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Abstract. We propose a generic construction of 2-pass authenticated
key exchange (AKE) scheme with explicit authentication from key encap-
sulation mechanism (KEM) and signature (SIG) schemes. We improve
the security model due to Gjøsteen and Jager [Crypto2018] to a stronger
one. In the strong model, if a replayed message is accepted by some user,
the authentication of AKE is broken. We define a new security notion
named “IND-mCPA with adaptive reveals” for KEM. When the under-
lying KEM has such a security and SIG has unforgeability with adap-
tive corruptions, our construction of AKE equipped with counters as
states is secure in the strong model, and stateless AKE without counter
is secure in the traditional model. We also present a KEM possessing
tight “IND-mCPA security with adaptive reveals” from the Computation
Diffie-Hellman assumption in the random oracle model. When the generic
construction of AKE is instantiated with the KEM and the available SIG
by Gjøsteen and Jager [Crypto2018], we obtain the first practical 2-pass
AKE with tight security and explicit authentication. In addition, the
integration of the tightly IND-mCCA secure KEM (derived from PKE
by Han et al. [Crypto2019]) and the tightly secure SIG by Bader et al.
[TCC2015] results in the first tightly secure 2-pass AKE with explicit
authentication in the standard model.

Keywords: Authenticated key exchange · Tight security · Explicit
authentication · Two-pass protocol

1 Introduction

Among the primitives, algorithms and protocols in public key cryptography,
authenticated key exchange (AKE) [1,4,6–8,11,15,20,22] is by far the most
widely deployed one in the real world. For example, TLS [21] implements AKE to
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compute shared session keys for peer communication parties. There are several
billions of active users in Facebook, Instagram, Wechat, etc., which lead to more
than 230 TLS handshakes daily [11]. AKE allows two communication parties to
share a session key, which is then used to provide security for the later commu-
nications of the two parties. The wide deployment of AKE pushes its security to
paramount importance. The security of AKE consists of two aspects. One aspect
considers passive adversaries, and it requires the pseudorandomness of the shared
session key. The other considers authentication to detect active adversaries. The
authentication functionality of AKE guarantees the identification of the parties
and the integrity of the messages transmitted during AKE, by detecting mes-
sage modification, discard, insertion, etc., from adversaries. There are two types
of authentication, explicit authentication [1,4,7,11,20] and implicit authenti-
cation [6,8,15,16,22]. Implicit authentication detects active attacks in the later
communication (after the completion of key exchange), while explicit authentica-
tion detects active attacks during the execution of AKE. Explicit authentication
enjoys its own advantages. Once the authentication fails, the protocol execu-
tion stops and no subsequent messages follow any more, avoiding unnecessary
computation and communication.

The security of AKE (also other cryptographic primitives) is achieved by a
security reduction under proper security model. Security reduction transforms
the ability of a successful adversary A to an algorithm B solving a well-known
hard problem. If A wins with probability ε, then B solves the problem with
probability ε/L. The parameter L is called the security loss factor. If L is a
constant (or O(λ) with λ security parameter), the security reduction is tight
(almost tight). The loose factor L is generally a polynomial of μ, the number of
users, and �, the number of executions per user. Given a loose security reduction,
the deployment of AKE has to choose a larger security parameter to compensate
the loss factor L, resulting in larger elements and slower computations in the
execution of AKE. Taking μ ≈ 230 into account, this will lead to a great efficiency
loss of AKE. Therefore, pursuing tight security of AKE is not only of theoretical
value but also of practical significance.

1.1 Tightly Secure Authenticated Key Exchange

AKE is generally implemented in the multi-user setting, and it is quite pos-
sible for an adversary A to adaptively obtain session keys of some protocol
instances and/or long-term secret keys of corrupted users. This is formalized by
the reveal and corruption queries of A in the security model. The security of
AKE asks authentication and indistinguishability. Roughly speaking, authenti-
cation requires that if a party Pi uses received messages to compute a session
key and accepts it, then the messages must be sent from another (unique) party
Pj , instead of A. Indistinguishability characterizes the pseudorandomness of the
session key, which is successfully generated and accepted by two parties.

