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1 Horst Görtz Institute for IT Security, Ruhr University Bochum, Bochum, Germany
{phil.hebborn,gregor.leander}@rub.de, baptiste.lambin@protonmail.com

2 NTT Secure Platform Laboratories, Tokyo, Japan
yosuke.todo.xt@hco.ntt.co.jp

Abstract. Only the method to estimate the upper bound of the alge-
braic degree on block ciphers is known so far, but it is not useful for the
designer to guarantee the security. In this paper we provide meaningful
lower bounds on the algebraic degree of modern block ciphers.
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1 Introduction

Along with stream ciphers and, more recently, permutation based cryptography,
block ciphers are among the most efficient cryptographic primitives. As such
block ciphers are one of the cornerstones of our cryptographic landscape today
and indeed are used to ensure the security for a large fraction of our daily com-
munication. In a nutshell, a block cipher should be an, efficient to implement,
family of permutations that cannot be distinguished from a randomly selected
family of permutations without guessing the entire secret key. The community
has, in general, a rather good understanding of the security of block ciphers and
arguments of their security have become significantly more precise and, using
tool-based approaches for many aspects, significantly less error-prone. However,
for some of the most basic properties a block cipher should fulfill, good arguments
are still missing. One of those properties is the algebraic degree of a permutation,
resp. the degree of a family of permutations. For a randomly drawn permuta-
tion, the degree is n − 1 almost certainly. Thus, in order to be indistinguishable
from a random permutation, a block cipher should also have degree n − 1. This
observation, and generalisations of it, leads indeed to a class of attacks called
integral attacks, introduced already in [10,14]. Very similar concepts are known
as high-order differential attacks [15] and cube-attacks [11].

It is highly desirable to be able to argue that a given block-cipher has
degree n − 1, or in general high degree. However, so far, we only have upper
bounds on the degree of our ciphers. Those bounds, see e.g., [15] and in par-
ticular [6,8] are very efficient to compute in most cases and far from trivial.
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Unfortunately, upper bounds on the degree are not very helpful for a designer
of a cipher, as this is not what is needed to argue about the security of a given
design. What we actually need, and what has not been achieved so far, is to give
meaningful lower bounds on the degree.

Algebraic Degree of Keyed (Vectorial) Functions. Before we describe
our results, we will define precisely the degree and discuss how lower and upper
bounds have to be understood in order to avoid confusion, see e.g., [9] for more
background on Boolean functions. Consider a general set-up of a (parameterized,
vectorial) Boolean function

Fk : Fn
2 → F

m
2

with k ∈ F
�
2. Any such function can be uniquely described by its algebraic normal

form as
Fk(x) =

∑

u∈F
n
2

pu(k)xu

where xu is short for
∏

i xui
i and pu(k) are functions

pu : F�
2 → F

m
2

mapping keys to values in F
m
2 . If there is no parameter, i.e., no key, then all pu

degenerate naturally to constants and if, on top, it is not a vectorial Boolean
function, i.e., if m = 1, these constants are just bits, i.e., pu ∈ F2. The definition
of (algebraic) degree is the same in all cases and is given as

deg(F ) := max
u

{wt(u) | pu �= 0}.

Here wt(u) denotes the Hamming weight of u, i.e., the number of 1 and this
weight corresponds to the number of variables multiplied in xu.

For clarity, consider the case of a keyed vectorial function. The degree of F
is d or higher if there exist a u of Hamming weight d such that pu is not zero,
i.e., not the constant zero function.

A lower bound d on the degree of F implies that there exists at least one key
and at least one output bit which is of degree at least d. An upper bound d on
the degree of F implies that for all keys all output bits are of degree at most d.

For cryptographic purposes, the degree as defined above is not always sat-
isfactory. An attacker can always pick the weakest spot, e.g., an output bit of
lowest degree. A vectorial function of high degree might still have very low degree
in one specific output bit or, more general, in a specific linear combination of
output bits. This motivates the notion of minimum degree. For this, one con-
siders all non-zero linear combination of output bits 〈β, F 〉 and the minimum
degree of all those Boolean functions

minDeg(F ) = min
β �=0

deg(〈β, F 〉).

A lower bound d on the minimum degree of a function implies that for all com-
ponent functions 〈β, F 〉 there exist a key such that the degree of the component
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function is at least d. An upper bound d on the minimum degree of a function
implies that there exist at least one component function that has degree at most
d for all keys.

Table 1. Summary of the number of rounds to get full degree/full minimum degree/ap-
pearance of all max-degree monomials. We also label “tight” when they fit with the
upper bounds.

Full degree Full minimum degree All max-degree monomials

GIFT-64 8 (tight) 10 11

SKINNY64 10 (tight) 11 (tight) 13

PRESENT 8 (tight) 10 11

Note

AES Algebraic degree is at least 116 in 4 rounds

Fig. 1. Algebraic degree and minimum degree on SKINNY64, where UB and LB denote
upper bound and lower bound, respectively.

Our Results. In this paper we present – for the first time – non-trivial lower
bounds on the degree and minimum degree of various block ciphers with the sole
assumption of independent round-keys. More precisely, we assume that after each
round a new round key is added to the full state.

We hereby focus in particular on the block ciphers that are used most fre-
quently as building blocks in the ongoing NIST lightweight project1, namely
GIFT-64, SKINNY64, and AES. Furthermore, we investigate PRESENT. Our results
are summarized in Table 1. To give a concrete example of our results, consider
the block cipher SKINNY64 [4]. We are able to show that 10 and 11 rounds
are sufficient to get full, i.e., 63, degree and minimum degree, respectively.
Together with the known upper bounds, we get a rather good view on the actual
degree development of SKINNY64 with increasing number of rounds (see Fig. 1).
1 https://csrc.nist.gov/Projects/lightweight-cryptography.

https://csrc.nist.gov/Projects/lightweight-cryptography
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Besides the degree and the minimum degree, we also elaborate on the appear-
ance of all n possible monomials of maximal degree, i.e., degree n − 1. While
this is not captured by a natural notion of degree, it does capture large classes
of integral attacks. With respect to this criterion, we also show that 13 rounds
are enough for SKINNY64.

Technical Contribution. Our results are based on the concept of division
property and require a non-negligible, but in all cases we consider, practical
computational effort. They can be derived within a few hours on a single PC.
All code required for our results will be made publicly available.

The main technical challenge in our work (and many previous works based
on division property) is to keep the model solvable and the number of division
trails in a reasonable range. For our purpose, we solve this by optimizing the
division property of the key, a freedom that was (i) previously not considered
and (ii) allows to speed-up our computations significantly.

Previous Works. This paper has strong ties with all the previous works related
to division property. Division property is a cryptanalysis technique introduced at
EUROCRYPT’15 by Todo [19], which was then further refined in several works
[20,21]. Technically, the papers at EUROCRYPT’20 [12] is the most important
previous work for us. We will give a more detailed review of previous works in
Sect. 2 when also fixing our notation.

Outline. We present our notation related to the division property in Sect. 2.
We try to simplify and clarify some previous definitions and results. We hope
that in particular readers without prior knowledge on division property might
find it accessible. In Sect. 3 we provide a high-level overview of our results and
how they were achieved. As mentioned above, the main technical contribution is
the optimization for a suitable division-property for the key, which is explained
in Sect. 4. Our applications and the detailed results for the ciphers studied are
given in Sect. 5. Being the first paper to derive meaningful lower bounds on
ciphers by relying only on independent round-keys, our work leaves many open
questions and room for improvements. We elaborate on this in Sect. 6 concluding
our work.

