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Abstract. We introduce a new signature scheme, SQISign, (for Short
Quaternion and Isogeny Signature) from isogeny graphs of supersingular
elliptic curves. The signature scheme is derived from a new one-round,
high soundness, interactive identification protocol. Targeting the post-
quantum NIST-1 level of security, our implementation results in signa-
tures of 204 bytes, secret keys of 16 bytes and public keys of 64 bytes.
In particular, the signature and public key sizes combined are an order
of magnitude smaller than all other post-quantum signature schemes.
On a modern workstation, our implementation in C takes 0.6 s for key
generation, 2.5 s for signing, and 50 ms for verification.

While the soundness of the identification protocol follows from classi-
cal assumptions, the zero-knowledge property relies on the second main
contribution of this paper. We introduce a new algorithm to find an
isogeny path connecting two given supersingular elliptic curves of known
endomorphism rings. A previous algorithm to solve this problem, due
to Kohel, Lauter, Petit and Tignol, systematically reveals paths from
the input curves to a ‘special’ curve. This leakage would break the zero-
knowledge property of the protocol. Our algorithm does not directly
reveal such a path, and subject to a new computational assumption, we
prove that the resulting identification protocol is zero-knowledge.
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1 Introduction

Isogeny-based cryptography has existed since at least the work of Couveignes
in 1997 [9] and has developed significantly in the last decade due to increasing
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interest in post-quantum cryptography. The CGL hash function of [6] and the
SIDH key exchange proposed in [20] have put isogenies between supersingular
elliptic curves at the center of attention. The security of these schemes relies
on the hardness of finding a path in the �-isogeny supersingular graph between
two given vertices. This problem is believed to be hard for both classical and
quantum computers. This assumption was studied by Kohel, Lauter, Petit and
Tignol, who in [22] introduced a new algorithm (often called KLPT in the lit-
erature) that solves the quaternion analog of the �-isogeny path problem under
the Deuring correspondence. This algorithm revealed its full potential in [17],
leading to several reductions between computational problems related to isoge-
nies between supersingular curves, most notably a heuristic security reduction
between the �-isogeny path problem and the endomorphism ring computation.

In parallel to these cryptanalytic efforts, isogeny-based cryptography has
continued to develop with several new proposals. We can mention CSIDH [5], an
efficient reinterpretation of Couveignes’ idea using supersingular elliptic curves
defined over Fp. Another active area of research has been isogeny-based signature
schemes, see for instance [3,12,14,19,33].

Galbraith, Petit and Silva’s signature scheme [19] (also known as GPS) was
the first constructive cryptographic application of the KLPT algorithm. How-
ever, their work remains mainly theoretical and, to this day, we are not aware
of any implementation of their scheme. We follow in the footsteps of GPS by
introducing a new signature scheme based on the quaternion �-isogeny path prob-
lem. Indeed, GPS relies on the KLPT algorithm for so-called “special” maximal
orders (the main focus of [22]), whereas our protocol requires a new variant of
KLPT working for arbitrary maximal orders, which we introduce here.

The contributions of this paper can be summarized as follows:

– A new interactive identification protocol and the resulting signature scheme
based on a generic algorithm for the quaternion �-isogeny path problem.

– A new generic KLPT algorithm, suited for our signature scheme, which pro-
duces a smaller output than the existing algorithm of [22].

– A proof of the interpretation of Eichler orders and their class sets under the
Deuring correspondence, and its application to the analysis of the output of
our algorithm. This leads us to a natural security assumption from which we
prove zero-knowledge of the identification scheme, and consequently unforge-
ability of the signature scheme.

– New algorithms for the efficient instantiation of the protocol, along with
parameters targeting the NIST-1 level of post-quantum security, and a com-
plete implementation of our signature scheme in C.

The remainder of this paper is organized as follows. Section 2 contains pre-
liminaries on elliptic curves and quaternion algebras. Section 3 sketches our new
protocols along with some proofs. Section 4 lays out the mathematical back-
ground on Eichler orders necessary for the rest of the paper. Section 5 gives a
generic description of our new Generalized KLPT algorithm. Section 6 provides
the generic variant used in our protocols. Section 7 studies the zero knowledge
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property of the identification scheme. Finally, Sect. 8 provides algorithms for
efficient implementation of the schemes.

2 Preliminaries

A negligible function f : Z>0 → R>0 is a function whose growth is bounded
by O(x−n) for all n > 0. In the analysis of a probabilistic algorithm, we say
that an event happens with overwhelming probability if its probability of failure
is a negligible function of the length of the input. We say that a distinguishing
problem is hard when any probabilistic polynomial-time distinguisher has a neg-
ligible advantage with respect to the length of the instance. Two distributions
are computationally indistinguishable if their associated distinguishing problem
is hard.

Throughout this work, p is a prime number and Fq a finite field of char-
acteristic p. We are interested in supersingular elliptic curves over Fq = Fp2 ,
in an isogeny class such that the full endomorphism ring is defined over Fq,
and is isomorphic to a maximal order in a quaternion algebra. The extended
version of this work [13] contains more background on elliptic curves and their
endomorphism rings; other useful references are [10,21,29,31].

2.1 The Deuring Correspondence

In [15], Deuring made the link between the geometric world of elliptic curves and
the arithmetic world of quaternion algebras over Q by showing that the endo-
morphism ring of a supersingular elliptic curve E defined over Fp2 is isomorphic
to a maximal order in the quaternion algebra Bp,∞ ramified at p and infinity.
This correspondence is in fact an equivalence of categories [21] between super-
singular elliptic curves and left ideals for a maximal order O of Bp,∞, inducing
a bijection between conjugacy classes of supersingular j-invariants and maximal
orders (up to equivalence). Given a supersingular curve E0, this lets us asso-
ciate each pair (E1, ϕ), where E1 is another supersingular elliptic curve and
ϕ : E0 → E1 is an isogeny, to a left integral O0-ideal (with End(E0) � O0),
and every such ideal arises in this way. In this case End(E1) is isomorphic to
the right order of this ideal. The explicit correspondence between isogenies and
ideals is given through kernel ideals as defined in [32]. Given I an integral left-
O0-ideal we define the set E0[I] = {P ∈ E0(Fp2) : α(P ) = 0 for all α ∈ I} as
the kernel of I. To I, we associate the isogeny ϕI of kernel E0[I] defined by
ϕI : E0 → E0/E0[I]. Conversely given an isogeny ϕ, the corresponding kernel
ideal is defined as Iϕ = {α ∈ O0 : α(P ) = 0 for all P ∈ ker(ϕ)}.

Remark 1. In the definitions above we identify α ∈ O0 with the related endo-
morphism in End(E0), implicitly assuming a fixed isomorphism between O0 and
End(E0). This is a simplification that we will reiterate throughout this paper to
lighten notations. In fact, we will sometimes go further and also write α for the
principal ideal O0α. It is easily verified that this ideal corresponds to the kernel
ideal Iα, and conversely any principal ideal corresponds to an endomorphism
ϕO0α.
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We summarize the main properties of this correspondence in Table 1.

Table 1. The Deuring correspondence, a summary.

Supersingular j-invariants over Fp2 Maximal orders in Bp,∞
j(E) (up to galois conjugacy) O ∼= End(E) (up to isomorpshim)

(E1, ϕ) with ϕ : E → E1 Iϕ integral left O-ideal and right O1-ideal

θ ∈ End(E0) Principal ideal Oθ

deg(ϕ) n(Iϕ)

ϕ̂ Iϕ

ϕ : E → E1, ψ : E → E1 Equivalent ideals Iϕ ∼ Iψ

Supersingular j-invariants over Fp2 Cl(O)

τ ◦ ρ : E → E1 → E2 Iτ◦ρ = Iρ · Iτ

2.2 Algorithmic Building Blocks

In this section we introduce some sub-algorithms that will be used in the remain-
ing of the paper. These algorithms are either classical or inherited from recent
works [19,22] in the literature.

We will write CRTM,N (x, y) for the Chinese Remainder algorithm, that takes
x ∈ Z/MZ, y ∈ Z/NZ and returns z ∈ Z/MNZ with z = x mod M and
z = y mod N .

KLPT Algorithm. A significant part of the present work is spent on providing
a new generalization of the KLPT algorithm [22] (see Algorithm 3). This algo-
rithm takes an integral ideal I as input and finds an equivalent ideal J ∼ I of
given norm. For instance, the norm can be required to be �e for some e ∈ N. In
general, in the rest of this paper when an output of an algorithm is required to
be a power of �, we write �•.

We start by introducing a few notations taken from [22], before introducing
several sub-algorithms that we will use. Finally we describe a short version of
KLPT in Algorithm 1 built from these sub-algorithms.

An important notion introduced in [22] is that of special extremal orders,
i.e., maximal orders O0 containing a suborder admitting an orthogonal decom-
position R + jR where R = Z[ω] ⊂ Q[i] is a quadratic order of minimal dis-
criminant (or equivalently such that ω has smallest norm in O0). By orthogonal
decomposition we mean that R ⊂ (jR)⊥. The order O0 = Z〈√−1,

√−p〉, cor-
responding to the elliptic curve of j-invariant 1728 when p = 3 mod 4, is one of
the simplest examples of such special extremal orders, as it contains the subor-
der Z[

√−1] + (
√−p)Z[

√−1]. For the rest of this paper, we fix these notations
for j, R, ω. The method of resolution resulting in Algorithm1 is inspired by [22,
Lemma 5]. We introduce here a reformulation of this lemma using notations that
we will keep for the rest of this article.
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Lemma 1. For any integral ideal I, the map χI(α) = Iα/n(I) is a surjection
from I � {0} to the set of ideals J equivalent to I. For α 
= β, we have χI(α) =
χI(β) if and only if α = βδ where δ ∈ OR(I)×.