A good choice for AKE is the 2-pass signed Diffie-Hellman protocol [7]. It uses
a signature (SIG) scheme to provide authentication and a DH-like key encapsu-
lation mechanism (KEM) to provide indistinguishability, where Pi contributes
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pk = ga, Pj contributes C = gb and the session key is K = gab. However, as
shown by Gjøsteen and Jager [11], it is hard to achieve tight security due to
the following “commitment problem”: in the reduction, if the DDH challenge
(gx, gy, gz) is embedded in the challenge session, then it can not be revealed,
and vice verse. Hence, the reduction algorithm has to guess the challenge session
(from μ� sessions) and embed the DDH problem into it. That is reason why many
protocols [7,16,18] have a loose factor L = μ� (or quadratic factor L = μ2�2).

To deal with the “commitment problem”, Gjøsteen and Jager [11] suggested
to add an extra hash commitment G(ga) as the first message, resulting in a
3-pass signed DH protocol with tight security.

Up to now, there are only two constructions of AKE [1,11] with tight security
and explicit authentication, and both need three passes. One is the 3-pass signed
DH protocol in the random oracle model [11], as mentioned above. The other is a
3-pass AKE in the standard model by Bader et al. [1]. This AKE is constructed
from a SIG scheme secure against adaptive corruptions (MU-EUF-CMAcorr secu-
rity), a strongly secure one-time SIG and a KEM scheme secure against adaptive
corruptions (MU-IND-CPAcorr security). The KEM is constructed from two pub-
lic key encryption schemes, where the ciphertext is two encryptions of the same
random encapsulated key. Note that such a KEM is not a good choice for AKE,
since the session key is completely determined by the responder.

Over these years, reducing the round complexity and pursuing low-latency
key exchange have become a major design criteria [10,13,17,21] by both
researchers and practitioners. Compared with 3-pass protocols, 2-pass proto-
cols are clearly more efficient, especially when the transmission time is high.
Furthermore, in a 2-pass AKE, any modification of the last (2nd) message can
be detected immediately, and no payloads from the initiator follow, which saves
computation and communication resources. Hence, a natural question is:

Is it possible to construct 2-pass AKE with explicit authentication and tight
security?

1.2 Our Approach

We answer the above question in the affirmative.

Achieving Tight Security. Our generic construction of AKE consists of two
building blocks, KEM and SIG. KEM is used to generate the session key, where
initiator Pi contributes pk and responder Pj contributes ciphertext C under pk.
We rely on KEM’s security to guarantee the pseudorandomness of the session
key. Meanwhile, every party has a signing key as its long-term secret key, and
every transmitted message is signed by SIG, which provides authentication to
resist active attacks. See Fig. 1 (a) for the construction.

We solve the “commitment problem” with a tightly IND-mCPAreveal secure
KEM. The IND-mCPAreveal security is a new notion, which allows the adversary
to reveal the encapsulated keys from the challenge ciphertexts. With such a KEM,
the reduction algorithm B can embed challenge ciphertexts to every session of
AKE, while keeping the ability of answering reveal queries from A. We also ask
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KEM to have diverse property (Subsect. 2.3) to make sure that both initiator
and responder contribute to the session key. Meanwhile, SIG is required to have
tight MU-EUF-CMAcorr security, where the adversary can corrupt some users to
get their signing keys.

Currently, tight MU-EUF-CMAcorr secure SIGs are available [1,11]. To
achieve tight security for AKE, the difficulty is constructing KEM with tight
IND-mCPAreveal security. As discussed above, it is hard for the traditional DH-
like KEM to achieve tight IND-mCPAreveal security, due to the “commitment
problem” in the security reduction.

