®

Check for
updates

Efficient Homomorphic Comparison
Methods with Optimal Complexity

Jung Hee Cheon'?, Dongwoo Kim!, and Duhyeong Kim!®)
! Department of Mathematical Sciences, Seoul National University,
Seoul, Republic of Korea
{jhcheon, dwkim606,doodoo1204}@snu. ac.kr
2 Crypto Lab Inc., Seoul, Republic of Korea

Abstract. Comparison of two numbers is one of the most frequently
used operations, but it has been a challenging task to efficiently compute
the comparison function in homomorphic encryption (HE) which basi-
cally supports addition and multiplication. Recently, Cheon et al. (Asi-
acrypt 2019) introduced a new approximate representation of the com-
parison function with a rational function, and showed that this rational
function can be evaluated by an iterative algorithm. Due to this iterative
feature, their method achieves a logarithmic computational complexity
compared to previous polynomial approximation methods; however, the
computational complexity is still not optimal, and the algorithm is quite
slow for large-bit inputs in HE implementation.

In this work, we propose new comparison methods with optimal
asymptotic complexity based on composite polynomial approximation.
The main idea is to systematically design a constant-degree polynomial
f by identifying the core properties to make a composite polynomial
fofo---of get close to the sign function (equivalent to the compari-
son function) as the number of compositions increases. We additionally
introduce an acceleration method applying a mixed polynomial compo-
sition fo---o fogo---0g for some other polynomial g with different
properties instead of fo fo---of. Utilizing the devised polynomials f and
g, our new comparison algorithms only require ©(log(1/¢)) + O(log «)
computational complexity to obtain an approximate comparison result
of a,b € [0,1] satisfying |a — b| > € within 27 error.

The asymptotic optimality results in substantial performance
enhancement: our comparison algorithm on 16-bit encrypted integers for
a = 16 takes 1.22 ms in amortized running time based on an approximate
HE scheme HEAAN, which is 18 times faster than the previous work.

1 Introduction

Homomorphic Encryption (HE) is a primitive of cryptographic computing, which
allows computations over encrypted data without any decryption process. With
HE, clients who sent encrypted data to an untrusted server are guaranteed data
privacy, and the server can perform any operations over the encrypted data. In
recent years, HE has gained worldwide interest from various fields related to data

© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASTACRYPT 2020, LNCS 12492, pp. 221-256, 2020.
https://doi.org/10.1007/978-3-030-64834-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64834-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-64834-3_8

222 J. H. Cheon et al.

privacy issues including genomics [37-39] and finances [3,31]. In particular, HE
is emerging as one of the key tools to protect data privacy in machine learning
tasks, which now became a necessary consideration due to public awareness of
data breaches and privacy violation.

The comparison function comp(a,b), which outputs 1 if a > b, 0 if a < b
and 1/2 if a = b, is one of the most prevalent operations along with addition
and multiplication in various real-world applications. For example, many of the
machine learning algorithms such as cluster analysis [17,33], gradient boost-
ing [25,26], and support-vector machine [19,40] require a number of comparison
operations. Therefore, it is indispensable to find an efficient method to compute
the comparison function in an encrypted state for HE applications.

Since HE schemes [7,11,24] basically support homomorphic addition and
multiplication, to compute non-polynomial operations including the comparison
function in an encrypted state, we need to exploit polynomial approximations
on them. The usual polynomial approximation methods such as minimax find
approximate polynomials with minimal degree on a target function for given a
certain error bound. However, the computational complexity to evaluate these
polynomials is so large that it is quite inefficient to obtain approximate results
with high-precision by these methods. Recently, to resolve this problem, Cheon
et al. [12] introduced a new identity comp(a,b) = limy .o a¥/(a* + b¥), and
showed that the identity can be computed by an iterative algorithm. Due to
this iterative feature, their algorithm achieves a logarithmic computational com-
plexity compared to usual polynomial approximation methods. However, the
algorithm only achieves quasi-optimal computational complexity, and it is quite
slow in HE implementation; more than 20 min is required to compute a single
homomorphic comparison of 16-bit integers.

In this work, we propose new comparison methods using composite polyno-
mial approximation on the sign function, which is equivalent to the comparison
function. Starting from the analysis on the behavior of a composite polynomial
f@ .= fofo---of, we identify the core properties of f that make f(9) get close
to the sign function as d increases. We additionally introduce a novel accelera-
tion method by applying a mized composition of f and some other polynomial
g with different properties instead of a simple composition of f. Applying these
systematically devised polynomials f and g, we construct new comparison algo-
rithms which firstly achieve the optimal computational complexity among all
polynomial evaluations to obtain an approximate value of the comparison result
within a certain error bound.

Our composite polynomial methods can be directly applied to evaluate
piecewise polynomials with two sub-polynomials including the absolute func-
tion: For example, the function p such that p(z) = pi(x) if z € [0,1] and
p(z) = po(x) if z € [—1,0) for polynomials p; and ps can be represented by
p1(x)- (14+sgn(z))/2+pa(x) - (1 —sgn(zx))/2. Furthermore, our method is poten-
tially applicable to more general piecewise polynomials including step functions
(see Remark 1).

Efficient Homomorphic Comparison Methods with Optimal Complexity 223

1.1 Owur Idea and Technical Overview

Our key idea to identify several core properties of the basic function f essentially
comes from a new interpretation of the previous work [12]. To be precise, [12]
exploits the following identity to construct a comparison algorithm:

k 1 ifa>"b
lim ————=<¢1/2 ifa=b p = comp(a,b)
E 1 pk ’
koo a* +b 0 ifa<b
for positive numbers a,b € [1/2,3/2]. Since very large exponent k = 27 is

required to obtain a comparison result within small error, they suggest to iter-
atively compute a < a?/(a? 4+ b?) and b «— b*/(a® + b?) with an initial step
a <+ a/(a+b)and b« b/(a+b), which results in a2d/(a2d + de) ~ comp(a, b)
after d iterations. The inverse operation 1/(a®+b?) in each iteration is computed
by Goldschmidt’s division algorithm [30].

The computational inefficiency of the comparison algorithm in [12] mainly
comes from that inverse operation which should be done at least d times. Then,
the natural question would be

“How can we construct an efficient comparison algorithm
without inverse operation?”

To do this, we analyze the comparison algorithm in [12] with a new perspective.
Let fo(x) = 22/(2® + (1 — x)?), then each iteration a « a2?/(a® + b%) and
b «— b?/(a®+b?) can be interpreted as an evaluation of fy(a) and fo(b) = 1— fy(a)
for 0 < a,b < 1, respectively. Indeed, the d iterations correspond to the d-time
composition of the basic function fy denoted by féd) := foo foo---ofy, and the
comparison algorithm can be interpreted as approximating (sgn(2z — 1) +1)/2

by a composite polynomial féd) (Fig. 1).

— fo
—

—®
0

0.8 1

0.6 T

0.4+

0.2

0 0.5 1

Fig. 1. Illustration of féd) ford=1,2,3

Our key observation on the basic function fy is that we actually do not
need the exact formula of fo(z) = 22/(2? + (1 — z)?). Instead, it suffices to use

224 J. H. Cheon et al.

other polynomials with similar shape to fy: convex in [0, 0.5], concave in [0.5, 1],
symmetric to the point (0.5,0.5), and have a value 1 at x = 1. For example,
the composition hgd) of our devised polynomial h;(z) = —2z% + 322, which has
similar shape to fp, gets close to (sgn(2z — 1) + 1)/2 as d increases. As a result,
we can approximate the comparison function by a composite polynomial f(% for
some constant-degree polynomial f with several core properties, and identifying

these core properties is the most important step in our algorithm construction.

Core Properties of f. Since the sign function is equivalent to the comparison
function, via sgn(z) = 2 - comp(z,0) — 1 and comp(a,b) = (sgn(a — b) + 1)/2,
it is enough to find a polynomial f such that f(®(z) gets close to sgn(z) over
[—1, 1] for some proper d. The core properties of f are as following:

Prop I. f(—x)=—f(x)
Prop II. f(1) =1, f(-1)=-1
Prop III. f'(x) = ¢(1 — x)™(1 4 x)™ for some constant ¢ > 0

The first property is necessary from the origin symmetry of the sign function,
and the second property is required to achieve limy_o. f(?(z) =1 for 0 < z < 1.
The last property makes f to be concave in [0, 1] and convex in [—1,0], and the
multiplicity n of £1 in f’(z) accelerates the convergence of f(? to the sign
function. Interestingly, for each n > 1, a polynomial f, satisfying above three
properties is uniquely determined as

1 (2 o

=3 (%) 02y
Since sgn(x) is a discontinuous function at x = 0, the closeness of a polyno-
mial f(x) to sgn(z) should be considered carefully. Namely, we do not consider a
small neighborhood (—¢, €) of zero when measuring the difference between f(z)
and sgn(z) (if not, the infinite norm is always > 1). In Sect. 3.2, we prove that
the infinite norm of fi* (x) — sgn(x) over [—1,—€] U [e,1] is smaller than 27
if d > d,, for some d,, > 0. Then, (fT(Ld")(a —b) 4+ 1)/2 outputs an approximate

value of comp(a,b) within 27 error for a,b € [0, 1] satisfying |a — b| > €.

Acceleration Method. Along with { f,,},>1, we provide another family of odd
polynomials {g, }n>1 which reduces the required number of polynomial compo-
sitions d,,. At a high-level, we can interpret d, as d,, := d. + d, where each of
the terms d. and d, has distinct aim as following: The first term d. is a required
number of compositions to map the interval [e, 1] into the interval [1 — 7, 1] for
some fixed constant 0 < 7 < 1 (typically, 7 = 1/4), and the second term d, is a
required number of compositions to map [1 — 7,1] into [1 — 27%, 1], i.e.,

f’I(Y,dE)([E’ 1]) - [1 - T, 1]7
fY (=7 1)) S 1 —27%1).

In this perspective, our idea is to reduce d. by substituting f,(Ldeer“) with f,(Ld") o
g,(lde) for some other (2n 4 1)-degree polynomial g,, with weaker properties than

Efficient Homomorphic Comparison Methods with Optimal Complexity 225

the core properties of f,,. Since the first d. compositions only need to map [e, 1]
into [1 — 7, 1], Prop II & III are unnecessary in this part. Instead, the following
property along with Prop I is required:

PropIV. 30<d <1s.t. z < gy(z) <1for z € (0,d] and g,([0,1]) C [1 — 7, 1]

For g, satisfying Prop I & IV, the composition g,(zd) does not get close to

the sign function as d increases; however, we can guarantee that gflde)([e, 1]) C
[1 — 7,1] for some d. > 0 which is exactly the aim of first d. compositions. With
some heuristic properties on g, obtained by Algorithm 2, the required number
of the first-part compositions d. is reduced by nearly half (see Sect. 3.5).

1.2 Our Results

New Comparison Methods with Optimal Complexity. We first propose

a family of polynomials {f,}»>1 whose composition f,(ld) gets close to the sign
function (in terms of (o, €)-closeness) as d increases. Based on the approximation

fy(Ld)(a—b) +1 sgn(a—b)+1
2 o 2

= comp(a, b),

we construct a new comparison algorithm NewComp(a,b;n,d) which achieves
optimal asymptotic complexity among the polynomial evaluations obtaining an
approximate value of comparison within a certain level of error. The following
theorem is the first main result of our work:

Theorem 1. Ifd > 2;22(7}) -log(1/e€) + loén ‘loga+ O(1), the comparison algo-
rithm NewComp(a, b;n,d) outputs an approzimate value of comp(a,b) within 27

error for a,b € [0,1] satisfying |a — b| > €.

