
Post-Quantum Verification
of Fujisaki-Okamoto

Dominique Unruh(B)

University of Tartu, Tartu, Estonia
unruh@ut.ee

Abstract. We present a computer-verified formalization of the post-
quantum security proof of the Fujisaki-Okamoto transform (as analyzed
by Hövelmanns, Kiltz, Schäge, and Unruh, PKC 2020). The formalization
is done in quantum relational Hoare logic and checked in the qrhl-tool
(Unruh, POPL 2019).

1 Introduction

In this paper, we present the first formal verification of the post-quantum security
of the Fujisaki-Okamoto transform.

Cryptographic security proofs tend to be complex, and, due to their complexity,
error prone. Small mistakes in a proof can be difficult to notice and may invalidate
the whole proof. For example, the proof of the OAEP construction [7] went through
a number of fixes [13,14,27] until it was finally formally proven in [4] after years of
industrial use. The PRF/PRP switching lemma was a standard textbook example
for many years before it was shown that the standard proof is flawed [8]. And more
recently, an attack on the ISO standardized blockciphermodeOCB2 [19]was found
[18], even though OCB2 was believed to be proven secure by [24].

While a rigorous and well-structured proof style (e.g., using sequences of
games as advocated in [8,28]) can reduce the potential for hidden errors and
imprecisions, it is still very hard to write a proof that is 100% correct. (Especially
when proof techniques such as random oracles [9] or rewinding [30,36] are used.)
And especially if a mistake in a proof happens in a step that seems very intuitive,
it is quite likely that the mistake will also not be spotted by a reader.

This problem is exacerbated in the case of post-quantum security (i.e., secu-
rity against quantum adversaries): Post-quantum security proofs need to reason
about quantum algorithms (the adversary). Our intuition is shaped by the expe-
rience with the classical world, and it is easy to have a wrong intuition about
quantum phenomena. This makes it particularly easy for seemingly reasonable
but incorrect proof steps to stay undetected in a post-quantum security proof.

In a nutshell, to ensure high confidence in a post-quantum security proof,
it is not sufficient to merely have it checked by a human. Instead, we advocate
formal (or computer-aided) verification: the security proof is verified by software
that checks every proof step. In this paper, we present the first such formal veri-

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12491, pp. 321–352, 2020.
https://doi.org/10.1007/978-3-030-64837-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64837-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-64837-4_11

322 D. Unruh

fication, namely of a variant of the Fujisaki-Okamoto transform [12] as analyzed
by Hövelmanns, Kiltz, Schäge, and Unruh [17].
Post-Quantum Security. Quantum computers have long been known to be
a potential threat to cryptographic protocols, in particular public key encryp-
tion. Shor’s algorithm [26] allows us to efficiently solve the integer factorization
and discrete logarithm problems, thus breaking RSA and ElGamal and variants
thereof. This breaks all commonly used public key encryption and signature
schemes. Of course, as of today, there are no quantum computers that even come
close to being able to execute Shor’s algorithm on reasonable problem sizes. Yet,
there is constant progress towards larger and more powerful quantum comput-
ers (see, e.g., the recent breakthrough by Google [2]). In light of this, it is likely
that quantum computers will be able to break today’s public key encryption and
signature schemes in the foreseeable future. Since the development, standardiza-
tion, and industrial deployment of a cryptosystem can take many years, we need
to develop and analyze future post-quantum secure protocols already today. One
important step in this direction is the NIST post-quantum competition [23] that
will select a few post-quantum public-key encryption and signature schemes for
industrial standardization.
Quantum Random Oracles. One important proof technique in cryptography
are randomoracles [6]. In a proof in the randomoraclemodel, we idealize hash func-
tions by assuming that every hash function is simply a uniformly random function.
(All algorithms including the adversary get oracle access to that function.) Based
on this assumption, security proofs become considerably simpler. In some cases, we
only know security proofs in the random oracle model. Of course, this comes at a
cost: This assumption is an idealization; concluding that a protocol that is secure
in the random oracle model is also secure using a real-world hash function is merely
a heuristic argument. (And this heuristic is known to be false in certain contrived
cases, e.g., [11].)

As first explicitly pointed out by [9], in the quantum setting, the random
oracle becomes more involved: To get a realistic modeling, the adversary needs
to be given superposition access to the random oracle, i.e., the adversary can
evaluate the random oracle/hash function in a quantum superposition of many
possible inputs. Due to this, quantum random oracle proofs are much harder
than in the classical setting.

Of importance for this paper is the O2H theorem [1]. The O2H theorem tells
us – very roughly – that the probability of noticing whether a specific output H(x)
of the random oracle has been changed (“reprogrammed”) can be bounded in terms
of the probability of guessing that input x. This technique is used in a number of
QROM proofs, in particular those for the FO transform described next.

Fujisaki-Okamoto. A common approach for constructing public key encryp-
tion schemes is the Fujisaki-Okamoto (FO) transform [12] or a variant thereof.
The FO transform takes a public-key encryption scheme with some weak pas-
sive security notion (such as IND-CPA or one-way security) and transforms it
into an actively secure public-key encryption or KEM1 scheme (IND-CCA secu-
rity). On a very high level, instead of executing the encryption algorithm with
1 A KEM, key encapsulation scheme, is similar to an encryption scheme but specialized

for use in hybrid encryption schemes.

Post-Quantum Verification of Fujisaki-Okamoto 323

true randomness, the FO transform hashes the plaintext and uses the resulting
hash value as the randomness for the encryption algorithm. This removes some
of the flexibility the attacker has when constructing fake ciphertexts and makes
chosen-ciphertext attacks impossible. The advantage of the FO transform is that
it gets us IND-CCA security at no or almost no increase in ciphertext size or
computational cost. The disadvantage is that the FO transform is only proven
in the random oracle model, which means that there is a heuristic element to its
security proof. Due to its high efficiency, the FO transform or some variations
thereof is used in basically all public key encryption candidates in the NIST com-
petition. Because of this, it is very important to understand the post-quantum
security of the FO transform. However, due to the intricacies of the quantum
random oracle model, proving the security of the FO transform is not as easy as
in the classical setting. The first positive result was made by Ebrahimi Targhi
and Unruh [29] who proved the security of an FO variant that includes one more
hash value in the ciphertext. That result was adapted by [15] to several other FO
variants, but still using an additional hash. ([15] also gives an excellent overview
over the different FO variants.) The first result to prove post-quantum security of
FO without an additional hash was given by Saito, Xagawa, and Yamakawa [25].
To achieve this, they introduced a new intermediate security notion called “dis-
joint simulatability”. However, [25] relies on the assumption that the underlying
passively-secure encryption scheme has perfect correctness, i.e., the probability
of incorrectly decrypting honestly generated ciphertexts is zero. Unfortunately,
this is not the case with typical lattice-based encryption schemes (they have a
negligible failure probability), making the results of [25] inapplicable to many rel-
evant encryption schemes such as, to the best of our knowledge, all lattice-based
NIST candidates. This situation was resolved by Hövelmanns, Kiltz, Schäge, and
Unruh [17] who show the security of an FO variant (without additional hash)
that is secure even in the presence of decryption failures. (This result is the one
we formalize in this work. We will refer to [17], specifically to the part concerned
with the FO transformation, as HKSU in the following.)

Formal Verification of Cryptography. As mentioned above, a state-of-the-
art approach for writing cryptographic security proofs are sequences of games.
This approach is also well suited for formal verification. A number of framework-
s/tools use this approach for verifying classical cryptography, e.g., EasyCrypt [3].
EasyCrypt requires the user to explicitly specify the games that constitute the
security proof (as is done in a pen-and-paper proof), and to additionally pro-
vide justification for the fact that two consecutive games are indeed related as
claimed. This justification will often be considerably more detailed than in a pen-
and-paper proof where the fact that two slightly different games are equivalent
will often be declared to be obvious.

Their approach for proving the relationship of consecutive games is to give a
proof in relational Hoare logic. Relational Hoare logic is a logic that allows us to
express the relationship between two programs by specifying a relational precon-
dition and a relational postcondition. A relational Hoare judgment of the form
{A}c ∼ d{B} intuitively means that if the variables of the programs c and d are

324 D. Unruh

related as described by the precondition A before execution, and we execute c and
d, then afterwards their variables will be related as described by B. A very sim-
ple example would be {x1 ≤ x2}x ← x + 1 ∼ x ← x + 1{x1 ≤ x2}. This means
that if the variable x in the left program is smaller-equal than in the right one,
and both programs increase x, then x in the left program will still be smaller-equal
than in the right one. As this example shows, relational Hoare logic can express
more complex relationships than simple equivalence of two games. This makes the
approach very powerful. To reason about cryptography, one needs a variant of rela-
tional Hoare logic that supports probabilistic programs. Such a probabilistic rela-
tional Hoare logic (pRHL) was developed for this purpose by Barthe, Grégoire, and
Zanella Béguelin [5]. EasyCrypt uses pRHL for proving the relationship between
cryptographic games.

Formal Verification of QuantumCryptography. When considering the veri-
fication of post-quantum cryptography, one might wonder whether the tools devel-
oped for classical cryptography may not already be sufficient. Unfortunately, this
is not the case. The soundness of the existing tools is proven relative to classical
semantics of the protocols and of the adversary. In fact, at least for EasyCrypt,
Unruh [32] gave an explicit example of a protocol which can be shown secure in
EasyCrypt but which is known not to be secure against quantum adversaries. For
the purpose of verifying quantum cryptography, Unruh [32] introduced a gener-
alization of pRHL, quantum relational Hoare logic (qRHL) that allows to prove
relational statements about quantum programs. (We will describe qRHL in more
detail in Sect. 2.) Unruh [32] also developed a tool qrhl-tool for reasoning in
qRHL for the purpose of verifying quantum cryptography. However, except for a
toy example, the post-quantum security of a very simple encryption scheme, to
the best of our knowledge, no post-quantum security proof has been formally ver-
ified before this work. qrhl-tool uses a hybrid approach: Reasoning about qRHL
judgments is hardcoded in the tool, but verification conditions (i.e., auxiliary sub-
goals, e.g., implications between invariants) are outsourced to the theorem prover
Isabelle/HOL [22].

