commitment scheme as follows:

Setup(1k). Construct three cyclic groups G1,G2,GT of order p based on an
elliptic curve whose bilinear pairing is e : G1 × G2 → GT . Select random gen-
erators a ∈ G1, g2 ∈ G2 and a secret values x′ ∈ Z

∗
p. Compute the values

a0 = a, a1 = ax′
, . . . , an = ax′n

,X0 = g2,X1 = gx′
2 , . . . , Xn = gx′n

2 to output the
public key pk = (e,G1,G2,GT , p, {ai,Xi}0≤i≤n) and the secret key sk = (x′).
Note that sk can be discarded by the authority if the parameter n is fixed.

Commit(pk,A, o). Taking as input a message set A = {m1, . . . ,mn−1} ∈ Z
∗
p and

the random opening value o ∈ Z
∗
p, output the commitment as

C = a
(x′+o)

∏n−1
j=1 (x′+mj)

0 =
n∏

j=0

a
mj

j

where {mj} = MPEncode(A ∪ {o}).

Open(pk,C,A, o). Return 1 if C =
∏n

j=0 a
mj

j holds where {mj} = MPEncode(A∪
{o}) and return 0 otherwise.

OpenIntersection(pk,C,A, o, (A′, l)). If |A′ ∩ A| ≥ l holds, return an intersection
set I = A′ ∩ A of length l and a witness such that:

W = a
(x′+o)

∏
mj∈(A−I)(x

′+mj)

0

=
n−l∏

j=0

a
wj

j

where {wj} = MPEncode((A ∪ {o}) − I). Otherwise, return a null value ⊥. The
correctness can be verified as follows:

C = W
∏

mj∈I(x
′+mj)

=
(

a
(x′+o)

∏
mj∈(A−I)(x

′+mj)

0

)∏
mj∈I(x

′+mj)

= a
(x′+o)

∏
mj∈A(x′+mj)

0 .

VerifyIntersection(pk,C, I,W, (A′, l)). Return 1 if

e

⎛

⎝C

|A′|∏

j=0

a
m1,j
j ,X0

⎞

⎠ = e

⎛

⎝W

|A′|−l∏

j=0

a
m2,j
j ,

l∏

j=0

X
ij
j

⎞

⎠
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holds and return 0 otherwise, where {ij} = MPEncode(I), {m1,j} =
MPEncode(A′) and {m2,j} = MPEncode(A′ − I). The correctness is as follows:

e

⎛

⎝C

|A′|∏

j=0

a
m1,j
j ,X0

⎞

⎠

= e (C,X0) e

⎛

⎝
|A′|∏

j=0

a
m1,j
j ,X0

⎞

⎠

= e

(

a
(x′+o)

∏
mj∈A(x′+mj)

0 ,X0

)

e

(

a

∏
mj∈A′ (x′+mj)

0 ,X0

)

= e

(

a
(x′+o)

∏
mj∈(A−I)(x

′+mj)

0 ,X

∏
mj∈I(x

′+mj)

0

)

e

(

a

∏
mj∈(A′−I)(x

′+mj)

0 ,X

∏
mj∈I(x

′+mj)

0

)

= e

⎛

⎝W,

l∏

j=0

X
ij
j

⎞

⎠ e

⎛

⎝
|A′|−l∏

j=0

a
m2,j
j ,

l∏

j=0

X
ij
j

⎞

⎠

= e

⎛

⎝W

|A′|−l∏

j=0

a
m2,j
j ,

l∏

j=0

X
ij
j

⎞

⎠

OpenDifference(pk,C,A, o, (A′, l̄)). If |A′ ∩ A| ≥ l̄ holds, return a difference set
D = A′ − A of length l̄ and the witness (W =

∏n−l̄
j=0 a

wj

j , {rj}l̄−1
j=0). The val-

ues ({wj}, {rj}) = MPEncode(A)/MPEncode(D) are computed using expanded
synthetic division such that {wj} are the coefficients of quotient q(x′) and {rj}
are the coefficients of remainder r(x′). Specifically, let the polynomial divisor be
d(x′) =

∑l̄
j djx

′j where {dj} = MPEncode(D), the monic polynomial f(x′) in

the commitment C = a
f(x′)
0 can be rewritten as f(x′) = d(x′)q(x′) + r(x′). Note

that
∏l̄−1

j=0 a
rj
j �= 1G1 whenever d(x′) cannot divide f(x′), i.e., the sets A and D

are disjoint. The correctness can be verified from the following:

C = a
(x′+o)

∏
mj∈A(x′+mj)

0

= a
q(x′)

∏
mj∈D(x′+mj)

0 a
r(x′)
0

=

⎛

⎝
n−l̄∏

j=0

a
wj

j

⎞

⎠

d(x′)

a
r(x′)
0

= W d(x′)
l̄−1∏

j=0

a
rj
j .
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VerifyDifference(pk,C,D, (W, {rj}l̄−1
j=0), (A

′, l̄)). Return 1, if the following holds:

e

⎛

⎝C

l̄−1∏

j=0

a
−rj
j

|A′|∏

j=0

a
m1,j
j ,X0

⎞

⎠ = e

⎛

⎝W

|A′|−l̄∏

j=0

a
m2,j
j ,

l̄∏

j=0

X
dj
j

⎞

⎠ ,

l̄−1∏

j=0

a
rj
j �= 1G1

and return 0 otherwise, where {dj} = MPEncode(D), {m1,j} = MPEncode(A′)
and {m2,j} = MPEncode(A′ − D). The correctness is as follows:

e

⎛

⎝C

l̄−1∏

j=0

a
−rj
j

|A′|∏

j=0

a
m1,j
j ,X0

⎞

⎠

= e

⎛

⎝C
l̄−1∏

j=0

a
−rj
j ,X0

⎞

⎠ e

⎛

⎝
|A′|∏

j=0

a
m1,j
j ,X0

⎞

⎠

= e
(
a

d(x′)q(x′)+r(x′)
0 a

−r(x′)
0 ,X0

)
e

(

a

∏
mj∈A′ (x′+mj)

0 ,X0

)

= e
(
a

d(x′)q(x′)
0 ,X0

)
e

(

a

∏
mj∈(A′−D)(x

′+mj)

0 ,X

∏
mj∈D(x′+mj)

0

)

= e

(

a
∑n−l̄

j=0 w1,jx′j

0 ,X
d(x′)
0

)

e

⎛

⎝
|A′|−l̄∏

j=0

a
m2,j
j ,X

d(x′)
0

⎞

⎠

= e

⎛

⎝W

|A′|−l̄∏

j=0

a
m2,j
j ,

l̄∏

j=0

X
dj
j

⎞

⎠ .