The theorem implies that one can obtain an approximate value of comp(a,b)
within 27% error for a, b € [0, 1] satisfying |a—b| > € with O(log(1/€))+O(log o)+
O(1) complexity and depth with NewComp.

We also provide another family of polynomials {gy}n>1, which enables to
reduce the number of polynomial compositions by substituting ffld) with fy(,,df Vo

(dg)

gn ?’. From the mixed polynomial composition, we construct another comparison
algorithm NewCompG with the following result:

Theorem 2 (Heuristic). Ifd, > 11‘22(;) -log(1/€)+0O(1) and dy > loén log a+
O(1), the comparison algorithm NewCompG(a,b;n,dy,dy) outputs an approzimate

value of comp(a,b) within 2~ error for a,b € [0, 1] satisfying |a — b| > e.

Since g, and f, have the same degree, the total depth and computational com-
plexity of NewCompG are strictly smaller than those of NewComp.

The variety on choosing n in our comparison algorithms provides flexibility
in complexity-depth tradeoff. For instance, one can choose n = 4 to achieve the
minimal computational complexity (see Sect. 3.4). On the other hand, if one

226 J. H. Cheon et al.

wants to obtain comparison results with larger complexity but smaller depth,
one can choose n larger than 4. Assuming some heuristic properties of g, the
total depth of NewCompG(+,-; n, ds, dg) gets close to the theoretical minimal depth
as n increases (see Sect. 3.5).

Improved Performance. For two 8-bit integers which are encrypted by an
approximate HE scheme HEAAN [11], the comparison algorithm NewComp (for
e =27% and a = 8) takes 0.9 ms in amortized running time, and the performance
is twice accelerated by applying the other comparison algorithm NewCompG. The
implementation result on NewCompG is about 8 times faster than that on the
comparison algorithm of the previous work [12] based on HEAAN. Note that
this performance gap grows up as the bit-length of input integers increases: For
two encrypted 20-bit integers, our algorithm NewCompG is about 30 times faster
than the previous work.

Application to Max. Since the max function is expressed by the sign function
as max(a, b) = “E2+ 2L .sgn(a—b), we can directly obtain max algorithms from
the family of polynomials {f,},>1 (and hence {g,}n>1). Our max algorithms
NewMax and NewMaxG outperform the max algorithm in the previous work [12]
in terms of both computational complexity and depth. To be precise, the max
algorithm in [12] requires 4« + O(1) depth and 6« + O(1) complexity to obtain
an approximate value of min/max of two numbers in [0, 1] within 27% error. In
our case, the max algorithm NewMax applying fy only require 3.08a+ O(1) depth
and complexity, and it can be even reduced to 1.54a+ 1.721log a+ O(1) by using
the other max algorithm NewMaxG. In practice, for encrypted 20-bit integers our
NewMaxG algorithm is 4.5 times faster than the max algorithm in [12].
Moreover, our max algorithms fundamentally solve a potential problem of the
max algorithm in [12] when inputs are encrypted by HEAAN. When two input
numbers are too close so that the difference is even smaller than approximate
errors of HEAAN, then the max algorithm in [12] may output a totally wrong
result; in contrast, our max algorithms works well for any inputs from [0, 1].

1.3 Related Works

Numerical Analysis on the Sign Function. In the literature of numerical
analysis, to the best of our knowledge, there exist two main approaches on the
polynomial approximation of the sign function. One is to naively apply general
polynomial approximation methods (Taylor, least squares, minimax, etc.), and
the other is to apply Newton’s root-finding algorithm on a function which has
+1 as roots.

General polynomial approximation methods provide an approximate poly-
nomial with minimal degree under a certain upper bound of the approximate
error. However, the evaluation of such approximate polynomial requires at least
O(v/degree) multiplications, which yields super-large computational complezity
when we aim to obtain a high-precision approximation. For example, when we
want to obtain an approximate polynomial of the sign function with a-bit preci-
sion over [—1,—27%] U [27%,1] via general polynomial approximation methods,

Efficient Homomorphic Comparison Methods with Optimal Complexity 227

the required computational complexity is at least @(y/a - 2¢/2) which is expo-
nential to o (see Sect. 2.2 for more details). There have been recent works [8,32]
applying Chebyshev polynomial approximation (on the sine function) instead
of the minimax polynomial approximation for better efficiency. However, the
Chebyshev polynomial approximation method still requires exponential compu-
tational complexity with respect to a when it is applied to the sign function.
Newton’s root-finding algorithm outputs an approximate value of roots of a

r(mn) e ey .
) for an 1n1t(1a)1 point
r(x

xo. That is, an iterative computation of the function f(z) = z —) gives

function r(x) by iteratively computing x, 1 = =, —

an approximate value to one of the roots of r. The most simple choice of r to
compute the sign function is r(z) = 1 — 22 which derives f(z) = 1 - (z+ 1)
so-called Newton’s method [34,36]. There have also been several attempts to
improve the convergence rate of this iterative method to the sign function by
- 3 3 5
changing f to f(z) = 3% (Halley’s method [42]), f(z) = 33%EL [18],

. 1+10x2+5z4
3 5
and f(z) = j i%}?ﬁ ﬁ;fi%ﬁigxs [46].! However, all these methods com-

monly require the inverse operation, and additional polynomial approximation
on inverse is required to apply these methods in HE as the previous work [12].
Consequently, these methods are much less efficient than our methods for the
evaluation of the sign function in HE due to a number of expensive inverse
operations.

There has been proposed another choice of r that makes f a polynomial as
in this paper, so-called Newton-Schulz method [34,36]. When we take r(z) =
1 —1/2?, the function f is expressed as f(z) = % - (3 — 2?) and we can obtain
an approximate value of the sign function by the iterative computation of f.
Interestingly, this function is one of our devised polynomials f;. However, we
note that the design rationale of our methods, setting core properties of f that
makes f(?) get close to the sign function as d increases, is totally different from
that of the Newton’s root-finding method. With Newton’s method it is not clear
at all how to generalize f; to f,, for n > 1 or how to obtain the intuition for
devising other polynomials {gy, },>1 for convergence acceleration. Our methods
applying {f}n>1 and {gn }n>1 achieve much less computational complexity and
depth than the previous numerical method (see Sect. 3.4 and Sect. 3.5).

HE-Based Comparison Methods. There have been several works on com-
parison algorithms for HE schemes [7,11,24] basically supporting addition and
multiplication. The most recent work was proposed by Cheon et al. [12] which
exploits the identity comp(a,b) = limg_ o % for a,b > 0 with an iterative
inverse algorithm. Their comparison algorithm requires ©(aloga) complexity,
which is quasi-optimal, to obtain an approximate value of comp(a, b) within 27¢
error for a,b € [1/2,3/2] satisfying max(a,b)/ min(a,b) > 1 427,

! In fact, this line of work in numerical analysis aims to compute the matrix sign
function [36] which is a more general object than the sign function in our context. An
inverse operation is not much more costly than a multiplication in their (asymptotic)
cost analysis and experiments, which is a crucial difference from HE which requires
an additional costly polynomial approximation for inverse [12].

228 J. H. Cheon et al.

There have been several approaches to approximate the sign function by poly-
nomials to obtain a comparison algorithm. In 2018, Boura et al. [5] proposed an
analytic method to compute the sign function by approximating it via Fourier
series over a target interval which has an advantage on numerical stability. In
this method, one should additionally consider the error induced by the polyno-
mial approximation on e**. Another approach is to approximate the sign function
by tanh(kx) = z,ﬁ:jriz:’;: for sufficiently large & > 0 [14]. In order to efficiently
compute tanh(kx), they repeatedly apply the double-angle formula tanh(2z) =
imax approximate polynomial. This procedure can be interpreted as a composi-
tion of polynomial f which is the low-degree minimax approximation polynomial of
1-2& . However, their method does not catch core properties of the basic polynomial
f (e.g., f(1) = 1), so the error between f(?) and sgn(z) cannot be reduced below a
certain bound even if we increase d to co. As an independent work, Bajard et al. [4]
recently proposed a new approach to approximately compute the sign function by
applying the Newton’s root-finding method on the function (x) = 1—1/22%, which
corresponds to one of our devised polynomials f;.

When each bit of message is encrypted separately [13,16,20], one can perform
a comparison operation of two a-bit integers with O(log) depth and O(«) com-
plexity. The bit-by-bit encryption method was recently generalized to encrypt
an integer a after decomposing it as a = . a;b’ for a power of small prime
b = p" [47]. However, since these encryption methods are quite inefficient for
addition and multiplication, they are not desirable when comparison operations
are mixed with a number of polynomials such as cluster analysis and gradient
tree boosting.

13:15 > where the inverse operation is substituted by a low-degree min-

2 Preliminaries

2.1 Notations

All logarithms are of base 2 unless otherwise indicated, and e denotes the Euler’s
constant. Z, R and C denote the integer ring, the real number field and complex
number field, respectively. For a finite set X, we denote the uniform distribution
over X by U(X). For a real-valued function f defined over R and a compact
set I C R, we denote the infinity norm of f over the domain I by ||f||co.s =
max,es | f(x)|. The d-times composition of f is denoted by f(¥) := fo fo---o f.
We denote the sign function and the comparison function by

1 ifz>0 1 ifa>b
sgn(z) := 0 ifx=0, comp(ab):=<1/2 ifa=b,
-1 ifx<o0 0 ifa<b

which are in fact equivalent to each other by comp(a,b) = (sgn(a — b) + 1) /2.

Efficient Homomorphic Comparison Methods with Optimal Complexity 229

For a > 0 and 0 < € < 1, we say a polynomial f is («, €)-close to sgn(z) over
[—1,1] if it satisfies

I[f(2) —sgn(z)|oo,—1,—uje,1] < 27

For a,b € R, we denote the complexity a-log(1/€)+b-log a+O(1) by L(a,b). The
O notation in this paper regards to « and 1/e. In the rest of this paper, we only
consider the (non-scalar) multiplicative depth and (non-scalar) multiplicative
computational complexity, i.e., we do not count the number of additions nor
scalar multiplications in computational complexity.

2.2 Minimax Polynomial Approximation Method

In this paper, we measure the accuracy of polynomial approximation methods
by the maximal error between the target function and an approximate polyno-
mial over a predetermined domain. In this respect, the minimax approximation
method provides the best approximate polynomials among general polynomial
approximation methods. For a positive odd integer k, let us denote by py the
degree-k polynomial p which minimizes |[sgn(z) — p()||oo,[1,~cJufe,1]- For the
sign function sgn(x), there exists a tight lower bound on the approximation error:

k—1
) k—1 14€\ 2 1—c¢
g 52 (FE) T sente) = oo 1 = S

for 0 < e < 1, which was proved by Eremenko and Yuditskii [23]. More general
works on minimax polynomial approximation of piecewise analytic function have
been proposed [2,44], but [23] provides more tight and accurate results on error
analysis for the sign function.