Proof. This map is well-defined as proved in [22]. We see that it is a surjection
by identifying I · J with a principal ideal OR(I)β. Then, it is clear that β ∈ I
and J = χI(β). Finally, one can verify that OR(I)β1 = OR(I)β2 if and only if
β1 = δβ2 where δ ∈ OR(I)×.

With n(χI(α)) = n(α)/n(I), we see that finding J ∼ I of given norm N is
equivalent to finding some α ∈ I of norm n(I)N . This observation underlies the
solution of [22] for Algorithm 1.

Remark 2. In what follows will often define a projective point (C0 : D0) ∈
P

1(Z/NZ) for some prime N and then, by an abuse of notation, define an element
C0 + ωD0 inside our maximal order.

Below we list sub-algorithms introduced in [22] as part of KLPT; see [13,22,
25] for detailed descriptions of each.

– EquivalentPrimeIdeal(I) Given a left O0-ideal I, find an equivalent left O0-ideal
of prime norm.

– RepresentIntegerO0
(M) Given M ∈ N with M > p, find γ ∈ O0 of norm M .

– IdealModConstraint(I, γ) Given an ideal I of norm N , and γ ∈ O0 of norm
Nn, find (C0 : D0) ∈ P

1(Z/NZ) such that μ0 = j(C0 +ωD0) verifies γμ0 ∈ I.
– StrongApproximationF(N,C0,D0) Given a prime N and C0,D0 ∈ Z, find μ =

λμ0 + Nμ1 ∈ O0 of norm dividing F , with μ0 = j(C0 + ωD0). We write
StrongApproximation�• when the expected norm is a power of �.

Remark 3. For our scheme, we will need to turn KLPT into a deterministic algo-
rithm. The sub-routine EquivalentPrimeIdeal can be made deterministic if we
look for the ideal of smallest norm satisfying the desired condition. Since we are
looking at lattices of dimension at most 4, finding an ordered set of smallest vec-
tors can be done efficiently. StrongApproximation can also be made deterministic,
as the method in [25] involves solving a closest vector problem in some lattice.
The sub-routine IdealModConstraint is deterministic as was shown in [22]. For
RepresentIntegerO0

, this is less natural as there are several solutions for a given
input M . Still, if we want, we can find an ordering for the tuple (x, y, z, t) of
coordinates over Z〈ω, j〉 and search for the smallest solution with respect to that
ordering.

With these sub-routines we are able to give a compact description of the
KLPT algorithm. There are several versions of this algorithm depending on the
norm sought for the output: we will write KLPT�• when the algorithm produces
an output of norm a power of �; KLPTT when the norm is a divisor of T ∈ Z.
The changes between the two variants are minimal; for simplicity, we describe
only KLPT�• in Algorithm 1.
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Remark 4. A result of [19] shows that the outputs of EquivalentPrimeIdeal and
KLPT only depend on the equivalence class of the input (in fact this is only true
with a minor tweak to the original algorithm of [22]). Hence, we will sometimes
abuse notations and use both as if they took inputs in Cl(O0).

Algorithm 1. KLPT�•(I)
Require: I a left O0-ideal.
Ensure: J ∼ I of norm �e.
1: Compute L = EquivalentPrimeIdeal(I), L = χI(δ) for δ ∈ I with N = n(L).
2: Compute γ = RepresentIntegerO0

(N�e0) for e0 ∈ N.
3: Compute (C0 : D0) = IdealModConstraint(L, γ).
4: Compute ν = StrongApproximation�•(N, C0, D0)) and set β = γν and e such that

n(β) = N�e.
5: return J = χL(β).

3 New Identification Protocol and Signature Scheme

3.1 An Identification Protocol

Let λ be a security parameter. We start by describing an interactive identification
protocol based on supersingular isogeny problems.
setup : λ �→ param Pick a prime number p and a supersingular elliptic curve E0

defined over Fp with known special extremal endomorphism ring O0. Select an
odd smooth number Dc of λ bits and D = 2e where e is above the diameter of
the supersingular 2-isogeny graph.
keygen : param �→ (pk = EA, sk = τ) Pick a random isogeny walk τ : E0 → EA,
leading to a random elliptic curve EA. The public key is EA, and the secret key
is the isogeny τ .

To prove knowledge of the secret τ , the prover engages in the following Σ-
protocol with the verifier.
Commitment. The prover generates a random (secret) isogeny walk ψ : E0 →
E1, and sends E1 to the verifier.
Challenge. The verifier sends the description of a cyclic isogeny ϕ : E1 → E2

of degree Dc to the prover.
Response. From the isogeny ϕ ◦ ψ◦τ̂ : EA → E2, the prover constructs a new
isogeny σ : EA → E2 of degree D such that ϕ̂ ◦ σ is cyclic, and sends σ to the
verifier.
Verification. The verifier accepts if σ is an isogeny of degree D from EA to E2

and ϕ̂ ◦ σ is cyclic. They reject otherwise.
We summarize the protocol in Fig. 1. Completeness follows from the cor-

rectness of Algorithm 3, allowing a honest prover to construct σ : EA → E2
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E0 E1

E2EA

τ

ψ

ϕ

σ

commitment isogeny (prover)

challenge isogeny (verifier)

response isogeny (prover)

secret key isogeny

Fig. 1. A picture of the identification protocol

such that ϕ̂ ◦ σ is cyclic. Soundness is analysed in Subsect. 3.2, and follows from
the difficulty of the Smooth Endomorphism Problem—a problem heuristically
equivalent to the classic Endomorphism Ring Problem. Zero-knowledge is more
difficult to prove, as we argue in Subsect. 3.3, and we defer its analysis to Sect. 7.

3.2 Soundness

Problem 1 (Supersingular Smooth Endomorphism Problem). Given a prime p
and a supersingular elliptic curve E over Fp2 , find a cyclic endomorphism of E
of smooth degree.

Remark 5. Note that under heuristics similar to those used in [17], the above
problem is equivalent to the Endomorphism Ring Problem (given E/Fp2 , com-
pute endomorphisms forming a Z-basis of End(E)).

Theorem 1 (Soundness). If there is an adversary that breaks the soundness
of the protocol with probability w and expected running time r for the public
key EA, then there is an algorithm for the Supersingular Smooth Endomorphism
Problem on EA with expected running time O(r/(w − 1/c)), where c is the size
of the challenge space.

The theorem is a consequence of the following lemma.

Lemma 2. Given two accepting conversations (E1, ϕ, σ) and (E1, ϕ
′, σ′) where

ϕ 
= ϕ′, the composition σ̂′ ◦ ϕ′ ◦ ϕ̂ ◦ σ is a non-scalar endomorphism of EA of
smooth degree.

Proof. By construction, σ̂′◦ϕ′◦ϕ̂◦σ is an endomorphism of EA of degree (DDc)2.
This shows that the degree is smooth. It remains to prove that it is not a scalar.
Suppose by contradiction that σ̂′ ◦ ϕ′ ◦ ϕ̂ ◦ σ = [DDc]. The compositions ϕ̂ ◦ σ
and ϕ̂′ ◦ σ′ are two cyclic isogenies from EA to E1 of same degree. Therefore
σ̂′ ◦ ϕ′ is the dual of ϕ̂ ◦ σ. We deduce that ϕ̂ ◦ σ = ϕ̂′ ◦ σ′, a contradiction.

Proof of Theorem 1. The endomorphism σ̂′ ◦ϕ′ ◦ϕ̂◦σ in Lemma 2 corresponds to
a (possibly backtracking) sequence of isogenies, and removing the backtracking
subsequences, we obtain a solution to the Supersingular Smooth Endomorphism
Problem of EA. Therefore the protocol has special soundness for the relation R
defined as

(EA, α) ∈ R ⇐⇒ α is a cyclic smooth degree endomorphism ofEA.
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It is therefore a proof of knowledge for R with knowledge error 1/c—see for
instance [11, Theorem 1]. In other words, an adversarial prover with success
probability w and running time r can be turned into a knowledge extractor for
R of expected running time O(r/(w − 1/c)). ��

3.3 Zero-Knowledge: Two Insecure Approaches

The sketch given in Subsect. 3.1 is incomplete, as it does not specify a method to
compute the response isogeny σ. Zero-knowledge of the scheme clearly depends
upon this method, and it turns out that the only known solutions so far are
insecure. Indeed the trivial approach of setting σ = ϕ◦ψ ◦ τ̂ immediately reveals
the secret, while using the algorithm from [22] instead (like in [19]) ends up
revealing some path from EA to E0, which is equivalent to revealing τ thanks
to the reductions in [17].

In Sects. 5 and 6 we will introduce a new variant of the KLPT algorithm that
conjecturally does not suffer from the same leakages. Then, we will prove zero-
knowledge in Sect. 7, under a new conjecturally hard computational problem.