Our Contribution. In this work, we formally verified the security proof of the
FO transformation from HKSU [17].2 The FO-variant analyzed by HKSU is a
state-of-the-art construction for building efficient public-key encryption schemes,
and can be applied to many of the NIST submissions to get IND-CCA secure
encryption schemes (e.g., Frodo [20] or Kyber [10]).

2 To be precise, we formalize the security proof from the February 2019 version [16]
of [17]. The proof has been improved upon in later revisions of the paper. In par-
ticular, the requirement of injective encryption (see Footnote 5) has been removed.
We formalized the earlier version of the proof since the formalization was already
under way when the proof was updated. Their new proof does not use substantially
different techniques, and we believe that formalizing their new proof in qRHL would
not pose any challenges different from the ones encountered in this work. However,
since their new proof is an almost complete rewrite (i.e., a different proof), it is
not possible to simply update our formalization. Instead, a new development from
scratch would be needed.

Post-Quantum Verification of Fujisaki-Okamoto 325

Our formalization follows the overall structure of HKSU (i.e., it uses roughly
the same games) but introduces many additional intermediate games. (Alto-
gether, our proof defines 136 programs, which covers games, oracles, and explic-
itly constructed adversaries in reductions.) The formalization has 3455 lines of
proof in qRHL and 1727 lines of proof in Isabelle/HOL for auxiliary lemmas.
(Not counting comments and blank lines or files autogenerated by search &
replace from others.) We mostly follow the structure of HKSU (but in many
places we need to do some adjustments to achieve the level of rigor required for
formal verification). In the process, we identified a few best practices for doing
proofs in qrhl-tool that we list in Sect. 2.4.

We furthermore extended the qrhl-tool with a tactic o2h that implements
an application of the Semiclassical O2H Theorem [1]. This is needed in HKSU,
but the O2H Theorem is often in post-quantum crypto proofs, so we expect this
addition to be very useful for future verifications, too. (Details are given in the
full version [35].)

Organization. In Sect. 2, we review qRHL and the qrhl-tool. In Sect. 3, we
review the result and part of the proof from HKSU. In Sect. 4, we go through
the parts of the formalization that make up the specification of the main result.
In Sect. 5, we discuss the formal proof. We conclude in Sect. 6. The source code
of the formalization is provided in [33]. A full version with additional details is
available at [35].

2 Quantum Relational Hoare Logic

In this section, we give an overview of quantum relational Hoare logic (qRHL).
We will not give formal definitions or a set of reasoning rules. For these, refer
to [32]. Instead, our aim is to give an intuitive understanding of the logic that
allows to understand (most of) the reasoning steps in our formalization.

2.1 Quantum While Language

qRHL allows us to reason about the relationship between quantum programs
(that encode cryptographic games). The programs are written in a simple while
language that has the following syntax (where c and d stand for programs):

c,d := skip, c;d (no operation / sequential composition)

x ← e, x $← e (classical assignment/sampling)
if e then c else d, while e do c (conditional/loop)

q1 . . .qn
q← e (initialization of quantum registers)

apply e to q1 . . .qn (quantum application)
x ← measure q1 . . .qn with e (measurement)
{local V ; c} (local variable declaration)

326 D. Unruh

The language distinguishes two kinds of variables, quantum and classical. In
the above syntax, classical variables are denoted by x and quantum variables
by q. The command x ← e evaluates the expression e (which can be any well-
typed mathematical expression involving only classical variables) and assigns
the value to x. In contrast x $← e evaluates e which is supposed to evaluate to
a distribution D, and then samples the new value of x according to D. If- and
while-statements branch depending on a classical expression e.

To initialize quantum variables, we use q1 . . .qn
q← e. Here e is evaluated to

return a quantum state (i.e., a classical expression returning the description of
a quantum state). Then q1 . . .qn are jointly initialized with that state. E.g., we
can write q q← |x〉 (where x is a classical bit variable) to initialize a quantum
bit q.

Given an expression e that computes a unitary U , we use apply e toq1 . . .qn

to apply U jointly to q1 . . .qn. E.g., applyCNOT toq1q2.
x ← measureq1 . . . qn with e evaluates e to get a description of a measure-

ment, measures q1 . . .qn jointly with that measurement and assigns the result
to x. Typically, e might be something like computational_basis, denoting a
computational basis measurement.

Finally, {localV ; c} declares the variables V as local inside c. (This is an
extension of the language from [34].)

2.2 QRHL Judgements

Recall from the introduction that in relational Hoare logics, judgments are of the
form {A}c ∼ d{B} where c,d are programs, and A,B are relational predicates
(the pre- and postcondition). In particular, {A}c ∼ d{B} means that if the
variables of c,d (jointly) satisfy A before execution, then they (jointly) satisfy B
after execution.

Predicates. The same idea is used in qRHL but the concept of predicates
becomes more complex because we want to express something about the state
of quantum variables. In fact, predicates in qRHL are subspaces of the Hilbert
space of all possible states of the quantum variables of the two programs. We
will illustrate this by an example:

Say q is a quantum variable in the first program c. We refer to q as q1 to
distinguish it from a variable with the same name in program d. Say we want to
express the fact that q1 is in state |+〉. That means that the whole system (i.e.,
all quantum variables together), are in a state of the form |+〉q1 ⊗|Ψ〉vars where
vars are all other variables (of c and d), except q1. The set of all states of this
form forms a subspace of the Hilbert space of all possible states of the quantum
variables. Thus A := {|+〉q1 ⊗ |Ψ〉vars : |Ψ〉 ∈ Hvars} (with Hvars denoting the
corresponding Hilbert space) is a subspace and thus a valid predicate for use in a
qRHL judgment. For example, we could then write {A}applyX toq ∼ skip{A}
to express the fact that, if q is in state |+〉 in the left program, and we apply
X (a quantum bit flip) to q, then afterwards q is still in state |+〉. Of course,
writing A explicitly as a set is very cumbersome. (And, in the setting of formal

Post-Quantum Verification of Fujisaki-Okamoto 327

verification, one would then have no syntactic guarantees that the resulting set
is indeed a valid predicate.) Instead, we have the shorthand span{|+〉} »q1 to
denote the above predicate A. (More generally, S»q1 . . .qn means that q1 . . .qn

are jointly in a state in S.)
We can build more complex predicates by combining existing ones. E.g., if

A,A′ are predicates, then A ∩ B is a predicate that intuitively denotes the fact
that both A and B hold. We will also often have to compare predicates. A ⊆ B
means that A is a subspace of B for all values of the classical variables. Intuitively,
this means A implies B.

Predicates with Classical Variables. In most cases, however, we do not
only have quantum variables, but also classical variables. Especially in a post-
quantum cryptography setting, the majority of variables in a predicate tends to
be classical. Support for classical variables in qRHL predicates is straightforward:
A predicate A can be an expression containing classical variables. Those are
then substituted with the current values of those variables, and the result is a
subspace that describes the state of the quantum variables as explained above.
For example, we can write the predicate span{|x2〉} »q1. This would mean that
q1 (a qubit in the left program) is in state |x2〉.

This already allows us to build complex predicates, but it is rather inconve-
nient if we want to express something about the classical variables only, e.g., if
we want to express that x1 = x2 always holds. To express such classical facts, we
use an additional shorthand: Cla[b] is defined to be H (the full Hilbert space) if
b = true, and defined to be 0 (the subspace containing only 0) if b = false. Why
is this useful? Consider the predicate Cla[x1 = x2]. If x1 = x2, this evaluates to
Cla[true = H]. Since H contains all possible states, the state of the quantum
variables will necessarily be contained in Cla[true], hence the predicate is sat-
isfied. If x1
= x2, Cla[x1 = x2] evaluates to Cla[false = 0], and the state of
the quantum variables will not be contained in Cla[false], hence the predicate
will not be satisfied. Thus, Cla[x1 = x2] is satisfied iff x1 = x2; the state of the
quantum variables does not matter. In general Cla[e] allows us to translate any
classical predicate e into a quantum predicate. (And this predicate can then be
combined with quantum predicates, e.g., Cla[x1 = x2] ∩ span{|+〉} »q1.)

Quantum Equality. One very important special case of predicates are equal-
ities. We will often need to express that the variables of the left and right pro-
grams have the same values. We have already seen how to do this for classical
variables. For quantum variables, the situation is more complex. We cannot
write Cla[q1 = q2], this is not even a meaningful expression (inside Cla[. . .], only
classical variables are allowed). Instead, we need to define a subspace that in
some way expresses the fact that two quantum variables are equal. The solu-
tion proposed in [32] is: Let q1 ≡quant q2 denote the subspace of all states that
are invariant under exchanging q1 and q2 (i.e., invariant under applying a swap
operation). Then q1 ≡quant q2 is a quantum predicate. And – this is less easy to
see but shown in [32] – q1 ≡quant q2 does indeed capture the idea that q1 and
q2 have the same value in a meaningful way. We can now write, for example,
Cla[x1 = x2] ∩ (q1 ≡quant q2) to denote the fact that the variables x (classical)

328 D. Unruh

and q (quantum) have the same value in both programs. In particular, if c
only contains those two variables, we have {Cla[x1 = x2] ∩ (q1 ≡quant q2)}c ∼
c{Cla[x1 = x2] ∩ (q1 ≡quant q2)}. What if there are more quantum variables?
The advantage of the quantum equality is that we hardly ever need to recall the
actual definition in terms of swap invariance. All we need to remember is that
q1 ≡quant q2 is a quantum predicate/subspace that intuitively encodes equality
of q1 and q2.