Finally we note that all our implementations are available at

https://github.com/LowerBoundsAlgDegree/LowerBoundsAlgDegree.

2 Notation and Preliminaries

Let us start by briefly fixing some basic notation. We denote by F2 the finite
field with two elements, basically a bit, and by F

n
2 the n-dimensional vector

space over F2, i.e., the set of n-bit vectors with the XOR operation as the addi-
tion. For x, y ∈ F

n
2 we denote by 〈x, y〉 =

∑
i xiyi the canonical inner product.

https://github.com/LowerBoundsAlgDegree/LowerBoundsAlgDegree
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For a function F : F
n
2 → F

m
2 given as F (x) = (F (1)(x), . . . , F (m)(x)) with

F (i) : Fn
2 → F2, the F (i) are referred to as the coordinate functions of F and any

linear combination 〈β, F (x)〉 of those as a component function of F . We use +
to denote all kind of additions (of sets, vectors, polynomials, monomials) as it
should be clear from context.

In this section we start by recalling the development of division property
since its first introduction by Todo [18]. The technique has been proven very
helpful in many applications and led to a large variety of results. The notion of
trails [22] has been an important technical improvement that itself already has
undergone several iterations. We try to simplify notations and at the same time
make some previous definitions and results more rigid and precise. The aim is to
be self contained and accessible to readers without prior knowledge on division
property. Before doing so, we briefly recapture the previous developments.

2.1 Previous Works on Division Properties

This paper has strong ties with all the previous works related to division property
and as such, we would like to precisely describe where our work fits and what
are the precise relations and differences with the division property. Division
property is a cryptanalysis technique introduced at EUROCRYPT’15 by Todo
as a technique to study the parity of xu [19]. This initial variant is by now
referred to as the conventional division property (CDP). This was further refined
to the bit-based division property (BDP) by Todo and Morii at FSE’16 [21]. The
core idea of the division property is to evaluate whether the ANF of a block
cipher contains some specific monomials. More precisely, given a monomial m in
the plaintext variables, the BDP can essentially allows us to derive one of two
possible results: either the ANF of a block cipher does not contain any multiple
of the monomial m, or we simply do not know anything (i.e., we cannot prove
the existence or non-existence of the monomial or its multiples). Another way
to see the BDP is that, for a given set X, it splits the space F

n
2 into two distinct

parts, depending on the value of the sum su =
∑

x∈X
xu, u ∈ F

n
2 :

– A set K ⊂ F
n
2 such that for any u ∈ K, we do not know the value of su.

– For the remaining u ∈ F
n
2 \ K, we know that su = 0.

While this was already powerful enough to find new integral distinguishers (e.g.
[18,20]), the imperfect nature of the division property means that some known
integral distinguisher could not be explained using the division property. This
was noticed by Todo and Morii in their FSE’16 paper, as a 15-round distin-
guisher over the block cipher SIMON [3] could not be explained with BDP.
They thus extended the concept to three-subset division property (3SDP) to
cover this distinguisher. Now, for a given monomial, the 3SDP can give us one
of the following:

– The ANF does not contains any multiple of the monomial.
– The ANF contains exactly this monomial.
– We cannot prove neither existence nor non-existence of the monomials.
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The term three-subset comes from the fact that we now split Fn
2 into three parts:

one where we know that su = 0, one where we know that su = 1 (aka, the L

set), and the results is unknown for the remaining u’s (aka, the K set). Again,
there is still a loss of information and there are some cases where we do not get
any information.

The main reason for this loss of information comes from the fact that pre-
vious techniques give results that are independent from the key used, hence the
inability to precisely compute (parts of) the ANF. This fact was noticed and
exploited at EUROCRYPT’20 by Hao et al. [12], where they introduced the
three-subset division property without unknown subset (3SDPwoU). Their idea
was to remove the “unknown subset”, splitting F

n
2 into two parts, either su = 0

or su = 1, however the implication for this is that we can no longer ignore the
key. While they applied this technique to stream ciphers, they mentioned that
this technique might be used for block ciphers, but left as an open problem.

It is worth noting that this idea of splitting F
n
2 into two parts where either

su = 0 or su = 1 has also been studied as another view of the division property
by Boura and Canteaut at CRYPTO’16 [7] using the term parity set. However,
they did not focus on actual algorithmic aspects. For our results, the focus on
algorithmic aspects and in particular the notation of division trails is essential.

To summarize, originating with the division property, many variants such as
BDP, 3SDP, and the parity set (which is essentially the same as the 3SDPwoU)
have been proposed. After many algorithmic improvements for BDP and 3SDP,
nowadays, it enables us to evaluate the most extreme variant, parity set, which
allows to decide whether or not a specific monomial appears in the ANF.

2.2 Division Properties and the ANF

Any function F : Fn
2 → F

n
2 can be uniquely expressed with its algebraic normal

form.
F (x) =

∑

u

λuxu

where λu ∈ F
n
2 . It is well known that the coefficients can be computed via the

identity

λu =
∑

x�u

F (x) (1)

where x � u if and only if xi ≤ ui for all i where elements of F2 are seen as
integers.

We start by recalling the division property, more accurately the definition of
parity set, as given in [7].

Definition 1 (Parity Set). Let X ⊆ F
n
2 be a set. We define the parity set

of X as

U(X) :=

{
u ∈ F

n
2 such that

∑

x∈X

xu = 1

}
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The power of the division property as introduced in [19] is that (i) it is often
easier to trace the impact of a function on its parity set than on the set itself
and (ii) the evolution of certain parity sets is related to the algebraic normal
form of the functions involved.

Defining the addition of two subsets X,Y ⊆ Fn
2 by

X + Y := (X ∪ Y) \ (X ∩ Y)

the set of all subsets of Fn
2 becomes a binary vector space of dimension 2n. Note

that this addition is isomorphic to adding the binary indicator vectors of the
sets. Also note that if an element is contained both in X and Y is not contained
in the sum.

From this perspective U is a linear mapping and the division property can
be seen as a change of basis. In particular for Xi ⊂ F

n
2 it holds that

U
(∑

Xi

)
=

∑
U (Xi)

It was shown in [7] that there is a one to one correspondence between sets and
its parity set, that is the mapping

U : X → U(X)

is a bijection and actually its own inverse, i.e.,

U(U(X)) = X.

Those properties follow from the linearity of U and the following lemma. The
proof is added for completeness and to get familiar with the notation.

Lemma 1. Let U be the mapping defined above and � be an element in F
n
2 . Then

1. U({�}) = {u ∈ F
n
2 | u � �}

2. U({x ∈ F
n
2 | x � �}) = {�}

Proof. For the first property, we note that xu = 1 if and only if u � x. Thus we
get

U({�}) =

⎧
⎨

⎩u ∈ F
n
2 such that

∑

x∈{�}
xu = 1

⎫
⎬

⎭

= {u ∈ F
n
2 such that �u = 1}

= {u ∈ F
n
2 | u � �}

For the second property, we see that
∑

x∈F
n
2 | x�� xu = 1 if and only if u = �.

Let Au be the number of elements x � � such that xu = 1 we get

Au = |{x � � | xu = 1}| = |{x � � | u � x}| = |{x ∈ F
n
2 | u � x � �}|

and it holds that Au is odd if and only if � = u, which completes the proof. ��
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We next introduce the propagation of the division property and the notion
of the division trail. More formally, as our focus is the parity set, its propagation
is identical to the propagation of the so-called L set in 3SDP introduced in
[21]. Moreover, the division trail is identical to the three-subset division trail
introduced in [12].