In this paper, we present two KEM schemes that achieve tight IND-
mCPAreveal security. Our first proposal is pk = (gx1 , gx2), C = gy,K =
H(gx1y, gx2y) in the random oracle model1, which is derived from twin ElGa-
mal PKE [5], and based on the strong twin Diffie-Hellman (st2DH) assumption
(which in turn on CDH). Here we explain why tight IND-mCPAreveal security
can be achieved in the single user setting. It can be easily extended to the
multi-user setting, since B can embed the 2DH problem into multiple (pk,C)
pairs with the help of the random self-reducibility of DDH [9]. In the reduc-
tion, given a 2DH challenge tuple (gx1 , gx2 , gy), B sets pk = (gx1 , gx2), gener-
ates a randomization b and computes the challenge ciphertext as C = gy+b.
The “commitment problem” is circumvented by B’s simulation of random ora-
cle H(·) and the decision oracle 2DH, which checks whether the inputs are two
DDH tuples. If A has not asked H(Cx1 , Cx2) before, then the encapsulated
key is random to A, and B just samples a random key k and implicitly set
H(Cx1 , Cx2) = k. If A has asked H(Cx1 , Cx2), then B must have stored item
(Cx1 , Cx2 , k = H(Cx1 , Cx2)) in the hash list. Hence B can always resort to the
decision oracle 2DH(gx1 , gx2 , C, Cx1 , Cx2) = 1 to locate this item, and return the
corresponding k to A. In this way, B can answer reveal queries from A correctly,
and tight IND-mCPAreveal security follows.

Our second proposal of KEM is derived from the tightly IND-mCCA secure
PKE scheme in [14], which has tight IND-mCCA security in the standard model.
We prove that IND-mCCA security implies IND-mCPAreveal security with a tight
reduction. Note that the two notions are defined in different styles, e.g., the
decapsulation oracle in IND-mCCA security cannot decapsulate the challenge
ciphertext, while IND-mCPAreveal security allows the challenge encapsulated key
to be revealed. Hence, the tight security proof of implication is non-trivial (see
Subsect. 2.2 for details).

Perfect Forward Security and KCI Resistance. Our generic construction
provides perfect forward security (PFS, a.k.a. perfect forward secrecy [12,16])
and KCI resistance (security against key-compromise impersonation attacks
[16]). PFS means that once a party has been corrupted at some moment, then the
exchanged session keys completed before the corruption remain hidden from A.
KCI resistance assures that sessions, which are established by honest Pi but not
controlled by A, remain secure after corruption. In our construction, the long-
term secret key is used to sign messages and provide authentication. Hence, the
1 To simplify the description, the hash input does not include pk and C.
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exposure of long-term secret key does not give A any advantages to break the
pseudorandomness of the session key. The same analysis applies to KCI resis-
tance.

Dealing with Replay Attacks. Compared with multi-pass AKE, 2-pass AKE
inherently open to replay attacks [13]. In a 2-pass AKE protocol, when Pi sends
a message msg to Pj , there are only two choices for Pj : compute a session key
& accept or reject. If Pj accepts, the message msg can always be replayed to
Pj by an adversary (see Fig. 1 (b)). This replay attack contradicts neither the
explicit authentication defined by [11], nor the implicit authentication, since msg
does originate from Pi and the session key keeps pseudorandom to the adversary.
However, it does exhaust the computing & memory resources of Pj and waste
bandwidth of the network.

The essence of explicit authentication is to detect active attacks in real time.
In this paper, we formalize a stronger security of AKE, by including replay
attacks in the active attacks. Meanwhile, we choose an efficient and practical
way to prevent replay attacks, by adding counters to identify the freshness of
messages, as advised in [13]. Roughly speaking, each party maintains a local
counter ctr. Initiator Pi increases its counter ctri before it sends (msg, ctri) to
Pj . Responder Pj recognizes the freshness of (msg, ctri) by checking whether
ctri > ctrj . To respond fresh msg, Pj will synchronize its counter ctrj := ctri
and send (msg′, ctrj) to Pi. The freshness of (msg′, ctrj) is recognized by Pi’s
checking of the synchronization ctri = ctrj . In this way, any replayed message
contradicts either ctri > ctrj or ctri = ctrj , and replay attacks can be detected
immediately in our 2-pass AKE (see Fig. 1 (c)).

Fig. 1. (a) KEM+SIG construction, (b) replay attacks, and (c) counter measure.

1.3 Our Contribution

We present a security model which is stronger than that in [11]. In our strong
model, the adversary breaks authentication as long as a party accepts a replayed
message. To detect replay attacks, we introduce counters for each party as its
state. The counter will increase after execution of AKE, thus a replayed message
will be rejected due to its old counter.