The most common form of predicate that we will see is A= :=
Cla[x(1)

1 = x(1)
2 ∧ · · · ∧ x(1)

1 = x(1)
2]∩ (q(1)

1 . . .q(m)
1 ≡quant q

(1)
2 . . .q(m)

2). In fact, if
both sides have the same program c (and c contains no variables besides the
ones mentioned in A=), then {A=}c ∼ c{A=} holds. Intuitively, this means: if
the inputs of two programs are equal, the outputs are equal.

2.3 Reasoning in qRHL

To derive qRHL judgments, one will hardly ever go directly through the defi-
nition of qRHL itself. Instead one derives complex qRHL judgments from ele-
mentary ones. For example, to derive the elementary {Cla[x1 = 0]}x ← x+ 1 ∼
skip{Cla[x1 = 1]}, we use the Assign1 rule [32] that states {B{e1/x1}}x ← e ∼
skip{B}. (Here e1 is the expression e where all variables y are replaced by y1.
And B{e1/x1} means every occurrence of x1 in B is replaced by e1.) With B :=
Cla[x1 = 1], we get from Assign1: {Cla[x1 + 1 = 1]}x ← e ∼ skip{Cla[x1 = 1]}.
Since x1 + 1 = 1 is logically equivalent to x1 = 1 (assuming the type of x is,
e.g., integers or reals), this statement is equivalent to {Cla[x1 = 0]}x ← x+ 1 ∼
skip{Cla[x1 = 1]}. (This is an example of reasoning in the “ambient logic”:
Besides application of qRHL rules, we need to use “normal” mathematics to
derive facts about predicates. This is external to qRHL itself.)

One can then combine several judgments into one, using, e.g., the Seq rule:
“If {A}c ∼ d{B} and {B}c′ ∼ d′{C} holds, then {A}c; c′ ∼ d;d′{C} holds.”
For example, once we have derived {Cla[true]}x ← 1 ∼ skip{Cla[x1 = 1]}
and {Cla[x1 = 1]}skip ∼ y ← 1{Cla[x1 = y2]}, we conclude using Seq that
{Cla[true]}x ← 1 ∼ y ← 1{Cla[x1 = y2]}. (We use here implicitly that x ←
1; skip is the same as x ← 1 and analogously for skip;y ← 1.)

We will not give the full list of rules here, see [32] and the manual of [31] for
a comprehensive list.

One common approach to prove more complex qRHL judgments is backward
reasoning: One starts by stating the judgment one wants to prove, say G1 :=
{Cla[true]}x ← 1 ∼ y ← 1{Cla[x1 = y2]}. Then one applies one qRHL rule to
the very last statement on the left or right, say y ← 1. By application of the Seq
and Assign2 rule, we see that G2 := {Cla[true]}x ← 1 ∼ skip{Cla[x1 = 1]}
implies G1. So we have reduced our current goal to showing G2. (Using a rea-
soning step that can be fully automated.) By application of Seq and Assign1,
we see that G3 := {Cla[true]}skip ∼ skip{Cla[1 = 1]} implies G2. So our new
proof goal is G3. And finally, G3 is implied by G4 := (Cla[true] ⊆ Cla[1 = 1]). So
our final goal is G4 which is a trivial statement in ambient logic because 1 = 1 is
true. Hence the proof concludes and G1 holds. The advantage of this approach

Post-Quantum Verification of Fujisaki-Okamoto 329

is that it is fully mechanical in many cases, e.g., for sequences of assignments
and applications of unitaries. The proof tool qrhl-tool (see the next section)
follows exactly this approach.

So far, we have gotten a glimpse how to derive qRHL judgments. In a
cryptographic proof, however, we are interested not in qRHL judgments but
in statements about probabilities. Fortunately, we can derive those directly
from a qRHL judgment using the QrhlElimEq rule. It states (somewhat
simplified): Assuming X and Q are all the variables occurring in c,d, then
{Cla[X1 = X2] ∩ (Q1 ≡quant Q2)}c ∼ d{Cla[e1 =⇒ f2]} implies Pr[e : c] ≤
Pr[f : d] (and similarly for = instead of ≤). (Here Pr[e : c] denotes the proba-
bility that the Boolean expression e is true after executing c, and analogously
Pr[f : d].) Thus to derive an inequality or equality of probabilities of program
outcomes, we convert it into a qRHL proof goal with QrhlElimEq, and then
use the reasoning rules of qRHL to derive that qRHL judgment. This is, on a
high level, how crypto proofs in qRHL are done (modulo many concrete details).

2.4 The qrhl-tool

While reasoning using qRHL in pen-and-paper proofs is possible in principle,
qRHL was specifically designed for formal verification on the computer. To that
end, an interactive theorem prover for qRHL was developed, qrhl-tool [31,32].
To execute our formalization, version 0.5 is required. See README.txt there for
instructions on how to check/edit our formalization, and manual.pdf for detailed
information. In the following, we recap the most important facts about the tool.

In addition to that review, we also list some “best practices” for developing
proofs in the tool, based on our experience while formalizing HKSU.

Architecture of the Tool. qrhl-tool has a hybrid architecture: It embeds
the theorem prover Isabelle/HOL, and all reasoning in the ambient logic is done
by Isabelle/HOL. The tool handles qRHL judgments directly. As a consequence,
proofs are written in two files: .thy files contain native Isabelle/HOL code and
can reason only about ambient logic (no support for qRHL itself). Those .thy
files are also used to specify the logical background of the formalization (e.g.,
declaring constants such as the encryption function in our development). .qrhl
files are executed natively by qrhl-tool and contain specifications of programs,
as well as proofs in qRHL. They can also contain proofs in ambient logic (arbi-
trary Isabelle/HOL tactics can be invoked) but this is only suitable for simple
proofs in ambient logic. Complex ambient logic facts are best proven as an aux-
iliary lemma in the .thy files. It is possible to split a proof into many files by
including one .qrhl file from another using the include command.

The tool can be run in two modes, batch and interactive mode. In batch mode,
a given .qrhl file is checked on the command-line and the run aborts with an
error if the proof is incorrect. In interactive mode, an Emacs/ProofGeneral-based
user interface allows us to edit and execute the proofs.

Best practice: Create one file variables.qrhl that declares all program vari-
ables and loads the .thy files. Furthermore, create a separate file p.qrhl for every

330 D. Unruh

declared program p , and a separate file lemma_l.qrhl for every lemma l. This
allows us to execute proofs without too much runtime overhead and at the same
time allows us to find quickly which entity is declared where. �
Declarations. All program variables that occur in any analyzed program need
to be declared globally (even if the variable is used only as a local variable).
This is done using classical/quantum/ambient var x : type where type is
any type understood by Isabelle/HOL. (ambient var declares an unspecified
constant value that can be used in programs and in ambient logic subgoals.)
Programs are declared by program name := { code } where code is a quan-
tum program as described in Sect. 2.1. For describing games this approach is
sufficient, but when specifying adversaries or oracles or helper functions, we
would like to define procedures that take arguments and have return values.
Unfortunately, such procedure calls are not supported by the language underly-
ing qRHL yet. What has to be done instead is to pass values to/from procedures
via global variables. A program X can be invoked by another program using
call X,3 and we need to write the program X so that it communicates with the
invoking program via global variables that are set aside for this purpose. While
this approach is not very convenient, we found that with disciplined variable use,
no bigger problems arise.

One highly important feature in more advanced cryptographic definitions
and proofs are oracles. Roughly speaking, an oracle is a program O that is given
as an argument to another program A, so that the other program can execute it
whenever needed. (For example, an adversary A may get access to a decryption
oracle Dec that decrypts messages passed to it.) Programs that take oracles
are supported by qrhl-tool. One can declare a program via, e.g., program
prog(O1,O2) := {code} where code can contain, e.g., a call O1 statement.
Then prog is a program that needs to be instantiated with oracles when invoked,
e.g.: call prog(Enc,Dec).

Finally, to model adversaries we need to declare programs of unspecified code.
(This then means that anything that is proven holds for any adversary.) The
command adversary A declares an adversary A that can be invoked via call A.
Additional arguments to the adversary command allow to specify global vari-
ables that the adversary may access, and whether A expects oracles.

Best practice: When declaring a program that is intended as a subroutine
(e.g., an oracle or an adversary), make explicit which global variables are used
as inputs/outputs to simulate procedure calls. (E.g., an adversary might be anno-
tated with a comment “Input: c (ciphertext). Output: b (guessed bit). Internal
state: stateA.”)

All variables (especially quantum variables) that are used that are not needed
between consecutive invocations should be made local at the beginning of the
program using the local program statement.

3 Semantically, call X is not a separate language feature. It just means that the source
code of X is included verbatim at this point.

Post-Quantum Verification of Fujisaki-Okamoto 331

When invoking a program taking an oracle (e.g., call A(queryH)where queryH
expects inputs/outputs in variables Hin,Hout), the input/output variables should be
made local at that call. (E.g., { local Hin,Hout; call A(queryH);}.) Otherwise,
qrhl-tool will not be able to determine that Hin,Hout are not changed globally,
even if the code of A internally already contains a local statement.

print programname can be used in interactive mode to check the list of vari-
ables used by a program.

Following these rules may make many proofs somewhat longer (due to addi-
tional boilerplate for removing local commands) but it removes a lot of poten-
tial for conflicts in variable use. (Especially with quantum variables: due to the
idiosyncrasies of the quantum equality, any quantum variable used non-locally by
a subprogram will have to be carried around explicitly in all quantum equalities.)