3.4 The Signature Scheme

The new signature scheme is simply a Fiat-Shamir transformation of the identi-
fication protocol introduced in Subsect. 3.1. Following the construction of [6]
extended in [28] for smooth degrees, if Dc =

∏n
i=1 �ei

i , we write μ(Dc) =∏n
i=1 �ei−1

i (�i + 1) and we define an arbitrary function ΦDc
(E, s), mapping inte-

gers s ∈ [1, μ(Dc)] to non-backtracking sequences of isogenies of total degree Dc

starting at E. Let H : {0, 1}∗ → [1, μ(Dc)] be a cryptographically secure hash
function.

The signature scheme is as follows.
sign : (sk,m) �→ Σ Pick a random (secret) isogeny ψ : E0 → E1. Let
s = H(j(E1),m), and build the isogeny ΦDc

(E1, s) = ϕ : E1 → E2. From
the knowledge of OA, and of the isogeny ϕ ◦ ψ : E0 → E2, construct an isogeny
σ : EA → E2 of degree D such that ϕ̂ ◦ σ is cyclic. The signature is the pair
(E1, σ).
verify : (pk,m,Σ) �→ true or false Parse Σ as (E1, σ). From s = H(j(E1),m),
recover the isogeny ΦDc

(E1, s) = ϕ : E1 → E2. Check that σ is an isogeny from
EA to E2 and that ϕ̂ ◦ σ is cyclic.

Theorem 2. The signature described above is secure against chosen-message
attacks in the random oracle model assuming the hardness of Problems 1 and 2.

4 Eichler Orders and the Deuring Correspondence

We recall here the notion of Eichler orders and we interpret them under the
Deuring correspondence. As the results of this section are well known, we only
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state the main theorems without proof here; for a detailed treatment see the
extended version of this work [13], or [16,26,31].

An Eichler order is the intersection of two maximal orders inside Bp,∞. In all
this section we will consider the case of the Eichler order O = O0 ∩ O where O0

and O are maximal orders connected through an ideal I of norm n(I) such that
I � nOL(I) for any n > 1. This setting corresponds to curves E0, E connected
by an isogeny ϕI of cyclic kernel and degree n(I) with End(E0) ∼= O0 and
End(E) ∼= O.

Proposition 1. O := O0 ∩ O = OL(I) ∩ OR(I) = Z + I.

One goal of this section is to interpret the elements in O under the Deuring
correspondence.

The decomposition Z+I allows us to interpret the elements of O. In fact, we
can separate elements in O according to whether their norm is coprime to n(I) or
not. Given that n(I)Z ⊂ I, it is easily verified that this partition can be written
as O = (I ∪ I)

⋃
(Z � n(I)Z + I). It is well-known that I = Hom(E,E0)ϕI .

Hence, the elements in I correspond to the endomorphisms ψ◦ϕI for any isogeny
ψ : E → E0. The same analysis proves I = Hom(E0, E)ϕ̂I . The elements of I

correspond to the same endomorphisms as those of I, but decomposed as ψ̂ ◦ ϕ̂I

in End(E).

4.1 Commutative Isogeny Diagrams

We define commutative diagrams of isogenies using the classical notations of
pushforward and pullback maps. Let us take 3 curves E0, E1, E2 and two sep-
arable isogenies ϕ1 : E0 → E1 and ϕ2 : E0 → E2 of coprime degrees, N1 and
N2. Then, there is a fourth curve E3 and two pushforward isogenies [ϕ1]∗ϕ2

and [ϕ2]∗ϕ1 going from E1 and E2 toward E3, verifying deg([ϕ1]∗ϕ2) = N2 and
deg([ϕ2]∗ϕ1) = N1.

The isogenies [ϕ2]∗ϕ1 and [ϕ1]∗ϕ2 are defined as the separable isogenies
of respective kernels ϕ2

(
ker(ϕ1)

)
and ϕ1

(
ker(ϕ2)

)
. We will sometimes refer to

[ϕ2]∗ϕ1 as the image of ϕ1 through ϕ2. The two sides of the diagram can be
seen as two decompositions of the same isogeny ψ = [ϕ2]∗ϕ1 ◦ϕ2 = [ϕ1]∗ϕ2 ◦ϕ1.

There is a dual notion of pullback isogeny : given ϕ1 : E0 → E1 and ρ2 : E1 →
E3, of coprime degrees, we can define the pullback of ρ2 by ϕ1 as [ϕ1]∗ρ2 =
[ϕ̂1]∗ρ2. With this definition it is easy to see that ϕ2 = [ϕ1]∗[ϕ1]∗ϕ2.

For simplicity, when the isogenies have not been defined we will implicitly
write [I]∗J for the ideal I[ϕJ ]∗ϕI

corresponding to the pushforward of ϕJ by ϕI .
The same holds for [I]∗J . With this convention, we extend the terms pushforward
and pullback to ideals.

4.2 The Endomorphism Ring O

The next proposition states that the image through ϕ of the endomorphism
corresponding to any element in O ⊂ O0 (which is neither in I nor in Ī) is an
endomorphism of E.



SQISign: Compact Post-quantum Signatures 73

Proposition 2. Let β ∈ O0 of norm coprime with N , then [O0β]∗I = I if and
only if β ∈ O� (I ∪I). In particular, [I]∗O0β is a principal O-ideal equal to Oβ.

Said otherwise, the endomorphisms in O�(I∪I) leave ϕI stable. Equivalently,
the endomorphisms of O remain endomorphisms after being pushed forward by
ϕI , and thus belong to both End(E0) and End(E).

From Proposition 2, we deduce the following result which will underlie Algo-
rithm3; it is a reformulation using the map χ of Lemma 1.

Corollary 1. Let J1, J2 be O0-ideals, with J1 ∼ J2 and gcd(n(J1)n(J2), n(I)) =
1. Suppose that J1 = χJ2(β) with β ∈ J2 ∩O. Then [I]∗J1 ∼ [I]∗J2 and [I]∗J1 =
χ[I]∗J2(β).

4.3 Ideal Class Sets of Eichler Orders

In this section, we write again O = O0 ∩ O. We write I for the ideal connecting
O0 and O and we assume in this section that its norm N is prime.

Class sets of ideals play an important role through the Deuring correspon-
dence. When O is a maximal order we can put Cl(O) in bijection with the set of
supersingular curves (see Table 1). This motivates studying Eichler orders, and
indeed isogeny graphs were first constructed through class sets of quaternion
orders by [27], and only later reinterpreted as isogeny graphs in [6]. Eichler [16]
proved a formula for the class number h(O) = |Cl(O)|. When N is prime it gives

h(O) =
(p + 1)(N + 1)

12
+ εN,p

where εN,p is a small value depending on N and p modulo 12. This, combined
with h(O0) = p/12+εp, (εp depends on the value p mod 12) suggests that there
is a (N + 1)-to-1 correspondence between Cl(O) and Cl(O0), which we are now
going to exhibit.

Let us write IN (O) for the set of left integral O-ideals of norm coprime to N
for any order O. We start by showing a connection between IN (O0) and IN (O).

Lemma 3. The map

Ψ : IN (O0) −→ IN (O)
J �−→ J ∩ O

is a well-defined bijection between the set of integral O0-ideals and O-ideals of
norm coprime with N . Its inverse is given by : Ψ−1 : J �→ O0J.

From the fact that any ideal class of Cl(O) or Cl(O0) has a representative of
norm coprime with N , we can easily identify the equivalence classes of IN (O0)
and IN (O) to the ones of O0 and O respectively.

The bijection of Lemma 3 suggests defining the following equivalence relation
∼O on left O0-ideals of norm coprime with N . We say that J ∼O K if and only
if Ψ(J) ∼ Ψ(K) as O-ideals (here ∼ is the classical equivalence relation between
ideals having the same left order). The bijection Ψ transports the structure of
∼ to ∼O and this implies that we have defined an equivalence relation.
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Definition 1. We write ClO(O0) for the set of equivalence classes of IN (O0)
under ∼O.

From the definition, we have that ClO(O0) is in bijection with Cl(O) through Ψ.
In the next proposition we show that we can obtain an explicit correspondence
between ideals of norm N and ClO(O0) using pushforward ideals.

Proposition 3. J ∼O K if and only if there exists β ∈ O such that K = χJ(β)
and β−1[K]∗Iβ = [J ]∗I.

An interesting question is how the new equivalence relation ∼O relates to the
classical one ∼. In fact, ∼O is compatible with ∼ in the sense that J ∼O K
implies J ∼ K, as is easily verified from Corollary 1. This suggests partition-
ing ClO(O0) in subsets indexed by the elements of Cl(O0). Hence, we write
ClO(O0) =

⋃
C∈Cl(O0)

ClO(C) where ClO(C) is the set of classes in ClO(O0)
contained in C. The respective sizes of Cl(O0) and Cl(O) suggest that the parti-
tion above provides an (N +1)-to-1 correspondence between Cl(O0) and Cl(O).
This correspondence only fails for a small number of classes, as the following
proposition shows.

Proposition 4. For C ∈ Cl(O0), let us take L ∈ C and define OC := OR(L).
If O×

C = 〈±1〉, then for any γ ∈ L � NO0 and quadratic order S = Z[ωs] of
discriminant ΔS inside O0 in which N is inert, the map:

Θ : P
1(Z/NZ) −→ ClO(C)

(C : D) �−→ χL((C + ωsD)γ)

is a bijection. In particular, |ClO(C)| = N + 1.

5 New Generalized KLPT Algorithm

We introduce in this section a new algorithm to perform the computation of the
response in our identification protocol. We aim at solving the issues raised in
Subsect. 3.3 with the original KLPT algorithm [22].