The division property provides the propagation rule for some basic opera-
tions, such as XOR or AND, and the propagation has been defined in this context
as a bottom-up approach. The propagation rule allows us to evaluate any ciphers
without deep knowledge for underlying theory for the division property, and it is
one of advantages as a cryptanalytic tool. On the other hand, for a mathemati-
cal definition of the propagation, a top-down approach, starting with a general
function and deriving the propagation rules as concrete instances, is helpful.

Definition 2 (Propagation). Given F : Fn
2 → F

m
2 and a ∈ F

n
2 , b ∈ F

m
2 we say

that the division property a propagates to the division property b, denoted by

a
F−→ b

if and only if
b ∈ U(F (U({a})))

Here the image of a set X under F is defined as

F (X) :=
∑

a∈X

{F (a)},

that is again using the addition of sets as defined above.
The propagation is defined without specifying each concrete operation in

Definition 2. For any application, Definition 2 will never be applied directly.
Nevertheless, only using this definition reveals one important property of the
propagation very simply. Given U1 = U(X), for any function F , U2 = U(F (X))
is evaluated as

U2 = U(F (X)) =
∑

x∈X

U(F ({x})) =
∑

a∈U(X)

U(F (U({a}))) =
∑

a∈U1

a
F−→b

{b}. (2)

This shows that our definition fits to the intuitive meaning of propagation: In
order to determine U2 after applying the function F , it is enough to consider
what happens with individual elements of U1 to start with. Here again, we like
to emphasize that the sum in Eq. 2 is modulo two, that is, if an element appears
an even number of times on the right side, it actually does not appear in U2.
Of course, to evaluate the propagation in real, we need to mention the concrete
propagation a

F−→ b, and we also give the following proposition, which allows to
easily deduce the possible propagation given the ANF of a function.

Proposition 1. Let F : Fn
2 → F

m
2 be defined as

F (x1, . . . , xn) = (y1, . . . , ym) = y
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where yi are multivariate polynomials over F2 in the variables xi. For a ∈ F
n
2

and b ∈ F
m
2 , it holds that a

F→ b if and only if yb contains the monomial xa.

Proof. By Definition 2, we have a
F→ b if and only if b ∈ U(F (U({a}))). Using

Lemma 1, we can see that

Y := F (U({a})) = {F (x) | x � a, x ∈ F
n
2}.

Hence b ∈ U(Y) exactly means
∑
x�a

F b(x) = 1. Note that F b is a Boolean function

over the variables x1, . . . , xn whose ANF is exactly yb, that is

F b(x) =
∑

u∈F
n
2

λuxu = yb.

Using the well known relation between a function and the coefficients of its ANF,
having

∑
x�a

F b(x) = 1 directly gives that λa = 1, i.e., the monomial xa appears

in the ANF of F b, said ANF being exactly yb. ��
We remark that all propagation rules already introduced in [21] are generated
by assigning concrete function to F . We refer the reader to [21] for more details
about these propagation rules

Following previous work, we now generalize the definition above to the setting
where F is actually given as the composition of many functions

F = FR ◦ · · · ◦ F2 ◦ F1.

Definition 3 (Division Trail). Given F : Fn
2 → F

n
2 as

F = FR ◦ · · · ◦ F2 ◦ F1

and a0 . . . aR ∈ F
n
2 we call (a0, . . . , aR) a division trail for the compositions of F

into the Fi if and only if

∀i ∈ {1, . . . , R}, ai−1
Fi−→ ai.

We denote such a trail by

a0
F1−→ a1

F2−→ · · · FR−−→ aR.

Using the same considerations as in Eq. 2, we can now state the main reason of
why considering trails is useful.

Theorem 1. Given F : Fn
2 → F

n
2 as

F = FR ◦ · · · ◦ F2 ◦ F1

and X ⊆ F
n
2 . Then

U(F (X)) =
∑

a0,...,aR

a0∈U(X),a0
F1−→a1

F2−→···
FR−−→aR

{aR}
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The important link between the division property and the ANF is the following
observations and is actually a special case of Proposition 1.

Corollary 1. Let F : Fn
2 → F

n
2 be a function with algebraic normal form

F (x) =
∑

u∈F
n
2

λuxu

where λu = (λ(1)
u , . . . , λ

(n)
u ) ∈ F

n
2 . Furthermore, let X be the set such that U(X) =

{�}. Then
λ
(i)
� = 1 ⇔ ei ∈ U(F (X))

Proof. If U(X) = {�}, by Lemma 1 we have

X = {x ∈ F
n
2 | x � �}.

Now by Eq. (1) we get

λ
(i)
� =

∑

x��

F (i)(x) =
∑

x∈X

F (i)(x)

=
∑

x∈F (X)

xei =
{

1 if ei ∈ U(F (X))
0 otherwise

which concludes the proof. ��
Theorem 1 and Corollary 1 finally result in the following corollary.

Corollary 2. Let F : Fn
2 → F

n
2 be a function with algebraic normal form

F (x) =
∑

u∈F
n
2

λuxu

where λu = (λ(1)
u , . . . , λ

(n)
u ) ∈ F

n
2 and F = FR ◦ · · · ◦F2 ◦F1. Then λ

(i)
� = 1 if and

only if the number of trails

�
F1−→ a1

F2−→ · · · FR−−→ ei

is odd.

Proof. Follows immediately from the statements above. ��
This is what is actually solved using SAT solvers and/or mixed integer linear
programming techniques. Before going into the details of the algorithmic app-
roach, we explain why the case of a keyed function does not significantly change
the perspective in our application in the next section.
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3 High-Level Approach

Conceptually, there is no difference between key variables and input variables
when it comes to division properties as used here and outlined in the previous
section. It is only about splitting the set of variables into two (or potentially
more) sets and changing the notation accordingly. Consider a function

E : Fn
2 × F

m
2 → F

n
2

(x, k) → E(x, k)

When thinking of E as a block cipher, we usually rephrase this as a family of
functions indexed by k, i.e., we consider

Ek : Fn
2 → F

n
2

where Ek(x) = E(x, k).

The algebraic normal form (ANF) of E and Ek are not identical, but related.
Starting with the ANF of E expressed as

E(x, k) =
∑

u∈F
n
2 ,v∈F

m
2

λu,vxukv, (3)

we get the ANF of Ek by rearranging terms as

Ek(x) =
∑

u∈F
n
2

⎛

⎝
∑

v∈F
m
2

λu,vkv

⎞

⎠ xu =
∑

u∈F
n
2

pu(k)xu,

where
pu(k) =

∑

v∈F
m
2

λu,vkv

are the key-dependent coefficients of the ANF of function Ek.
Note that the degree of E and Ek, which we already defined in Sect. 1 are

usually different as

deg(E) = max
u∈F

n
2 ,v∈F

m
2

{wt(u) + wt(v) | λu,v �= 0}

while
deg(Ek) = max

u∈F
n
2

{wt(u) | pu(k) �= 0}.