�
Note that qRHL did not initially support local variables. The addition of local

variables to qrhl-tool and the corresponding theory [34] were prompted by our
experiences in the present formalization. Without local variables, it becomes
very difficult to maintain a larger formalization involving quantum equalities.

Proving Lemmas. Finally, to state a lemma one can either state a lemma in
ambient logic (extended with syntax Pr[...] for talking about the results of pro-
gram executions), or qrhl subgoals. The command lemma name: formula states
the former, the command qrhl name: {precondition} call X; ∼ call Y;
{postcondition} the latter. The syntax Pr[e : prog(rho)] denotes the prob-
ability that the Boolean expression e is true after running prog with initial
quantum state rho. Most of the time we will thus state lemmas of the form
Pr[b=1 : prog1(rho)] = Pr[b=1 : prog2(rho)] where rho is an ambient
variable (meaning, the initial state is arbitrary). This can be converted into a
qRHL subgoal using the tactic byqrhl (implementing the rule QrhlElimEq).

Once one has stated a qRHL proof goal, the proof proceeds via backwards rea-
soning as described in Sect. 2.3. For example, to remove the last assign statement
from a goal (and rewrite the postcondition accordingly) as done in Sect. 2.3, one
writes wp left/right (or wp n m for the last n/m statements on the left/right).
Once all statements are gone (skip on both sides), the tactic skip replaces
{A}skip ∼ skip{B} by the ambient logic goal A ⊆ B. Another important tactic
is conseq pre/post: C which replaces the current pre-/postcondition by C (and
adds a ambient logic subgoal to prove that this replacement is justified). This
allows to clean up subgoals and increases readability. The tactic simp simplifies
the current goal using the Isabelle/HOL simplifier.

Best practice:To make proofs more maintainable, before each tactic invocation
add a comment which line of code it addresses. E.g., wp left will always affect
the last command of the left program. If that command is, e.g., x <- 1+y, add
the comment #x. This ensures that if a change in a program definition breaks an
existing proof, it is easier to find out where the proof script went out of sync.

Additionally, at regular intervals add the tactic conseq post: X commands
where X is the current postcondition (possibly, but not necessarily simplified).
This serves both as a documentation of the current state of the proof, and it

332 D. Unruh

makes maintenance easier because the proof will fail at the first point where the
postcondition is not what was expected anymore (as opposed to failing at a later
point). �
Isabelle/HOL Micro Primer. For an introduction to Isabelle/HOL we rec-
ommend [21]. Here, we only give some minimal information to help reading the
code fragments in the paper (Figs. 7, 8 and 9). This micro primer does not
does not allow us to understand the definitions given in this paper in depth. In
particular, to understand them in depth one needs to know the predefined con-
stants in Isabelle/HOL and in the qrhl-tool. But with the syntax given here,
it should at least be possible to make educated guesses about the meanings of
the definitions.

All constants in Isabelle/HOL are typed. A function f taking arguments of
types t1, . . . , tn and returning t has type t1 ⇒ · · · ⇒ tn ⇒ t. To invoke f with
arguments a1, . . . , an, we write f a1 a2 . . . an. (Not f(a1, . . . , an).) To declare
(axiomatically) the existence of a new constant c of type type, we write

Here the optional facts are logical propositions that we assume about c. For
example, we can declare the existence of a commutative binary operation op on
natural numbers via

Instead of axiomatizing constants, we can also define them in terms of existing
constants. This cannot introduce logical inconsistencies. The syntax for this is

Instead of = we can also write ↔ when defining a proposition (i.e., if the
return type is bool). For example, if we wanted to define the operation op above
as twice the sum of its arguments, we could write:

The parts before where are optional and will be inferred if necessary.

This summary of the operation of qrhl-tool does not, of course, replace a
reading of the manual. However, it should give a first impression as well as help
in reading Sects. 4–5.

3 Fujisaki-Okamato á la HKSU

In this section, we describe the FO variant analyzed by HKSU [17] and their
proof. We stress that the proof we analyzed (and describe here) is the one from
the earlier version [16] of HKSU, it has been rewritten since we started our
formalization.

Post-Quantum Verification of Fujisaki-Okamoto 333

DSreal

01 (pk , sk) ← Keygen()
02 m

$← M
03 c ← Enc(pk ,m)
04 b ← A(pk , c)

DSfake

05 (pk , sk) ← Keygen()
06 c ← Enc(pk)
07 b ← A(pk , c)

Fig. 1. Games from definition of disjoint simulatability. In the random oracle model,
A is additionally given oracle access to all random oracles.

The goal of the FO transform is to transform an encryption scheme that is
passively secure into a chosen-ciphertext secure key encapsulation mechanism
(KEM). The variant analyzed by HKSU can be described modularly by consec-
utively applying three transformations (called Punc, T, and U�⊥

m) to the passively
secure encryption scheme.

3.1 Transformation Punc

We start with a base public-key encryption scheme (Keygen0,Enc0,Dec0) with
message space M0. We assume the base scheme to be IND-CPA secure. (We
assume further that decryption is deterministic, but we do not assume that
decryption succeeds with probability 1, or that decrypting a valid ciphertext
returns the original plaintext with probability 1.)

The first step is to construct a scheme with disjoint simulatability (DS). DS
security [25] means that there exists a fake encryption algorithm Enc that (with-
out being given a plaintext) returns ciphertexts that are indistinguishable from
valid encryptions of random messages, but that are guaranteed to be distinct
from any valid ciphertext with high probability.

More precisely:

Definition 1 (Disjoint simulatability). We call (Keygen,Enc,Dec) with mes-
sage space M and randomness space R DS secure iff for any quantum-
polynomial-time A, |Pr[b = 1 : DSreal] − Pr[b = 1 : DSfake]| is negligible, for the
games defined in Fig. 1.

We say (Keygen,Enc,Dec) is ε-disjoint iff for all possible public keys pk ,
Pr[(∃m ∈ M, r ∈ R. c = Enc(pk ,m; r)) : c ← Enc(pk)] ≤ ε.

The transformation Punc is very straightforward: The encryption scheme
is not really modified (i.e., the resulting Keygen,Enc,Dec are the same in the
base scheme). But the message space is reduced by one element. I.e., we simply
declare one plaintext m̂ as invalid, hence encryptions of that plaintext will be
disjoint from valid ciphertexts, and thus we can produce fake encryptions Enc
by encrypting m̂. We summarize Punc in Fig. 2. The proof that the resulting
scheme is both DS and IND-CPA secure is very straightforward, and we omit it
here. (But we have formalized it, of course.)

334 D. Unruh

Fig. 2. Transformation Punc. Input scheme: (Enc0,Dec0,Keygen0) with message space
M0. Output scheme: (Enc,Dec,Keygen) with message space M0 and fake encryption
algorithm Enc.

Fig. 3. Transformation T. Input scheme: (Enc,Dec,Keygen) with message space M
and fake encryption algorithm Enc. Output scheme: (Enc′,Dec′,Keygen′) with message
space M′ and fake encryption algorithm Enc′. G : M → R is a hash function (modeled
as a random oracle).

3.2 Transformation T

Transformation Punc gave us a DS secure encryption scheme Enc. However, as
the starting point for the transformation U�⊥

m below, we need a deterministic
encryption scheme (that is still DS secure).

Transformation T achieves this by a simple technique: Instead of running
Enc normally (i.e., Enc(pk ,m; r) with r uniformly from the randomness space
R), the modified encryption algorithm Enc′ computes the randomness r from
the message m as r := G(m). Here G is a hash function (modeled as a random
oracle).

Transformation T also strengthens the decryption algorithm: The decryption
algorithm resulting from T rejects any invalid ciphertexts (i.e., any ciphertext
that is not in the range of Enc′). This is achieved by adding an extra check
to the decryption algorithm Dec′: After decrypting a ciphertext c to m, m is
reencrypted and compared with the ciphertext c. Since Enc′ is deterministic,
this will always succeed for honestly generated ciphertexts, but it will always
fail for invalid ones.

We summarize transformation T in Fig. 3.

Security of Transformation T. HKSU shows the following:

Theorem 1 (DS security of Enc′, informal). If Enc is ε-disjoint, so is Enc′.
If Enc is DS secure and IND-CPA secure, then Enc′ is DS secure.

(In HKSU, the result is given with concrete security bounds.)
The core idea of the proof is to show that the adversary cannot distinguish

between uniform randomness (as used in Enc) and randomness r := G(m∗) where
m∗ is the challenge message (as used in Enc′). This is shown by bounding the
probability for guessing m∗ and then using the Semiclassical O2H theorem [1]
to bound the distinguishing probability.

Post-Quantum Verification of Fujisaki-Okamoto 335

Fig. 4. Transformation U�⊥
m. Input scheme: (Enc′,Dec′,Keygen′) with message space M′

and fake encryption algorithm Enc′. Output scheme: (KeygenFO,Encaps,Decaps) with
key space K. (The key space is the space of encapsulated keys, not of public/secret key
pairs.) PRF is a pseudorandom function with key space KPRF. H : M′ → K is a hash
function (modeled as a random oracle).

We omit the proof from this exposition (we will focus on the more complex
proof of transformation U�⊥

m below). The full proof can be found in [16].

3.3 Transformation U �⊥
m

Finally, the transformation U�⊥
m takes the deterministic DS secure encryption

scheme and transforms it into a KEM. In a KEM, we have an encapsulation
algorithm Encaps that, instead of accepting a plaintext as input, uses a random
(symmetric) key K as plaintext (intended for use in a symmetric encryption
scheme) and returns both that key and the ciphertext. (We stress that K must
not be confused with the public/secret keys of the KEM.) And the decapsulation
algorithm Decaps takes the ciphertext and returns the key, like a decryption does.