Remark 1. In the security analysis of MoniPoly, we will take a different app-
roach compared to the previous constructions [16,31,36]. We consider the per-
fectly hiding property and the conventional computational binding property [30]
that only requires an adversary cannot present two pairs (A1, o1) and (A2, o2)
such that Commit(pk,A1, o1) = Commit(pk,A2, o2). We will show in Section 3.4
that this conventional binding property is a superset of formers’ subset binding
properties.

3.4 Security Analysis

Theorem 2. The MoniPoly commitment scheme is perfectly hiding.

Proof. Given a commitment C = a
(x′+o)

∏n−1
j=1 (x′+mj)

0 , there are |Z∗
p| − 1 possible

pairs of ((m′
1, . . . ,m

′
n−1), o

′) �= ((m1, . . . ,mn−1), o) which can result in the same
C. Furthermore, for every committed message set {m1, . . . ,mn−1}, there is a
unique o such that:

dloga0
(C) = (x′ + o)

n−1∏

j=1

(x′ + mj) mod p
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o =
dloga0

(C)
∏n−1

j=1 (x′ + mj)
− x′ mod p

Since o is chosen independently of the committed messages {m1, . . . ,mn−1}, the
latter are perfectly hidden. 	


The following theorem considers an adversary which breaks the binding prop-
erty by finding two different message sets A and A∗ which can be of different
lengths such that |A| ≥ |A∗|. The proof is in the full version [46].

Theorem 3. The MoniPoly commitment scheme is (tbind, εbind)-secure wrt. the
binding security if the co-SDH problem is (tcosdh, εcosdh)-hard such that:

εbind = εcosdh, tbind = tcosdh + T (n)

where T (n) is the time for dominant group operations in G1 to extract a co-SDH
solution where n is the total of committed messages plus the opening value.

4 Attribute-Based Anonymous Credential System

Table 1. Syntax and semantics for an access policy φ.

(a) BNF grammar.

BNF

attr ::= <attribute>=<value>

set ::= attr,set | attr
con ::= AND | NAND | OR | NOR

cont ::= ANY | NANY
clause ::= con(set) | cont(l,set)
stmt ::= clause ∧ stmt | clause
policy ::= stmt(set) | ⊥

(b)Truth table with respect to input A

Clause Truth Condition

OR(A′) |A′ ∩ A| > 0

ANY(1 < l < |A′|, A′) |A′ ∩ A| ≥ l

AND(A′) |A′ ∩ A| = |A′|
NOR(A′) |A′ ∩ Ā| > 0

NANY(1 < l < |A′|, A′)|A′ ∩ Ā| ≥ l

NAND(A′) |A′ ∩ Ā| = |A′|

Note: con = connective, cont = connective with threshold

Before presenting the formal definition of ABC system, we briefly define the
attribute set A and the access policy φ in our proposed ABC system which are
closely related to MoniPoly’s opening algorithms. Informally, we view a relation
between two attribute sets as a clause. Clauses can be accumulated using the
logical ∧ operator in building the composite statement for an access policy.

Attribute. We view a descriptive attribute set A = {m1, . . . ,mn} as a user’s
identity. To be precise, an attribute m is an attribute-value pair in the format
attribute=value and A is a set of attributes. For instance, the identity of a user can
be described as: A = {“gender = male′′, “name = bob”, “ID = 123456”, “role =
manager”, “branch = Y”}.
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Access Policy. An access policy φ as defined by the BNF grammar in Table 1
expresses the relationship between two attribute sets A and A′. An access pol-
icy φ is formed by an attribute set A as well as a statement stmt that spec-
ifies the relation between A and A′. We have some additional rules for the φ
where we require |A| = n > 1 and |A′| ≤ n. Besides, in the special case of
|A′| = 1, the connective must be either AND or NAND. An access policy φ
outputs 1 if the underlying statement is evaluated to true and outputs 0 oth-
erwise. Taking the attribute set A above as an example, we have φstmt(A) =
φAND(A′

1)∧OR(A′
2)

(A) = 1 for the attribute sets A′
1 = {“role = manager”} and

A′
2 = {“branch = X”, “branch = Y”, “branch = Z”}. Note that the attribute set

A′ has been implicitly defined by stmt and we simply write φstmt in the subse-
quent sections when the reference to the attribute set A′ is clear.

4.1 Interface

We define an attribute-based anonymous credential system by five algorithms
ABC = {KeyGen,Obtain, Issue,Prove,Verify} as follows:

1. KeyGen(1k, 1n) → (pk, sk): This algorithm is executed by the issuer. On the
input of the security parameter k and the attributes upper bound n, it gen-
erates a key pair (pk, sk).

2. (Obtain(pk,A), Issue(pk, sk)) → (cred or ⊥): These two algorithms form the
credential issuing protocol. The first algorithm is executed by the user with
the input of the issuer’s public key pk and an attribute set A. The second
algorithm is executed by the issuer and takes as input the issuer’s public
key pk and secret key sk. At the end of the protocol, Obtain outputs a valid
credential cred produced by Issue or a null value ⊥ otherwise.

3. (Prove(pk, cred, φstmt),Verify(pk, φstmt)) → b: These two algorithms form the
credential presentation protocol. The second algorithm is executed by the
credential verifier which takes as input the issuer’s public key pk and has
the right to decide the access policy φstmt. The first algorithm is executed
by the credential prover which takes as input the issuer’s public key pk,
user’s credential cred and an access policy φstmt such that φstmt(A) = 1. If
φstmt(A) = 0, the credential holder aborts and Verify outputs b = 0. If φ = ⊥,
prover and verifier complete a proof of possession which proves the validity of
credential only instead of a show proof which additionally proves the relation
between A and A′. At the end of the protocol, Verify outputs b = 1 if it
accepts prover and outputs b = 0 otherwise.

In the following, we define the key security requirements for an anonymous
credential system in the form of impersonation resilience and unlinkability.

4.2 Security Requirements

4.2.1 Impersonation Resilience
The security goal of an ABC system requires that it is infeasible for an adver-
sary to get accepted by the verifier in the show proof. The security against
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impersonation under active and concurrent attacks is described in the following
game between an adversary A and a challenger C.