Assume that k is large enough so that the left-hand side % . (%fi) .

|[sgn(2) — pr,e(7)[|oo,[~1,—cJufe,1] is sufficiently close to the limit value. To bound
the approximation error by 27 for sgn(z) over [—1, —€] U [e, 1], the degree k
should be chosen to satisfy

k—1

k—1 1 2 v/
- . te .$>20"
2 1—c¢ 1—¢

1—e 2
for small e. Then, the evaluation of the polynomial pj . requires at least
log a+1og(1/€) + O(1) depth and © (x/oz/e) complexity applying the Paterson-
Stockmeyer method [43] which is asymptotically optimal.

There exists a well-known theorem called the equioscillation theorem

attributed to Chebychev, which specifies the shape of the minimax approximate
polynomial p .

which implies that &k should be at least ©(a/e€) from the fact log (He) ~ £

230 J. H. Cheon et al.

Lemma 1 (Equioscillation Theorem for sign function [23]). Let sgn(z)
be the sign function (Sect. 2.1). For k > 1 and 0 < ¢ < 1, an odd polynomial
Pr,e of degree (2k + 1) minimizes the infinity norm ||sgn — pr.el|oo,[—1,—ule,1] f
and only if there are k + 2 points € = 9 < x1 < -+» < Tpy1 = 1 such that
sgn(x;) — pr.e(xi) = (—1)||sgn — pr.c||oo- Here, x1, Ta,..., T} are critical points.

Note that the if-and-only-if statement of the above lemma also implies the
uniqueness of the minimax polynomial approximation of sgn(x) on [—1, —e]U[e, 1]
for given € and degree 2k 4 1. In the rest of paper, we will use the fact that py
is concave and increasing in the interval [0, zo] (in fact it holds for [0, z4]).

2.3 Homomorphic Encryption

HE is a cryptographic primitive which allows arithmetic operations including
addition and multiplication over encrypted data without decryption process. HE
is regarded as a promising solution which prevents leakage of private information
during analyses on sensitive data (e.g., genomic data, financial data). A num-
ber of HE schemes [6,7,11,15,22,24,28] have been suggested following Gentry’s
blueprint [27], and achieving successes in various applications [5,9,29,37].

In this paper, we mainly focus on word-wise HE schemes, i.e., the HE schemes
whose basic operations are addition and multiplication of encrypted message
vectors over Z/pZ for p > 2 [7,24,28] or the complex number field C [11]. An
HE scheme consists of the following algorithms:

e KeyGen(params). For parameters params determined by a level parameter L
and a security parameter A\, output a public key pk, a secret key sk, and an
evaluation key evk.

e Encpk(m). For a message m, output the ciphertext ct of m.

e Decg(ct). For a ciphertext ct of m, output the message m.

e Add.(cty, cta). For ciphertexts ct; and cty of m; and ms, output the cipher-

text ctaqq of my + mo.
e Multew(cty, cta). For ciphertexts ct; and cte of m; and ms, output the cipher-

text Ctpme of mq - mao.

Though any arithmetic circuit can be computed by HE theoretically, the num-
ber of multiplications and multiplicative depth of the circuit are major factors
affecting the practical performance and feasibility in real-world applications.

3 Our New Comparison Method

Since the comparison function and the sign function are equivalent, it suffices
to find a nice approximate polynomial (with one variable) of the sign function
instead of the comparison function (with two variables). In this section, we will
introduce new polynomial approximation methods for the sign function which
we call composite polynomial approrimation, and analyze their computational
efficiency. As in [12], we assume that the input numbers are contained in the
bounded interval [0,1], since z € [c1,c2] for known constants ¢; < co can be
scaled down into [0, 1] via mapping © — (2 —c1)/(ca —c1). Therefore, the domain
of sgn(z) we consider in this paper is [—1,1].

Efficient Homomorphic Comparison Methods with Optimal Complexity 231

3.1 Composite Polynomial Approximation of Sign Function

As described in [12], approximating a non-polynomial function by composite
polynomials has an advantage in computational complexity: A composite func-
tion F' of a constant-degree polynomial f,i.e., F':= fofo---of, can be computed
within O(log(deg F')) complexity, while the evaluation of an arbitrary polynomial
G requires at least O(y/deg G) [43]. However, even if this methodology achieves a
log-degree computational complexity, it would be meaningless if the total degree
of F is extremely large (e.g., deg ' = 29°¢ &), Therefore, it is very important
to well-design a constant polynomial f so that it requires small d to make f()
sufficiently close to sgn(x) over [—1,1]. Since sgn(x) is discontinuous at z = 0,
we are not able to obtain a nice polynomial approximation of sgn(z) over (—¢, €)
for any 0 < € < 1. As a result, we set our goal to find f whose composition f(%
is (o, €)-close to the sign function for « > 0 and 0 < € < 1 with small d.

The key observation for designing such polynomial f is as follows: For z(€
[—1,1], let 2; be the i-time composition value f(®)(xq). Then, the behavior of
x;’s can be easily estimated with the graph of f. For example, given x on the
z-coordinate, 1 can be identified by the x-coordinate of the intersection point of
the graph y = 2z and the horizontal line y = f(z(). Note that we can iteratively
estimate x; 1 with the previous point x; (see Fig. 2).

T

f(@)

i
|
i
A |
| |
(] |
- 4

Y

Fig. 2. Behavior of z; = f(x0) for f(z) = — 2T 4 2% 38,3 4 38y

In this perspective, the basic polynomial f should be constructed so that x;
gets close to 1 if zg € (0,1] and —1 if 29 € [—1,0) as 4 increases. We can formally
identify three properties of f as follows: Firstly, since the sign function is an odd
function, we also set f to be an odd function. Secondly, we set f(1) = 1 and
f(=1) = —1 to make f(?(z) point-wise converge to sgn(z) whose value is 41
for 2 # 0. More precisely, if f(9)(x) for some z € [~1,1] converges to y as d
increases, it must hold that f(y) = f (limg—co ¥ (2)) = limg—oe [V (2) = v.
Lastly, f should be considered as a better polynomial if it is more concave over
[0,1] (hence more convex over [—1,0]), which will accelerate the convergence of
@ to the sign function. In order to increase convexity, we set the derivative

232 J. H. Cheon et al.

function f’ of f to have maximal multiple roots at 1 and —1. These properties
are summarized as following.

Core Properties of f:

PropI. f(—x)=—f(z) (Origin Symmetry)
PropII. f(1)=1, f(-1)=-1 (Convergence to £1)
Prop IIL. f'(x) = ¢(1 — 2)™(1 4+ x)™ for some ¢ > 0 (Fast convergence)

For a fixed n > 1, a polynomial f of the degree (2n + 1) satisfying those
three properties is uniquely determined, and we denote this polynomial by f,,
(and the uniquely determined constant ¢ by ¢,): From Prop I and III, we get
fa(z) = ¢n [y (1 — ¢*)"dt, and the constant c, is determined by Prop I By
applying the following identity

‘ 1 m—1 ®
/ cos™t dt = — - cos™ 'z sinz + —— / cos™ 2t dt
0 m o

m

which holds for any m > 1, we obtain

fule) = 2041 () ey

See Appendix A for more details. Hence, we can easily compute f,, as following;:

e filz)=—3a+ 32
° fg(x) — %ms 10..3 + 15 ..
o fy(z)=—-2a"+ ?éx5 3573 + 3y
_ 35,9 180,7 378,5 4203 | 315
o falz) = 72’ — 1557 "+ 12877 — 282" T 1337

1 — @

(a) fnforn=1,2,3,4 (b) £ for d = 2,4,6

Fig. 3. Illustration of f(d)

Efficient Homomorphic Comparison Methods with Optimal Complexity 233

Since (2;) =2- (2;‘_—11) is divisible by 2 for i > 1, every coefficient of f,, can be

represented as m/22"~! for m € Z (Fig. 3).

Size of the Constant c,. The constant ¢, takes an important role on the
convergence of ffld) (on d) to the sign function. Informally, since the coefficient
of x term is exactly ¢, we can regard f, as f,(z) ~ ¢, - « for small z > 0, and
then it holds that 1 — f,,(z) 21— ¢, - ~ (1 — z)°". In the next subsection, we
will present a rigorous proof of the inequality 1— f,, () < (1—2) for 0 < < 1.
(see Sect. 3.2). From a simple computation, we obtain ¢, as a linear summation

of binomial coefficients
n

1 /2
which is simplified by the following lemma.

Lemma 2. It holds that ¢, = .1 & (%) = 2L (7).

i=0 27 \4 am \n
Proof. We prove the statement by induction. It is easy to check for n = 1.
Assume that ¢, = 221'1 (27?) for some n > 1. Then, it holds that

Cnt+1 = Cp +

1 (2n+2) 1 (2-(2n+2)! (2n +2)!
4n+1(n+1>_4n+1 ((n—i—l)!n! +(n+1)!(n—|—1)!)

_ 2n+3(2n+2
gl \p 41)

Therefore, the lemma is proved by induction. a

To measure the size of ¢, we apply Wallis’s formula [35] which gives us very
tight lower and upper bound:

1 2n+1 <2n+1 2n < 1 2n+1
VT il 4n NZ IRV
2

n

From the inequality, we can check that ¢, = @(y/n), which diverges as n — co.

Remark 1. Our method can be naturally generalized to the composite polyno-
mial approximation on step functions. For example, if we substitute Prop III by
f'(x) = ca® (1 —)™ for m,n > 1, then f@ would get close to a step function
F (as d increases) such that F'(z) = =1 if x € [-1,—t), F(z) =0 if x € [—t,{]
and F(z) =1if x € (¢,1], for some 0 < ¢t < 1 as d increases.

3.2 Analysis on the Convergence of féd)

In this subsection, we analyze the convergence of fy(Ld) to the sign function as
d increases. To be precise, we give a lower bound of d which makes f,gd) (a, €)-
close to the sign function. The following lemma gives a nice upper bound on
1 — fu(z), which is even tighter than the Bernoulli’s inequality [41]: This well-
known inequality implies 1 — ¢,z < (1 — 2)°", but since 1 — ¢,z < 1 — f,,(z) we
cannot directly obtain the upper bound of 1 — f,,(z) from this inequality.

234 J. H. Cheon et al.

Lemma 3. It holds that 0 <1 — f,(z) < (1 —) for z € [0,1].

Proof. Tt is trivial that f,(z) < f,(1) =1 for = € [0,1]. We will prove G(z) :=
(1—2) — (1 — fn(z)) >0 for x € [0,1] by showing

1. G(0) = G(1) =0,
2. there exists zg € (0,1) s.t. G(zg) > 0,
3. there exists a unique yo € (0,1) s.t. G'(yo) = 0.

We first check why these three conditions derive the result G(x) > 0. Assume
that there exists 21 € (0,1) such that G(x1) < 0. Since G is continuous, there
exists a root xs of G between zy and x;. Then by the mean value theorem,
there exist y1 € (0,22) and y2 € (22,1) satisfying G'(y1) = G'(y2) = 0, which
contradicts to the third condition.

Now we prove the three conditions. The first condition is trivial. To show
the second condition, we observe G(0) = 0, G'(0) = 0 and G”(0) > 0 which can
be easily checked. Since G” is continuous, G'(0) = 0 and G”(0) > 0 imply that
G'(x) > 0 for z € (0,0) for some § > 0. Combining with G(0) = 0, we obtain
G(z) > 0 for « € (0,6) which implies the second condition.