Here, clearly, we are interested in the later.
In order to lower bound the degree of Ek by some value d, we have to find a

vector u of hamming weight d, such that pu(k) is non-zero. For a given u, there
are two basic approaches to do so.
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Fixed Key. Conceptually, the easiest way to lower bound the degree of Ek

is to simply choose a random key k and, using Corollary 2 for computing one
ANF coefficient of large degree. If this is feasible for a random key and the
corresponding coefficient is actually 1, the degree must be larger or equal than
d. If, however, the corresponding coefficient is zero, nothing can be concluded
and one might have to repeat either for a different key or a different coefficient,
or both. The advantage of this approach is its conceptual simplicity and that it
can take an arbitrary key-scheduling into account. The significant drawback is
that this approach becomes quickly impossible in practice. We elaborate on our
initial findings using this approach in Sect. 6.

Variable Key. Luckily, we can use another approach. Namely, in order to show
that the degree of Ek is at least d, it is sufficient to identify a single u ∈ F

n
2 of

Hamming weight d and an arbitrary v ∈ F
m
2 such that λu,v �= 0 (see Eq. 3) as

this implies pu(k) �= 0. While this approach might seem more difficult at first
glance, computationally it is significantly easier, especially when independent
round-keys are assumed.

By definition, the keyed function Ek has degree at least d if for one u ∈ F
n
2

of weight d and any v ∈ F
m
2 the coefficient vector

λu,v = (λ(1)
u,v, . . . , λ(n)

u,v) ∈ F
n
2 .

is non zero. So actually it is enough if, for one such u of weight d, an arbitrary
v and any 1 ≤ i ≤ n it holds that λ

(i)
u,v = 1.

3.1 Minimum Degree

However, from an attacker perspective it is sufficient if there exists a single
output bit of low degree. Thus, a stronger bound on the degree would potentially
show that for all i there exist a u of weight d and an arbitrary v such that
λ
(i)
u,v = 1. This would ensure that for each output bit there exists a key such that

the degree of this output bit is at least d.
Again, this is not enough, as the attacker could equally look at any linear

combination of output bits of her choice. The above result does not imply any
bound on the degree of such linear combinations. Indeed, we would like to show
that for each linear combination, there exists a key such that the degree of this
linear combination is at least d. This is exactly captured in the definition of
minimum degree.

Definition 4. The minimum degree of a function F : Fn
2 → F

n
2 is defined as

minDeg(F ) = min
β∈F

n
2 ,β �=0

deg〈β, F 〉

Now, while for the degree it was sufficient to identify a single suitable coef-
ficient λ

(i)
u,v equal to one, things are more intricate here. There are, in principle,
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2n − 1 component functions 〈β, F 〉 to be studied. Indeed, considering a single
(u, v) pair and the corresponding λu,v coefficient is not sufficient, as choosing any
β such that 〈β, λu,v〉 = 0 results in a component function that does not contain
the monomial kvxu in its ANF. It is this canceling of high degree monomials
that has to be excluded for lower bounding the minimum degree.

In order to achieve this it is sufficient (and actually necessary) to find a set

S = {(u1, v1), . . . , (ut, vt)}

of pairs (u, v) of size t ≥ n and compute the value of λ
(i)
u,v for all i and all

(u, v) ∈ S. This will lead to a binary matrix

MS(Ek) =

⎛

⎜⎜⎜⎜⎝

λ
(1)
u1,v1 λ

(1)
u2,v2 · · · λ

(1)
ut,vt

λ
(2)
u1,v1 λ

(2)
u2,v2 · · · λ

(2)
ut,vt

...
λ
(n)
u1,v1 λ

(n)
u2,v2 · · · λ

(n)
ut,vt

⎞

⎟⎟⎟⎟⎠
.

What has to be excluded, in order to bound the minimum degree is that columns
of this matrix can be combined to the all zero vector, as in this case all monomials
kvixui cancel in the corresponding linear combination. Clearly, this is possible
if and only if the columns are linear dependent. This observation is summarized
in the following proposition.

Proposition 2. A keyed function Ek has minimum degree at least d if and only
if there exist a set S such that the matrix MS(Ek) has rank n and

d ≤ min
(u,v)∈S

wt(u)

3.2 Appearance of All High-Degree Monomials

Returning to the attacker perspective, it is clear that bounds on the minimum
degree are more meaningful than bounds on the algebraic degree. However, it
is also clear that even those are not enough to exclude the existence of integral
attacks. In particular, even so the minimum degree of a function is n−1, it could
be the case that a certain monomial xu of degree n− 1 never occurs in the ANF
of the linear combination 〈β,Ek(x)〉 of output bits. That is, a minimum degree
of n − 1 does not exclude that 〈β, λu,v〉 = 0 for a fixed u and all v.

In order to ensure that this does not happen we have to show that for each
fixed u of weight n − 1 there exist vectors vi such that MSu

(Ek) has full rank
for

Su = {(u, v1), . . . , (u, vt)}.

Here, we are (i) more restricted in the choice of the pairs in S as we always have
to use the same fixed u and (ii) have to repeat the process n times, once for each
u of weight n − 1.
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Interestingly, the appearance of all high-degree monomials excludes a large
class of integral distinguishers. Namely, for a cipher where all high-degree mono-
mials appear (for at least one key), there will not be integral distinguisher by
fixing bits that work for all keys. This is a consequence of the following obser-
vation that separates the pre-whitening key from the remaining round keys.

Proposition 3. Let Ek : Fn
2 → F

n
2 be a cipher with ANF

Ek(x) =
∑

u∈F
n
2

pu(k)xu

and consider a version of Ek with an additional pre-whitening key k0, i.e.

Ek,k0(x) := Ek(x + k0)

with ANF
Ek,k0(x) =

∑

v∈F
n
2

qv(k, k0)xv

If, for all u of weight n − 1 the coefficient pu(k), is non-constant, it follows that
qv(k, k0) is non-constant for all v of weight less than n.

Proof. We first express qv(k, k0) in terms of pu. We get

Ek,k0(x) = Ek(x + k0) =
∑

u∈F
n
2

pu(k) (x + k0)
u

=
∑

u∈F
n
2

pu(k)

⎛

⎝
∑

v�u

xvku⊕v
0

⎞

⎠ =
∑

v∈F
n
2

⎛

⎝
∑

u�v

pu(k)ku⊕v
0

⎞

⎠ xv

This shows that
qv(k, k0) =

∑

u�v

pu(k)ku⊕v
0

Now, for any v of weight at most n−1, there exists at least one u′ � v of weight
n − 1 in the sum above. By the assumption on Ek it holds that pu′(k) is not
constant. Therefore, qv is not constant as a function in k and k0, which concludes
the proof. ��

3.3 The Key Pattern

Computing the values of λ
(i)
u,v is certainly not practical for arbitrary choice of

(u, v) and i. There is not a lot of freedom in the choice of u, especially not if
we aim at showing the appearance of all high degree monomials. However, there
is a huge freedom in the choice of v, that is in the key monomial kv that we
consider.

It is exactly the careful selection of suitable v that has a major impact on
the actual running time and finally allows us to obtain meaningful results in
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practical time. It is also here where assuming independent round-keys is needed.
Consider that case of a key-alternating block cipher depicted below2

Optional Expansion Algorithm

k

s0 f
s1

. . . f
sR

sR+1

k0 k1 kR−1 kR

When considering independent round-keys, the key monomial kv actually
consists of

kv = kv(0)

0 kv(1)

1 . . . kv(R)

R .

Here, we can select for each round-key ki a suitable vector v(i) freely.
Returning to Corollary 2 and the division property, recall that λ

(i)
u,v = 1 if and

only if the number of division trails (u, v) → ei is odd. The vector v and therefore
its parts v = (v(0), . . . , v(R)) correspond to (parts of) the input division property.
We will refer to v and its parts as the key-pattern. The number of trails, and
therefore the computational effort, is highly dependent on this choice. This is
the main technical challenge we solve, which is described in the following Sect. 4.