Game 1 (imp − aca(A, C))

1. Setup: C runs KeyGen(1k, 1n) and sends pk to A.
2. Phase 1: A is able to issue concurrent queries to the Obtain, Prove and Verify

oracles where he plays the role of user, prover and verifier, respectively, on
any attribute set Ai of his choice in the i-th query. A can also issue queries
to the IssueTranscript oracle which takes in Ai and returns the corresponding
transcripts of issuing protocol.

3. Challenge: A outputs the challenge attribute set A∗ and its corresponding
access policy φ∗

stmt such that φ∗
stmt(Ai) = 0 and φ∗

stmt(A
∗) = 1 for every Ai

queried to the Obtain oracle during Phase 1.
4. Phase 2: A can continue to query the oracles as in Phase 1 with the restric-

tion that it cannot query an attribute set Ai to Obtain such that φ∗
stmt(Ai) = 1.

5. Impersonate: A completes a show proof as the prover with C as the verifier
for the access policy φ∗

stmt(A
∗) = 1. A wins the game if C outputs 1.

Definition 3. An adversary A is said to (timp, εimp)-break the imp-aca security
of an ABC system if A runs in time at most timp and wins in Game 1 such that:

Pr[(A,Verify(pk, φ∗
stmt)) = 1] ≥ εimp

for a negligible probability εimp. We say that an ABC system is imp-aca-secure if
no adversary (timp, εimp)-wins Game 1.

Note that we reserve the term unforgeability of the signature scheme in con-
trast to some contributions in the literature [2,9,16,20,31,42]. One can view our
impersonation resilience notion as the stronger version of the misauthentication
resistance from the ABC systems with expressive show proofs [6,40,43] which
does not cover the active and concurrent adversary besides disallowing adaptive
queries. We also introduce a new oracle, namely, IssueTranscript that covers the
passive adversary for the issuing protocol. This makes our security definition
more comprehensive than that by related works [9,16,20,31].

4.2.2 Unlinkability
Unlinkability requires that an adversary cannot link the attributes or instances
among the issuing protocols and the presentation protocols. We consider two
types of unlinkability notions, namely, full attribute unlinkability and full protocol
unlinkability. We require that an adversary, after being involved in the generation
of a list of credentials, cannot differentiate the sequence of two attribute sets in
the full attribute unlinkability. The security model for full attribute unlinkability
under active and concurrent attacks (aunl-aca) is defined as a game between an
adversary A and a challenger C.
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Game 2 (aunl − aca(A, C))

1. Setup: C runs KeyGen and sends pk, sk to A.
2. Phase 1: A is able to issue concurrent queries to the Obtain, Issue, Prove

and Verify oracles where he plays the role of user, issuer, prover and verifier,
respectively, on any attribute set Ai of his choice in the i-th query. A can
also issue queries to an additional oracle, namely, Corrupt which takes in a
transcript of issuing protocol or show proofs whose user or prover, respectively,
is C and returns the entire internal state, including the random seed used by
C in the transcript.

3. Challenge: A decides the two equal-length, non-empty attribute sets A0, A1

and the access policy φ∗
stmt which he wishes to challenge such that φ∗

stmt(A0) =
φ∗
stmt(A1) = 1. A is allowed to select A0, A1 from the existing queries to Obtain

in Phase 1. C responds by randomly choosing a challenge bit b ∈ {0, 1} and
interacts as the user with A as the issuer to complete the protocols:

(Obtain(pk,Ab), Issue(pk, sk)) → credb,

(Obtain(pk,A1−b), Issue(pk, sk)) → cred1−b.

Subsequently, C interacts as the prover with A as the verifier for polynomially
many times as requested by A to complete the protocols in the same order:

(Prove(pk, credb, φ
∗
stmt),Verify(pk, φ∗

stmt)) → 1,

(Prove(pk, cred1−b, φ
∗
stmt),Verify(pk, φ∗

stmt)) → 1.

4. Phase 2: A can continue to query the oracles as in Phase 1 except querying
the transcripts of the challenged issuing and show proofs to Corrupt.

5. Guess: A outputs a guess b′ and wins the game if b′ = b.

Definition 4. An adversary A is said to (taunl, εaunl)-break the aunl-aca-security
of an ABC system if A runs in time at most taunl and wins in Game 2 such that:

|Pr[b = b′] − 1
2
| ≥ εaunl

for a negligible probability εaunl. We say that an ABC system is aunl-aca-secure
if no adversary (taunl, εaunl)-wins Game 2.

Our full attribute unlinkability is more generic than that in Camenisch et al.’s
ABC transformation frameworks [16] where we assume the challenged attribute
sets A0, A1 are not equivalent such that A0 �= A1. Besides, unlike Ringers et
al.’s unlinkability notion [42], ours covers both issuing and show proofs as in
Camenisch et al.’s privacy notions [20], though the latter does not have a Corrupt
oracle while the former does.

On the other hand, as far as we know, the full protocol unlinkability has
not been considered before. This notion requires that an adversary, after being
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involved in the generation of a list of credentials, cannot link an instance of issu-
ing protocol and an instance of a show proof that are under the same credential.
The full protocol unlinkability under active and concurrent attacks (punl-aca) is
defined as a game between an adversary A and a challenger C:

Game 3 (punl − aca(A, C)).

1. Setup: Same to that of Game 2.
2. Phase 1: Same to that of Game 2.
3. Challenge: A decides the two equal-length, non-empty attribute sets A0, A1

and the access policy φ∗
stmt which he wishes to challenge such that φ∗

stmt(A0) =
φ∗
stmt(A1) = 1. A is allowed to select A0, A1 from the existing queries to Obtain

in Phase 1. C responds by randomly choosing two challenge bits b1, b2 ∈ {0, 1}
and interacts as the user with A as the issuer to complete the protocols in the
order

(Obtain(pk,Ab1), Issue(pk, sk)) → credb1 ,

(Obtain(pk,A1−b1), Issue(pk, sk)) → cred1−b1 .

Subsequently, C interacts as the prover with A as the verifier for polynomially
many times as requested by A to complete the protocols in the order

(Prove(pk, credb2 , φ
∗
stmt),Verify(pk, φ∗

stmt)) → 1,

(Prove(pk, cred1−b2 , φ
∗
stmt),Verify(pk, φ∗

stmt)) → 1.

4. Phase 2: Same to that of full attribute unlinkability game.
5. Guess: A outputs a guessed pair of issuing protocol transcript π(O,I) and

show proof transcript π(P,V ) and wins the game if the pair is under the same
credential such that credπ(O,I) = credπ(P,V ) .