To show the uniqueness, let G'(x) = ¢, (1 — 2?)" — ¢, (1 — 2)*»~! = 0. Then
it holds that (1 —z)"~¢*1. (14 z)" =1 for = € (0,1) which is equivalent to

log(l+z) n—ca+1
log (1 —x) n ’

Since log(1 4)/ log(1 — x) is a strictly increasing function, there should exist a
unique yo € (0, 1) satisfying the equation which implies G'(yo) = 0. O

We give another inequality on 1 — f,, () which is tighter than the inequality
in the previous lemma when z is close to 1.

Lemma 4. It holds that 0 <1 — f,(z) < 2" (1 —z)" ! for z € [0, 1].
Proof. Let y=1— x, and set

cp - 2"
n+1

Then H'(y) = cp - 2" -y" — fI(1 —y) =cp - 2" -y — ¢y - y"(2 — y)™ > 0 for
y € [0,1]. Since H(0) = 0, it holds that H(y) > 0. Therefore, we obtain

H(y) = " = (1= fa(=)

Cn - 2” n n n
1= fulz) < :+1 (-t <2m (1 —)t
for x € [0, 1], where the second inequality comes from ¢, < n + 1. O

Now we obtain the theorem on the convergence of f,(Ld) to the sign function.

Theorem 3 (Convergence of f,(ld)). Ifd> L1~ -log(1/e) + m -log(a—

logcn

1)+ O(1), then £ (x) is an (o, €)-close polynomial to sgn(x) over [—1,1].

Efficient Homomorphic Comparison Methods with Optimal Complexity 235

Proof. Since f,, is an odd function, it suffices to consider the case that the input
z is non-negative. We analyze the lower bound of d for the convergence of fT(Ld) by
applying Lemma 3 and Lemma 4. Note that Lemma 3 is tighter than Lemma 4
if = is close to 0 while the reverse holds if x is close to 1. To this end, to obtain
a tight lower bound of d, our analysis is divided into two steps:

Step 1. Since f, is an odd function, it suffices to consider the case z € [e, 1]
instead of [—1, —€¢] U [e, 1]. Let d. = Log(cn) log (log (£) /e)—‘ for some constant
0 < 7 < 1. Then applying Lemma 3, we obtain following inequality for = € [e, 1].

d

L f00(@) < (1 -)
<(1- e)log(%)/e < (1)1%(7) <T.

e

Step 2. Now let d, = {m -log ((aw— 1)/ log (%))—‘ Applying previous
result and Lemma 4, we obtain following inequality for x € [e, 1].

(n+1)de
2 (1= fftt®)(@) < (2- (1= 19@)))
< (27_)(n+1)da < (QT)(afl)/log(%) — 9—a+l

Therefore, if d > d. + d,, we obtain 1 — () () <27% for x € [e, 1].

Note that the choice of the constant T is independent to € and «. When T=
1/4, then we get de +dq log(c Toa(e) 108 (1/e)+ 1og(n+1) log(a—1)+ 10g oac) +0(1).
Since log(3 < 2, the theorem is finally proved. a

Remark 2. In Appendix D, we also described the erroneous version of the con-

vergence of fy(ld) considering the approximate error induced by HEAAN evalua-
tion.

3.3 New Comparison Algorithm NewComp

Now we introduce our new comparison algorithm based on the previous compos-
ite function approximation (Theorem 3) of the sign function. From the identity

comp(a,b) = (sgn(a — b) + 1)/2 and approximation f(d)() ~ sgn(x), we get

(d)
comp(a, b) =~ M7
2
which results in our new comparison algorithm NewComp (Algorithm 1).

It is quite natural that the larger d gives more accurate result. Since the
comparison algorithm NewComp(-, -;n, d) is obtained from the evaluation of fy (d)
Theorem 3 is directly transformed into the context of NewComp as Corollary 17
which informs us how large d is sufficient to get the result in certain accuracy.

236 J. H. Cheon et al.

Algorithm 1. NewComp(a, b; n, d)
Input: a,b€[0,1],n,d €N
Output: An approximate value of 1 if @ > b, 0 if a < b and 1/2 otherwise

1: z+—a—-0»
fori+— 1tod do

x — fn(x) // compute ffld)(a —b)

end for
return (z+1)/2

Corollary 1. Ifd > 155~ 1og(1/€) + izpy - log(a—2) + O(1), then the error

of the output of NewComp(a,b;n,d) compared to the true value is bounded by 2~
for any a,b € [0,1] satisfying |a — b| > e.

Remark 3. One can substitute non-integer scalar multiplications in the evalua-
tion of f,, with integer scalar multiplications by linearly transforming f, to an
integer-coefficient polynomial h,, as

7

_ Xn: @) (22 —1) - (& —22)'.

hn(x) == Fulz—1)+1 = Z i . <2Z> -2z — 1) - (4z — 4a?)’

(@) (94—
Note that it is easily proved that i (x) = % by induction, so we can
express the comparison functions as

Wa=b+1 ((ab)+1>

b) ~
comp(a, b) 5 5

Therefore, Algorithm 1 can be naturally converted into the context of h,, which
does not require non-integer scalar multiplications that consume level in HE.

3.4 Computational Complexity of NewComp and Its Asymptotic
Optimality

In this subsection, we analyze the computational complexity of our new compar-
ison method, and compare the result with the previous methods. Note that the
(multiplicative) computational complexity of NewComp(+, ; n, d) equals to that of
evaluating fr(bd), so it suffices to focus on this composite polynomial.

For each n > 1, let C,, be the required number of multiplications (hence the
computational complexity) of f,, using some polynomial evaluation algorithm,

and denote the lower bound of d in Theorem 3 by d,, := log%,n -log(1/e) +
m -log(a — 1) + O(1). Then the total computational complexity of f,(ld")

is TC,, :=d, - Cy, which varies on the choice of n. When n becomes larger, then

Efficient Homomorphic Comparison Methods with Optimal Complexity 237

d,, becomes smaller but C,, becomes larger. Namely, there is a trade-off between
d, and C,,, so we need to find the best choice of n which minimizes the total

computational complexity T'C, of fy(ld").

Table 1. Depth/Computational complexity of f,, and fr(fl">

n| D, | Cp | dn TD, TCh

112 2 L(.71,1) | L(3.42,2) | L(3.42,2)
23 |3 |L(1.1,0.63) L(3.3,1.89) | L(3.3,1.89)
313 |4 | L(0.89,0.5) L(2.67,1.5) | L(3.56,2)
414 |4 | L(0.77,0.43) | L(3.08,1.72) L(3.08,1.72)
504 |5 |L(0.7,0.39) | L(2.8,1.56) | L(3.5,2.45)
64 |6 | L(0.64,0.36) L(2.56,1.44) L(3.84,2.16)
74 |7 | L(0.61,0.33) L(2.44,1.32) L(4.27,2.31)

We assume that each polynomial f,, is computed by the Paterson-Stockmeyer
method [43] which achieves an optimal computational complexity upto constant.
Then, the depth is D,, := log(deg f,,) + O(1) = logn 4+ O(1), and the compu-
tational complexity is C, := O(y/deg f,,) = ©(y/n)%. The total depth of f,(ld")
is TD,, :=d, D, =L (lognJrO(l) log”JrO(l)) (see Sect. 2.1 for L notation).

loge, 7 log(n+1)

Since ¢, = O(y/n) by Lemma 2, the total depth T'D,, gets close to L(2,1) as n

d

increases®. On the other hand, the total computational complexity of fT(L ") i

1 1
-O(/n), log(n + 1)

TC, ::dn-C’n:L< -9(\/5)>,

log ¢,

which diverges as n increases, contrary to the total depth T'D,,. Therefore, the
optimal choice of n which minimize the total complexity T'C,, exists. The exact
number of multiplications C), of f, and the exact value of T'C), for small n’s are
described in Table 1. From simple computations, we can check that n = 4 gives
the minimal computational complexity T'Cy.

Asymptotic Optimality. As described in Sect. 2.2, the minimal degree of an
(o, €)-close approximate polynomial of the sign function over [—1,1] is ©(a/e).
Since the sign function and the comparison function are equivalent, this implies
that any comparison algorithm on inputs a,b € [0,1] whose output is within
2% error when |a — b| > € requires at least ©(loga) + O(log(1/€)) complex-
ity. As described above, the computational complexity of NewComp(:,-;n,d,) is

2 The complexity notations in D,, and C,, only depend on n, not a and e.
3 Tt does not mean the “convergence” to L(2,1) as n — oo, since the equation T'D,, =

L (logl:;ci“), 1?55(:_,0_8)) only holds when n = O(1) with respect to @ and 1/e.

238 J. H. Cheon et al.

O(log o) + O(log(1/e)) for each n. Therefore, our method achieves an optimal-
ity in asymptotic computational complexity upto constant, while the previous
method [12] only achieves quasi-optimality with an additional log « factor.

For several settings of « and €, we compare the computational complexity of
our method to the minimax approximation and the method in [12] as Table 2.

Table 2. Asymptotic computational complexity for each comparison method

Parameters Minimax approx | [12] Method | Our method
log(1/e) = ©(1) | O(Va) O(log?a) | O(log)
log(1/€) = O(a) | O(y/a - 2%/?) O(a-loga) O(a)
log(1/e) =2 | @ (ﬁ- 22‘“) Oa-2%) O (2%)

3.5 Heuristic Methodology of Convergence Acceleration

In this subsection, we introduce a heuristic methodology to reduce the con-
stants a and b in L(a,b) of the computational complexity T'C),, which accelerates
NewComp in practice.

The intuition of our acceleration method can be found in the proof of The-
orem 3. The proof is divided into two steps: Step 1 is to make fr(bd‘)([e, 1]) €
[1 — 7,1] for some constant 0 < 7 < 1 (applying Lemma 3), and Step 2 is to
make f,(,,da)([l —7,1]) € [1-27%,1] (applying Lemma 4). Our key observation is
that we can accelerate Step 1 by using another function g rather than f,. The
convergence of f,gd) (1 <d < d.) in Step 1 mainly depends on the constant ¢,
the derivative of f,, at zero. Therefore, we may expect that the required number
of polynomial compositions d. in Step 1 can be reduced if we substitute f,, by
some other odd polynomial g which satisfies ¢’(0) > f(0).

However, we cannot take any g with large derivative at 0, since the range of
g'Y over the domain [e, 1] must be contained in [1 — 7, 1] when d is large enough.
In particular, the polynomial g must satisfy following properties (compare it
with the Core Properties of f in Sect. 3.1):

PropI. g(—2z)=—g(z) (Origin Symmetry)
Prop IV. 30<d < 1st. z<g(x) <1foral ze (0,0, (Toward [1-—7,1])
and ¢g([6,1]) € [1 — 7, 1] (Keep in [1 — 7,1])

For each g, we denote the minimal ¢ in Prop IV by §; in the rest of paper.

Note that Prop IV is necessary to make ¢\ (z) € [I — 7,1] for = € [e, 1]
when d > dy for some sufficiently large dg > 0. Intuitively, among all g of the
same degree satisfying above properties, a smaller d is required for g(d)([e7 1]) C
[1—7,1] if g satisfies Prop IV with smaller y and has bigger value on the interval
(0,d0) (hence ¢’(0) is bigger).