4 How to Search Input/Key/Output Patterns

As we already discussed above, we need to find u (called an input pattern)
and (v0, . . . , vR) (called a key pattern), in which the number of trails from
(u, v0, . . . , vR) to some unit vector ei (called a output pattern) is odd and, equally
important, efficiently computable. To do so, we will mainly rely on the use of
automatic tools such as MILP and SAT. We refer the reader to [12] for the mod-
eling in MILP and to [16] for the modeling in SAT (note that this paper shows
how to modelize BDP in SAT, but it can easily be adapted in our context).

Once we get such an input/key/output pattern, it is very easy to verify the
lower bound of the degree using standard techniques. We simply enumerate all
trails and check the parity of the number of trails3.

Therefore, the main problem that we need to solve is how to select suitable
input/key/output patterns. In general, we search key patterns whose Hamming
weight is as high as possible. The number of trails is highly related to the number
of appearances of the same monomial when they are expanded without canceling
in each round. Intuitively, we can expect such a high-degree monomial is unlikely
to appear many times. Unfortunately, even if the key pattern is chosen with
high weight, the number of trails tends to be even or extremely large when these
patterns are chosen without care.
2 Thanks to TikZ for Cryptographers [13].
3 We also provide a simple code to verify our results about lower bounds.
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Parasite Sub-Trails. To understand the difficulty and our strategy to find
proper input/key/output patterns, we introduce an example using SKINNY64.

Fig. 2. Extraction from the trail of SKINNY64

Assume that we want to guarantee that the lower bound of algebraic degree of
R-round SKINNY64 is 63. Given an input/key/output pattern, let us assume that
there is a trail that contains the trail shown in Fig. 2 somewhere in the middle
as a sub-trail. This sub-trail only focuses on the so-called super S-box involving
the 4th anti-diagonal S-boxes in the (r + 1)th round and the 1st-column S-boxes
in the (r + 2)th round. A remarkable, and unfortunately very common, fact is
that this sub-trail never yields an odd-number of trails because we always have
the following two different sub-trails.

T1 : 0x76E0
SC−−→ 0xC420

ART (+0x2000)−−−−−−−−−→ 0xE420
MC−−→ 0x0E60

SC−−→ 0x0240

T2 : 0x76E0
SC−−→ 0x1420

ART (+0x2000)−−−−−−−−−→ 0x3420
MC−−→ 0x0360

SC−−→ 0x0240

The trail shown in Fig. 2 is T1, and we always have another trail T2. Like this,
when the number of sub-trails is even under the fixed input, key, and output
pattern of the sub-trail, we call it an inconsistent sub-trail. Moreover, inconsistent
sub-trails are independent of other parts of the trail and might occur in several
parts of trails simultaneously. Assuming that there are 10 inconsistent sub-trails,
the number of the total trails is at least 210. In other words, inconsistent sub-
trails increase the number of total trails exponentially .

Heuristic Approach. It is therefore important to avoid trails containing incon-
sistent sub-trails. Instead of getting input/key/output pattern, the goal of the
first step in our method is to find a trail, where all sub-trails relating to each
super S-box are consistent, i.e., there is no inconsistent sub-trail as long as each
super S-box is evaluated independently. Note that this goal is not sufficient for
our original goal, and the number of total trails might still be even. Therefore,
once we get such a trail, we extract the input/key/output pattern from the found
trail, and check the total number of trails with this pattern.

We have several approaches to find such a trail. As we are actually going
to search for these patterns and enumerate the number of trails using MILP
or SAT solvers, the most straightforward approach is to generate a model to
represent the propagation by each super S-box accurately. However, modeling
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a 16-bit keyed S-box has never been done before. Considering the difficulty to
model even an 8-bit S-box, it is unlikely to be a successful path to follow.

Another approach is to use the well-known modeling technique, where the S-
box and MixColumns are independently modeled, and exclude inconsistent sub-
trail in each super S-box only after detecting them in a trail4. This approach is
promising, but the higher the number of rounds gets, the less efficient it is as the
number of super S-boxes we need to check the consistency increases. Indeed, as
far as we tried, this approach is not feasible to find proper patterns for 11-round
SKINNY64.

The method that we actually used is a heuristic approach that builds the
trail round by round. Let xr, yr, and zr be an intermediate values for the input
of the (r + 1)th S-box layer, output of the (r + 1)th S-box layer, and input of
the (r + 1)th MixColumns in each trail, respectively. Our main method consists
of the following steps.

1. Given ei(= yR−1), determine (xR−2, vR−1), where the Hamming weight of
xR−2 and vR−1 is as high as possible and the number of trails from xR−2 to
ei is odd and small (1 if possible).

2. Compute (xR−3, vR−2, yR−2), where the Hamming weight of xR−3 and vR−2

is as high as possible and the number of trails from xR−3 to yR−2 is odd (1
if possible). Then, check if the number of trails from xR−3 to ei is odd (1 if
possible) under (vR−2, vR−1).

3. Repeat the procedure above to Rmid rounds. This results in a key pattern
(vRmid+1, . . . , vR−1), where the number of trails from xRmid

to ei is odd and
small (again, 1 in the best case).

4. Compute (v1, . . . , vRmid
) such that the number of trails from u(= x0) to yRmid

is odd.
5. Compute the number of trails satisfying (u, v1, . . . , vR−1) → ei.

Our method can be regarded as the iteration of the local optimization. As we
already discussed in the beginning of this section, we can expect that the number
of trails from pattern with high weight is small. The first three steps, called trail
extension in our paper, are local optimization in this context from the last round.
Note that these steps are neither a deterministic nor an exhaustive methods. In
other words, the trail extension is randomly chosen from a set of optimal or
semi-optimal choices. Sometimes, there is an unsuccessful trail extension, e.g., it
requires too much time to extend the trail after a few rounds or we run into trails
that cannot reach the input pattern u. The heuristic and randomized algorithm
allows, in case we faces such unsuccessful trail extensions, to simply restart the
process from the beginning.

As far as we observe some ciphers, unsuccessful trail extensions happens
with higher probability as the trail approaches the first round. Therefore, after
some Rmid rounds, we change our strategy, and switch to the more standard
way of searching for (u, v1, . . . , vRmid

), e.g., Rmid = 5 or 6 is used in SKINNY64.

4 When we use Gurobi MILP solver, we can easily implement this behavior by using
callback functions.
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More formally, we search trails from u to yRmid
while excluding inconsistent sub-

trails. Note that this is possible now because this trail has to cover less rounds.
Once we find such a trail, we extract the key-patterns (u, v1, . . . , vRmid

) from the
trail and check if the number of trails from (u, v1, . . . , vRmid

) to yRmid
is odd. If

so, we finally extract the entire input/key/output pattern and verify the number
of trails satisfying (u, v1, . . . , vR−1) → ei.

Our algorithm is not generic, and it only searches “the most likely spaces”
at random. Therefore, it quickly finds the proper pattern only a few minutes
sometimes, but sometimes, no pattern is found even if we spend one hour and
more.

We like to stress again that, once we find input/key/output patterns whose
number of trails is odd, verifying the final number of trails is easy and standard,
and for this we refer the reader to the code available at https://github.com/
LowerBoundsAlgDegree/LowerBoundsAlgDegree.