Definition 5. An adversary A is said to (tpunl, εpunl)-break the punl-aca-security
of an ABC system if A runs in time at most tpunl and wins in Game 3 such that:

|Pr[credπ(O,I) = credπ(P,V ) ] − 1
2
| ≥ εpunl

for a negligible probability εpunl. We say that an ABC system is punl-aca-secure
if no adversary (tpunl, εpunl)-wins Game 3.

For the completeness of the security notion, we define a security notion weaker
than unlinkability, namely, full anonymity in the full version [46] and show that
Fuchsbauer et al.’s ABC system [31] cannot achieve this weaker security notion.
Furthermore, we prove that the full attribute unlinkability implies full anonymity
in an ABC system but the opposite does not hold. We also show that there is
no reduction between full attribute unlinkability and full protocol unlinkability.
Therefore, we only prove the security against the full attribute unlinkability and
the full protocol unlinkability for our proposed ABC system.
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4.3 Construction

Concisely, a user credential cred is an SDH-CL signature sig on the MoniPoly
commitment C of his attribute set A. Next, the show proofs of our ABC system
is proving the validity of sig and C such that:

PK{(· · · ) :1 = SDH-CL.Verify(C, sig, pk) ∧
1 = MoniPoly.VerifyPred(pk,C,A,W, (A′, l))}

where Pred = {Intersection,Difference}. The commitment verification algorithms
are the main ingredient that form the access policy for our ABC system. We
describe the proposed ABC system as follows:

KeyGen(1k): Construct three cyclic groups G1,G2,GT of order p based on an
elliptic curve whose bilinear pairing is e : G1 × G2 → GT . Select random gener-
ators a, b, c ∈ G1, g2 ∈ G2 and two secret values x, x′ ∈ Z

∗
p. Compute the values

a0 = a, a1 = ax′
, . . . , an = ax′n

,X = gx
2 ,X0 = g2,X1 = gx′

2 , . . . , Xn = gx′n
2

to output the public key pk = (e,G1,G2,GT , p, b, c, {ai,Xi}0≤i≤n,X) and the
secret key sk = (x, x′).

(Obtain(pk,A), Issue(pk, sk)): User interacts with verifier as follows to generate
a user credential cred on an attribute set A = {m1, . . . ,mn−1}.

1. User chooses a random opening value o ∈ Z
∗
p to compute C =

∏n
j=0 a

mj

j =
Commit(pk,A, o). Subsequently, user selects random s1 ∈ Z

∗
p to initialize the

issuing protocol by completing the protocol with the issuer:

PK

{

(α0, . . . , αn, σ) : M =
n∏

j=0

a
αj

j bσ

}

where σ = s1 and {α0, . . . , αn} = {m0, . . . ,mn}.
2. Issuer proceeds to the next step if the protocol is verified. Else, issuer outputs

⊥ and stops.
3. Issuer generates the SDH-CL signature for M as sig = (t, s2, v =

(Mbs2c)1/(x+t)).
4. If sig is not a valid signature on A∪{o}, user outputs ⊥ and stops. Else, user

outputs the credential as cred = (t, s, v, A = A ∪ {o}) where:

s = s1 + s2, v =
(
a

∏n
j=1(x

′+mj)

0 bsc
)1/(x+t)

.

4.3.1 Proof of Possession
This protocol proves the ownership of a valid credential cred and the wellformed-
ness of the committed attribute set A = {m1, . . . ,mn} without disclosing any
attribute. The Prove and Verify algorithms interact as follows.
(Prove(pk, cred,⊥),Verify(pk,⊥)):
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1. Verifier requests for a proof of possessions protocol by sending an empty access
policy φ = ⊥.

2. Prover chooses random r, y ∈ Z
∗
p to randomize the credential as cred′ = (t′ =

ty, s′ = sr2, v′ = vr2y−1
).

3. Setting v′,W =
∏n−1

j=0 a
w′

j

j as the public input where {w′
j}0≤j≤n−1 = r ×

MPEncode(A−{o}), prover runs the zero-knowledge protocol below with the
verifier:

PK

{

(ρ, τ, γ, α0, α1, σ) :e(Cρbσcρv′−τ ,X0) = e(v′γ ,X) ∧

e(Cρ,X0) = e(W,Xα1
1 Xα0

0 )
}

where ρ = r2, τ = t′, γ = y, {αj} = r × MPEncode({o}), σ = s′. The protocol
above can be compressed as:

PK

{

(ρ, τ, γ, α0, α1, σ) : e(W,Xα1
1 Xα0

0 )e
(
bσcρv′−τ ,X0

)
= e(v′γ ,X)

}

to realize a more efficient proof.
4. Verifier outputs 1 if the protocol is verified and 0 otherwise.

4.3.2 Show Proofs
A show proof proves the relation between the attribute set A in cred and the
queried set A′ chosen by the verifier. Using the same compression technique from
the proof of possession, we describe the single clause show proofs by the follow-
ing presentation protocols.

AND Proof . This protocol allows prover to disclose an attribute set A′ =
{m1, . . . ,mk} ⊆ A upon the request from verifier and proves that his credential
cred contains A′. The showing protocol for AND proof is as follows.

(Prove(pk, cred, φAND(A′)),Verify(pk, φAND(A′))):

1. Verifier requests an AND proof for the attribute set A′ = {m1, . . . ,mk}.
2. If A′ �⊆ A, prover aborts and the verifier outputs 0.
3. Else, prover chooses random r, y ∈ Z

∗
p to randomize the credential as cred′ =

(t′ = ty, s′ = sr, v′ = vry−1
, {w′

j}0≤j≤n−k = r × MPEncode(A − A′)).

4. Setting v′,W =
∏n−k

j=0 a
w′

j

j as the public input, prover runs the zero-knowledge
protocol below with the verifier:

PK

{

(ρ, τ, γ, σ) : e

⎛

⎝W,

k∏

j=0

X
mj

j

⎞

⎠ e(bσcρv′−τ ,X0) = e(v′γ ,X)
}
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where
∏k

j=0 X
mj

j and {mj} = MPEncode(A′) are computed by the verifier
and ρ = r, τ = t′, γ = y, σ = s′.

5. Verifier outputs 1 if the protocol is verified and 0 otherwise.

ANY and OR Proofs. This is the show proof for the threshold statement, and it
is an OR proof when the threshold is equal to one. Consider the scenario where the
prover is given an attribute set A′ = {m1, . . . ,mk} and he needs to prove that he
has l attributes {mj}1≤j≤l ∈ (A′ ∩ A) without the verifier knowing which attrib-
utes he is proving. The showing protocol for the ANY statement is as follows.