The existence of the suborder O = Z〈ω, j〉 = R + Rj introduced in Sub-
sect. 2.2 is what makes special extremal orders good candidates for applying the
KLPT algorithm. Here, R = Z[ω] is a quadratic order of small discriminant gen-
erated by ω, an element of small norm. The norm equation f(x, y) = M over R
has a good probability of being solvable for any M and as a consequence, solving
norm equations over O is easy.

To extend the KLPT algorithm to arbitrary orders, our approach is to find
an appropriate Eichler suborder in which we know how to solve norm equations.
More precisely, let us take O0 a special extremal order and O an arbitrary
maximal order, our goal is to extend the KLPT algorithm to left O-ideals. Then,
the Eichler order O = O ∩ O0 is a suborder of O0, thus we can apply the
techniques developed in [22] for special extremal orders.
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5.1 The Generic Algorithm

We now use our observations of Sect. 4 to design a new GeneralizedKLPT algo-
rithm. As already mentioned, there are several possible variants of this algorithm
depending on the kind of norm we need to obtain. For simplicity, we present the
case �• where we look for an equivalent ideal of norm �e. Any other variant is
easily derived from this.

For the rest of this paper, let O0 and O be two maximal orders, with O0

being special extremal. These maximal orders are respectively isomorphic to the
endomorphism rings of two supersingular curves E0 and E. From now on, we
write Iτ (instead of I in the previous section) for the ideal connecting O0 with
O, and we denote its norm by Nτ . This notation is motivated by the fact that,
in the signature context, Iτ will be the ideal corresponding to the secret isogeny
τ of degree Nτ . Up to replacing O with an isomorphic representative, we can
assume that Nτ is prime and inert in R (we explain in Subsect. 6.2, the reasons
behind this last condition). We consider the Eichler order O = O ∩ O0 of level
Nτ .

Let I be a left integral O-ideal, given as input. Our purpose is to find e ∈ N

and J ∼ I of norm �e upon input I. As a consequence of Lemma 1, this problem
is equivalent to finding β ∈ I of norm n(I)�e and setting J = χI(β). From
Corollary 1, we see that if β ∈ I ∩ O we have [Iτ ]∗J = χ[Iτ ]∗I(β). In particular,
β ∈ O ∩ [Iτ ]∗I and so we can search for β inside ([Iτ ]∗I) ∩ O instead. The
ideal K ′ := [Iτ ]∗I is a left O0-ideal and this is a situation close to KLPT�• .
The fact that we look for a solution inside K ′ ∩O instead of just K ′ will add an
additional constraint. Proposition 1 allows us to write O = Z+Iτ , and intuitively
this decomposition tells us that the algorithm for integral ideals used in [22] will
be applicable to Eichler orders with small changes.

This suggests the method detailed in Algorithm 2, which can be seen as an
adaptation of the KLPT�• algorithm (Algorithm 1), replacing the input I by
I ∩O. In KLPT�• we satisfy the constraint that the desired element is in I using
the sub-algorithm IdealModConstraint. We proceed similarly in Step 4 to ensure
that the solution is in O as well. Combining the two constraints ensures that
the solution is in their intersection. An algorithm to perform Step 4 will be
described in Subsect. 6.2; its description is not needed to convey the principle of
Algorithm 2. We omit the extension of StrongApproximation to the case where N
is not prime; the interested reader will find it in the extended paper [13].

Lemma 4. Algorithm2 is correct and returns J ∼ I of norm �e.

Proof. We assume here that the algorithm terminates without failure and do
not consider its complexity for now. First, Lemma 1 and the conservation of the
norm through pushforward ideals shows that J has norm �e. Then Corollary 1
applied to χL(β) = χK′

(
βδ

n(L)

)
implies that [Iτ ]∗χL(β) ∼ [Iτ ]∗K since βδ ∈ O.

This proves J ∼ I.

Remark 6. As pointed out in Remark 3, KLPT is essentially deterministic when
one looks for the smallest possible solution with this method. Given that the
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only major difference in Algorithm 2 is the additional Step 4 (for which there is
only one solution as we will see in Subsect. 6.2) it is not difficult to argue that
Algorithm 2 can be made deterministic.

Algorithm 2. GeneralizedKLPT�•(I, Iτ )
Require: I, a left O-ideal, and Iτ , a left O0-ideal and right O-ideal of norm Nτ .
Ensure: J ∼ I of norm �e.
1: Compute K′ = [Iτ ]∗I and set L = EquivalentPrimeIdeal(K′), L = χK′(δ) for δ ∈ K′

with N = n(L).
2: Compute γ = RepresentIntegerO0

(N�e0).
3: Compute (C0 : D0) = IdealModConstraint(L, γ).
4: Find (C1 : D1) ∈ P

1(Z/Nτ Z) such that γj(C1 + ωD1)δ ∈ Z + Iτ .
5: Compute C = CRTNτ ,N (C0, C1) and D = CRTNτ ,N (D0, D1).
6: Compute μ = StrongApproximation�•(NNτ , C, D) of norm �e1

7: Set β = γμ and e = e0 + e1 such that n(β) = N�e.
8: return J = [Iτ ]∗χL(β).

5.2 On the Length of the Solution

The length of the output of Algorithm2 can be derived from the one of KLPT�• .
Indeed, in terms of norm, the only real difference is the fact that the Strong-
Approximation is performed on NNτ instead of just N . From the analysis pro-
vided in [22] and [25], we see that this implies e = e0 + e1 ∼ 9

2 log�(p) (instead
of e ∼ 3 log�(p) for KLPT�•). This estimate is obtained by considering the plau-
sible approximation Nτ ∼ √

p. We will argue in Subsect. 7.1 that it might be
acceptable to consider cases where Nτ is significantly smaller than this aver-
age estimate. This allows us to decrease the size of the solution. We give in
Subsect. 6.3 a more proper statement for the approximations introduced above.

In our signature scheme, we will use a variant of Algorithm2, called Signing-
KLPT, suited for our application. The purpose of Sect. 6 is to detail this algorithm
and to fill in the gaps left in the description of Algorithm2.

6 Application to the Signature Scheme: The SigningKLPT
Algorithm

In this section, we describe the SigningKLPT procedure used in our signature
scheme. This procedure, described in Algorithm 3, is a variant of Algorithm2.
Most of its building blocks are common to Algorithm1 and were introduced in
[22]. The rest of this section fills in the remaining gaps as follows. In Subsect. 6.1,
we introduce the EquivalentRandomEichlerIdeal used in Step 1. In Subsect. 6.2,
we describe the EichlerModConstraint algorithm to perform Step 5 of Algorithm 3
(or Step 44 in Algorithm 2). The parameter e is fixed (and it only depends on
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p). To ensure this, we will need to adapt the exponent e0 and e1 to the values
N = n(L) and Nτ . That is why we will write e0(N). In Subsect. 6.3 we justify
that this is possible. We establish the termination, correctness and complexity
of our algorithm in Subsect. 6.4.

Algorithm 3. SigningKLPT(I, Iτ )
Require: Iτ a left O0-ideal and right O-ideal of norm Nτ , and I, a left O-ideal.
Ensure: J ∼ I of norm �e, where e is fixed.
1: Compute K = EquivalentRandomEichlerIdeal(I, Nτ )
2: Compute K′ = [Iτ ]∗K and set L = EquivalentPrimeIdeal(K′), L = χK′(δ) for

δ ∈ K′ with N = n(L). Set e0 = e0(N) and e1 = e − e0.
3: Compute γ = RepresentIntegerO0

(N�e0).
4: Compute (C0 : D0) = IdealModConstraint(L, γ).
5: Compute (C1 : D1) = EichlerModConstraint(Z + Iτ , γ, δ).
6: Compute C = CRTNτ ,N (C0, C1) and D = CRTNτ ,N (D0, D1). If �ep(C2 + D2) is

not a quadratic residue, go back to Step 3.
7: Compute μ = StrongApproximation�•(NNτ , C, D) of norm �e1

8: Set β = γμ.
9: return J = [Iτ ]∗χL(β).

6.1 The Randomization Procedure

The purpose of Step 1 is to perform a randomization step which we will use
to argue the security of our signature. This addition has two interesting conse-
quences for us. First, the output of Algorithm3 only depends on the equivalence
class of the input I. Second, it randomizes the execution as otherwise the algo-
rithm would be essentially deterministic as noted in Remark 6.

The EquivalentRandomEichlerIdeal algorithm receives an ideal I as input and
returns an equivalent random ideal. In this context equivalent random ideal
means that if we write C the class of I in Cl(O), we want an output ideal
equivalent to I and lying in a uniformly random class of ClO(C) (see Definition 1).
This condition might seem a bit arbitrary at first; however Proposition 5 will
justify that this is exactly the kind of randomness we need.

To reach this goal, we use the classical technique of finding some well-chosen
β ∈ I and output χI(β). The method to choose the β is inspired by the results of
Subsect. 4.3. The idea is to use the bijection from Proposition 4 in order to sample
a class uniformly. Note that Proposition 4 does not hold for some special cases
of maximal orders O, but we may assume that this is not the case here (in the
worst case there are two such types of maximal orders among O(p) possibilities).

We start by showing that Algorithm 4 terminates and that the output distri-
bution is correct.