How to Compute Minimum-Degree. The minimum degree is more impor-
tant for cryptographers than the algebraic degree. To guarantee the lower bound
of the minimum degree, we need to create patterns whose resulting matrix
MS(Ek) has full rank.

Our method allows us to get the input/key/output pattern, i.e., compute
λ
(i)
u,v for the specific tuple (u, v, i). However, to construct this matrix, we need

to know all bits of λu,v. And, the use of the input/key pattern for different
output patterns is out of the original use of our method. Therefore, it might
allow significantly many trails that we cannot enumerate them with practical
time.

To solve this issue, we first restrict ourselves to use a non-zero key pattern
vR−1 for the last-but one round during the trail extension. This is motivated by
the observation that, usually, a single round function is not enough to mix the full
state. Therefore it is obvious that the ANF of some output bits is independent
of some key-bits k

vR−1
r .

Equivalently, many output bits of λu,v are trivially 0, i.e., the number of
trails is always 0. Thus, the matrix MS(Ek) is a block diagonal matrix

MS(Ek) =

⎛

⎜⎜⎜⎝

MS1(Ek) 0 · · · 0
0 MS2(Ek) · · · 0
...

...
. . .

...
0 0 · · · MSm

(Ek)

⎞

⎟⎟⎟⎠ .

As such, MS(Ek) has the full rank when MSi
(Ek) has the full rank for all i.

This technique allows us to generate input/key/output patterns for the full-rank
matrix efficiently.

Even if we use non-zero vR−1, we still need to get full-rank block matrices.
Luckily, there is an important (algorithmic) improvement that we like to briefly
mention here. In many cases, it is not needed to compute the entire set of entries of
a matrix MS(F ) to conclude it has full rank. As an example, consider the matrix

https://github.com/LowerBoundsAlgDegree/LowerBoundsAlgDegree
https://github.com/LowerBoundsAlgDegree/LowerBoundsAlgDegree


Lower Bounds on the Degree of Block Ciphers 555

MS(F ) =

⎛

⎝
1 0 ∗
0 1 0
0 0 1

⎞

⎠

where ∗ is an undetermined value. Then MS(F ) has full rank, no matter what
the value of ∗ actually is. Even so this observation is rather simple, it is often
an important ingredient to save computational resources.

How to Compute All High-Degree Monomials. Guaranteeing the appear-
ance of all high-degree monomials is more important for cryptographers than
minimum degree. Conceptually, it is not so difficult. We simply use a specific u
in the 4th step instead of any u whose Hamming weight is n − 1 and guarantee
the lower bound of the minimum degree. Then, we repeat this procedure for all
us with Hamming weight n − 1.

How to Compute Lower Bounds for Intermediate Rounds. While the
most interesting result for cryptographers is to show the full algebraic degree and
full minimum degree, it is also interesting to focus on the degree or minimum
degree in the intermediate rounds and determine how the lower bounds increase.

In our paper, these lower bounds are computed by using the input/key/out-
put pattern, which is originally generated to guarantee the full degree and min-
imum degree. For example, when we prove the lower bound of r rounds, we first
enumerate all trails on this pattern, and extract xR−r whose number of trails
(xR−r, vR−r+1, . . . , vR−1) → ei is odd. Let X

(i)
R−r be the set of all extracted

values, and a lower bounds of the algebraic degree for r rounds is given by

max
i

max
u∈X

(i)
R−r

wt(u).

A more involved technique is needed for the minimum degree. We first construct
the matrix MS(Ek) for R rounds, where for non-diagonal elements, we set 0 if
there is no trail, and we set ∗ if there is trail. If this matrix has the full rank, we
always have the full-rank matrix even when we focus on intermediate rounds. In
this case, a lower bounds of the minimum degree for r rounds is given by

min
i

max
u∈X

(i)
R−r

wt(u).

How to Compute Upper Bounds. While some work has been done previ-
ously to find upper bounds on the algebraic degree [6,8], we want to point out
that we can easily compute such upper bounds using our MILP models, and our
results in Sect. 5 show that the resulting upper bounds are quite precise, espe-
cially for the algebraic degree. Indeed, to prove an upper bound for R rounds
and for the i-th coordinate function, we simply generate a model for R rounds,
fix the output value of the trail to the unit vector ei and then simply ask the
solver to maximize wt(u). This maximum value thus leads to an upper bound
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Fig. 3. Round function of GIFT-64 using SSB-friendly description

on the degree, since it is the maximum weight that u can have so that there is at
least one trail. Then, once we collected an upper bound ubi for each coordinate
function, we easily get an upper bound on the algebraic degree of the vectorial
function as maxi ubi. To get an upper bound on the minimum degree, recall
that the minimum degree is defined as the minimal algebraic degree of any lin-
ear combination of all coordinate functions. Thus, in particular, this minimum
degree is at most equal to the minimal upper bound we have on each coordinate
function, i.e., using the upper bounds on each coordinate function as before, we
simply need to compute mini ubi.

5 Applications

Clearly, we want to point out that the result about the lower bounds do not
depend on how we model our ciphers. That is, the parity of the number of trails
must be the same as long as we create the correct model. However the number
of trails itself highly depends on the way we model, e.g., the number is 0 for one
model but it is 1,000,000 for another model. As enumerating many trails is a
time consuming and difficult problem, we have to optimize the model.

For example, we could use only the COPY, XOR and AND operations to
describe the propagation through the S-box. However this would lead to more
trails than necessary, while directly modeling the propagation using the convex
hull method as in [22] significantly reduces the induced number of trails.

We already mentioned earlier that we consider independent round-keys added
to the full state. In particular for GIFT and SKINNY, the cipher we study are
strictly speaking actually not GIFT and SKINNY. However, we stress that this is a
rather natural assumption that is widely used for both design and cryptanalysis
of block ciphers.

5.1 GIFT

GIFT is a lightweight block cipher published at CHES’17 by Banik et al. [2]. Two
variants of this block cipher exists depending on the block length (either 64-bit
or 128-bit) and use a 128-bit key in both case. Its round function and the Super
S-boxes are depicted in Fig. 3. Note that in the original design, the round key
is added only to a part of the state.
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Table 2. Propagation table for the S-box of GIFT

0 1 2 4 8 3 5 6 9 A C 7 B D E F

0 x x

1 x x x x

2 x x

4 x x x x

8 x x

3 x x x x

5 x x x x x x x x x x

6 x x

9 x x x x x x

A x x x x x x

C x x

7 x x x x x x

B x x x x

D x x x x x x x

E x x x x x x

F x

Modeling. The round function of GIFT-64 is very simple and only consist of
an S-box layer and a bit permutation layer. We give the propagation table of
this S-box in Table 2, namely, an x in row u and column v means that u

S→ v
where S is the GIFT-64 S-box. For example, the column 0x1 corresponds to the
monomials appearing in the ANF of the first output bit of the S-box. We can
obtain linear inequalities to modelize this table according to the technique given
in [22].

The bit permutation is simply modelized by reordering the variables
accordingly.

Algebraic Degree. We applied our algorithm for GIFT-64 and obtained that
the algebraic degree of all coordinate functions is maximal (i.e., 63) after 9
rounds. However, we can go even further and prove that 32 of the coordinate
functions are of degree 63 after only 8 rounds. As such, the algebraic degree of
GIFT-64 as a vectorial function is maximal after only 8 rounds. In Fig. 4 on the
left side, we give the lower and upper bounds for the algebraic degree of GIFT-64,
and we will give the detailed lower and upper bounds for each coordinate function
in the full version of the paper.