(Prove(pk, cred, φANY(l,A′)),Verify(pk, φANY(l,A′))):

1. Verifier requests an ANY(l, A′) proof for the attribute set A′ = {m1, . . . ,mk}.
2. Prover randomly selects l-attribute intersection set I ⊆ (A′ ∩ A). If no such

I can be formed, the prover aborts and the verifier outputs 0.
3. Else, prover chooses random r, y ∈ Z

∗
p to randomize the credential as cred′ =

(t′ = ty, s′ = sr2, v′ = vr2y−1
, {w′

j}0≤j≤n−l = r × MPEncode(A − I)).

4. Setting v′,W =
∏n−l

j=0 a
w′

j

j ,W ′ =
(∏k−l

j=0 a
m2,j
j

)r−1

as the public input where
{m2,j}0≤j≤k−l = MPEncode(A′ −I), prover runs the zero-knowledge protocol
below with the verifier:

PK

{

(ρ, τ, γ, ι0, . . . , ιl, σ) :

e

⎛

⎝W ′W,
l∏

j=0

X
ιj
j

⎞

⎠ e

⎛

⎝
k∏

j=0

a
−m1,j
j bσcρv′−τ ,X0

⎞

⎠ = e(v′γ ,X)
}

where
∏k

j=0 a
−m1,j
j and {m1,j}0≤j≤k = MPEncode(A′) are computed by the

verifier and ρ = r2, τ = t′, γ = y, {ιj}0≤j≤l = r × MPEncode(I), σ = s′.
5. Verifier outputs 1 if the protocol is verified and 0 otherwise.

NAND and NOT Proofs. This is the showing protocol for the NAND statement
which allows a prover to show that an attribute set A′ = {m1, . . . ,mk} is disjoint
with the set A in his credential. Note that it is a NOT proof when |A′| = 1. The
showing protocol on the NAND statement is as below.

(Prove(pk, cred, φNAND(A′)),Verify(pk, φNAND(A′))):

1. Verifier requests a NAND proof for the attribute set A′ = {m1, . . . ,mk}.
2. If |A′ − A| < k, prover aborts and the verifier outputs 0.
3. Else, prover chooses random r, y ∈ Z

∗
p to randomize the credential as cred′ =

(t′ = ty, s′ = sr, v′ = vry−1
, {w′

j = rwj}0≤j≤n−k, {r′j = rrj}0≤j≤k−1) where
({wj}0≤j≤n−k, {rj}0≤j≤k−1) = MPEncode(A)/MPEncode(A′).

4. Setting v′,W =
∏n−k

j=0 a
w′

j

j as the public input, prover runs the zero-knowledge
protocol with the verifier:

PK

{

(ρ, τ, γ, μ0, . . . , μk−1, σ) :
k−1∏

j=0

a
μj

j �= G1∧
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e

⎛

⎝W,

k∏

j=0

X
mj

j

⎞

⎠ e

⎛

⎝
k−1∏

j=0

a
μj

j bσcρv′−τ ,X0

⎞

⎠ = e(v′γ ,X)
}

where
∏k

j=0 X
mj

j and {mj} = MPEncode(A′) are computed by the verifier
and {μj} = {r′j}, ρ = r, τ = t′, γ = y, σ = s′.

5. Verifier outputs 1 if the protocol is verified and 0 otherwise.

NANY Proof . This is the showing protocol for the negated threshold state-
ment. Consider the scenario where the prover is given an attribute set A′ =
{m1, . . . ,mk} and he needs to prove that an l-attribute set D ⊆ (A′ − A) are
not in the credential without the verifier knowing which attributes he is proving.
The showing protocol on the NANY statement is as below.

(Prove(pk, cred, φNANY(l̄,A′)),Verify(pk, φNANY(l̄,A′))):

1. Verifier requests a NANY proof for the attributes A′ = {m1, . . . ,mk}.
2. Prover randomly selects an l̄-attribute difference set D ∈ (A′ −A). If no such

D can be formed, prover aborts and the verifier outputs 0.
3. Else, prover chooses random r, y ∈ Z

∗
p to randomize the credential as cred′ =

(t′ = ty, s′ = sr2, v′ = vr2y−1
, {w′

j = rwj}0≤j≤n−l̄, {r′j = r2wj}0≤j≤l̄−1)
where ({wj}0≤j≤n−l̄, {rj}0≤j≤l̄−1) = MPEncode(A)/MPEncode(D).

4. Setting v′,W =
∏n−l̄

j=0 a
w′

j

j ,W ′ =
(∏k−l̄

j=0 a
m2,j
j

)r−1

as the public input where
{m2,j}0≤j≤k−l̄ = MPEncode(A′−D), prover runs the zero-knowledge protocol
with the verifier:

PK

{

(ρ, τ, γ, δ0, . . . , δl̄, μ0, . . . , μl̄−1, σ) :
l̄−1∏

j=0

a
μj

j �= G1∧

e

⎛

⎝W ′W,
l̄∏

j=0

X
δj
j

⎞

⎠ e

⎛

⎝
k∏

j=0

a
−m1,j
j

l̄−1∏

j=0

a
μj

j bσcρv′−τ ,X0

⎞

⎠ = e(v′γ ,X)
}

where
∏k

j=0 a
−m1,j
j and {m1,j}0≤j≤k = MPEncode(A′) are computed by

the verifier and {μj} = {r′j}, ρ = r2, τ = t′, γ = y, {δj}0≤j≤l̄ = r ×
MPEncode(D), σ = s′.

5. Verifier outputs 1 if the protocol is verified and 0 otherwise.

4.4 Efficiently Enabling Composite Statements

Composite statements, such as, composed of multiple high-level conjunctions,
can be realized with MoniPoly efficiently. For that, we propose an efficient strat-
egy instead of naively repeating the show proofs multiple times for an access
policy with a composite statement.