The encapsulation algorithm constructed by transformation U�⊥
m picks a uni-

form m
$← M′ and encrypts it (resulting in a ciphertext c). However, instead of

using m directly as the symmetric key, the key is set to be K := H(m). (Here
H is a hash function modeled as a random oracle.)

Decapsulating c is straightforward: By decrypting c we get m back, and
then we can compute the key K := H(m). However, there is a subtlety in case
of decryption failures: If m = ⊥, then Decaps does not return ⊥, but instead
returns a key K that is indistinguishable from one that would result from a
successful decryption. (This is called “implicit rejection”, as opposed to “explicit
rejection” that would return ⊥.) This key K is generated from the ciphertext as
K := PRF(k, c) where PRF is a pseudorandom function.4 And the PRF-key k is
part of the secret key of the KEM. We describe the transformation U�⊥

m in Fig. 4.

Security of Transformation U�⊥
m. HKSU does not show the security of trans-

formation U�⊥
m (in the sense of showing that Encaps is secure if Enc′ satisfies

certain properties), but instead directly analyzes the result of applying both T

4 Note that HKSU [16] instead uses a secret random function Hr. (Not a public ran-
dom function like the random oracle.) But it is understood that this secret random
function is to be implemented by a PRF. Here, we directly use the PRF since we
want to avoid keeping the proof step that replaces the PRF by a random function
implicit.

336 D. Unruh

Fig. 5. Games in the definition of IND-CCA security. In the random oracle model, A
is additionally given oracle access to all random oracles.

and U�⊥
m. That is, they show that Encaps is secure if Enc satisfies certain proper-

ties. HKSU does not completely modularize the proof (i.e., it does not separately
analyze T and U�⊥

m) but shows the following:

Theorem 2. Assume Enc has injective encryption5 and is IND-CPA secure and
DS secure and ε-disjoint, and has ε′-correctness.6 (For negligible ε, ε′) Then
Encaps (as constructed by transformations T and U�⊥

m from Enc) is IND-CCA
secure.

The result stated in HKSU includes concrete security bounds. We also recall the
definition of IND-CCA security for KEMs used in the preceding theorem:

Definition 2. A KEM (KeygenFO,Encaps,Decaps) with key space K is IND-CCA
secure iff for any quantum-polynomial-time adversary A,
|Pr[b = 1 : IND-CCA0] − Pr[b = 1 : IND-CCA1]| is negligible, using the games from
Fig. 5.

Intuitively, this means that A cannot distinguish between the true key K∗

contained in the ciphertext c∗ and a uniformly random key K∗.
Note that in this definition, we slightly deviate from HKSU: In HKSU, only

one game is given. This game picks randomly whether to play IND-CCA0 or
IND-CCA1 from our definition. The security definition then requires that the
adversary guesses which game is played with probability negligibly close to 1

2 .
(We call this a “bit-guessing-style definition”) In contrast, our definition requires
the adversary to distinguish with its output bit between two games. (We call
this a “distinguishing-style definition”.) It is well-known that bit-guessing-style
and distinguishing-style definitions are equivalent. But in the context of for-
mal verification, it seems (according to our experiences) easier to work with
distinguishing-style definitions.

Security Proof of Transformation U�⊥
m. We give a compressed overview of

the proof of Theorem 2 from HKSU. For details, see [16].
5 This means that for any m0 �= m1 in the message space, Enc(pk , m0) �= Enc(pk , m1)

with probability 1. Note that this does not imply the possibility of correct decryption:
While information theoretically, the plaintext is determined by the ciphertext, it may
be computationally infeasible to determine the correct plaintext with probability 1,
even given the secret key.

6 This means that for random (pk , sk) ← Keygen() and worst-case m, Dec(sk ,Enc(pk ,
m)) = m with probability at least 1 − ε. See [16] for a precise definition.

Post-Quantum Verification of Fujisaki-Okamoto 337

Fix an adversary A. By definition of IND-CCA security (Definition 2), we
need to bound |Pr[b = 1 : IND-CCA0] − Pr[b = 1 : IND-CCA1]| for the games from
Fig. 5.

We use essentially the same games in this proof as HKSU, with one differ-
ence: Since we decided to define IND-CCA security via a distinguishing-style
definition, we need to adapt the games accordingly. All arguments from HKSU
carry over trivially to our changed presentation.

The first step is to rewrite IND-CCA0 by unfolding the definitions of KeygenFO,
Encaps, Decaps. (I.e., we make all constructions introduced by T and U�⊥

m

explicit.) In addition, we replace the PRF by a uniformly random function Hr

(that is not accessible to the adversary). The resulting game is:

Here (A → B) is the set of functions from A to B. And C is the ciphertext space.
From the fact that PRF is a pseudorandom function, we get that

|Pr[b = 1 : IND − CCA0] − Pr[b = 1 : Game 0]| is negligible.
Next, we chose the random oracle H differently: Instead of chosing H uni-

formly, we define it as the composition of a uniformly random function Hq and
the encryption function Enc(pk ,−;G(−)). (The − stands for the function argu-
ment.) Since Enc has injective encryption, Enc(pk ,−;G(−)) is injective, and thus
H is still uniformly distributed. We get the following game (changed lines are
marked with boldface line numbers):

Note that we additionally replaced two invocations H(m∗), H(m) by Hq(c∗),
Hq(c). By construction, the new invocations return the same values. We have
Pr[b = 1 : Game 0] = Pr[b = 1 : Game 1].

In the next game hop, we change the decapsulation oracle. Instead of return-
ing Hr(c) or Hq(c), depending on the result of the decryption, we now always
return Hq(c). The resulting game is:

338 D. Unruh

Since Hr and Hq are both random functions, at the first glance it might seem
that this change does not matter at all, the return value is still random. However,
Hq is indirectly accessible to the adversary via H! A more careful case analysis
reveals that the adversary can distinguish the two games if it finds a message m
with “bad randomness”. That is, a message m such that Dec(sk ,Enc(pk ,m; r))
=
m where r := G(m). If such bad randomness did not exist (i.e., when using a
perfectly correct base scheme), this case would never happen. However, we do
not assume perfect correctness. The solution from HKSU is to first replace the
uniformly chosen G

$← (M → R) by a G that outputs only good randomness
(short: a “good G”). I.e., for each m, G(m) := r is chosen uniformly from the
set of all r with Dec(sk ,Enc(pk ,m; r)) = m. Once we have such a good G, bad
randomness does not occur any more, and we can show that switching between
Hr and Hq cannot be noticed (zero distinguishing probability). And then we

replace G back by G
$← (M → R).

To show that replacing the uniform G by a good G, HKSU reduces distinguish-
ing the two situations to distinguishing a sparse binary function F from a constant-
zero function F0 (given as an oracle). And for that distinguishing problem (called
GDPB), they give a lemma that shows the impossibility of distinguishing the F and
F0. Altogether, we get that |Pr[b = 1 : Game 1] − Pr[b = 1 : Game 2]| is negligible.

Our formalization deviates somewhat from that proof: Instead of using the
lemma about GDPB (which we would have to implement in the tool, first), we
use the O2H Theorem [1] to show this indistinguishability. (We had to implement
the O2H Theorem anyway because it is used in the analysis of transformation T.)

Note that this makes our bound somewhat worse. In HKSU, the proof step
involving GDPB leads to a summand of O(q2δ) in the final bound, while we
achieve O(q

√
δ) instead (last but one summand of (1)). Here q is the number of

queries and δ the correctness error of the underlying scheme.
In the next game, we change how the challenge ciphertext c∗ is generated.

Instead of encrypting m∗, we simply produce a fake ciphertext c∗ ← Enc(pk).
The resulting game is:

Post-Quantum Verification of Fujisaki-Okamoto 339

By DS security of Enc, this fake encryption cannot be distinguished from a real
encryption. (Note that the secret key is not used any more in Game 2.) Hence
|Pr[b = 1 : Game 2] − Pr[b = 1 : Game 3]| is negligible.

Finally, we change how K∗ is chosen. Instead of picking K∗ := Hq(c∗), we
chose K∗ uniformly:

Since Hq is a random function, this change can only be noticed if Hq(c∗) is
queried somewhere else. The adversary has access to Hq via H, but through
H it can only query Hq on values that are in the range of Enc. But since c∗

was constructed as a fake encryption Enc(pk), the ε-disjointness of Enc guaran-
tees that c∗ is, with overwhelming probability, not in the range of Enc. In that
case, Hq(c∗) is independent from anything the adversary might query. Thus
|Pr[b = 1 : Game 3] − Pr[b = 1 : Game 4]| is negligible.

So far, we have shown that the games IND-CCA0 and Game 4 are indistin-
guishable. To show indistinguishability of IND-CCA0 and IND-CCA1, we write
down a similar sequence of games Game 0’ to Game 4’ where K∗ is chosen uni-
formly (as in IND-CCA1). We then have indistinguishability of IND-CCA1 and
Game 4’. Game 4 and Game 4’ are identical, thus IND-CCA0 and IND-CCA1 are
indistinguishable, finishing the proof of IND-CCA security of Encaps.

Fig. 6. The main theorem. File: lemma_security_encFO.qrhl

340 D. Unruh

4 Formalizing HKSU – the Specification

A proof (formal or pen-and-paper) will consist of two separate parts: A spec-
ification of the result that is proven, and the proof itself. This separation is
important because if we trust that the proof is correct, we only need to read the
specification. In a pen-and-paper proof, this specification will usually consist of
the theorem together with all information required for interpreting the theorem,
i.e., all definitions that the theorem refers to, and all assumptions (if they are
not stated within the theorem itself). In the case of formal verification, we tend
to trust the proof (because it has been verified by the computer) but we have to
check the specification – does it indeed encode what we intended to prove?