We propose a generic construction of 2-pass AKE from KEM and SIG
schemes. We formalize a new security notion, named IND-mCPAreveal, for KEM



790 X. Liu et al.

and show that IND-mCCA security of KEM implies IND-mCPAreveal security.
The strong security of our 2-pass AKE (equipped with counter) can be tightly
reduced to the IND-mCPAreveal security of KEM and the MU-EUF-CMAcorr secu-
rity of SIG. Taking off counters from AKE results in a stateless AKE, which is
tightly secure in the original model of [11].

We give two instantiations of tightly secure 2-pass AKE.

– We present an instantiation of KEM and proved its tight IND-mCPAreveal

security based on the CDH assumption in the random oracle model. Together
with the signature scheme in [11], we obtain the first practical 2-pass AKE
scheme with strong and tight security (and a 2-pass stateless AKE scheme
with tight security) from the DDH assumption in the random oracle model.

– When instantiating KEM with the tightly IND-mCCA secure KEM derived
from [14] and SIG with the signature scheme in [1], we obtain the first 2-
pass AKE scheme with strong and tight security (also a 2-pass stateless AKE
scheme with tight security) based on the Matrix-DDH assumption in the
standard model.

The comparison of our AKE schemes with other tightly secure AKE schemes
with explicit authentication2 is shown in Table 1.

Table 1. Comparison among tightly secure AKE schemes with explicit authentication.
Here “Comp.” denotes computation complexity in terms of exponentiations or pairing
operations, “Comm.” denotes communication complexity in terms of the number of
group elements/exponents (identities of users excluded). “I” denotes the initiator, “R”
the responder, “Sec. Loss” the security loss factor, “�Pass.” the number of passes
in AKE, “RO” the random oracle model, and “Std” the standard model. Note: in
[BHJ+15]’s AKE, the session key is determined only by the responder.

AKE Scheme Comp. (I) Comp. (R) Comm. (I+R) Assumption Sec. Loss �Pass. Model

[GJ18][11] 17 17 12+11 DDH O(1) 3 RO

Ours: AKEDDH 19 18 12+11 DDH O(1) 2 RO

[BHJ+15][1]
22

O(k2)
23

O(k2)
11+9

(2k2 + 4k + 5)+(4k + 7)
1-LIN = SXDH

Dk-MDDH
O(λ) 3 Std

Ours: AKEMDDH
37

O(k3)
22

O(k3)
7+8

(k2 + 5k + 1)+(4k + 4)
1-LIN = SXDH

Dk-MDDH
O(λ) 2 Std

2 Preliminaries

Let λ ∈ N denote the security parameter. For μ ∈ N, define [μ] := {1, 2, ..., μ}.

Denote by x := y the operation of assigning y to x. Denote by x
$←− X the

2 Some AKE protocols, like [6] and [22], consider tight security and implicit authen-
tication. In the security model of implicit authentication, A’s advantage is defined
by the ability of breaking indistinguishability (with no authentication requirement).
Most AKE protocols with implicit authentication are 2-pass. They can be extended
to provide explicit authentication via the key confirmation method [16], but with
the price of an extra pass and the addition computation of MAC.



Two-Pass Authenticated Key Exchange 791

operation of sampling x uniformly at random from a set X . For a distribution D,
denote by x ← D the operation of sampling x according to D. For an algorithm
A, denote by y ← A(x; r), or simply y ← A(x), the operation of running A with
input x and randomness r and assigning the output to y. “PPT” is short for
probabilistic polynomial-time, and ∅ an empty string.

2.1 Digital Signature with Adaptive Corruptions

Definition 1 (SIG). A signature (SIG) scheme SIG= (Setup,Gen,Sign,Ver)
consists of four algorithms.

– Setup(1λ): The setup algorithm takes as input the security parameter 1λ and
outputs the public parameter ppSIG, which determines the message space M,
the signature space Σ, and the key space VK × SK.

– Gen(ppSIG): The key generation algorithm takes as input ppSIG and outputs a
pair of keys (vk, sk) ∈ VK × SK.

– Sign(sk,m): The signing algorithm takes as input a signing key sk and a
message m ∈ M, and outputs a signature σ ∈ Σ.

– Ver(vk,m, σ): The verification algorithm takes as input a verification key vk,
a message m and a signature σ, and outputs a binary bit 0/1, indicating
whether (m,σ) is valid or not.