The prover runs a proof of possession protocol followed by a proof
to show that the committed attributes from every clause in the compos-
ite statement is part of the committed attributes in the credential. For
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instance, given the composite statement stmt = AND(A′
1) ∧ ANY(l, A′

2) where
k1 = |A′

1|, k2 = |A′
2|, a prover can run the showing protocol as fol-

lows. Let WA′
1

=
∏n−k1

j=0 a
w′

A′
1,j

j ,WA′
2

=
∏n−l

j=0 a
w′

A′
2,j

j ,W ′
A′

2
=

∏k2−l
j=0 a

m′
A′

2,2,j

j

where {w′
A′

1,j}0≤j≤n−k1 = r2 × MPEncode(A − A′
1), {w′

A′
2,j}0≤j≤n−l = r ×

MPEncode(A − I), {m′
A′

2,2,j}0≤j≤k2−l
= r−1 × MPEncode(A′

2 − I) for a ran-
domly selected r ∈ Z

∗
p. Setting v′,WA′

1
,WA′

2
,W ′

A′
1

as public inputs, the prover
runs the showing protocol on φstmt as follows:

PK

{

(ρ, τ, γ, ι0, . . . , ιl, σ) :

e

⎛

⎝WA′
1
,
k−1∏

j=0

X
mA′

1,j

j

⎞

⎠ e

⎛

⎝W ′
A′

2
WA′

2
,

l∏

j=0

X
ιj
j

⎞

⎠ e

⎛

⎝
k2∏

j=0

a
−mA′

2,1,j

j (bσcρv′−τ )2,X0

⎞

⎠

= e(v′2γ ,X)
}

where
∏k1

j=0 X
mA′

1,j

j ,
∏k2

j=0 a
mA′

2,2,j

j , {mA′
1,1,j}0≤j≤k1 = MPEncode(A′

1),
{mA′

2,1,j}0≤j≤k2 = MPEncode(A′
2) are computed by the verifier and ρ = r2, τ =

t′, γ = y, {ιj}0≤j≤l = r × MPEncode(I), σ = s′. It is thus obvious that for any
composite statement of k clauses, we can run the protocol above in a similar way
using k +2 pairings. In precise, the k +1 pairings on the left-hand side correspond
to the k clauses and a credential. Lastly, the corresponding credential elements in
the pairings at the left-hand side and right-hand side are brought up to the power
of k, respectively. Note that the complexity of k + 2 parings does not change even
when negation clauses are involved.

4.5 Security Analysis

4.5.1 Impersonation Resilience
We establish the security of the MoniPoly ABC system by constructing a reduc-
tion to the (co-)SDH problem. To achieve tight security reduction, we make use of
Multi-Instance Reset Lemma [37] as the knowledge extractor which requires the
adversary A to run N parallel instances of impersonation under active and con-
current attacks. The challenger C can fulfill this requirement by simulating the
N −1 instances from its given SDH instance which is random self-reducible [10].
Since this is obvious, we describe only the simulation for a single instance of
impersonation under active and concurrent attacks in the security proofs.

Theorem 4. If an adversary A (timp, εimp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which
(tcosdh, εcosdh)-breaks the co-SDH problem such that:

εcosdh
tcosdh

=
εimp

timp
,
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or an algorithm C which (tsdh, εsdh)-breaks the SDH problem such that:

εimp ≤ N

√√
εsdh − 1 +

1 + (q − 1)!/pq−2

p
+ 1,

timp ≤ tsdh/2N − T (q2).

where N is the total adversary instance, q = Q(O,I) + Q(P,V ) is the total query
made to the Obtain and Verify oracles, while T (q2) is the time parameterized by q
to setup the simulation environment and to extract the SDH solution. Consider
the dominant time elements timp and tsdh only, we have:

(

1 −
(

1 − εimp +
1 + (q − 1)!/pq−2

p

)N
)2

≤ εsdh, 2Ntimp ≈ tsdh.

Let N = (εimp − 1+(q−1)!/pq−2

p )−1, we get εsdh ≥ (1−e−1)2 ≥ 1/3 and the success
ratio is:

εsdh
tsdh

≥ 1
3 · 2Ntimp

6εsdh
tsdh

≥ εimp

timp
− 1 + (q − 1)!/pq−2

timpp

which gives a tight reduction.

To modularize the proof for Theorem 4, we categorize the way an adver-
sary impersonates in Table 2. This is like the approach in the tight reduction
proof for the SDH-CL signature scheme proposed by Schäge [44]. Subsequently,
we differentiate A into A = {Abind,A1,A2,A3} corresponding to four differ-
ent simulation strategies by C. We omit the proof for the binding property of
MoniPoly commitment scheme Abind which has been described in Theorem 3
and can be trivially applied here.

In each of the simulation strategy, we consider only the success probability
of breaking the SDH problem which is weaker than the DLOG problem such
that εsdh ≥ εdlog. Let M∗ =

∏n
j=1(x

′ + m∗
j ) and Mi =

∏n
j=1(x

′ + mi,j) where
A∗ = {m∗

j} and Ai = {mj}, respectively, the DLOG problem can be solved
whenever the forgery v∗ produced by A equals to a vi which has been generated
by C such that:

∵ v∗ ≡ vi

(aM∗
0 bs∗

c)
1

x+t∗ ≡ (aMi
0 bsic)

1
x+ti

(aM∗+s∗β+γ
0 )

1
x+t∗ ≡ (aMi+siβ+γ

0 )
1

x+ti

∴ M∗ + s∗β + γ

x + t∗
≡ Mi + siβ + γ

x + ti
mod p
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Table 2. Types of impersonation and the corresponding assumptions.

Type A MPEncode(A) s t v Adversary Assumption Lemmas

0 0 1 * * * Abind co-SDH Theorem 3

1 0 0 0 0 0 A1 SDH 1

2 0 0 0 0 1 A1 DLOG 1

3 0 0 0 1 0 A2 SDH 2

4 0 0 0 1 1 A2 DLOG 2

5 0 0 1 0 0 A1 SDH 1

6 0 0 1 0 1 A1 DLOG 1

7 0 0 1 1 0 A3 SDH 3

8 0 0 1 1 1 A3 DLOG 3

9 1 1 0 0 0 A1 SDH 1

10 1 1 0 0 1 A1 DLOG 1

11 1 1 0 1 0 A2 SDH 2

12 1 1 0 1 1 A2 DLOG 2

13 1 1 1 0 0 A1 SDH 1

14 1 1 1 0 1 A1 N/A 1

15 1 1 1 1 0 A3 SDH 3

16 1 1 1 1 1 A3 N/A 3

Note: * = 1 or 0, 1 = equal, 0 = unequal, N/A = not available

which leads to:

x ≡ t∗Mi − tiM
∗ + β(t∗si − tis

∗) + γ(t∗ − ti)
M∗ − Mi + β(s∗ − si)

mod p

where C can solve the SDH problem using x. Following the equation, the Type 14
impersonation (A∗, v∗, s∗) = (Ai, vi, si) will not happen as it causes a division
by zero. On the other hand, Type 16 represents the impersonation using the
uncorrupted cred generated by C when it answers A’s IssueTranscript queries
or Verify queries. If A’s view is independent of C’s choice of (ti, si), we have
(t∗, s∗) �= (ti, si) with probability 1−1/p. This causes Type 16 impersonation to
happen with a negligible probability of 1/p at which point our simulation fails.