Lemma 5. Algorithm4 terminates in polynomial time and outputs an ideal
equivalent to I and uniformly distributed among the Nτ + 1 possible classes of
ClO(O).
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Algorithm 4. EquivalentRandomEichlerIdeal(I,Nτ )
Require: I a left O-ideal.
Ensure: K ∼ I of norm coprime with Nτ .
1: Sample a random element ωS in O until Nτ is inert in Z[ωS ].
2: Sample γ a random element in I such that n(γ)/n(I) is coprime with Nτ .
3: Select a random class (C : D) ∈ P

1(Z/Nτ Z).
4: Set β = (C + ωSD)γ.
5: return K = χI(β)

Proof. We can find in O(log(p)) attempts a quadratic suborder Z[ωS ] ⊂ O in
which Nτ is inert. Then, it is clear that taking a random element in I will verify
that n(γ)/n(I) is coprime with Nτ with overwhelming probability. Thus, the
algorithm terminates in polynomial time.

The algorithm concretely instantiates the map Θ from Proposition 4. This
map is bijective and we choose (C : D) uniformly at random inside P

1(Z/NτZ)
so the output is uniformly distributed.

Consequently, the output of EquivalentRandomEichlerIdeal only depends on the
class (inside Cl(O)) of the ideal in input. The call to EquivalentRandomEichler-
Ideal in Step 1 of Algorithm 3 thus implies the following lemma that will prove
useful in Sect. 7.

Lemma 6. For any Iτ , the output distributions of SigningKLPT(I, Iτ ) and
SigningKLPT(J, Iτ ) are the same for any I ∼ J . Said otherwise, for fixed Iτ ,
the output distribution of Algorithm3 only depends on the equivalence class of
the ideal I in input.

Next, we describe how the distribution of L (as defined in Step 2 of
Algorithm 3) is determined by the output distribution of EquivalentRandom
EichlerIdeal. This is what motivates the current formulation of Algorithm4.

Proposition 5. The set GI = {L,L = EquivalentPrimeIdeal([Iτ ]∗K) for K ∼ I}
has size at most Nτ + 1 and for every L ∈ GI there exists an output K =
EquivalentRandomEichlerIdeal(I) such that L = EquivalentPrimeIdeal([Iτ ]∗K).
When #GI = Nτ + 1, the ideal L is uniformly distributed inside this set.

Proof. As we mentioned already, there are exactly Nτ + 1 classes for K ∼ I in
ClO(O). By Corollary 11, the class of K in ClO(O) uniquely determines the class
of [Iτ ]∗K in Cl(O0). As noted in Subsect. 2.2, the output of EquivalentPrimeIdeal
is well-defined and deterministic on Cl(O0). The result is proved if we combine
the above remark with Lemma 5.

1 Corollary 1 uses pushforwards rather than pullbacks, but we obtain the desired result
by replacing I with I.
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6.2 Eichler Modular Constraint

Step 5 in Algorithm 3 (or Step 4 of Algorithm 2) is essential to find a solution
that lies in O = O ∩ O0. More precisely for given γ, δ of norm coprime with Nτ

we need to find μ1 ∈ jR such that γμ1δ ∈ O. In fact, this can be done for any
γ, δ of norm coprime with Nτ . This is stated and proved in Proposition 6 below,
following a reasoning similar to the one used in [22] for IdealModConstraint.

The method of resolution is also strongly inspired by IdealModConstraint.
Namely, we use an explicit isomorphism O0/NτO0

∼= M2(Z/NτZ) and a cor-
respondence between the set of proper nonzero left ideals in M2(Z/NτZ) and
P

1(Z/NτZ) to translate the condition γμ1δ ∈ Z + Iτ as a system of linear
equations mod Nτ . We write EichlerModConstraint(O, γ, δ) for this. It outputs
(C1 : D1) ∈ P

1(Z/NτZ) such that γj(C1 + ωD1)δ ∈ O.
We remind the reader that we consider Nτ inert in R (where R is defined, like

in Subsect. 2.2, as the quadratic suborder of minimal discriminant inside O0).
If Nτ is split, the method is very likely to work as well but there may be some
cases where it fails. Since the constraint that Nτ is inert in R is quite easy to
satisfy (see Subsect. 8.3) we may assume that it holds.

Proposition 6. The sub-routine EichlerModConstraint on any input O, γ, δ
returns (C1 : D1) ∈ P

1(Z/NτZ) such that γμδ ∈ O with μ = (C1 + ωD1)j.

Proof. In Algorithm 3, we want to find μ such that β = γμ verifies βδ ∈ O to
ensure that [Iτ ]∗χL(β) ∼ I. In Subsect. 4.3, we showed that this was equivalent
to χL(β) lying in the correct equivalence class of Cl(O). To prove that a solution
can always be found it suffices to show that the map Θ′ : P

1(Z/NτZ) → Cl(O)
sending (C : D) to γ(C + ωD) is surjective. In fact, this map is almost the one
from Proposition 4 and is bijective (thus surjective) for the same reasons.

Hence we see that there always exists a solution μ such that χL(γμ) lies in
the correct class in ClO(O0) ≡ Cl(O) and this proves the result.

We deduce a useful corollary, which shows that EichlerModConstraint is indepen-
dent of the choice of δ.

Corollary 2. Taking δ, δ′ as above, for any given γ ∈ O0 of norm coprime with
Nτ , EichlerModConstraint(O, γ, δ) = EichlerModConstraint(O, γ, δ′).

Proof. In the proof of Proposition 6, we showed that the map (C1 : D1) →
γj(C1 +ωD1) is injective for any γ of norm coprime with Nτ . This justifies that
there is only one solution in P

1(Z/NτZ) giving a β lying in the correct class
inside L/ ∼O (and thus with χL(β) in the correct class of ClO(O0)). Hence,
EichlerModConstraint(O, γ, δ) and EichlerModConstraint(O, γ, δ′) are both equal
to this unique solution.

6.3 Suitable Values for e0 and e1

For security (specifically zero-knowledge) it is important that our output has
fixed norm so that the size of the output does not reveal any information on the
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input. In this section, we justify that it is possible to find a parameter e such
that finding an output of exact size �e is possible for almost every input. The
exponent e is the sum of two exponents e0(N) and e1(N,Nτ ) whose individual
values depend on N and Nτ but whose sum can be fixed. In fact, we will pick e
following the approximations of [22] presented in Subsect. 5.2 as they appear to
be quite tight in practice. To simplify notations we write log instead of log� in the
rest of this section. Let us refine the statements of Subsect. 5.2. For KLPT, the
most important parameter is the size of N . We state in Lemma 7 that N cannot
be a lot bigger than

√
p. This result holds under an assumption on the norms

of elements in a Minkowski basis of an integral ideal, and heuristic assumptions
on the distribution of primes represented by some quadratic forms (see [22]).
We stress that this approximation is quite tight in practice as illustrated in the
experimental results of [22] and it seems to hold by taking ε = log log(p).

Lemma 7. There exists ε = O(log log(p)) such that for a random class C ∈
Cl(O0), the norm N of EquivalentPrimeIdeal(C) verifies log(N) < log(p)/2 + ε
with overwhelming probability.

This approximation is valid for both N and Nτ , and we will assume that it holds
for both values for the rest of this section. As we will not be able to provide a tight
lower bound on log(N), log(Nτ ), we need to adjust the exponents e0 and e1 and
that is why we write e0(N) and e1(N,Nτ ) for the lower bounds of Lemmas 8
and 9. We recall our assumption that the failure probability in the quadratic
residuosity condition of Step 6 is 3/4 on average for a given γ and δ.

In Lemmas 8 and 9, we assume that we are in an execution of Algorithm 3
that led to an ideal L of norm N . We keep the notation ε from Lemma 7.

Lemma 8. For any κ ∈ N, there exists η0 = O(log log(p) + log(κ)) such that
for any e0 ≥ e0(N) = log(p) − log(N) + ε + η0, the probability that there exists
a solution γ = RepresentIntegerO0

(N�e0) that will lead to a correct execution of
Algorithm3 is higher than 1 − 2−κ.

Remark 7. We note that taking κ ∼ log(p) ensures that the success probability
in Lemma 8 is overwhelming. In the case of (very unlikely) failure where one of
the assumptions above does not hold, we simply abort and start the computation
again.

We conclude this section by evaluating the size of the exponent e1 in the
output of StrongApproximation. The algorithm for StrongApproximation(N, ·) in
[25] computes close vectors in some lattice of discriminant Õ(N3p).

Lemma 9. There exists η1 = O(log log(p)) such that if e1 ≥ e1(N,Nτ ) log p +
3 log(N) + 3 log(Nτ ) + η1, Step 7 of Algorithm3 succeeds in finding a solution μ
of norm �e1 with overwhelming probability.

6.4 Termination, Correctness and Complexity

We are now ready to state the following proposition. As noted in Remark 7, we
take κ ∼ log(p) for Lemma 8.
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Proposition 7. Algorithm 3 terminates in heuristic probabilistic polynomial
time. It returns an ideal J ∼ I of fixed norm �e for any input I with over-
whelming probability if e ≥ 9/2 log(p) + 6ε + η0 + η1 where ε, η0, η1 are defined
as in Lemma 7 to 9.