Note that we thus have two data-sets: one for 8 rounds and another one for
9 rounds. To get the curve for the lower bounds on algebraic degree, we simply
“merged” the data-sets and extracted the best lower bound for each coordinate
function and for each number of rounds. Thus this curve shows the best results
we were able to get.
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While the execution time can widely vary depending on a lot of factors, in
practice our algorithm proved to be quite efficient when applied to GIFT-64.
Indeed, to prove that each output bit is of maximal degree after 9 rounds as
well as computing the lower bounds for a smaller number of rounds, we needed
less than one hour on a standard laptop, and about 30 min to find all coordinate
functions with algebraic degree 63 after 8 rounds (and again, also computing all
lower bounds for less rounds).

Fig. 4. Algebraic degree and minimum degree for GIFT-64

Minimum Degree. In about one hour of computation on a standard laptop,
we were able to show that the minimum degree is maximal after 10 rounds. In
Fig. 4 on the right side we show the lower and upper bounds on the minimum
degree for each number of rounds from 1 to 10.

All Maximal Degree Monomials. As described in Sect. 3.2 we were able
to show that all 63-degree monomials appear after 11 rounds for any linear
combination of the output bits. This computation was a bit more expensive
than the previous one, yet our results were obtained within about 64 h.

5.2 SKINNY64

SKINNY is a lightweight block cipher published at CRYPTO’16 by Beierle
et al. [4]. SKINNY supports two different block lengths (either 64 bits or 128 bits).
The round function adopts the so-called AES-like structure, where significantly
lightweight S-box and MixColumns are used.

Please refer to Fig. 2 for the figure of the round function of our variant of
SKINNY64.

Modeling. We introduce how to create the model to enumerate trails. For the
S-box, the method is the same as for GIFT, i.e. using the technique from [22].
Therefore, here, we focus on MixColumns.
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Table 3. Algebraic degree and minimum degree on SKINNY64

1R 2R 3R 4R 5R 6R 7R 8R 9R 10R 11R

degree UB 3 8 19 33 47 58 61 62 62 63 63

LB 3 8 18 29 39 49 55 59 61 63 –

minDeg UB 2 3 8 17 33 47 58 61 62 62 63

LB 2 2 5 8 14 26 39 50 57 61 63

Naively, propagation through linear layers would be done with a combination
of COPY and XOR propagations as in [12]. However, this leads to more trails
that we need to count, which thus increase the overall time needed for our
algorithm. Therefore, we use that MixColumns of SKINNY can be seen as the
parallel application of several small linear S-boxes, denoted by L-box hereinafter.
Formally, MixColumns is the multiplication over F24 , but equivalently, we can
see this operation over F2, where it is the multiplication with the following block
matrix over F2 ⎛

⎜⎜⎝

I4 0 I4 I4
I4 0 0 0
0 I4 I4 0
I4 0 I4 0

⎞

⎟⎟⎠ ,

where I4 is the identity matrix over F2 of dimension 4. By carefully examining
the structure of this matrix, we can actually notice that it can be written as the
parallel application of 4 L-boxes, which is defined as

L(x1, x2, x3, x4) = (x1 ⊕ x3 ⊕ x4, x1, x2 ⊕ x3, x1 ⊕ x3),

Hence, instead of using the COPY and XOR operations, we consider that it
is actually the parallel application of this L-box. Thus, the modelization for
MixColumns is done in the same way as for S-boxes using the technique from [22].

Algebraic Degree. Before we discuss the algebraic degree of SKINNY, we intro-
duce a column rotation equivalence. We now focus on SKINNY, where all round
keys are independent and XORed with the full state. Then, the impact on the
round constant is removed, and each column has the same algebraic normal form
with different input. Overall, we remove the last ShiftRows and MixColumns,
and the output bit is the output of the last S-box layer. Then, in the context of
the division property, once we find a trail (u, v0, . . . , vR) → ei, we always have
a trail (u≪32·i, v≪32·i

0 , . . . , v≪32·i
R ) → ei+32·i), where u≪32·i is a value after

rotating u by i columns. The column rotation equivalence enables us to see that
it is enough to check the first column only.

We evaluated the upper bound of the algebraic degree for each coordinate
function in the first column. The UB of degree in Table 3 shows the maximum
upper bound among upper bounds for 16 coordinate functions, as well as the
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best lower bounds we managed to compute. The detailed results for the UB and
LB of each coordinate function will be given in the full version of the paper.

In 10 rounds, the lower bound is the same as the upper bound. In other
words, the full degree in 10 rounds is tight, and we can guarantee the upper
bound of the algebraic degree is never less than 63 in 10-round SKINNY under
our assumption.

Minimum Degree. The upper bound of the algebraic degree for bits in the
2nd row is 62 in 10 rounds. Therefore, 10 rounds are clearly not enough when we
consider the full minimum degree. As we already discussed in Sect. 3.1, we need
to construct 64 input/key patterns whose matrix MS(Ek) has the full rank.

Fig. 5. Deterministic trail extension for the last MixColumns and S-box

To guarantee the lower bounds of the minimum degree, the method shown
in Sect. 4 is used. In SKINNY64, when vR−2 is non-zero, the resulting matrix
becomes a block diagonal matrix, where each block is 16× 16 matrix. Moreover,
thanks to the column rotation equivalence, we always have input/key patterns
such that each block matrix is identical. Therefore, only getting one full-rank
16×16 block matrix is enough to guarantee the lower bound of minimum degree.

Unfortunately, the use of the technique described in Sect. 4 is not sufficient to
find patterns efficiently. We use another trick called a deterministic trail exten-
sion, where we restrict the trail extension for the last MixColumns and S-box
such that it finds key patterns whose matrix is the full rank efficiently. Figure 5
summarizes our restriction, where the cell labeled deep red color must have
non-zero value in the trail. We assume that taking the input of each pattern is
necessary for the trail to exist. Then, taking Pattern 1 (resp. Pattern 3) implies
that λ

(i)
u,v can be 1 only when i indicates bits in the 1st nibble (resp. 3rd nibble).

Taking Pattern 2 allows non-zero λ
(i)
u,v for i which indicates bits in the 1st, 2nd,

and 4th nibbles. Taking Pattern 4 allows non-zero λ
(i)
u,v for i which indicates bits

in the 1st, 3rd, and 4th nibbles. In summary, we can expect the following matrix

MS1(Ek) =

⎛

⎜⎜⎝

A ∗ 0 ∗
0 B 0 0
0 0 C ∗
0 ∗ 0 D

⎞

⎟⎟⎠ ,

where 0 is 4 × 4 zero matrix, and ∗ is an arbitrary 4 × 4 matrix. We can notice
that this matrix is full rank if A, B, C, and D are full rank.
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By using these techniques, we find 16 input/key patterns to provide the
lower bound of the minimum degree on SKINNY64 (see minDeg in Table 3). In
11 rounds, the lower bound is the same as the upper bound, thus having full
minimum degree in 11 rounds is tight. In other words, we can guarantee the
upper bound of the minimum degree is never less than 63 in 11-round SKINNY
under our assumption.

All Maximum-Degree Monomials. To guarantee the appearance of all
maximum-degree monomials, much more computational power must be spent.
The column rotation equivalence allows us to reduce the search space, but it is
still 64 times the cost of the minimum degree. After spending almost one week
of computations, we can get input/key patterns to prove the appearance of all
maximum-degree monomials in 13-round SKINNY64. All input/key patterns are
listed in https://github.com/LowerBoundsAlgDegree/LowerBoundsAlgDegree.