We present Lemmas 1, 2 and 3 corresponding to the adversaries A1, A2 and
A3 as follows. The proofs for the lemmas are in the full version [46].

Lemma 1. If an adversary A1 (timp, εimp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which
(tsdh, εsdh)-solves the SDH problem such that:

εimp ≤ N

√√
εsdh − 1 +

1 + (q − 1)!/pq−2

p
+ 1,

timp ≤ tsdh/2N − T (q2).
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where N is the total of adversary instances, q = Q(O,I) + Q(P,V ) is the num-
ber of queries made to the Obtain and Verify oracles, while T (q2) is the time
parameterized by q to setup the simulation environment and to extract the SDH
solution.

Lemma 2. If an adversary A2 (timp, εimp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which
(tsdh, εsdh)-solves the SDH problem such that:

εimp ≤ N

√√
εsdh − 1 +

1 + (q − 1)!/pq−2

p
+ 1,

timp ≤ tsdh/2N − T (q2).

where N is the total of adversary instances, q = Q(O,I) + Q(P,V ) is the num-
ber of queries made to the Obtain and Verify oracles, while T (q2) is the time
parameterized by q to setup the simulation environment and to extract the SDH
solution.

Lemma 3. If an adversary A3 (timp, εimp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which
(tsdh, εsdh)-solves the SDH problem such that:

εimp ≤ N

√√
εsdh − 1 +

(q − 1)!/pq−2

p
+ 1,

timp ≤ tsdh/2N − T (q2).

where N is the total of adversary instances, q = Q(O,I) + Q(P,V ) is the num-
ber of queries made to the Obtain and Verify oracles, while T (q2) is the time
parameterized by q to setup the simulation environment and to extract the SDH
solution.

Combining Theorem 3, Lemmas 1, 2, and 3 gives Theorem 4 as required.

4.5.2 Unlinkability
Next, we prove the unlinkability of the proposed ABC system. It is sufficient to
show that the witnesses, the committed attributes and the randomized creden-
tial in the issuing protocol and presentation protocol, respectively, are perfectly
hiding. Then, we demonstrate that every instance of the protocols is uniformly
distributed due to the random self-reducibility property. This implies that even
when A is given access to the Obtain, Issue, Prove, Verify and Corrupt oracles, it
does not has advantage in guessing the challenged attribute sets. The proofs for
Lemma 5 and 7 are in the full version [46].

Lemma 4. The committed attributes and the corresponding witness in the issu-
ing protocol of the ABC system are perfectly hiding.
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Proof. By Theorem 2, the MoniPoly commitment C =
∏n

j=0 a
mj

j in the issuing
protocol is perfectly hiding. Subsequently, the value M = Cbs1 is a Pedersen
commitment which is also perfectly hiding. The same reasoning is applicable on
the commitment value in the zero-knowledge protocol R =

∏n
j=0 a

m̃j

j bs̃1 which
has the same structure as that of M . 	

Lemma 5. The initialization of the issuing protocol in the ABC system has
random self-reducibility.

Lemma 6. The randomized credential in the presentation protocol of the ABC
system are perfectly hiding.

Proof. Given a user’s randomized credential v′ = vry−1
in the show proof, there

are |Z∗
p| − 1 possible pairs of (r′, y′) �= (r, y) which can result in the same v′.

Besides, for each r, there is a unique y such that:

dloga0
(v′) = dloga0

(v)ry−1

y =
dloga0

(v)
dloga0

(v′)
· r

Since r, y are chosen independently from each other, and of the credential element
v, the latter is perfectly hidden. The same reasoning applies on the randomized
credential v′ = vr2y−1

. 	

Lemma 7. The presentation protocol of the ABC system offers random self-
reducibility.

Theorem 5. If the initialization of the issuing protocol and the presentation
protocol have random self-reducibility, and their witnesses, committed attributes
as well as the randomized credential are perfectly hiding, the ABC system is
aunl-aca-secure.

Using the similar approach, we show that the security of full protocol unlink-
ability also holds for the proposed ABC system.

Theorem 6. If the initialization of the issuing protocol and the presentation
protocol have random self-reducibility, and their witnesses, committed attributes
as well as randomized credential are perfectly hiding, the ABC system is punl-
aca-secure.

5 Evaluation

5.1 Security

We offer a general overview of security properties in comparison with other
schemes here and offer the tightness analysis of our own scheme in the full
version [46].

We summarize the security properties of ABC systems in either SDH or
alternative paradigms in Table 3. The table shows that the relevant schemes
vary significantly in their fulfilled security requirements. MoniPoly is the only
ABC system that achieves the full range of security requirements. At the same
time, it is proven secure in the standard model with a tight security reduction.
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Table 3. Security properties of related ABC systems.

ABC System
Impersonation

Resilience

Anonymity Unlinkability Security
Model

Hard
Problem

Tight
ReductionI P I P I↔P

ASM [4] � � � � � � RO SDH, DDHI �
TAKS [47] � � � � � � RO SDH, DDH �
AMO [2] � � � � � � Standard SDH, DLIN �
CKS [19] � � � � � � Standard DHE, HSDHE �
SNF [45] � � � � � � Standard SDH, DHE, HSDH, TDH �
ZF [48] � � � � � � Standard SDH, HPDH, HSDH, TDH �
BNF [6] �� � �� � � � Standard DLIN, SFP, DHE �
CKLMNP [20] � � � � � � Standard SRSA, DLOG �
BBDT [5] � � � � � � Standard SDH �
RVH [42] � � � � � � Standard whLRSW �
SNBF [43] � � � � � � Standard DLIN, SFP, DHE �
ON [40] �� � �� � � � Standard DLIN, SFP, DHE �
CDDH [15] � � � � � � Standard SCDHI �
BB [8] � � � � � � Generic SDH, MSDH-1 �
BBBB+ [7] � �� �� � � � RO SDH, MSDH-1 �
BBDE [9] � � � � � � Standard SDH, MSDH-1 �
CG [17,18] � � � � � � Standard SRSA �
CDHK [16] � � � � � � CRS SXDH, RootDH, BSDH, SDH, XDLIN, co-CDH, DBP �
FHS [31] � � � � �� � Generic DDH, co-DLOG, co-SDH �
This Work � � � � � � Standard SDH, co-SDH �

Note: �: proof provided, ��: claim provided, �: no claim, I: Issuing, P: Presentation� in Issuing: only weak anonymity or unlinkability/trusted issuer/no blind issuing

5.2 Expressivity and Computational Complexity

In Table 4, we compare the MoniPoly ABC system to relevant popular ABC
systems with respect to their realized show proofs and asymptotic computational
complexities. Table 4 is normalized in that it considers only the asymptotic
complexity for the most expensive operations (e.g., the scalar multiplication,
modular exponentiation, or pairing).