Proof. The proof of correctness follows almost directly from Lemma 4, replacing
I by an equivalent K. Since the correctness of Algorithm 2 holds for any input
and K ∼ I, we see that Algorithm 3 is correct. Combining Lemmas 8 and 9
we see that we need to pick e0, e1 above the bounds e0(N), e1(N,Nτ ) for the
computation to succeed with overwhelming probability. We obtain e0 + e1 ≥
2 log(p)+2 log(N)+3 log(Nτ )+η0 +η1 + ε. Taking the upper bound of Lemma7
for both N and Nτ we obtain e ≥ 9/2 log(p) + 6ε + η0 + η1. Given that the
probability of failure is 3/4, the number of different values γ that we need to
choose before finding a fitting choice is logarithmic in p. This proves termination.
The complexity statement follows directly from the heuristic polynomial-time
complexities argued in [22]. From the description in Subsect. 6.2, it is clear that
the complexity of EichlerModConstraint is the same as IdealModConstraint and it
is also polynomial in log(p).

7 Zero-Knowledge

In Sect. 3 we left open the question of proving zero-knowledge of the identification
scheme, and consequently unforgeability of the signature scheme. Unlike other
identification schemes based on isogenies [3,12], SQISign does not achieve perfect
zero-knowledge, but necessitates an ad hoc computational assumption instead.
As usual, we need to prove that there exists a simulator that outputs transcripts
indistinguishable from real interactions between prover and verifier, and it is
easy to see that this boils down to proving that the distribution of the response
isogenies σ for a given secret τ can be simulated without knowledge of τ . Of
course, the distribution of σ depends on the variant of KLPT employed, and
we already argued in Subsect. 3.3 that the variants known prior to this work
provide no security at all. In this section we shall state the security assumption
and sketch the associated security reduction for algorithm SigningKLPT. Due to
space constraints all proofs are omitted here; they can be found in [13].

7.1 On the Distribution of Signatures

We want to understand the distribution of the isogenies σ obtained from J =
SigningKLPT(I, Iτ ) for some secret τ . It turns out any such σ is the image under
τ of some other isogeny ι, whose properties are precisely stated in the following
lemma.

Lemma 10. Let L ⊂ O and β ∈ L be as in Steps 2, 8 respectively of Algorithm
3. The isogeny σ corresponding to the output J of Algorithm 3 is equal to σ =
[τ ]∗ι, where ι is an isogeny of degree �e verifying β = ι̂ ◦ ϕL.
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We will argue that there exists a set PNτ
, depending only on the degree Nτ ,

such that ι ∈ PNτ
if and only if σ = [τ ]∗ι for some output σ of Algorithm

3. L ⊂ O being defined as in Lemma 10, it is clear that the codomain of ι
is determined by the class of L in Cl(O0). Suppose we have chosen a class
for L among the Nτ + 1 candidates, we want to determine how the rest of the
computation follows from this initial choice. During Step 3 we compute a value γ,
and it is clear that N = n(L) uniquely determines the distribution of outputs for
RepresentIntegerO0

(N�e0(N)). Then, the projective pair (C0 : D0) only depends
on L and γ. We have proved in Corollary 2 that the projective pair (C1 : D1)
did not depend on the actual value of δ, so it is also uniquely determined by
the choice of class for K (and thus of L) and γ. The rest of the computation
is deterministic from there (up to failures that imply picking another γ). We
are now ready to characterize the set of all possible outputs of our algorithm
SigningKLPT.

Let us take the value e0(N) and e1(N,Nτ ) as defined in Subsect. 6.3 for Algo-
rithm 3. For a given L of norm N , we consider UL,Nτ

as the set of all isogenies ι
computed as in Lemma 10 from elements β = γμ ∈ L where γ is a random output
of RepresentIntegerO0

(N�e0(N)) and μ = (C + ωD)j where p(C2 + D2)�e1(N,Nτ )

is a quadratic residue modNNτ and is defined as C = CRTN,Nτ
(C0, C1), D =

CRTN,Nτ
(D0,D1) where (C0 : D0) = IdealModConstraint(L, γ) and (C1 : D1) is

a random element of P
1(Z/NτZ). For an equivalence class C in Cl(O0) we write

UC,Nτ
for UL,Nτ

where L = EquivalentPrimeIdeal(C).

Definition 2. PNτ
=

⋃
C∈Cl(O0)

UC,Nτ

Proposition 8. The set PNτ
from Definition 2 can be computed from the sole

knowledge of Nτ . The set {J, J = [Iτ ]∗Iι, ι ∈ PNτ
} is exactly the set of outputs

SigningKLPT(I, Iτ ) for I ranging over all the non-trivial classes in Cl(O).

7.2 Hardness Assumption for Zero-Knowledge

We are now ready to formulate a computational assumption which zero-
knowledge reduces to. For D ∈ N and a supersingular curve E, we define
IsoD,j(E) as the set of cyclic isogenies of degree D, whose domain is a curve inside
the isomorphism class of E. When P is a subset of IsoD,j(E) and τ : E → E′ is
an isogeny with gcd(deg τ,D) = 1, we write [τ ]∗ P for the subset {[τ ]∗ φ | φ ∈ P}
of IsoD,j(E′). Finally, we denote by K a probability distribution on the set of
cyclic isogenies whose domain is E0, representing the distribution of SQISign
private keys.

Problem 2. Let p be a prime, and D a smooth integer. Let τ : E0 → EA be a
random isogeny drawn from K, and let Nτ be its degree. Let PNτ

⊂ IsoD,j0 as
in Definition 2, and let Oτ be an oracle sampling random elements in [τ ]∗PNτ

.
Let σ : EA → � of degree D where either

1. σ is uniformly random in IsoD,j(EA);
2. σ is uniformly random in [τ ]∗ PNτ

.
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The problem is, given p,D,K, EA, σ, to distinguish between the two cases with
a polynomial number of queries to Oτ .

We assume that Problem 2 cannot be solved with non-negligible advantage
by any polynomial time adversary. In [13] we briefly discuss several potential
attack strategies; however, given current knowledge, no strategy seems to be
better than a direct key recovery, computing τ from the knowledge of EA only.

In order to state the security reduction, we also need some additional heuristic
assumptions which are plausibly true.

Assumption 1. Under the heuristic assumptions used in Subsect. 6.3, we can
fix a given degree D = �e with e depending only on p, such that Algorithm
3 succeeds in finding an output of norm D for any input with overwhelming
probability.

Assumption 2. The distribution of classes obtained by taking the classes of the
ideals Iι corresponding to ι ∈ PNτ

is statistically close to the uniform distribution
on ClO(O0).

We can finally state the main result of this section.

Proposition 9. Let EA be a SQISign public key. When SQISign is instantiated
with Algorithm 3, distinguishing between the distribution D(EA) of isogenies σ
output by SQISign, and the uniform distribution of D-isogenies starting from
EA, reduces to Problem 2, under the heuristic assumptions listed above.

8 Efficiency

In this section, we describe a concrete instantiation of our scheme. This includes
a precise description of the protocols outlined in Subsect. 3.1, along with all the
missing sub-algorithms, concrete parameters and various ideas to improve the
overall efficiency. The resulting signature reaches 128-bit of classical security and
the post-quantum NIST level 1 and is very compact as highlighted in Table 2.
We also provide a proof-of-concept implementation of the protocol.

The algorithm SigningKLPT was extensively studied in Sects. 5 and 6, and we
will see in Subsect. 8.6 that it is reasonably efficient. The efficiency bottleneck
of our signature scheme turns out to be the translation of the input and output
ideals of Algorithm 3 from and to isogenies. Specifically, we seek to define two
families of algorithms:

– IdealToIsogeny: Given a left O-ideal I of smooth norm D, compute the corre-
sponding isogeny ϕI as a sequence of prime-degree isogenies.

– IsogenyToIdeal: Given an isogeny from E of smooth degree D, compute the
corresponding left O-ideal.

Algorithms for these tasks in the case where O and E are special extremal were
already introduced in [19]. They are very general, but not really efficient, owing
to their use of D-torsion points defined in algebraic extensions of Fp2 . A classical
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solution would be to choose a special prime p such that the D-torsion is Fp2 -
rational. However in our case D is a power of 2 and, following the estimates
of Subsect. 5.2, we need D ≈ p9/2 (or at best D ≈ p15/4 using the idea of
Subsect. 8.3). With these requirements finding such a prime is not feasible, we
thus devise new solutions to the two problems.

This section is organized as follows. We first present our version of IdealTo-
Isogeny in Subsect. 8.1. We then introduce a set of concrete parameters in Sub-
sect. 8.2, and we analyze two possible key spaces in Subsect. 8.3. Following up,
we give a detailed description of our identification scheme in Subsect. 8.4. Size
and time performances of the resulting signature scheme are presented in Sub-
sect. 8.6.