In this section we go through the specification part of our HKSU formaliza-
tion (available at [33]). It consists roughly of five parts: The main theorem. The
specification of the encryption algorithm and other functions in Isabelle/HOL.
The specification of the security definitions (security games). The specification
of the adversary. And the specification of the reduction-adversaries (we explain
below why this is a relevant part of the specification).

The Main Theorem. The source code for the main theorem is shown in
Fig. 6. Line 2 is the IND-CCA advantage AdvCCA of the adversary attacking the
KEM Encaps resulting from the transformations Punc, T, U�⊥

m. (See Sect. 3.3.)
AdvCCA is defined as the difference between the probability of adversary-output
b = 1 in games indcca_encFO_0 and indcca_encFO_1. We will see those games
below. In 4 we have the advantage AdvPRF of a reduction-adversary7 against the
pseudorandom function PRF, expressed as the probability-difference between
games PRF_real and PRF_ideal. In 5, we have basically the same but with
respect to a different reduction-adversary. We have two reduction-adversaries for
PRF since we used the pseudorandomness twice in the proof. Since the adver-
sary is hardcoded in the games,8 we express this in terms of further games
PRF_real’ and PRF_ideal’. In 6 we have the IND-CPA advantage Adv′′′

CPA

of a reduction-adversary against the base scheme Enc0, expressed in terms of
games indcpa_enc0_0’’’ and indcpa_enc0_1’’’. Similarly, we have advan-
tages Adv′′

CPA in lines 7–8, Adv′
CPA in 6, and AdvCPA in lines 7–8, against further

reduction-adversaries. The term δ := correctness params0 ... in lines 11
and 12 refers to the correctness of Enc0, i.e., we assume Enc0 to be δ-correct.
(Cf. Footnote 6 for the meaning and Fig. 7 for the formalization of correctness.)
Finally, card (msg_space()) is the cardinality of the message space M of Enc.
qG, qH , qD are the number of queries made to the three oracles, and q := qG+2qH .

7 By reduction-adversary, we mean an adversary that we have explicitly constructed.
8 Due to a lack of a proper module system in qrhl-tool, we have a lot of code dupli-

cation. A module system for games and adversaries such as in EasyCrypt would be
a valuable addition to qrhl-tool and would have simplified our proofs considerably.

Post-Quantum Verification of Fujisaki-Okamoto 341

Fig. 7. Some definitions from General_Definitions.thy. See Page 11 for a micro
primer on Isabelle/HOL syntax.

With the notation we introduced in this explanation, we can write the main the-
orem more readably:

AdvCCA ≤ AdvPRF + Adv′
PRF + Adv′′′

CPA + 2
√

1 + q
√

Adv′′
CPA + 4q/|M|

+Adv′
CPA + 2

√
1 + q

√
AdvCPA + 4q/|M|

+8
√

4(q + qD + 2)(q + qD + 1)δ + 2δ. (1)

Encryption Algorithm and Other Definitions. In order to make sense of
the main theorem, we first need to check the definitions of the KEM and the
building blocks used in its construction. The simplest is the pseudorandom func-
tion PRF, defined in Fig. 8, lines 1–2. The axiomatization command declares
two constants PRF (the PRF) and keygenPRF (the key generation algorithm for
the PRF, given as a distribution over keys). It furthermore axiomatizes the fact
the key generation is a total distribution (axiom keygenPRF_total). (We do not
need to axiomatize the security of PRF; its security is used implicitly by having
AdvPRF occur in the main theorem.)

Similarly, we axiomatize the encryption scheme Enc0 in lines 4–16. All encryp-
tion schemes in our work consist of a public parameter distribution (we only use
this here for chosing the random oracles), a key generation, an encryption, a
decryption algorithm, and a message space (which we allow to depend on the
public parameters). The base scheme does not have public parameters, so we
define params0 as the point distribution that always returns the dummy value
() (4). The key generation keygen0 (lines 6–9) takes the public parameter and
returns a distribution of public/secret key pairs. We assume that key generation
is a total distribution (axiom weight_keygen0). Additionally we assume a func-
tion pk_of_sk that returns the corresponding pk for every sk in the support of

342 D. Unruh

Fig. 8. Building blocks: Base scheme and pseudorandom function. File:
Base_Scheme.thy (last line: FO_Specification.thy). See Page 11 for a micro
primer on Isabelle/HOL syntax.

keygen.9 We define the encryption by first defining enc0r, a function that takes
the public parameters, public key, message, and explicit randomness to compute
a ciphertext (11). From this we define enc0 as the distribution resulting from
applying enc0r to the uniform distribution on the randomness (12). Decryption
(dec0, 13) may fail, hence the return type is msg option, which means it can
be None or Some m with a message m. Finally, msg_space0 is a non-empty set
(lines 15–16). We have an additional axiom enc0_injective (lines 18–19) which
encodes the assumption that our base scheme is injective. (Cf. Footnote 5 for
the meaning and Fig. 7 for the formalization of injective_enc.)

The transformations Punc, T, and U�⊥
m are given in Fig. 9. As with our base

scheme, we always define a deterministic encryption/encapsulation that takes
explicit randomness first. The final KEM consists of the functions keygenFO,
encapsFO, decapsFO, etc. We omit a discussion of the details of the function
definitions, they follow our exposition in Sect. 3.

Security Definitions/Games. Next we have to understand the games that
define the various advantages in the main theorem. We start with the IND-
CCA security of Encaps. AdvCCA was defined as the difference in probabilities
that an adversary A (Adv_INDCCA_encFO in our case) outputs b = 1 in games
indcca_encFO_0/1. The formalization of these games is given in Fig. 10. It is
a direct encoding of the games in Fig. 5, with several small differences: Since
we do not support procedures with parameters and return values, we use the
global variables in_pk and in_cstar and Kstar for the inputs pk and c∗ and
K∗. And the global variable b is used for the return value (guessing bit). Below,
when defining the adversary, we will then make sure the adversary gets access

9 This assumption is not explicit in HKSU but clearly necessary for defining the
decryption in transformation T: since the decryption re-encrypts, it needs to know
the public key.

Post-Quantum Verification of Fujisaki-Okamoto 343

Fig. 9. Functions resulting from transformations Punc, T, U�⊥
m. Files: Punc_

Specification.thy (l.1–6), T_Specification.thy (l.8–15), FO_Specification.thy
(l.7–25). See Page 11 for a micro primer on Isabelle/HOL syntax.

to those global variables.10 Access to the oracle decapsQuery is by passing it
to the adversary as one of the oracles. Communication with decapsQuery is
through variables c (input) and K’ (output). It checks explicitly whether c
= c∗

and returns None otherwise. (In Fig. 5, it was not made explicit how we enforce
c
= c∗.) Additionally, we model the access to the random oracles G,H by giving
A access to queryG, queryH. queryG operates on global variables Gin, Gout and
applies the unitary transformation Uoracle G on them. (Uoracle is a built-in
function that transforms a function G into a unitary |x, y〉 �→ |x, y ⊕ G(x)〉.)
Analogously queryH.

Similarly we define the games used in the rhs (right hand side) of the
main theorem. The games PRF_real and PRF_ideal defining PRF-security
for adversary Adv_PRF are given in Fig. 11. Again, we define oracles to either
evaluate a pseudo-random function PRF or a random function RF and pass
them to the adversary. The adversary Adv_PRF is explicitly defined in terms
of Adv_INDCCA_encFO as part of our reduction, but its implementation details
do not matter for us (except for some necessary sanity checks, see below). The
primed variants Adv_real’ and Adv_ideal’ are identical except that they use
a different reduction-adversary.

10 We do not use pk and cstar directly for passing pk and c∗ since that would mean
giving A access to those variables. Then A could change the value of pk and c∗ but
the oracle decapsQuery relies on having the original values of pk and c∗.

344 D. Unruh

Fig. 10. IND-CCA security definition for Encaps. Files: indcca_encfo_0.qrhl,
indcca_encfo_1.qrhl, decapsQuery.qrhl, queryG.qrhl, queryH.qrhl.

Fig. 11. Pseudorandomness game for Adv_PRF. Files PRF_real.qrhl, PRF_ideal.qrhl,
queryPRF.qrhl, queryRF.qrhl.

Fig. 12. IND-CPA security definition of Enc0 for Adv_INDCPA_enc0_1/2. Files
indcpa_enc0_1.qrhl, indcpa_enc0_0.qrhl.

Similarly, we define IND-CPA security of Enc0 against Adv_INDCPA_enc0_1/2
in Fig. 12. The primed variants are identical except that they use a different
adversary.

The Adversary. In the games indcca_encFO_1/2, we use the adversary A :=
Adv_INDCCA_encFO. Since we want the main theorem to hold for arbitrary adver-
saries, we need to declare the adversary as an unspecified program. This is done

Post-Quantum Verification of Fujisaki-Okamoto 345

Fig. 13. Adversary declaration. File: Adv_INDCCA_encFO.qrhl.

in Fig. 13. It declares that the adversary has access to the variables classA,
quantA, b, in_pk, in_cstar, Kstar, i.e., we say the adversary has those free
variables. Here classA, quantA are the global state of the adversary (quantum
and classical part), and the others are the variables used for inputs/outputs of
the adversary. Furthermore, the adversary needs to be able to access the vari-
ables Hin, Hout, Gin, Gout, c, K’ that are used as inputs/outputs for its oracles
decapsQuery, queryG, queryH (see above). Those variables are not declared as
free variables (i.e., the adversary will have to hide them under a local com-
mand) but may be used internally, in particular before or after invoking the
oracle. Finally, calls ?,?,? means that the adversary takes three oracles.