Efficient Homomorphic Comparison Methods with Optimal Complexity 239

We introduce a novel algorithm (Algorithm 2) which outputs a degree-(2n+1)
polynomial denoted by g, r having minimal 69 of Prop IV among all degree-
(2n + 1) polynomials satisfying Prop I & IV. In a certain condition, we can
additionally show that g, -(z) > g(x) on = € (0,6) (hence larger derivative at
zero) for any other polynomials g satisfying Prop I & IV (see Theorem 4 and
Corollary 2). It implies that g, . is the best polynomial among all same-degree

polynomials achieving our goal, i.e., g%d}([e, 1]) € [1 — 7, 1] with minimal d.

Algorithm 2. FindG(n, T)
Input: n>1,0<7<1
Output: A degree-(2n + 1) polynomial g, . satisfying Prop I & IV with minimal § of
Prop IV.
Jn,r < T // Initialize gn -(z) = x
repeat
do < minimal § s.t. gn ~([,1]) C [1 — 7, 1] // Initial §p is 1 — 7
gmin < degree-(2n + 1) minimax approx. poly. of (1—7%)-sgn(x) over [—1, —do]U
[607 1}
gn, 7 < Gmin
S —lgn.r = (1 = F)lloo,[50,1]
until S == 3
return g, -

T

In Algorithm 2, the equality check S == 7 on line 7 is done with a certain
precision in practice (e.g., 271% or 2753). Note that S converges (increases) to
%, 0o converges (decreases) to some deony > 0, and hence g, , converges to
some polynomial g;°"* (see Appendix B). From this, we obtain two facts: First,
Algorithm 2 terminates in finite iterations given a finite precision for the equality
check. Second, the algorithm output satisfies Prop I & IV*.

We provide a theoretical analysis on g;°"" to which g, r converges, which
we call the ideal output polynomial of Algorithm 2. Note that the ideal output
polynomial g7 satisfies ||gn’r" — (1 — 3)|[oc,(50,1) = 5- The following theorem
shows the optimality of g;,°"", which implies that the real output of Algorithm 2
with a certain precision is nearly optimal.

Theorem 4 (Optimality of g;°'"). The ideal output polynomial g5t of Algo-
rithm 2 satisfies Prop I & IV with minimal &g among all degree-(2n+ 1) polyno-
mials satisfying Prop I & IV. Let x5 > 0 be the smallest positive x-coordinate of
local minimum points of gn » following the notation in Lemma 1 (If local mini-
mum does not exist, set xo = 1). If xo > 1—7, then g, - (x) > g(x) for z € (0,d)
for any other degree-(2n + 1) polynomial g satisfying Prop I & IV.

4 In every iteration of Algorithm 2, the minimax approximate polynomial gmin of
(1 = %) -sgn(x) over [—1,d0] U [do, 1] satisfies Prop I & IV. Prop I is trivial, and
gmin([00,1]) C [1 — 7,1] by Lemma 1. Since gmin(do) > 1 — 7 > o and Gmin is
concave & increasing in [0, do], it holds that £ < gmin(x) < 1 for = € (0, do].

240 J. H. Cheon et al.

1-7 1-71
0¥ 0+
0 6 o6, T2 1 0 b 0, T 1
(a) Intersections without multiplicity (b) Intersection with multiplicity at x2

Fig. 4. Example description of intersections of g and g;°7" for n =3

Proof. Let dcony be the minimal ¢ such that gp°t?([6,1]) C [1 — 7,1]. Assume
that there exists a degree-(2n + 1) polynomial ¢ satisfying Prop I & IV with
§ < bconv- By Prop IV, we get [|g — (1 — §)l|s,5,1] < 5, and then it trivially
holds that [|g — (1= 5)lloc.5.00 1) < % = 19577 — (1= 3)llo. (5.0 1)- Therefore,
g = g;7" by Lemma 1 which implies the minimality of dcony-

Now we prove the second statement. Let g be a degree-(2n + 1) polynomial
satisfying Prop I & IV which is distinct from g%, and J, be the minimal § such
that g([d,1]) C [1—,1]. From the minimality of d.on, and Prop IV, it holds that
Sconv < 0g < 1—7 < x5. By Lemma 1, g;°7'% oscillates on [0conw, 1] with 1 and 1—7
as maximum and minimum, respectively, and it has n critical points in (dcone, 1)

Since ¢([d4,1]) € [1 — 7,1] and §4 < x2, the polynomial g intersects with g5

n,T
on at least n points in [d,4, 1]: when g(z) = ¢°*¥(z) and ¢'(z) = gfl"’f“/(x), then
x is counted as two points (see Fig. 4). Now our second argument is proved as
following: If g(x) > gco*(2)® on some x € (0, dconv) C (0,dy), then g and g&or
intersect on at least one point in (0, d,) by intermediate value theorem since there
exists y € (dconv, dg) such that g(y) < 1 —7 < g7 (y) by the definition of 4.
This leads to a contradiction since g and g’ intersect on 2(n+1) +1 = 2n+3
points (the factor 2 comes from the fact that both are odd polynomials) including
the origin while the degree of both g and g7 is 2n + 1 < 2n + 3. Therefore,
g5 (x) > g(z) for all x € (0, dconyv)- 0
Corollary 2. Let g;°t" be the ideal output polynomial of Algorithm 2, and dg
be the corresponding minimal § satisfying Prop IV. If n =1, (n,7) = (2,0.25),
or (n,7) = (3,0.35), then do < d, and g;°7"(x) > g(zx) on x € (0,d0) for any

other degree-(2n + 1) polynomial g satisfying Prop I & IV.

Though g, is hard to be expressed in closed form contrary to f,, we can find
it with a certain precision (e.g., 271%) by running Algorithm 2 in MATLAB. For

°If g(z) = g5 (x) on some x € (0,40), it is the point of intersection in (0,dy), and
proof continues.

Efficient Homomorphic Comparison Methods with Optimal Complexity 241

example, we provide explicit descriptions of the polynomials g,, - forn =1,2,3,4

and 7 = 1 (Fig. 5). In this case, the equality check in Algorithm 2 was done

with 10~* precision. We omit the subscript 7 of g,, , for 7 = % for convenience.

_ 1359 | 3 2126 |
b gl<$) — 310 + S0
_ 3796 5 6108 3 3334
hd 92(1') = S0 T — S0 T+ S0
— 12860 7 25614 5 16577 3 4589
e g3(v) = — s X'+ S 2 — S 2+ S0 0T
__ 46623 9 113492 | 7 97015 .5 34974 | 3 5850
hd 94(1') = o0 T — T510 + S50 — 310 + S0 -
1 g1 f{5)
T 92
RN | == — 0t
L—71 T n
-1 ‘ 1
,T . +
/14

Fig. 5. Illustration of g, and the comparison of f(7+49) and f< 1) 4 glda)

We can empirically check that g, also satisfies the following two heuristic
properties. The first property shows how large g/, (0) is when it compared to
f1(0), and the second property shows how fast g, (x) gets close to £1, i.e., the
gn-version of Lemma 3.

Heuristic Properties of g,:
1. ¢/,(0) ~0.98 - f/(0)? (Hence, log g.,(0) ~ 2 -logc,)
2. 1—gn(z) < (1—2)% O for 2 € 0,50 where 8 is the minimal § in Prop IV

Experimental results supporting above heuristic properties are described in
Appendix C. Applying these g, polynomials, we can provide a new compari-
son algorithm (Algorithm 3), which is a modified version of Algorithm 1 and
offers the same functionality with the reduced computational complexity and
depth. We can also estimate the number of compositions dy and d4 required for
this modified algorithm to achieve a certain accuracy as Corollary 3.
Corollary 3 (With Heuristic Properties). Ifdy > m -log(1/e) + O(1) =
% -log(1/€)+O(1) and dy > logn log(a—2) 4+ O(1), then the error of the
output of NewCompG(a,b;n,dy,dy) compared to the true value is bounded by 2~
for any a,b € [0,1] satisfying |a — b| > e.

242 J. H. Cheon et al.

Algorithm 3. NewCompG(a, b;n, df,dg)

Input: a,b € [0,1], n,ds,dg € N
Output: An approximate value of 1 if @ > b, 0 if a < b and 1/2 otherwise
l: z+—a—0>

2: for i —1tody; do

3z gn(x) // compute gﬁbdg)(a —b)
4: end for

5: for i+ 1to dy do

6: x— fo(z) // compute f,gdf) o ggld")(a —b)
7: end for

8: return (z+1)/2

Proof. Following the proof of Theorem 3, it suffices to show that 1— g,(Ldg)(x) <T
for x € [e, 1] where 7 = 1/4. Let e,, := ¢,,(0). By the second heuristic property of
Jn, we obtain two inequalities: 1 —g,(fl) (x) <(1 —a:)ei for d satisfying 97(;171)(05) <

0o, and 1 — gffl)(x) < 7 for g&dil)(w) > 0g. Therefore, it holds that

1-— gﬁbd) (z) < max ((1 - a:)ei,T)

for any d > 0. Applying d = d, := {# -log (1og (%) /6)—‘, we finally obtain

logen

1- g,(Ldg)(ac) < 7 since (1 — x)eig <(1- e)log(%)/e <T. O

The important point is that d, is reduced as approximately half (applying
the first heuristic property of g,) compared to the previous case that only uses
fn to approximate the sign function. Since g,, and f, requires same number of
non-scalar multiplications, we can conclude that the computational complexity

of f,gdf) o g,(ldg) is L (“2’” , bn) where a,, and b,, are defined from T'C,, = L(ay, by,).

The total depth of fédf Vo gfld") is L (logﬁl:gi(l), l‘ii";(:fg)) which gets close

to L(1,1) as n increases®. Note that L(1,1) is theoretically the minimal depth
obtained by minimax polynomial approximation (see Sect. 2.2).

4 Application to Min/Max

As described in [12], min/max functions correspond to the absolute function as

b —b b —b
%_|a2 | and max(a7b)=a+ +|a |

min(a, b) = 5 5

Therefore, an approximate polynomial of |z| directly gives us the approximate
polynomial of min/max functions. Since |z| = x - sgn(z), we can consider the

5 Tt does not mean the “convergence” to L(1,1) as n — oo, since n should be O(1)
with respect to a and 1/e.

Efficient Homomorphic Comparison Methods with Optimal Complexity 243
convergence of - féd) (x) to |x| as an analogue. As min(a, b) is directly computed
from max(a, b), we only describe an algorithm of max for convenience.

Contrary to sgn(x), the absolute function |z| is continuous so that the param-
eter € is unnecessary. The following theorem provides the convergence rate of
z- £$(2) to |2

Theorem 5 (Convergence of z - f,(Ld)). Ifd > —— - (a —1), then the error

log ¢,

of x - fi¥ (x) compared to |x| is bounded by 2=% for any x € [—1,1].
Proof. Since |z| = z - sgn(z), the error is upper bounded as

d
z- fi(x) — |x|’ = [a] - | /i (2) —sgn(2)| < |z| - |1~ ||

Let y = |x| € [0,1] and k = ¢, then the error upper bound is expressed as
E(y) =y - (1 —y)*. By a simple computation, one can check that E(y) has the
maximal value at y = 1/(k + 1). Therefore, k should satisfy

1 k"
E = <277
<k+1> (k+1)k+1 =

Since 2 < (1 4+ 1/k)* < e for k > 1, setting k > 2°~! implies d > 1

log ¢, ’

(a—1). O

We denote an algorithm which evaluates 232 + 7% . f,(Ld) (a — b) by NewMax
(see Algorithm 4), and Theorem 5 is naturally transformed into the context of
min/max as Corollary 4.