8.1 Translating Ideals to Isogenies

Let I be a left O0-ideal of smooth norm D where O0 is a special extremal
maximal order, and let E0 be a curve such that O0 is isomorphic to End(E0). In
this section we assume that we know an explicit representation of O0, meaning
that we know an explicit isomorphism between End(E0) and O0, allowing us
to efficiently evaluate endomorphisms of E0. We want to find the isogeny ϕI

of degree D and domain E0 corresponding to I. We will describe ϕI as the
composition of several prime degree isogenies represented by their kernels. Most
of the ideas presented in this section are adaptations of algorithms introduced in
[17,19]; below we first recall these algorithms then describe our improvements.
Algorithm in [17]. As each primary factor of D can be treated separately let
us for simplicity assume that D = �e. The idea is to divide ϕI into g isogenies of
smaller degrees �f where the �f -torsion is defined over a reasonably small field
extension. Following [17], to write ϕI = ϕg ◦ . . . ϕ2 ◦ϕ1 under the ideal filtration
I = I1 · I2 · · · Ig, we need an explicit representation of Oi = OR(Ii) in order
to compute the action of End(Ei) on Ei[�f ], where Ei is the codomain of ϕi.
A formula is introduced in [17] providing such a representation from an ideal
connecting Oi to O0 (equivalently an isogeny connecting Ei with E0). However
this formula involves division by the norm Ni of this ideal. In particular if ei is
the �-adic valuation of Ni, we would need to compute the �f+ei-torsion points.
It thus appears that having Ni coprime to � is essential for efficiency. We will
therefore not be able to use I1 · · · Ii as the connecting ideal, but we will instead
use an equivalent ideal Ji of coprime degree. Fortunately, this can be found with
KLPT. This idea underlies all the algorithms introduced in this section.

The discussion above motivates the introduction of a smooth integer T rep-
resenting the torsion coprime with � that is accessible (i.e., defined over small
extensions of Fp2), we refer to Subsect. 8.2 for concrete parameters illustrating
what we mean by “accessible” and “small”. Ideally, we would like to have Ji

of norm dividing T (obtained by execution of the variant KLPTT ) so that the
translations into the corresponding isogenies are efficient. However, once again
we are hindered by the size of KLPT’s outputs, which have norm around p3. We
now describe two tricks to reduce the torsion requirements.
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Computing Half of the Isogeny from the Image Curve. Let us assume
that our ideal corresponds to ψ : E1 → E2 where ψ has degree D1D2 (with D1

and D2 not necessarily coprime). Instead of trying to express ψ from E1 and
using the E1[D1D2] torsion, we can try and split ψ as ψ̂2◦ψ1 where deg ψi = Di,
i = 1, 2. We compute ψ1 from E1[D1] and ψ2 from E2[D2]. We apply this idea in
Algorithm 5 to translate an ideal of norm dividing T 2 (instead of T previously)
to the corresponding isogeny. This means we now only need T ∼ p

3
2 instead of

T ∼ p3. We will see in Subsect. 8.2 that this is indeed possible.

Meet-in-the-Middle. Let us now assume that D = D1D2D
′, where D′ is a

reasonably small integer (in our application, D, D1, D2, D′ are all �-powers).
We can write an isogeny ψ of degree D as ψ̂2 ◦ θ ◦ ψ1 where deg ψ1 = D1,
deg θ = D′ and deg ψ2 = D2. The two isogenies ψ1, ψ̂2 can be computed using
E1[D1] and E2[D2] as before. Writing E3 and E4 for their codomains we know
that there is θ : E3 → E4 of degree D′. If D′ is small and smooth, a meet-
in-the-middle search allows us to recover θ efficiently. This idea, combined with
that of Subsect. 8.1, underlies Algorithm 6 IdealToIsogeny�2f+Δ , that is illustrated
in Fig. 2. In our implementation, this trick decreases the number of T -isogeny
computations, which currently are the efficiency bottleneck.

E0 E1

E3

E2

E4

E5

E6 θ

ϕ2

ϕ1

ϕK

ϕJ

ψ2

η

ρ2

ψ1

ψ′
1

smooth (coprime with 	) isogenies

	•-isogenies

meet-in-the-middle isogenies

Fig. 2. Graphical representation of the ideal to isogeny translation of Algorithm 6

Ideal to Isogeny: Our Optimized Solution. We are now ready to present the
algorithm IdealToIsogeny�• used in our implementation. The algorithm translates
an O-ideal in the corresponding isogeny for any maximal order O. It requires K a
left O0-ideal and right O-ideal of degree �• along with the corresponding isogeny
ϕK : E0 → E where O ∼= End(E). As before we write �f for the accessible
�•-torsion and T for the accessible smooth torsion coprime to �. We write Δ for
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a meet-in-the-middle parameter �Δ = D′ (see Subsect. 8.1). The algorithm uses
the following subroutines.

– SpecialIdealToIsogeny(J, I, ϕI): described in Algorithm 5, it takes I, J two left
O0-ideals of norm n(I) = �• and n(J) dividing T 2 along with the isogeny
ϕI : E0 → E and outputs ϕJ .

– IdealToIsogeny�2f+Δ(I, J,K, ϕJ , ϕK): described in Algorithm 6, it takes I a left
O0-ideal of norm dividing T 2�2f+Δ, J containing I of norm dividing T 2 and
K ∼ J of norm �• along with ϕJ , ϕK and outputs ϕ of degree �2f+Δ such
that ϕI = ϕ ◦ ϕJ .

The algorithm IdealToIsogeny�•(I,K, ϕK) is described in Algorithm 7. Note that
we do not provide any proof of correctness and termination for Algorithms 55
to 7. This is because these algorithms already existed in essence in [17,19] and
were only improved with the ideas of Subsect. 8.1 and Subsect. 8.1 for efficiency.

Algorithm 5. SpecialIdealToIsogeny(J, I, ϕI)
Require: Two equivalent left ideals I, J of O0, with J of norm dividing T 2 and I of

norm �•, and the corresponding isogeny ϕI : E0 → E.
Ensure: ϕJ .
1: H1 ← J + TO0.
2: Let α ∈ I such that J = χI(α).
3: H2 ← 〈α, (n(J)/n(H1))〉.
4: ϕHi ← IdealToIsogenyT (Hi) : E0 → Ei.
5: Let ψ : E → E/ϕI(ker ϕH2) = E1.
6: return ψ̂ ◦ ϕH1 .

8.2 Choosing the Parameters

We discuss now the choice of the parameters and most importantly the prime
p that we will use. As mentioned above, we need a prime p such that the T�f -
torsion is accessible for T � p3/2 and f is as big as possible. Recall that by
“accessible” we generally mean that the full T�f -torsion subgroup is defined
over a small extension of Fp2 . We can strengthen this by asking that T�f |
(p2 − 1), which implies that the full T�f -torsion is generated by four points with
x-coordinates in Fp2 , or equivalently by two Fp2 -rational points on the curve
with Frobenius trace −2p and two other Fp2 -rational points on its twist. Similar
primes were recently considered for use in B-SIDH [7], an adaptation of SIDH
with smaller (uncompressed) public keys.
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Algorithm 6. IdealToIsogeny�2f+Δ(I, J,K, ϕJ , ϕK)
Require: I a left O0-ideal of norm dividing T 2�2f+Δ, an O0-ideal in J containing I

of norm dividing T 2, and an ideal K ∼ J of norm a power of �, as well as ϕJ and
ϕK .

Ensure: ϕ = ϕ2 ◦ θ ◦ ϕ1 : E1 → E2 of degree �2f+Δ such that ϕI = ϕ ◦ ϕJ , L ∼ I of
norm dividing T 2 and ϕL.

0: Write ϕJ , ϕK : E0 → E1.
1: Let I1 = I + �fO0.
2: Let ϕ′

1 = IdealToIsogeny�f (I1).
3: Let ϕ1 = [ϕJ ]∗ϕ′

1 : E1 → E3.
4: Let L = KLPTT (I).
5: Let α ∈ K such that J = χK(α).
6: Let β ∈ I such that L = χI(β).
7: Let γ = βα/n(J). We have γ ∈ K, γ̄ ∈ L, and n(γ) = T 2�2f+Δn(K).
8: Let H1 = 〈γ, n(K)�fT 〉. We have ϕH1 = ψ1 ◦ ϕ1 ◦ ϕK : E0 → E5, where ψ1 has

degree T .
9: Let H2 = 〈γ, �fT 〉. We have ϕH2 = ρ2 ◦ ψ2 : E0 → E6, where ψ2 has degree T and

ϕ2 has degree �f .
10: Find η : E5 → E6 of degree �Δ with meet-in-the-middle.
11: Let ϕ2 ◦ θ = [ψ̂1]∗ρ̂2 ◦ η : E3 → E2 and ψ′

1 = [ϕ̂2 ◦ η]∗ψ̂1

12: return ϕ = ϕ2θ ◦ ϕ1, L and ψ′
1 ◦ ψ2.

Algorithm 7. IdealToIsogeny�•(I,K, ϕK)
Require: A left O-ideal I of norm a power of �, K a left O0-ideal and right O-ideal

of norm �•, the corresponding ϕK .
Ensure: ϕI .
1: Write I = In ⊂ · · · ⊂ I1 ⊂ I0 = O where n(Ii)/n(Ii−1) ≤ �2f+Δ.
2: J ← KLPTT (K).
3: ϕJ ← SpecialIdealToIsogeny(J, K, ϕK).
4: for i = 1, . . . , n do
5: ϕi, J, ϕJ ← IdealToIsogeny�2f+Δ(J · Ii, J, K, ϕJ , ϕK).
6: K ← K · Ii.
7: ϕK ← ϕi ◦ ϕK .
8: end for
9: return ϕn ◦ · · · ◦ ϕ1.

For λ bits of classical security, we need a prime of 2λ bits. In the implemen-
tation described in Subsect. 8.6, we used the 256-bits prime p such that

p + 1 = 233 · 521 · 72 · 11 · 31 · 83 · 107 · 137 · 751 · 827 · 3691 · 4019 · 6983
· 517434778561 · 26602537156291,

p − 1 = 2 · 353 · 43 · 103 · 109 · 199 · 227 · 419 · 491 · 569 · 631 · 677 · 857 · 859
· 883 · 1019 · 2713 · 4283.