However, we are not interested in arbitrary adversaries, but in ones that
always terminate and that make ≤ qG, qH , qD queries to its various oracles. For
this, we add various axioms to the file axioms.qrhl, stating the termination and
the number of queries performed when instantiated with various oracles. The
file with all axioms is discussed in the full version [35]. Unfortunately, this file
contains a lot of repetitions because qrhl-tool does not allow us to allquantify
over the oracles, so we need to state the axioms for any oracle we want to
instantiate the adversary with.11

Reduction-Adversaries. Finally, to fully check whether the main theorem
states what we want it to state (namely, that the KEM Encaps is secure assum-
ing that the underlying encryption scheme Enc0 and the PRF are secure), we
also need to inspect the reduction-adversaries. This is because the main theo-
rem basically says: If Adv_INDCCA_encFO breaks Encaps, then one of the adver-
saries in the games on the rhs breaks Enc0 or PRF. (I.e., one of Adv_PRF,
Adv_PRF’, Adv_INDCPA_enc0/1, etc.) But this is vacuously true – it is easy
to construct an adversary that breaks Enc0 or PRF. Namely, that adversary
could run in exponential-time and perform a brute-force attack. Or that adver-
sary could directly access the global variables containing, e.g., the secret key.
So, while the exact details of what the reduction-adversaries do are not impor-
tant, we need to check: Are the reduction-adversaries quantum-polynomial-time
if Adv_INDCCA_encFO is? (Or even some more refined runtime relationship if we
want tight concrete security bounds.) And do the reduction-adversaries access
only variables that are not used by the security games themselves? The latter
can be checked using the print command in interactive mode that prints all
variables of a program (e.g., print Adv_PRF). This shows that the adversaries
in the PRF games only access cstar, classA, b, c, K’, quantA, and in partic-
ular not prfk or RF. And the adversaries in the IND-CPA games access only

11 Another place where a more advanced module system would help, cf. Footnote 8.

346 D. Unruh

Find, mstar, S, in_cstar, in_pk, classA, b, is_puncture, G, quantA, but not
the forbidden sk, pk, cstar.12 To check the runtime of the adversaries, there
is currently no better way than to manually inspect the code of all adversaries
explicitly to see whether they do anything that increases the runtime too much.
To the best of our knowledge, this is the state-of-the-art also in classical crypto
verification. We believe that coming up with formal verification support for run-
time analysis in qrhl-tool and similar tools is a very important next step. If
this would be solved, the reduction-adversaries could be removed from the list
of things we need to check as part of the specification.

By checking all the above points, we can have confidence that the formal proof
indeed proves the right thing. (There are quite a lot of points to check, but we
stress that in a pen-and-paper proof, the situation is similar – one needs to check
whether all security definitions are correct, etc.)

5 Formalizing HKSU – The Proof

Since the formal proof is much too long to go through in detail, we only show a
few select elements here to given an impression. HKSU shows security of three
transformations Punc, T, U�⊥

m. The proof follows the overall structure of HKSU,
lemma_ds_security.qrhl and lemma_indcpa_security.qrhl establishing DS
and IND-CPA security of Punc, lemma_ds_encT_security.qrhl establishing DS
security of T, and lemma_encFO_indcca.qrhl establishing IND-CCA security of
the combination of T and U�⊥

m. Finally lemma_security_encFO.qrhl combines
all those results into one overall result, the “main theorem” discussed in Sect. 4.

lemma_encFO_indcca.qrhl establishes IND-CCA security using the same
sequence of games as described in Sect. 3.3, encoded as programs game0FO, . . . ,
game4FO, game3FO’, . . . , game0FO’ in the eponymous files.

Game 1 to Game 2. We zoom in some more onto the proof of the relationship
between Game 1 and Game 2 (lemma_game1FO_game2FO.qrhl). We follow the
basic intuition from Sect. 3.3, and split the proof of that step into the following
subgames (all in eponymous .qrhl files):

(1) game1FO: Game 1 from Sect. 3.3.
(2) game1FO_goodbad: In this game, we prepare for replacing uniform G by a

good G. For this purpose, instead of picking G uniformly, we pick a good
Ggood (i.e., picking Ggood(m) uniformly from the good randomnesses for
every m) and a bad Gbad, and a set S of messages. We define G(m) to be
Ggood(m) if m /∈ S and Gbad(m) otherwise. By choosing the distribution of
S properly, we have that the resulting G is still uniform.
We additionally remove all direct access to G, and make sure that queryG
is used everywhere instead. This is necessary for bringing the game into
the shape needed in the following step. This means all classical queries to

12 Again, a more refined module system would allow us to automatically derive that
certain variable-disjointness conditions hold, cf. Footnote 8.

Post-Quantum Verification of Fujisaki-Okamoto 347

G (e.g., in the creation of the challenge ciphertext) need to be replaced
by quantum queries with subsequent measurements (we define a wrapper
oracle ClassicalQueryG(queryG) for this), and we cannot simply define
the function H in terms of G (see Game 1, line 03 in Sect. 3.3). Instead,
we need to construct an oracle queryH_Hq that implements superposition
queries of H in terms of superposition queries of G (via queryG). This
makes this proof step considerably more complex than many of the other
game steps.
That Pr[b = 1] does not change is shown in lemma_game1FO_goodbad.qrhl.

(3) game1FO_goodbad_o2h_right: We rewrite the previous game to have the
right shape for the O2H theorem. The O2H theorem allows us to replace
one oracle by another one that differs only in a few (hard to find) places. In
order to apply the O2H theorem [1] (or the o2h tactic in qrhl-tool), the
game needs to have a very specific form: count ← 0; $← (S,G,G′, z′)D;
{localV ; call AO2H (Count(query))} for an oracle Count that counts
queries in variable count and query that implements superposition queries
to G′. The distribution D and the program AO2H can be chosen freely. In
our case we choose D := goodbad_o2h_distr such that G′ is G from the
previous game, and G is Ggood, and we choose AO2H = Adv_O2H_Game1FO
to simulate the rest of the game. We show that the probability of Pr[b = 1]
does not change (lemma_game1FO_goodbad_o2h_right.qrhl).

(4) game1FO_goodbad_o2h_left: We replace queries to G′ by queries to G
(recall that G was, in the previous game, made to return only good random-
ness). The Semiclassical O2H theorem [1] (implemented via our tactic o2h)
allows us to do this replacement. In the resulting game Pr[b = 1] will differ
by an amount that can be bounded in terms of the probability of finding
an element in S. Bounding this probability involves a side-chain of games
that we omit here. Altogether, lemma_game1FO_o2h_concrete.qrhl gives
a concrete bound on the difference of Pr[b = 1].

(5) game1FO_goodbad_o2h_left’: We remove the query-counting wrapper ora-
cle Count that was introduced for the o2h tactic. We do this in a separate
game step because it would be in the way in the next step. The probability
Pr[b = 1] does not change (lemma_game1FO_goodbad_o2h_left’.qrhl).

(6) game1FO_goodbad_o2h_left_class: We unwrap the adversary
Adv_O2H_Game1FO again which we introduced in (5). We also undo the vari-
ous replacements done in (2) (which ensured that G was never used directly)
to make the game simpler for the following steps. The probability Pr[b = 1]
does not change (lemma_game1FO_goodbad_o2h_left_class.qrhl).

(7) game1FO_goodbad_badpk: In (2), we ignored one problem: Even if there is
just one m without any good randomness, then it is not well-defined to pick
G uniformly from the set of good G’s because that set is empty.13 For that
reason, in (2), we actually defined G(m) to be good if good randomness
exists. But this definition breaks the next step below which relies on the
fact that all randomness is good. Our solution is to introduce a predicate

13 This problem also exists in HKSU but was not noticed there.

348 D. Unruh

bad_pk pk sk that tells us whether there is an m (for that key pair) with-
out good randomness. We then change the definition of the game to make
a case distinction on bad_pk pk sk. If true, the new game behaves in a
way that makes the next proof step trivially true. If false, the new game
behaves as before. The probability for bad_pk pk sk is bounded by the
correctness error of Enc0, so we can bound the difference of Pr[b = 1] in
lemma_game1FO_goodbad_badpk.qrhl.

(8) game2FO_goodbad_range: In the previous games, the choice whether
Decaps returns Hr(c) or Hq(c) depended on whether we have a reencryp-
tion failure or not. (See Decaps in Game 1 in Sect. 3.3.) Instead, we use
Hr(c) or Hq(c) depending on whether c is in the range of Enc′. We can
show that, assuming good randomness, these two conditions are equiva-
lent. Since G contains only good randomness, Pr[b = 1] does not change
(lemma_game1FO_game2FO_o2h.qrhl).

(9) game2FO_goodbad_o2h_left’: In the previous game, Decaps returns Hr(c)
if c is not in the range of Enc′. We replace this by always returning Hq(c) as
in Game 2 (Sect. 3.3). By analysis of the game, we can see that Hq is used in
other places of the game only on the range of Enc′ = encT, hence Hq(c) and
Hr(c) are both fresh randomness if c is not in the range. Hence the replace-
ment does not change Pr[b = 1] (lemma_game2FO_goodbad_range.qrhl).

(10) The rest of the proof steps are analogous to those done in (2)–(6), in reverse
order until we reach game2FO.