Algorithm 4. NewMax(a, b;n, d)
Input: a,b € [0,1], n,d €N

Output: An approximate value of max(a, b)
atb
2

i z+—a—0by«—
for i —1tod do

T — fn(z) // compute £ (a — b)
end for
y—y+5tw
return y

Corollary 4. If d > L_ . (a — 2), then the error of the output of

= logey
NewMaz(a,b;n,d) compared to the true value is bounded by 2% for any a,b €
[0,1].

Our Max v.s. Previous Max. In [12], Cheon et al. introduced a max algorithm
exploiting the same identity max(a,b) = “TH’ + @, but they interpret the

244 J. H. Cheon et al.

absolute function as |z| = v/z2 which is different with our our interpretation
|| = z - sgn(x). To compute /(a — b)2, they exploit Wilkes’s algorithm [48§]
denoted by Sqrt(y;d) which approximately computes /7 for y € [0,1]: Let
ap =y and by = y — 1, and iteratively compute a, 1 = a, (— %) and b, 1 =
b2 (b272) for 0 < n < d — 1, where the final output is aq.

We note that the output of Sqrt(z?; d) equals to z - fl(d) (), which means our
max algorithm NewMax(a, b; 1,d) (in the case of n = 1) gives the same output to
the max algorithm in [12|. However, there are several significant advantages to
use our max algorithm instead of the max algorithm in [12].

— Sqrt(x?;d) requires 3 multiplications including 1 square multiplication for
each iteration, while f;(z) can be computed by only 2 multiplications. There-
fore, NewMax(+,;1,d;) is faster than the max algorithm in [12].

— We can further optimize our max algorithm by substituting fi(x) with f,(z)
for some n > 1. As an analogue of Sect. 3.4, we can select an optimal n which

minimizes d - C,, where d = loglcn - (v — 2), where n = 4 is optimal.

— Applying the approximate HE scheme HEAAN [10,11], the max algorithm in
[12] is unstable when two inputs a and b are too close. To be precise, if the
input (a — b)? is close to zero and even smaller than an error accompanied
by HEAAN, then the input attached with the error can be a negative value.
However, the output of Sqrt(y;d) for y < 0 diverges as d increases. In con-
trary, ,(Id) is stable over the interval [—1, 1], so our max algorithm still works
well even if two inputs are very close.

Applying {g, }»>1 to Max. As a construction of NewCompG, we can also apply
the family of polynomials {gn}n>1 with heuristic properties to accelerate our
NewMax algorithm. We denote an algorithm which evaluates “T“’ + ‘IT*Z’ S fld) o
g'%) (a —b) by NewMaxG(a, b; n, dy¢,dg). Applying e = 27* to Corollary 3, one can
easily obtain the following result on NewMaxG.

Corollary 5. Ifd, > m ~a+0(1) and dy > loén log(a—2)+0O(1), then
the error of the output of NewMazG(a,b;n,ds,d,) compared to the true value is
bounded by 27<.

5 Experimental Results

We measured the performance of our algorithms with comparison to Comp or Max
of [12]. The experiments are divided into two categories: 1. Running algorithms
on plain inputs, 2. Running algorithms on encrypted inputs. All experiments were
conducted on Linux with Intel Xeon CPU at 2.10GHz processor with 8 threads.
For experiments in an encrypted state, we used HEAAN library [11,45].

5.1 Approximate HE Scheme HEAAN

Cheon et al. [11] proposed an HE scheme HEAAN which supports approximate
computations of real/complex numbers. Let N be a power-of-two integer and

Efficient Homomorphic Comparison Methods with Optimal Complexity 245

L be the bit-length of initial ciphertext modulus, and define ¢, = 2¢ for 1 <
¢ < L. For R =Z[X]/(XN 4+ 1) and R, := R/qR, let Xxey, Xerr and Xenc be
distributions over R. A (field) isomorphism 7 : R[X]/(XN +1) — CN/? is applied
for encoding/decoding of plaintexts.

e KeyGen(N, L, D).
— Sample s < xxey. Set the secret key as sk < (1, s).
~ Sample a — U(Ry,) and € < Xerr. Set pk — (—a-s+e€,a) € RZ .
— Sample a’ « U(Rq%) and € < Xerr, and set evk «— (' = —a’ -s+¢ +
qr - s%,ad) € Rii'
Encpi(m; A).
— For a plaintext m = (mo, ..., my/2—1) in CN/2 and a scaling factor A =
2P > (), compute a polynomial m « [A-77}(m)] € R
— Sample v < Xenc and €g, €1 + Xerr. Output ct = [v- pk+ (m+eg, e1)]q, -
Decg(ct; A).
— For a ciphertext ct = (¢g, 1) € ng
— Output a plaintext vector m’ = A~!. 7(m’) € CN/2,
Add(ct, ct’). For ct,ct’ € R, output ctaga < [ct + ct']y,.

Multeu(ct,ct’). For ct = (co,c1),ct’ = (ch,¢)) € RZ,, let (do,di,d2) =
(cocy, cocy + c1¢h, eacy). Compute ctlq, < [(do, d1) + qul -dy - evkl]]y,, and

output ctps <« [[A™! - cthue |]

compute m’ = [co + ¢1 - g, -

qe—p-*

The secret key distribution yyxey is set to be HWT n(256), which uniformly sam-
ples an element with ternary coefficients in R that has 256 non-zero coefficients.

5.2 Parameter Selection

We have two parameters o and € which measure the quality of our comparison
algorithms. In our experiments, we set ¢ = 27%, which is the case expecting that
input and output of algorithms have the same precision bits.

HEAAN Parameters. We fix the dimension N = 2'7, then we can set the
initial ciphertext modulus g; upto 2'7%0 to achieve 128-bit security estimated
by Albrecht’s LWE estimator [1] (Refer to Appendix E for the script). In each
experiment, we set the initial modulus such that the modulus bit after each algo-
rithm is log A+10. For example, on our comparison algorithm NewComp(+, -; n, d),
we set the initial modulus bit as

logqr = (log A - [log(2n+1)] +2n —1) - d + log A + 10.

Note that each coefficient of f,, is of the form m/22"~! for m € Z (Sect. 3.1).
We progress the scalar multiplication of m/22"~! in an encrypted state by mul-
tiplying m and scaling (2n — 1) bits down which results in the factor (2n — 1) in
the above equation. In the case of NewCompG(-,;n,dy, dy), we similarly set

loggr, =logA-[log(2n+1)] - (df +dg) + (2n —1) -dy + 10 - dg + log A + 10.

246 J. H. Cheon et al.

The bit-length of the scaling factor A is set to be around 40 as in [12].

Note that one can evaluate N/2 comparison functions simultaneously in a
single homomorphic comparison. In this sense, an amortized running time of our
algorithm is obtained by dividing the total running time by N/2 = 216,

Choice of n in {f,},>1 and {g,}n>1. One should consider a different cost
model other than T'C), in the case of experiments in an encrypted state. When
running our algorithms with HEAAN, not only the complexity T'C,, but also the
depth T'D,, is an important factor affecting the running time, since the compu-
tational cost of a homomorphic multiplication is different for each level. Instead
of TC,,, we take another cost model T'D,, - T'C),, considering that a multiplication
in R, takes (quasi-)linear time with respect to log ¢. Under the setting e = 27,
one can check by simple computation that n = 4 also minimizes T D,, - TC,, as
well as T'C,,, and we used f,, and g,, with n = 4 for the experiments.

5.3 Performance of NewComp and NewCompG

We compare the performance of our new comparison algorithms NewComp and
NewCompG with the previous comparison algorithm Comp proposed in [12]. The
following experimental results show that NewComp is much faster than Comp in
practice, and applying ¢, polynomials (NewCompG) substantially improves the
performance of NewComp.

Plain State Experiment. For “plain inputs” a,b € [0, 1] satisfying |a — b| >
€ = 27%, we measured the required computational complexity and depth of each
comparison algorithm to obtain an approximate value of comp(a,b) within 27¢
error. The parameters d, d¢ and d, are chosen as the lower bounds described in
Corollary 1 and Corollary 3, and we checked that these theoretical lower bounds
are indeed very close to those obtained experimentally.

From Fig. 6, we can see that NewComp requires much less depth and com-
plexity than Comp, and those of NewCompG are even smaller. Note that the gap
between these algorithms in terms of both depth and complexity grows up as
« increases. For example, when o = 8, the required complexity is x3-4 less in
NewComp and NewCompG; when o = 32, it is over x7 less in NewCompG.

Table 3. Running time (amortized running time) of Comp, NewComp and NewCompG on
HEAAN for various o and € = 27%; an asterisk (*) means that the parameter for
HEAAN does not achieve 128-bit security due to large log qr, > 1700.

« | Comp NewComp NewCompG

81238 s (3.63ms)" |59s (0.90 ms) |31s (0.47 ms)
12572 s (8.73 ms)" |93s (1.42 ms) |47s (0.72 ms)
16 | 1429 s (21.8 ms)* | 151s (2.30 ms)* | 80s (1.22 ms)
202790 s (42.6 ms)* | 285s (4.35 ms)* | 94 (1.43 ms)*

Efficient Homomorphic Comparison Methods with Optimal Complexity 247

400 T T T : ‘C -
—e— Comp onn LI T omp
—=— NewComp 200 [—m— NewComp

|| —e— NewCompG —o— NewCompG

w0
=}
S

150

]

=)

S
T

Required Complexity (# Mults.)
1
Required (multiplicative) Depth

Fig. 6. Comp, NewComp and NewCompG on various o with e = 27 in a plain state

=}
T
I

T

I

Encrypted State Experiment. We also measured the performance of our
algorithms which output an approximate value of comp(a,b) within 27¢ error
for “encrypted inputs” a,b € [0, 1] satisfying |a — b| > €. Note that parameters
d, df and d, are chosen as the lower bounds in Corollary 1 and 3. We checked
through 100 experiments that our algorithms with chosen parameters give accu-
rate results in spite of errors accompanied by HEAAN.

In Table 3, we can see the running time (and amortized running time) of our
algorithms NewComp, NewCompG, and that of Comp [12] for various «. Note that
our new algorithms NewComp and NewCompG provide outstanding performance in
terms of amortized running time: NewComp takes 0.9 ms for 8-bit comparison, and
NewCompG only takes about 1 ms to compare up to 20-bit inputs. It is a significant
improvement over the previous algorithm Comp. For example, NewCompG is about
%8 faster than Comp when o = 8, about x18 faster when a = 16, and the ratio
increases as « increases.

Note that the required depth of Comp is much larger than that of our algo-
rithms as described in Fig. 6. Consequently, to run Comp for o > 10 in an
encrypted state with 128-bit security, one must increase the HEAAN parameter
from N = 217 to N = 2'® or use bootstrapping techniques [10], both of which
yields more than twice performance degradation, especially in total running time.

5.4 Performance of NewMax and NewMaxG

We also compared the performance of NewMax and NewMaxG in an encrypted state
to that of the max algorithm Max in the previous work [12]. The parameters d, d
and d, were chosen from the theoretical lower bounds described in Corollary 4
and Corollary 5, and were confirmed that they are very close to those obtained
experimentally. In Fig. 7, we can see the running time of our new algorithms
NewMax, NewMaxG, and that of Max in [12]. Our algorithms improve the Max con-
siderably in running time (and depth), and the gap increases for larger a: when
a = 8, our NewMax and NewMaxG algorithms are x1.6 and x2 faster than Max,
respectively; when a = 20, our NewMaxG algorithm is x4.5 faster than Max.