This prime verifies that p2 − 1 is a multiple of 233T where T is a 395-bit 213-
smooth number. We give more details on the search for such primes in [13].
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Algorithm 7 requires numerous evaluations of T -isogenies, and this will prove
to be the bottleneck of our scheme. The recent work of [2] provided a square root
speedup to compute and evaluate an isogeny of degree d. Their method appears
to be faster than the naive method for d ≥ 100 approximately and our scheme’s
implementation also benefits from this improvement.

8.3 Defining the Key Space

For statistical security, the secret isogeny should be of degree sufficiently large,
so to ensure a nearly uniform distribution of the public key EA in the set of
supersingular curves. However, a larger degree results in a bigger output for
Algorithm 3, hence poorer performance. In this section we discuss an alternative
key sampling method which trades off statistical security for efficiency. The key
idea is to sample the degree of the secret isogeny as a secret big prime (instead
of a public smooth number). Choosing the degree not smooth thwarts meet-in-
the-middle attacks, while keeping it secret enlarges the search space. Together,
these two facts allow us to pick a degree Nτ of size log(Nτ ) = λ/2 for λ bits of
security. The key sampling method is described in Subsect. 8.4. A more detailed
security analysis can be found in the longer version [13].

This improvement produces a shorter and more efficient signature for the
same level of security, as it reduces the output size of Algorithm 3 from 9

2 log�(p)
to 15

4 log�(p). We use it for the implementations presented in Subsect. 8.6.

8.4 The Concrete Protocol

Now that we have all the preliminary algorithms, we can provide a concrete
description of our identification scheme. Let us assume that we have found a
prime p as described above in Subsect. 8.2. We recall that T ≈ p3/2 is the smooth
torsion defined over Fp2 for supersingular elliptic curves. For the challenge and
the commitment we divide T as Dc · T ′ where Dc is a λ-bit integer and T ′ a
2λ-bit integer. In the protocol presented below we decided to use D = �•.
Building τ (keygen). We use the efficiency improvement from Subsect. 8.3 hence
fix Bτ = 1

2λ. The degree Nτ is a prime number inert in R and smaller than Bτ ,
chosen uniformly at random among such numbers.

Since Nτ is a large prime number, we never compute concretely the isogeny τ
as this would be too inefficient. Instead we use the corresponding ideal Iτ . This
is enough to apply SigningKLPT but it does not give us the public key EA. For
this, we compute another isogeny τ ′ : E0 → EA of degree �•. This can be done
with KLPT. We briefly summarize the description above for keygen:

1. Select a prime Nτ ≤ Bτ that is inert in R uniformly at random.
2. Select a left O0-ideal Iτ of norm Nτ , uniformly at random among the Nτ + 1

possibilities.
3. Compute Jτ = KLPT�•(Iτ )
4. Compute τ ′ = IdealToIsogeny�•(Jτ ,O0, [1]E0) and set pk = EA the codomain

of τ ′.
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Building ψ (commitment). There are several options for building the com-
mitment (and incidentally the challenge); we present the most efficient option
here. We note that for security reasons, ψ must be as hard to recover as the
secret. This suggests taking a smooth isogeny of degree about p (here we do not
gain anything by using the same idea as in Subsect. 8.3). Given the factorization
T = Dc · T ′, we choose ψ as a random isogeny of degree T ′ from E0. With
this choice, computing the isogeny and converting it to an ideal is efficient. Let
Iψ := IsogenyToIdealT ′(ψ).
Building ϕ (challenge). The previous choice of commitment generation was
motivated by the fact that we want an efficient way to translate the challenge
into its corresponding ideal. For λ-bit soundness security we need a challenge
space of size 2λ = O(

√
p), so the challenge isogeny needs to be of degree O(

√
p).

Let ϕ : E1 → E2 be a random cyclic isogeny of degree Dc. Since the T = T ′Dc-
torsion is accessible, computing the corresponding ideal will be efficient for the
prover.
Building σ (response). The response is computed as follows:

1. Compute Iϕ = [Iψ]∗
(
IsogenyToIdealDc

([ψ]∗ϕ)
)
.

2. Set I = Iτ · Iψ · Iϕ and compute J = SigningKLPT(I, Iτ ).
3. Compute σ = IdealToIsogeny�•(J, Jτ , τ ′).

8.5 Response and Verification

In this section we discuss the verification part of the protocol. We remind the
reader that upon receiving σ, the verifier needs to check that it is an isogeny of
degree D between EA and E2 such that the composition with the challenge ϕ
is cyclic (this last part is trivial when D and Dc are coprime). All this can be
done by computing the chain of isogenies associated with σ. We decompose σ of
degree D = �e as σg ◦ · · · ◦σ1 where each of the σj has degree at most �f (f = 33
in our case). The main problem is to find a compact and efficient representation
of σ that can be sent to the verifier. A wide array of solutions already exist
in the literature for SIDH/SIKE [1,8,23,24,34] most of which can be applied
to our setting. In the longer version [13], we describe two compress, decompress
algorithms well-suited to our application.

8.6 The Concrete Instantiation

We discuss below the performance features of our implementation.

Signature Size and Comparison with Existing Schemes. For λ bit of
classical security, we take a prime p ≈ 22λ. The public key is the j-invariant of
the curve EA and it is of size 2 log2(p) = 4λ. The secret can be seen as a pair
Nτ , Iτ . The integer Nτ is a log(p)/4-bit prime, and we can represent Iτ as a
number in [1, Nτ +1], so another log(p)/4-bit integer. In total the secret key has
size λ. The signature is made of E1 and σ, where σ is compressed as described
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in Subsect. 8.5. As argued there, we can either use a full compression of exactly
e bits, or allow for a few additional bits to accelerate the verification time. With
the second method the size is e + 4(�e/f� − 1). We recall that, using for keys as
in Subsect. 8.3, e = 15/4 log(p)+O(log(λ)). Representing the commitment curve
E1 requires 2 log2(p) = 4λ additional bits. We summarize these values in Table 2
when λ = 128, for our concrete instantiation we have log2(p) = 256, f = 33 and
e = 1000.

Table 2. Size of SQISign keys and signature for the NIST-1 level of security.

Secret key (bytes) Public key (bytes) Signature (bytes)

16 64 204

These sizes make SQISign the most compact post-quantum digital signature
targeting NIST-1 level of security, in terms of combined public key and signature
size. With respect to round 2 candidates, it is more than 5 times more compact
than Falcon [18] in terms of combined size, and only trails GeMSS [4] in terms
of signature size. Signatures are more compact than RSA, and about three times
larger than ECDSA, for a comparable level of classical security.

Performance. We implemented SQISign in C, on top of the libpari library
of PARI/GP 2.11.4 [30], and a port of the isogeny evaluation code published
in [2]. Our code is available at https://github.com/SQISign/sqisign. We ran
experiments on a 3.40GHz Intel Core i7-6700 (Skylake) CPU with Turbo Boost
disabled. The code was compiled using clang-6.0 -O3 -Os -march=native
-mtune=native -Wall -Wextra -std=gnu99 -pedantic.

The results are summarized in Table 3. We empirically chose the parameter
Δ = 14. For key generation we generated 100 random keys. For signature we
generated 10 random keys and signed 10 random messages under each key. For
verification we generated 5 random keys, we signed 5 random messages under
each key, and we ran verification 10 times. We stress that we did not attempt
at producing a constant-time implementation, which appears to be an intensive
task owing to the complexity of the algorithms involved.

Table 3. Performance of SQISign in millions of cycles and in milliseconds. Statistics
over 100 runs for key generation and signature, and over 250 runs for verification.

Keygen Sign Verify

Mcycles 1st quartile 1,922 7,687 140

Median 1,959 7,767 142

3rd quartile 2,000 7,909 148

Ms 1st quartile 564 2,256 41

Median 575 2,279 42

3rd quartile 587 2,321 43

https://github.com/SQISign/sqisign
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9 Conclusion

We introduced a new signature scheme along with a concrete instantiation and
implementation. Our implementation proves that our signature is quite effi-
cient compared to other isogeny-based candidates. The associated identification
scheme is sound under classical isogeny assumptions, while its zero-knowledge
relies on hardness of a new ad hoc problem. We briefly justified that this new
problem bears some resemblance with existing hard problems, lending some cred-
ibility to its conjectured hardness.

More work on understanding the output distribution of our generalized
KLPT algorithm is needed to gain confidence in the security of SQISign. It
would be interesting, for example, to reduce the zero-knowledge property to
more classical assumptions. Such a result would probably come at a cost in
terms of efficiency as this would mean using a different generalization of KLPT.
Indeed, from our analysis in Sect. 7 it appears unlikely to prove security under
classical assumptions with the current algorithm.

The second direction for improvement is efficiency. The scheme is complex
and there is a lot of potential for optimizations. A search for better parameters
could allow one to obtain a more efficient signature, and algorithmic progress in
any aspect of isogeny computations and evaluations would probably impact the
performance. The main bottleneck remains the translation from ideals to isoge-
nies, new techniques for which could greatly benefit our protocol. For instance,
finding a more direct algorithm that does not rely as heavily on rational tor-
sion points could yield a more efficient translation. Finally, any improvement to
KLPT producing ideals of smaller norm in reasonable time would improve every
single step of the translation, thus greatly reducing the signature time.
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