Correctness of SIG. For all ppSIG ← Setup(1λ), (vk, sk) ← Gen(ppSIG), σ ←
Sign(sk,m), it holds that Ver(vk,m, σ) = 1.

We recall the security notion existential unforgeability with adaptive corrup-
tions (MU-EUF-CMAcorr) by Bader et al. in [1].

Definition 2. A signature scheme SIG is MU-EUF-CMAcorr secure if for all
PPT adversary A, Advm-corr

SIG,μ,A(λ) := Pr[Expm-corr
SIG,μ,A(λ) ⇒ 1] is negligible (Fig. 2).

Fig. 2. The MU-EUF-CMAcorr security experiment Expm-corr
SIG,μ,A(λ) of SIG.
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2.2 KEM and Its Security in the Multi-user Setting

We review the syntax of KEM and its multi-challenge CCA (IND-mCCA) secu-
rity. We also define a new security notion, namely IND-mCPAreveal, which will
serve our generic construction of AKE. Then we show that IND-mCCA security
of KEM implies IND-mCPAreveal security.

Definition 3 (KEM). A key encapsulation mechanism (KEM) scheme KEM
= (Setup, Gen, Encap, Decap) consists of four algorithms:

– Setup(1λ): The set up algorithm takes as input 1λ and outputs the public
parameter ppKEM, which determines the encapsulation key space K, the key
space PK × SK, and the ciphertext space CT .

– Gen(ppKEM): The key generation algorithm takes as input ppKEM and outputs
a pair of keys (pk, sk) ∈ PK × SK.

– Encap(pk): The encapsulation algorithm takes as input pk and outputs an
encapsulated key K ∈ K along with a ciphertext C ∈ CT .

– Decap(sk, C): The decapsulation algorithm takes as input sk and a ciphertext
C, and outputs K ′ with K ′ ∈ K ∪ {⊥}.

Correctness of KEM. For all ppKEM ← Setup(1λ), (pk, sk) ← Gen(ppKEM),
(K,C) ← Encap(pk), it holds that Decap(sk, C) = K.

Definition 4 (IND-mCCA security). A KEM scheme KEM is IND-mCCA
secure if for all PPT adversary A, Advm-cca

KEM,θ,A(λ) :=
∣
∣Pr[Expm-cca

KEM,θ,A(λ) ⇒ 1]
− 1

2

∣
∣ is negligible (Fig. 3).

IND-mCPAreveal Security. The IND-mCPA security of KEM considers the
pseudorandomness of multiple encapsulated keys {K | (K,C) ← Encap(pki)},
where {(pki, C)} are the corresponding public keys and challenge ciphertexts.
Now consider a stronger attack which allows the adversary to choose any (pki, C),
even if (pki, C) is one of the challenges, and see the (revealed) key K decapsulated
from C and ski. This defines a stronger security notion IND-mCPAreveal, which
asks the pseudorandomness of unrevealed keys. KEM with this security notion
fits our AKE protocol.

Definition 5. A KEM scheme KEM is IND-mCPAreveal secure if for all
PPT adversary A, Advr-m-cpa

KEM,θ,A(λ) :=
∣
∣
∣Pr[Expr-m-cpa

KEM,θ,A(λ) ⇒ 1] − 1
2

∣
∣
∣ is negligible

(Fig. 4).

Note that in Expr-m-cpa
KEM,θ,A(λ), the encapsulation oracle generates tuples

{(pki, C)} as challenges. However, keys decapsulated from {(pki, C)} can also be
revealed. Upon revealed, {(pki, C)} cannot serve as challenges any more. Mean-
while, each challenge (pki, C) will be associated with an independently chosen
random bit β. Therefore, IND-mCPAreveal is different from IND-mCCA.

IND-mCCA Implies IND-mCPAreveal. We prove that IND-mCCA security
implies IND-mCPAreveal security with a tight reduction.
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Fig. 3. The IND-mCCA security experiment Expm-cca
KEM,θ,A(λ) of KEM.

Fig. 4. The IND-mCPAreveal security experiment Expr-m-cpa
KEM,θ,A(λ) of KEM.