Fig. 6. Round function of PRESENT using SSB-friendly description

5.3 PRESENT

PRESENT is another lightweight block cipher published at CHES’07 [5], with a
64-bit block size and two variants depending on the key-length : either 80 bits
or 128 bits. Its round function is very similar to the round function of GIFT and
is also built using a 4-bit S-box and a bit permutation, see Fig. 6.

Modeling. As for GIFT-64, the S-box is modelized using the technique from
[22] and the bit permutation can easily be modelized by reordering variables.

Algebraic Degree. Using our algorithm, we were able to show that all output
bits have an algebraic degree of 63 after 9 rounds in about nine hours, including
the lower bounds for a smaller number of rounds. Even better, for 8 rounds,
we were able to show that 54 out of all 64 coordinate functions are actually
already of degree 63. We give the resulting lower and upper bounds for the
algebraic degree of PRESENT on the left side of Fig. 7. As for GIFT-64, these
curves were obtained by taking the best bounds over all coordinate functions,
and the detailed bounds for each coordinate function will be given in the full
version of the paper.

https://github.com/LowerBoundsAlgDegree/LowerBoundsAlgDegree
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Minimum Degree. Note that while directly using the PRESENT specification
would still allow us to get some results for the minimum degree, we found out
a way to largely improve the speed of the search for this case. Similarly to
SKINNY64, we used a deterministic trail extension for the last S-box layer. We
will give the full details about this observation and how we managed it in the
full version.

Fig. 7. Algebraic degree and minimum degree for PRESENT

In short, we change the S-box in the last S-box layer to a linearly equivalent
one S′ (thus preserving the correctness of our results for the minimum degree)
and add additional constraints to help finding “good” key patterns during the
search. While these constraints could slightly restrict the search space, in practice
it proved to be a very efficient trick to speed up the search and was enough to
prove the full minimum degree over 10 rounds. The same trick is used for the all
monomial property since it is essentially the same as for the minimum degree,
only repeated several time for each possible input monomial. In the end, within
about nine hours, we were able to show that the minimum degree is also maximal
after 10 rounds using this trick. In Fig. 7 on the right side, we give the lower
and upper bounds for the minimum degree over 1 to 10 rounds.

All Maximal Degree Monomials. Showing that all 63-degree monomials
appear after 11 rounds for any linear combinations of output bits required quite
a bit more computational power, however we were still able to show this result
in about 17 days of computation.

5.4 AES

Despite many proposals of lightweight block ciphers, AES stays the most widely-
used block cipher. The application to AES of our method is thus of great interest.

However, our method uses automatic tools such as MILP or SAT and such
tools are not always powerful for block ciphers using 8-bit S-boxes like AES.
As therefore expected, our method also has non-negligible limitation, and it is
difficult to prove the full, i.e., 127, lower bound of algebraic degree. Yet, our
method can still derive new and non-trivial result regarding the AES.
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Fig. 8. Trail on 5-round AES

Modeling. We first construct linear inequalities to model the propagation table
for the AES S-box, where we used the modeling technique shown in [1]. While
a few dozens of linear inequalities are enough to model 4-bit S-boxes, 3,660
inequalities are required to model the AES S-box. Moreover, the model for Mix-
Columns is also troublesome because the technique using L-boxes like SKINNY is
not possible. The only choice is a naive method, i.e., we would rely on the COPY
+ XOR rules for the division property [21]. Unfortunately, this method requires
184, which is equal to the weight of the matrix over F2, temporary variables, and
such temporary variables increase the number of trails. In particular, when the
weight of the output pattern in MixColumns is large, the number of sub-trails
exponentially increases even when we focus on one MixColumns.

Algebraic Degree. Due to the expensive modeling situation, proving full alge-
braic degree is unlikely to be possible. Nevertheless, this model still allows us to
get non-trivial results. We exploit that the number of sub-trails can be restrained
to a reasonable size when the weight of the output pattern in MixColumns is
small. Namely, we extend the trail such that only such trails are possible.

Figure 8 shows one trail for 5-round AES. When the input/key/output pat-
tern, shown in red, is fixed, the number of trails is odd. Moreover, we confirmed
that the number of trails for reduced-number of rounds is odd, e.g., in 3-round
AES, the number of trails (x2, v3, v4) → y4 is odd.

This result provides us some interesting and non-trivial results.
On 3-round AES, the input of this trail is 16 values with Hamming weight

7. In other words, the lower bound of the degree is 16 × 7 = 112. Considering
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well-known 3-round integral distinguisher exploits that the monomial with all
bits in each byte is missing, this lower bound is tight.

From the 4-round trail, we can use the input, which includes 0xFF. Unfortu-
nately, using many 0xFF implies the output of MixColumns with higher Ham-
ming weight, and as we already discussed, the resulting number of trails increases
dramatically. While we can have 12 0xFF potentially, we only extend the trail to
4 0xFF. Then, the lower bound of the degree is 116 in 4-round AES.

The first column in x1 has 0xFFFFFFFF. When we use the naive COPY+XOR
rules, there are many trails from 0xFFFFFFFF to 0xFFFFFFFF via MixColumns.
However, this trail must be possible and this input (resp. output) cannot prop-
agate to other output (resp. input). Therefore, we bypass only this propagation
without using COPY+XOR rule. This technique allows us to construct x0 in
Fig. 8. One interesting observation is all diagonal elements take 0xFF, and well-
known 4-round integral distinguisher exploits that the monomial with all bits
in diagonal elements is missing. Our result shows 5-round AES includes the
monomial, where 84 bits are multiplied with the diagonal monomial.

While we can give non-trivial and large enough lower bound for 3-round and
4-round AES, the results are not satisfying. Many open questions are still left,
e.g., how to prove the full degree, full minimum degree, the appearance of all
high-degree monomials.

6 Conclusion

Cryptographers have so far failed to provide meaningful lower bounds on the
degree of block cipher, and in this paper, we (partially) solve this long-lasting
problem and give, for the first time, such lower bounds on a selection of block
ciphers. Interestingly, we can now observe that the upper bounds are relatively
tight in many cases. This was hoped for previously, but not clear at all before
our work.

Obviously, there are some limitations and restrictions of our current work
that, in our opinion, are good topics for future works. The main restriction is the
applicability to other ciphers. For now, all ciphers studied so far needed some
adjustment in the procedure to increase the efficiency and derive the results.
It would be great if a unified and improved method could avoid those hand
made adjustments. This restriction is inherently related to our heuristic search
approach for the key-pattern. A better search, potentially based on new insights
into how to choose the key-pattern in an optimal way, is an important topic
for future research. Moreover, if we focus on the appearance of all maximal
degree monomials, we still have a gap between the best integral distinguishers
and our results. Thus, either our bounds or the attacks might be improved in
the future. Finally, for now, computing good bounds for fixed key variants of the
ciphers is not possibly with our ideas so far. This is in particular important for
cryptographic permutations where we fail for now to argue about lower bounds
for the degree. Only in the case of PRESENT, we were able to compute a non-
trivial lower bound on the algebraic degree in the fixed key setting for a few bits
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for 10 rounds. Here, we counted the number of trails using a #SAT solver5 [17].
Especially for other ciphers with a more complicated linear layer like SKINNY,
we were not able to show a lower bound on any output bit.
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