5.2.1 Expressivity over Unrestricted Attribute Space
The MoniPoly ABC system is the first scheme that can efficiently support all
logical statements in the show proofs regardless of the types of attribute space
(cf. Table 4). That is, MoniPoly operates on arbitrary attributes while offering
a wide range of statements in its expressiveness.

We note that the traditional encoding can achieve the same expressiveness,
in principle, in an unrestricted attribute space S as well as string attribute space
SS . However, traditional encoding will yield inefficient proofs.

5.2.2 Expressivity over Finite-Set Attribute Space
Let us now consider the comparison with schemes with only finite-set attribute
space SF . Most of the accumulator-based ABC systems [43,45] are restricted to
finite-set attributes only. While MoniPoly supports negation statements in terms
of expressivity, their show proofs do not. The restriction to finite-set attributes
and monotone (non-negative) formula affords them a low asymptotic complexity
in show proofs. However, their setup and issuing protocols are prohibitively
expensive with exponential computational and space complexity (O(2nF ) [40]



522 S.-Y. Tan and T. Groß

Table 4. Asymptotic complexity for show proofs in related ABC systems.

Property ABC System

Attribute Space SF SS + SF S
Technique Accumulator Trad. Encd. Accumulator Prime Encd. Trad. Encd.Comm. MoniPoly

Setup O(nF ) O(2nF )O(n) O(n) O(n) O(n) O(n) O(n)

Issuing Protocol
Prover O(1) O(1) O(1) O(nS) O(n) O(n) O(n) O(n)

Verifier O(2
√

nF )O(nF ) O(n) O(nS) O(n) O(n) O(n) O(n)

S
h
ow

P
ro

o
fs

Possession
Prover O(nF ) O(L) O(nS) + O(N) O(nS) + O(1) O(n) + O(1) O(n) O(n) O(n)

Verifier O(nF ) O(L) O(nS) + O(N) O(nS) + O(1) O(n) + O(1) O(n) O(n) O(1)

AND(A′)
Prover O(kF ) O(L) O(nS − kS) + O(N)O(nS − kS) + O(1)O(nS − kS) + O(1)O(n − k) O(n − k)O(n − k)

Verifier O(kF ) O(L) O(nS) + O(N) O(nS) + O(1) O(nS) + O(1) O(n) O(k) O(k)

OR(A′)
Prover O(kF ) O(L) O(nSkS) + O(N) O(nSkS) + O(1) O(nSkS) + O(1) ✗ ✗ O(n + k)

Verifier O(kF ) O(L) O(nSkS) + O(N) O(nSkS) + O(1) O(nSkS) + O(1) ✗ ✗ O(k)

ANY(l, A′)
Prover O(kF ) O(L) O(nS !) + O(N) ✗ ✗ ✗ ✗ O(n − l + k)

Verifier O(kF ) O(L) O(nS !) + O(N) ✗ ✗ ✗ ✗ O(k + l)

NAND(A′)
Prover ✗ O(L) ✗ ✗ O(nS − kS) + O(1)✗ ✗ O(n)

Verifier ✗ O(L) ✗ ✗ O(nS) + O(1) ✗ ✗ O(2k)

NOR(A′)
Prover ✗ O(L) ✗ ✗ ✗ ✗ ✗ O(n + k)

Verifier ✗ O(L) ✗ ✗ ✗ ✗ ✗ O(k)

NANY(l̄, A′)
Prover ✗ O(L) ✗ ✗ ✗ ✗ ✗ O(n + k)

Verifier ✗ O(L) ✗ ✗ ✗ ✗ ✗ O(k + 2l̄)

Constant Size Proofs ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓

Flexible Attribute Indexing✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Schemes [43] [40] [48] [45] [18] [4,7–9,19] [16,31] This Work

Note: S: attribute space, k = |A′| ≤ n = |A| = nS + nF , S: string attributes, F :
finite-attributes, L: maximum allowed ∧ in CNF,
N : maximum attributes allowed in a statement, ✓: realized, ✗: not realized

and O(2
√

nF ) [43]), in turn, restricting the number of attributes that can be
feasibly encoded.

The latest ABC system in this line of work [40] proposes a workaround on
the negated forms of attributes separately. In this scheme, each of its show proof
has O(L) complexity where L is the maximum number of ∧ operators permitted
in a composite conjunctive formulae. Moreover, the additional negated finite-set
attributes double the credential size and the already massive public key size.

5.2.3 Comparison to Commitment-Based Schemes
MoniPoly bears similarities in terms of computational and communication com-
plexity to other commitment-based ABC systems [16,31]. Although MoniPoly
does not have constant asymptotic complexity, the verifier is required to compute
only three pairings for a single-clause show proof. This makes our scheme the
most efficient construction of its kind in this comparison. At the same time, apart
from having constant-size AND proof similarly to the relevant commitment-based
schemes [16,31], MoniPoly has constant-size possession proof.

5.2.4 Parametric Complexity Analysis
We estimate the computational complexity of the schemes listed in Table 4 and
present in Fig. 1 the complexity for each ABC system at 128-bit security level.
While schemes especially crafted for a restricted finite-set attribute space are the
fastest schemes in the field, Monipoly is the most efficient ABC system based
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Fig. 1. Asymptotic complexity of ABC systems (scalar multiplications in G1)

on commitment schemes and outperforms most schemes in the field, overall.
If strength in terms of security properties is a prerequisite, our ABC system
outperforms all listed in Table 4 while having efficient constant size show proofs.

This estimation is based on the following relative computation costs in equiv-
alents of scalar multiplications in G1:

BLS-12 curve at 128-bit security: for a scalar multiplication in G2, an expo-
nentiation in GT and a pairing, respectively, is about the same as computing
2, 6 and 9 scalar multiplications (M1) in G1. The modular exponentiation of
RSA-3072 on the other hand is equivalent to 5M1.

We also assume the computational cost in Type-1 pairing friendly curve is equiv-
alent to that of Type-3 as well as L = 1 and N = 1. The details of the estimation
can be found in the full version [46].
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