Theorem 1. If a KEM KEM is IND-mCCA secure, it is also IND-mCPAreveal

secure. More precisely, for any PPT adversary A of advantage Advr-m-cpa
KEM,θ,A(λ)

in Expr-m-cpa
KEM,θ,A(λ), there exists a PPT algorithm B which has advantage

Advm-cca
KEM,θ,B(λ) in Expm-cca

KEM,θ,B(λ) such that Advr-m-cpa
KEM,θ,A(λ) ≤ 2Advm-cca

KEM,θ,B(λ).

Proof. Given a PPT A in Expr-m-cpa
KEM,θ,A(λ), we construct a PPT algorithm B in

Expm-cca
KEM,θ,B(λ). Let C be B’s challenger. Then C provides two oracles, Oβ

Enc(·) and
ODec(·, ·) to B. B simulates Expr-m-cpa

KEM,θ,A(λ) for A as follows.

1. First B gets ppKEM and a set of public keys {pki}i∈[θ] from its own challenger
C. Then it sends ppKEM and PKList := {pki}i∈[θ] to A. B also prepares two
lists CList := ∅ and RList := ∅.

2. There are two kinds of oracle queries from A, and B answers them as follows.
OEncap(i): B asks its own oracle Oβ

Enc(i) and obtains (K,C) ← Oβ
Enc(i).

Then it sets k0 := K, samples k1 ← K, throws a coin b
$←− {0, 1}, appends

(pki, C,K, b) into CList and returns (kb, C) to A.
OReveal(i, C ′): B checks whether (pki, C

′, ·, ·) ∈ CList. If yes, B parses the
tuple as (pki, C

′,K, b) and returns K to A. Otherwise, B asks its own
oracle ODec(i, C ′). Let K ′ ← ODec(i, C ′), then B updates RList :=
RList ∪ {(pki, C

′)} and returns K ′ to A.
3. If A aborts, B outputs a random bit. Otherwise, A outputs (pki∗ , C∗, b′). If

∃(pki∗ , C∗, ·, b) ∈ CList s.t. (pki∗ , C∗) /∈ RList ∧ b′ = b, B outputs β′ = 0.
Otherwise, it outputs 1.
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Let β be the random bit generated by B’s challenger C, then B wins in
Expm-cca

KEM,θ,B(λ) if β′ = β. Recall that Oβ
Enc(·) will always return real keys if β = 0

and random keys if β = 1.

Case 1: β = 0. In this case, the output (K,C) of O0
Enc(i) is a real encap-

sulation pair. B simulates OEncap(i) by outputting (kb, C), where kb is
either a real or a random key with 1/2 probability. Furthermore, for each
(pki, C

′,K, b) ∈ CList, it holds that Decap(ski, C
′) = K. For simulation of

OReveal(i, C ′), if there exists (pki, C
′,K, b) ∈ CList, B returns K; otherwise

B asks its own oracle ODec(i, C ′) and returns the output of ODec(i, C ′) to A.
Thus, B perfectly simulates Expr-m-cpa

KEM,θ,A(λ) for A.
Case 2: β = 1. In this case, the output (K,C) of O1

Enc(i) contains a random
key K, which is independent of C. In B’s answer (kb, C) to OEncap(i), kb is
a random key, independent from b. Moreover, B ’s answer to OReveal(i, C ′)
does not use b at all. Hence A learns nothing about b from OEncap(i) and
OReveal(i, C ′). Thus, Pr[b′ = b] = 1/2 and Pr[β′ = β] = 1/2.

Advm-cca
KEM,θ,B(λ) = | Pr[β′ = β] − 1/2|

= | Pr[β′ = β|β = 0] Pr[β = 0] + Pr[β′ = β|β = 1] Pr[β = 1] − 1/2|
= |1

2
(
1

2
+ Advr-m-cpa

KEM,θ,A(λ)) +
1

2
· 1

2
− 1

2
| =

1

2
Advr-m-cpa

KEM,θ,A(λ). ��

2.3 Diverse Property of KEM

We define a property called diverse property for KEM, which is useful in the
security proof of our AKE.