248 J. H. Cheon et al.

400 T T
—e— Max 0
—a— NewMax B ’
|| —e—NewMaxG . B

w
=]
(=]

Do
=]
(=]
T
I

RunningTime(sec)
=
o
3
T

Fig. 7. Running Time of Max, NewMax and NewMaxG on HEAAN for various «. Hollow
marker implies that the parameter does not achieve 128-bit security due to logqr >
1700.

Acknowledgement. We thank Kyoohyung Han for useful discussions in the early
stage of this work, anonymous reviewers of Eurocrypt 2020 for suggesting us to inves-
tigate the line of work in numerical analysis, and those of Asiacrypt 2020 for valuable
comments. This work was supported by the Institute for Information & Communica-
tions Technology Promotion (IITP) Grant through the Korean Government (MSIT),
(Development and Library Implementation of Fully Homomorphic Machine Learning
Algorithms supporting Neural Network Learning over Encrypted Data), under Grant
2020-0-00840.

A Derivation of f,, from Core Properties

Given fn(z) = ¢ [(1 — s*)"ds, we use substitution s = sint to get ik "(I) =

—1
N e C082n+1 t dt. Applying the following identity (which holds for any m > 2)

¥ 1 m—1 v
/ cos™t dt = — -cos™ 'z -sine + —— - / cos™ 2 ¢ dt,
0 m 0

m
we obtain 1))) (@)
n\T n n—1\T

— 1— 2\n A Lt 2 S

Cn, 2n+1(x)x+2n+1 Crn—1

for n > 2, and %lx) = %(1 —2?)x + % - z. By induction, we can obtain f, as

I
i=0 k=i
Now, since f,(1) = 1, evaluating above equation at x = 1 gives,

“ok+1 1 [/2n
cnfkli[l o 4n<n)(2n+1).

(1 -2z (1)

Efficient Homomorphic Comparison Methods with Optimal Complexity 249

Substituting this ¢, into Eq. (1) and arranging, we get

n

falz) =) % : (QD ca(1 — a?)".

=0

B Convergence of dg, S and g, -

It is trivial that S < 7. Let us denote S, dy and g, » updated in the i-th iteration
by Si, do,s and gn i respectively. Assume that S; < 7 for some ¢ > 1. Then it
holds that g, ,i(z) > (1 = %) = S; > 1 — 7 for & € [0, 1]. Therefore, dg 11
should be smaller than dy;, and hence S;;; is larger than S;. Since dy; has a
lower bound 0, g ; converges to some constant dcon, > 0 as % increases. Hence,
Gn,r,i converges to some g;°7'”, and S; converges to some Scony < 3.

Now, assume that Scony < § and let p = § — Scony > 0. Since dp; converges
(and decreases) t0 dconw, there exists some i > 1 such that dp; < 1;11"’ - Oconu-
Note that gy r; is concave in [0, ;] as noted in Sect. 2.2. Therefore, it holds

gn,r,i(80,i)—(1=7) gn,7,i(00,:)
that 00,i—00,i4+1 < 00,4
(1 —=7) > p, we obtain

where gpri(00,i+1) = 1 —7. Since gp,+.:(d0,:) —

Gn,7i(00,i) — (1 —7) 1-7
00,i — 00,i41 > T 00,i = 00, — ——=00,;
* In,7,i(80,:) In,7,i(80,:)
1—71 p
> 0o, — i = 00,i-
=70 1—-74p 0, 1—T+p0’

Hence, we get do; > 1;11"’ < 00,i+1 > 1;11"’ - 0conw, Which is a contradiction.

C Heuristic Properties on g,

We provide experimental results validating the heuristic properties in Sect. 3.5:

1. ¢/,(0) = 0.98 - f/(0)? (Hence, log g,,(0) ~ 2 - log c,)
2. 1—gn(z) < (1 —2)% O for 2 € [0,50] where 8 is the minimal § in Prop IV

On the First Heuristic. Using MATLAB, we computed g¢/,(0) and compared
it with f/2(0) derived from Lemma 2. See Fig. 8 for 1 < n < 20.

On the Second Heuristic. Let G,(z) := 1 — (1 — 2)9(%) then we can exper-
imentally check that G, (z) < gn(x) when x € (0,dp], which is equivalent to
1—gn(z) < (1—z)9), Let 6, be the largest § such that G, (z) < g, (z) for all
x € [0,0] (see Fig. 9a). The experiment results show that 1/dy > 1/6; which is
equivalent to dy < 1 (see Fig. 9b for 1 < n < 20).

250 J. H. Cheon et al.

25H ® (172(0),9,(0)) 1
—0.98 -7 —0.18

I
10 15 20 25

o
ot

2(0)
Fig. 8. £,2(0) and g,,(0) (R? = 0.9999); n = 1,2, ...,20 from the left to the right

+ (1/60,1/61)
y==x

20 - b

30

1/6,

10 AR

O “\ L L L L
0 5 10 15 20 25 30

0 b & 1 1/d0

(a) Description of 8,81, G1, and g1 (b) 1/d0 and 1/61;n = 1,2, ..., 20 from the
left to the right

Fig. 9. Experimental evidence on 1 — gn(z) < (1 — w)glnw) when z € (0, do]

D Convergence of féd) in Erroneous Case

Due to the approximate nature of HEAAN, the evaluation of f,, on an input x
in an encrypted stated output an approximate value of f,(x) rather than the

exact value. In this section, we analyze the convergence of fr(Ld) considering errors
induced by HEAAN evaluation, and show that the convergence is still valid in
some sense under some conditions on parameters.

Les us denote by fn(x) an approximate value of f,,(z) obtained from HEAAN
evaluation, i.e., |fn(2) — fn(z)| ~ 0. For a fixed n > 1, let us assume that an
approximate error | fn(z) — fu(z)| is bounded by 0 < B < 1 (e.g.., B &~ 2720).
Then it holds that R

1= fu(@)| <1 = ful2)| + B.

Note that B can be easily controlled by changing the scaling factor A of HEAAN.

Now we provide some variants of Lemma 3 and Lemma 4 considering the
approximation errors. To simplify the proofs, we assume that n > 3 so that
cn > 2.

Efficient Homomorphic Comparison Methods with Optimal Complexity 251

cn—1 n

= cn—1
Lemma5.LetB§(1)n —(ﬁ)".ﬁbr(cﬁl) -B <z <
1

S
1- (ﬁ);’ it holds that —B < 1 — f,(z) < (1 —z)e L.

Proof. The first inequality is trivial since fn(x) < fu(z) + B < 1+ B. For
K(x) = (1 —z)~! — (1 — x)°, it is easy to check that K has a unique local

Cn Cn

cn—1
maximal point | zp = é,K(zo) =1 (1 s) > over [0,1] and is convex

cn—1
in [0,z0]. As a result, for ®egy B = (p:—il) -B <z < é, it holds

cn—1 cn

that B < K(z). Since B < (ﬁ) " 7(%4_1)7 _K(l(gnlﬂ)i)
1

and K decreases in [617 1 — (%il)"}’ the inequality B < K(z) also holds

for %ﬂ <z<1- (ﬁ)n Therefore, we get 1 — f(z) < 1 — fo(z) + B <

(1—-2) + K(z) = (1 —)L O

1
Lemma 6. For 0 < x < 2 ("C—H) " —1, it holds that |1 — f,(x)] < (2" + 1) -
max {|1 — 2", B}.

Proof. We first observe that Lemma 4 can be extended from the domain [0, 1]

to the larger domain {O, 2 (ﬁ> T 1] when we consider |1 — f,(z)] and |1 — x|

Cn

1
instead of 1 — f,,(z) and 1 — x respectively. Assume that 1 < x < 2 ("—H) -

1, and let H(z) = 2" - |1 — 2" — 1 — fo(2)] = 2" (z —)" 4+ (=)™ -

(1 — fu(z)). Then H'(z) = (n+1)2" - (x —)" — (=1)" - ¢, (1 — 2*)" = (z —

)™ ((n+1)2" — ¢, (1 + 2)™), so there exists a unique local maximal point of H
1

at ¢ = 2 ("C—H) " — 1. Since H(1) = 0, it holds that H(z) > 0 for 1 < z <

1

2 (”“)W — 1. As a result, we obtain

Cn

11— fu(z)] < 2" |1 — "

3=

for0 <z <2 ("Cil) —1. Now we get the result from |1 — f,, ()| < [1— f,(z)|+
B< 2|l —z["™ +B < (2" +1) max{|1 — 2", B}. O
1

1 1
Lemma 7. Assume that B < %ﬂrfmin{(?lﬂrl)n ,2 <("ctl)n - 1>} If|1—
x| < (2" + 1) - B, then it holds that |1 — fn(z)| < (2" +1) - B.

i
Proof. Since B < 527 - ((”Ctl) " - 1), if |1 — x| < (2" +1)- B, then it holds

1

that 0 <z <1+(2"+1)-B <2 ("+1> " —1. Therefore, we can apply Lemma 6

Cn

252 J. H. Cheon et al.

as following:

11— fu(z)| < 2"+ 1) -max {(2" + 1)"*'. B"* B} = (2" +1) - B,

n+1
n

where the equality comes from B < (ﬁ) . g

1 1
Theorem 6. Let B < ﬁ . min{(znﬂrl)n ,2 <("c+1)n — 1)}, and B <

cn—

cn—1

(ﬁ) [(ﬁ) " For e, > 0 satisfying € > (Lo) - B and

cn—1
a < log(1/B)—log(2"+1), ifd > mdog(l/eﬂ—m-log(a—1)+0(1),

¢ (d) o
then ||fn (x) — sgn(@)|][—1,—quie,) < 27
Proof. The proof follows the flow of the proof of Theorem 3.
Step 1. It suffices to consider the case x € [¢, 1] instead of [—1, —€] U [e, 1]. Let

1
0<7= (ﬁ)
1-— fn(dE)(x) < 7 holds for some 0 < d, < d' := {m -log (log (%) /e)—‘
Assume that there exists some g € [e, 1] that does not satisfy this claim.
Since € < 29 < 1 — 7, we obtain —B < 1 — fy,(20) < (1 — xO)C“_1 by applying
Lemma 5 on zg. Then we obtain € < zg < 1 — (1 —)~ ! < fn(:no) <1l+B<
1+47. Since |1 — fu(x0)| > 7 by the assumption, it holds that e < f,,(z) < 1—7,

so we can apply Lemma 5 on fn(aso) again which implies —B < 1 — fn()(xo) <
~ cn—1
(1 — fn(xo)) . By induction, we obtain

n

< 1. Our claim is, for any = € [e,1] the inequality —B <

B <1-£"(wo) < (1 = wg) D"
s 2)
< (1—e)or()/e < (1) <

(&

which contradict to the assumption.