Verification of ClassicalQueryG. To finish our illustration, we give the
details of one of the subproofs of step (2), namely the proof that access-
ing G directly is the same querying G via ClassicalQueryG(queryG). The
source of ClassicalQueryG is given in Fig. 14, lines 1–6. It initializes Gin with
|gin〉, Gout with |gout〉, calls the query oracle (which will query G in super-
position), and measures Gout into gout. Lines 8–11 claim that after doing
so (in the right program) we will have gout2 = G2(gin2). And furthermore,
that this preserves quantum equality of quantA, aux between the left and
right side. Lines 13–14 inlines the definitions of the programs that we use,
and lines 15–16 removes the local variable declarations. (The subgoal now has
the same pre-/postcondition as before, but the right program is the code of
ClassicalQueryG without the local statement.) Then wp right (17) consumes
the statement gout <- measure Gout with computational_basis, and the
postcondition becomes (after simplification) what is written in lines 18–19. Basi-
cally, this proof step tells us that having |gin2, G2 gin2〉 in Gin2,Gout2 is suf-
ficient for having gout2 = G2(gin2) after measurement. Next (lines 21–24) we
consume “on Gin,Gout apply (Uoracle G)” from queryG (see Fig. 10, evalua-
tion of G in superposition) and show that now it is sufficient to have |gin2, 0〉 in
Gin2,Gout2. In lines 25–29, we remove the initialization Gout <q ket 0, now
the necessary condition is to have |gin〉 in Gin2. And in lines 30–32, we remove
Gin <q ket gin, removing the last requirement. Now left and right program are
both skip and the pre-/postcondition are identical. The skip tactic (33) solves
such a qRHL subgoal.

Post-Quantum Verification of Fujisaki-Okamoto 349

Fig. 14. Verification of ClassicalQueryG. Files: ClassicalQueryG.qrhl (l.1–6),
lemma_ClassicalQueryG_queryG.qrhl (l.8–35).

6 Conclusion

In this work, we have shown how to formally verify the HKSU security proof of
a Fujisaki-Okamoto variant.

The experience shows that formal proofs of post-quantum secure schemes
seem definitely possible using the approach in the qrhl-tool. Besides challenges
due to the early development stage of the tool, probably the most troublesome
part is reasoning about quantum computations. E.g., in one technical lemma14
we show that a superposition query to the function H := Hq(Enc(pk ,−;G(−)))
as defined in Game 1, line 03 in Sect. 3.3 can be implemented by the simply
quantum circuit that performs a superposition query to G, a superposition query
to Hq(Enc(pk ,−;−)) and another superposition query to G for uncomputation.15
The simplification of the resulting verification condition is a 200 lines Isabelle
proof that takes almost ten minutes to execute (on the authors laptop).16 Given

14 File lemma_queryH_invariant.qrhl.
15 This quantum circuit is formalized as a program in file queryH_Hq.qrhl.
16 File FO_Proofs_Very_Slow.thy.

350 D. Unruh

the simplicity of the fact that is proven, we feels this proof should be fully
automatic and finish almost instantaneously.

What other post-quantum security proofs are possible using the same
methodology? We feel that proofs of other post-quantum secure cryptographic
schemes both in the standard model and the random oracle model should be
feasible as well, as long as they do not use any advanced random oracle rea-
soning techniques beyond the O2H Theorem. How hard or easy it is to handle
other proof techniques for the random oracle, or proof techniques that involve
rewinding (which is notoriously challenging in the quantum setting) is not clear
at this point. Similarly, it is not clear at this point how easily security proofs
that involve reasoning about quantum information theory (such as quantum key
distribution proofs, for example) can be formalized.

Possible directions for future research include:

– Formalizations of security proofs of the actual NIST candidates. While HKSU
is quite close to some of the NIST candidates, to have highest assurance, we
should analyze the schemes exactly as standardized and not merely schemes
that are very similar to them. While unlikely, even a small difference such as
the order in which the different inputs to a hash functions are concatenated
might make a scheme insecure.

– Improved methods for reasoning about the quantum parts of the schemes,
in particular methods for evaluating quantum computations such as the one
mentioned in the beginning of this section. (Sequences of applications of uni-
taries in the program translate to multiplications of operators in the pre-
/postconditions.)

– Support for other post-quantum security proof techniques beside the O2H
Theorem. (E.g., rewinding, other random-oracle proof techniques.) Ideally,
those proof techniques should be derived in the tool directly from first prin-
ciples.

– Formal verification of “fully quantum” protocols such as quantum key distri-
bution, quantum money, etc.

Acknowledgments. We thanks Kathrin Hövelmanns for valuable discussions. This
work was supported by the US Air Force AOARD grant “Verification of Quantum
Cryptography” (FA2386-17-1-4022), by the ERC consolidator grant CerQuS, by the
Estonian Research Council grant PRG946, and by the Estonian Centre of Exellence in
IT (EXCITE) funded by ERDF.

References

1. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-
classical oracles. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11693, pp. 269–295. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26951-7_10

https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-030-26951-7_10

Post-Quantum Verification of Fujisaki-Okamoto 351

2. Arute, F., et al.: Quantum supremacy using a programmable superconducting pro-
cessor. Nature 574(7779), 505–510 (2019)

3. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9_5

4. Barthe, G., Grégoire, B., Lakhnech, Y., Zanella Béguelin, S.: Beyond provable
security verifiable IND-CCA security of OAEP. In: Kiayias, A. (ed.) CT-RSA 2011.
LNCS, vol. 6558, pp. 180–196. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19074-2_13

5. Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based
cryptographic proofs. In: POPL, pp. 90–101. ACM (2009)

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: CCS ’93, pp. 62–73. ACM (1993)

7. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis A. (eds.)
Advances in Cryptology – EUROCRYPT’94, Lecture Notes in Computer Science,
vol. 950. Springer, Berlin, vol. 950, pp. 92–111. (1994) https://doi.org/10.1007/
BFb0053428

8. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679_25

9. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0_3

10. Bos, J., et al.: CRYSTALS - kyber: a CCA-secure module-lattice-based KEM.
IACR ePrint 2017/634 (2017)

11. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
In: STOC 1998, pp. 209–218. ACM (1998)

12. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption at
minimum cost. IEICE Trans. Fund. Electron. Commun. Comput. Sci. E83–A(1),
24–32 (2000)

13. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under
the RSA assumption. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
260–274. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_16

14. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under
the RSA assumption. J. Crypto 17(2), 81–104 (2004)

15. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2_12

16. Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key
exchange in the quantum random oracle model. IACR ePrint 2018/928, rev. Febru-
ary 14, 2019 (2019), preliminary version of [17]

17. Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key
exchange in the quantum random oracle model. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 389–422. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_14

https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-642-19074-2_13
https://doi.org/10.1007/978-3-642-19074-2_13
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/3-540-44647-8_16
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-030-45388-6_14

352 D. Unruh

18. Inoue, A., Iwata, T., Minematsu, K., Poettering, B.: Cryptanalysis of OCB2:
attacks on authenticity and confidentiality. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 3–31. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26948-7_1

19. ISO: Information technology - security techniques - authenticated encryption.
International Standard ISO/IEC 19772 (2009)

20. Naehrig, M., et al.: Frodokem. Technical Report, National Institute of Standards
and Technology (2017)

21. Nipkow, T.: Programming and proving in isabelle/hol. https://isabelle.in.tum.
de/website-Isabelle2019/dist/Isabelle2019/doc/prog-prove.pdf (2019), version for
Isabelle 2019

22. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

23. NIST: Post-quantum crypto standardization - call for proposals. http://csrc.nist.
gov/groups/ST/post-quantum-crypto/call-for-proposals-2016.html (2016)

24. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-
2_2

25. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism
in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 520–551. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7_17

26. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: FOCS 1994, pp. 124–134. IEEE (1994)

27. Shoup, V.: OAEP reconsidered. J. Crypto 15(4), 223–249 (2002)
28. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.

Cryptology ePrint 2004/332 (2004)
29. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and

OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp.
192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-
5_8

30. Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4_10

31. Unruh, D.: dominique-unruh/qrhl-tool: Proof assistant for qRHL. GitHub, https://
github.com/dominique-unruh/qrhl-tool (2017–2020), binaries of the correct ver-
sion are at https://github.com/dominique-unruh/qrhl-tool/releases/tag/v0.5

32. Unruh, D.: Quantum relational Hoare logic. Proc. ACM Program. Lang. 3, 1–31
(2019)

33. Unruh, D.: GitHub, https://github.com/dominique-unruh/hksu-verification/tree/
asiacrypt2020 (2020), source code of the proofs described here

34. Unruh, D.: Local variables and quantum relational hoare logic. arXiv:2007.14155
[cs.LO] (2020)

35. Unruh, D.: Post-quantum verification of Fujisaki-Okamoto. IACR ePrint 2020/962
(2020), full version of this paper

36. Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1),
25–58 (2009)

https://doi.org/10.1007/978-3-030-26948-7_1
https://doi.org/10.1007/978-3-030-26948-7_1
https://isabelle.in.tum.de/website-Isabelle2019/dist/Isabelle2019/doc/prog-prove.pdf
https://isabelle.in.tum.de/website-Isabelle2019/dist/Isabelle2019/doc/prog-prove.pdf
https://doi.org/10.1007/3-540-45949-9
http://csrc.nist.gov/groups/ST/post-quantum-crypto/call-for-proposals-2016.html
http://csrc.nist.gov/groups/ST/post-quantum-crypto/call-for-proposals-2016.html
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-642-29011-4_10
https://github.com/dominique-unruh/qrhl-tool
https://github.com/dominique-unruh/qrhl-tool
https://github.com/dominique-unruh/qrhl-tool/releases/tag/v0.5
https://github.com/dominique-unruh/hksu-verification/tree/asiacrypt2020
https://github.com/dominique-unruh/hksu-verification/tree/asiacrypt2020
http://arxiv.org/abs/2007.14155

	Post-Quantum Verification of Fujisaki-Okamoto
	1 Introduction
	2 Quantum Relational Hoare Logic
	2.1 Quantum While Language
	2.2 QRHL Judgements
	2.3 Reasoning in qRHL
	2.4 The qrhl-tool

	3 Fujisaki-Okamato á la HKSU
	3.1 Transformation Punc
	3.2 Transformation T
	3.3 Transformation Um

	4 Formalizing HKSU – the Specification
	5 Formalizing HKSU – The Proof
	6 Conclusion
	References