Step 2. Similarly to Step 1, we can set our second claim as following: for any
x € [1 — 7,1+ B] the inequality |1 — fn(a)()| < 27% holds for some 0 < d, <

/" 1
d’ .= ’ng(n+1) log ((a_ 1)/10g ((2714,_1)7117—)>-‘

Assume that there exists some z1 € [1 — 7,1+ B] that does not satisfy this

1- £ @) =270 > @ +1)-Bforall 0 < d” < d". By the

assumption, we can say that ; € [1 — 7,1 — (2" + 1) - B], and by applying
Lemma 6 on z1, we get [1— f, (1) < (2" 4+1)- (1 —zq)" T < (2" +1) -7 = 7.
Therefore, we obtain 1 —7 < f,(21) < fn(21)+ B < 1+ B so that we can apply

claim:

Efficient Homomorphic Comparison Methods with Optimal Complexity 253

Lemma 6 on f,(z;). By induction, it holds that

. (@ (n+1)""
L o A Y (CERIERE)
(n+1)dll
< ((2” + 1) -7') < g ot
which contradicts to the assumption.
Combining Step 1, Step 2 and Lemma 7, the proof is completed. O

Corollary 6 (Special Case of Theorem 6 (n = 4)). Let B < 0.02282. For
€ >2.15B and o < log(1/B)—4.09, if d > 1.83log(1/€)+0.431log(av— 1)+ O(1),

: (d) s
then [|fa " (x) — sgn(z)||(-1,-qupe,n) < 27

Remark 4. We only addressed about the erroneous evaluation of f,,, but the same
logic can be applied to that of g,,: Substituting all ¢,,’s in Lemma 5 by g/,(0), then
it holds that —B <1 — g, (z) < (1 — x)g;(o)*l. As an analogue, by substituting
all ¢,’s in Theorem 6 by g/, (0), we can directly convert the theorem into the

context of fn(df) o ¢, instead of fn(d) for dy > W -log(1/¢) + O(1)
and df > m log(a — 1) + O(1).

One can check that ¢ and a have lower and upper bounds in terms of B,
respectively, and this is quite natural: If an input = > 0 is so small so that
fn(z) < B, then its approximate value fn(m) may be negative due to B-bounded
approximation error. Furthermore, if |z — 1| < B, then f,, () should be also very
close (even closer) to 1, but a B-bounded approximation error accompanied to
fn(sc) would disrupt this closeness. In this sense, those lower/upper bounds on
€ and « with respect to B is actually inevitable.

In fact, Theorem 6 is a worst-case analysis on the convergence of f,(ld) in
erroneous case by regarding the HEAAN error size in f,, evaluation as B. We
also note that inequalities in Lemma 5, 6 and 7 are not as tight as those in
Lemma 3 and Lemma 4. In practice, as noted in Sect. 5, even in experiments
based on HEAAN, the number of compositions can still be chosen very close
to the theoretical lower bounds in Corollary 1 and 3 which are based on the
convergence analysis in errorless case.

E Script for Security Estimation
We specified the parameter with security level A > 128 using the latest LWE

estimator [1]7. We excluded dec estimates which might not be accurate and often
not competitive [21]. The script for checking our parameter is as follows.

" Available on https://bitbucket.org/malb /lwe-estimator.

https://bitbucket.org/malb/lwe-estimator

254 J. H. Cheon et al.

lo
n

ad ("estimator.py")
= 2xx17; q = 2%%3400; alpha = 8/q

duald = partial (drop_ and_ solve, dual scale)
primald = partial (drop and_ solve, primal usvp)
duald (n, alpha, q, secret distribution=((—-1,1), 256),

reduction cost model=BKZ. sieve)

primald (n, alpha, q, secret distribution=((-1,1), 256),

rotations=False, reduction cost model=BKZ. sieve ,
postprocess=False)

References

10.

11.

12.

. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with

errors. J. Math. Cryptol. 9(3), 169-203 (2015)

Andrievskii, V.: Polynomial approximation of piecewise analytic functions on a
compact subset of the real line. J. Approx. Theory 161(2), 634—644 (2009)
Armknecht, F., et al.: A guide to fully homomorphic encryption. Cryptology ePrint
Archive, Report 2015/1192 (2015)

Bajard, J.-C., Martins, P., Sousa, L., Zucca, V.: Improving the efficiency of SVM
classification with FHE. IEEE Trans. Inf. Forensics Secur. 15, 1709-1722 (2019)
Boura, C., Gama, N., Georgieva, M.: Chimera: a unified framework for B/FV,
TFHE and HEAAN fully homomorphic encryption and predictions for deep learn-
ing. Accepted to Number-Theoretic Methods in Cryptology (NuTMiC) (2019)
Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868-886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of ITCS, pp. 309-325. ACM
(2012)

. Chen, H., Chillotti, I., Song, Y.: Improved bootstrapping for approximate homo-

morphic encryption. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11477, pp. 34-54. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17656-3 2

Cheon, J.H., et al.: Toward a secure drone system: flying with real-time homomor-
phic authenticated encryption. IEEE Access 6, 24325-24339 (2018)

Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 360-384. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 14

Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409-437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

Cheon, J.H., Kim, D., Kim, D., Lee, H.H., Lee, K.: Numerical method for com-
parison on homomorphically encrypted numbers. In: Galbraith, S.D., Moriai, S.
(eds.) ASTACRYPT 2019. LNCS, vol. 11922, pp. 415-445. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34621-8 15

https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-030-34621-8_15

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Efficient Homomorphic Comparison Methods with Optimal Complexity 255

Cheon, J.H., Kim, M., Kim, M.: Search-and-compute on encrypted data. In: Bren-
ner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp.
142-159. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48051-
9 11

Chialva, D., Dooms, A.: Conditionals in homomorphic encryption and machine
learning applications. Cryptology ePrint Archive, Report 2018,/1032 (2018)
Chillotti, 1., Gama, N., Georgieva, M., Izabachéne, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASTACRYPT 2016. LNCS, vol. 10031, pp. 3-33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

Chillotti, I., Gama, N., Georgieva, M., Izabachéne, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 377-408. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 14

Comaniciu, D.; Meer, P.: Mean shift: a robust approach toward feature space anal-
ysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603-619 (2002)

Cordero, A., Soleymani, F., Torregrosa, J.R., Ullah, M.Z.: Numerically stable
improved Chebyshev-Halley type schemes for matrix sign function. J. Comput.
Appl. Math. 318, 189-198 (2017)

Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273-297
(1995)

Crawford, J.L., Gentry, C., Halevi, S., Platt, D., Shoup, V.: Doing real work with
FHE: the case of logistic regression (2018)

Curtis, B.R., Player, R.: On the feasibility and impact of standardising sparse-
secret LWE parameter sets for homomorphic encryption. In: Proceedings of the 7th
ACM Workshop on Encrypted Computing & Applied Homomorphic Cryptography,
pp. 1-10 (2019)

Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617-640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 24

Eremenko, A., Yuditskii, P.: Uniform approximation of sgn x by polynomials and
entire functions. Journal d’Analyse Mathématique 101(1), 313-324 (2007)

Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive, 2012:144 (2012)

Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29, 1189-1232 (2001)

Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4),
367-378 (2002)

Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009). http://crypto.stanford.edu/craig

Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75-92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
Cryptonets: applying neural networks to encrypted data with high throughput and
accuracy. In: International Conference on Machine Learning (2016)

Goldschmidt, R.E.: Applications of division by convergence. Ph.D. thesis, Mas-
sachusetts Institute of Technology (1964)

https://doi.org/10.1007/978-3-662-48051-9_11
https://doi.org/10.1007/978-3-662-48051-9_11
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
http://crypto.stanford.edu/craig
https://doi.org/10.1007/978-3-642-40041-4_5

256

31.

32.
33.
34.
35.
36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

J. H. Cheon et al.

Han, K., Hong, S., Cheon, J.H., Park, D.: Logistic regression on homomorphic
encrypted data at scale. In: The AAAI Conference on Innovative Applications of
Artificial Intelligence (2019)

Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption.
Cryptology ePrint Archive, Report 2019/688 (2019). To Appear in CT-RSA 2020
Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J.
Royal Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100-108 (1979)

Higham, N.J.: Functions of matrices: theory and computation. STAM (2008)
Kazarinoff, D.K.: On Wallis’ formula. Edinb. Math. Notes 40, 19-21 (1956)
Kenney, C.S., Laub, A.J.: The matrix sign function. IEEE Trans. Autom. Control
40(8), 1330-1348 (1995)

Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.H.: Logistic regression model train-
ing based on the approximate homomorphic encryption. BMC Med. Genomics
11(4), 83 (2018)

Kim, D., Son, Y., Kim, D., Kim, A., Hong, S., Cheon, J.H.: Privacy-preserving
approximate GWAS computation based on homomorphic encryption. Cryptology
ePrint Archive, Report 2019/152 (2019)

Kim, M., Song, Y., Li, B., Micciancio, D.: Semi-parallel logistic regression for
GWAS on encrypted data. Cryptology ePrint Archive, Report 2019/294 (2019)
Lin, Y.: A note on margin-based loss functions in classification. Stat. Probab. Lett.
68(1), 73-82 (2004)

Mitrinovié, D.S., Pecari¢, J.E., Fink, A.: Bernoulli’s inequality. In: Mitrinovi¢, D.S.,
Pecari¢, J.E., Fink, A. (eds.) Classical and New Inequalities in Analysis, pp. 65-81.
Springer, Dordrecht (1993). https://doi.org/10.1007/978-94-017-1043-5
Nakatsukasa, Y., Bai, Z., Gygi, F.: Optimizing Halley’s iteration for computing the
matrix polar decomposition. STAM J. Matrix Anal. Appl. 31(5), 27002720 (2010)
Paterson, M.S., Stockmeyer, L.J.: On the number of nonscalar multiplications nec-
essary to evaluate polynomials. STAM J. Comput. 2(1), 60-66 (1973)

Saff, E., Totik, V.: Polynomial approximation of piecewise analytic functions. J.
London Math. Soc. 2(3), 487-498 (1989)

Snucrypto. HEAAN (2017). https://github.com/snucrypto/HEAAN

Soheili, A.R., Toutounian, F., Soleymani, F.: A fast convergent numerical method
for matrix sign function with application in SDEs. J. Comput. Appl. Math. 282,
167-178 (2015)

Tan, B.H.M., Lee, H.T., Wang, H., Ren, S.Q., Khin, A.M.M.: Efficient private
comparison queries over encrypted databases using fully homomorphic encryption
with finite fields. IEEE Trans. Dependable Secure Comput. (2020)

Wilkes, M.V.: The Preparation of Programs for an Electronic Digital Computer:
With special reference to the EDSAC and the Use of a Library of Subroutines.
Addison-Wesley Press (1951)

https://doi.org/10.1007/978-94-017-1043-5
https://github.com/snucrypto/HEAAN

	Efficient Homomorphic Comparison Methods with Optimal Complexity
	1 Introduction
	1.1 Our Idea and Technical Overview
	1.2 Our Results
	1.3 Related Works

	2 Preliminaries
	2.1 Notations
	2.2 Minimax Polynomial Approximation Method
	2.3 Homomorphic Encryption

	3 Our New Comparison Method
	3.1 Composite Polynomial Approximation of Sign Function
	3.2 Analysis on the Convergence of fn(d)
	3.3 New Comparison Algorithm NewComp
	3.4 Computational Complexity of NewComp and Its Asymptotic Optimality
	3.5 Heuristic Methodology of Convergence Acceleration

	4 Application to Min/Max
	5 Experimental Results
	5.1 Approximate HE Scheme HEAAN
	5.2 Parameter Selection
	5.3 Performance of NewComp and NewCompG
	5.4 Performance of NewMax and NewMaxG

	A Derivation of fn from Core Properties
	B Convergence of 0, S and gn,
	C Heuristic Properties on gn
	D Convergence of fn(d) in Erroneous Case
	E Script for Security Estimation
	References