Definition 6 (Diverse Property). A KEM scheme KEM = (Setup,Gen,
Encap, Decap) has diverse property if for all ppKEM ← Setup(1λ), it holds that:

Pr

[
r̃

$←− R̃; r, r̄
$←− R; (pk, sk) ← Gen(ppKEM; r̃);

(K, C) ← Encap(pk; r); (K̄, C̄) ← Encap(pk; r̄)
: K = K̄

]
= 2−Ω(λ),

Pr

⎡
⎣ r̃, r̃′ $←− R̃; r

$←− R;
(pk, sk) ← Gen(ppKEM; r̃); (pk′, sk′) ← Gen(ppKEM; r̃′);

(K, C) ← Encap(pk; r); (K′, C′) ← Encap(pk′; r)
: K = K′

⎤
⎦ = 2−Ω(λ),

where R̃, R are the randomness spaces in Gen and Encap respectively.

2.4 The Strong Twin Diffie-Hellman Assumption

Let GGen be a group generation algorithm such that G := (G, q, g) ← GGen(1λ),
where G is a cyclic group of prime order q with generator g.

Definition 7. For any adversary A, the advantage of A in solving the Compu-
tational Diffie-Hellman (CDH) problem is defined as

AdvCDH
G,A (λ) := Pr[(G, q, g) ← GGen(1λ);x, y

$←− Zq : A(G, q, g, gx, gy) = gxy].
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Definition 8. For any adversary A, the advantage of A in solving the Deci-
sional Diffie-Hellman (DDH) problem is defined as

AdvDDH
G,A (λ) := | Pr[(G, q, g) ← GGen(1λ); x, y

$←− Zq : A(G, q, g, gx, gy, gxy) = 1]−
Pr[(G, q, g) ← GGen(1λ); x, y, z

$←− Zq : A(G, q, g, gx, gy, gz) = 1]|.
In [5], Cash et al. proposed the Strong Twin Diffie-Hellman (strong 2DH or

st2DH) problem, and proved that it is as hard as the CDH problem.
Definition 9. [5] For any adversary A, its advantage in solving the strong twin
Diffie-Hellman problem is defined as Advst2DH

G,A (λ) :=

Pr[G ← GGen(1λ);x1, x2, y
$←− Zq : A2DH(gx1 ,gx2 ,·,·,·)(G, q, g, gx1 , gx2 , gy) = (gx1y , gx2y)],

where the decision oracle 2DH(gx1 , gx2 , ·, ·, ·) takes as input (gy, gz1 , gz2) and
outputs 1 if (x1y = z1) ∧ (x2y = z2) and 0 otherwise.

Theorem 2. [5] For any PPT adversary A against the strong 2DH prob-
lem, there exists a PPT algorithm B against the CDH problem such that
Advst2DH

G,A (λ) ≤ AdvCDH
G,B (λ) + Q/q, where Q is the maximum number of decision

oracle queries.

3 Authenticated Key Exchange Scheme

3.1 Definition of Authenticated Key Exchange

We consider a generic AKE scheme, in which each party maintains a state sti.
If sti =⊥, the AKE scheme is stateless.

Definition 10 (AKE). An authenticated key exchange (AKE) scheme AKE =
(AKE.Setup, AKE.Gen,AKE.Protocol) consists of two probabilistic algorithms and
an interactive protocol.

– AKE.Setup(1λ): The setup algorithm takes as input the security parameter 1λ,
and outputs the public parameter ppAKE.

– AKE.Gen(ppAKE, Pi): The generation algorithm takes as input ppAKE and a
party Pi, and outputs a key pair (pki, ski) and an initial state sti.

– AKE.Protocol(Pi(resi) � Pj(resj)): The protocol involves two parties Pi and
Pj, who have access to their own resources, resi := (ski, sti, ppAKE, {pku}u∈[μ])
and resj := (skj , stj , ppAKE, {pku}u∈[μ]), respectively. Here μ is the total num-
ber of users. After execution, Pi outputs a flag Ψi ∈ {∅,accept, reject}, and
a session key ki (ki might be empty string ∅), and Pj outputs (Ψj , kj) simi-
larly. Note that every execution of protocol may lead to update of sti, stj.

Correctness of AKE. For any distinct and honest parties Pi and Pj , they share
the same session key after the execution AKE.Protocol(Pi(resi) � Pj(resj)), i.e.,
Ψi = Ψj = accept, ki = kj �= ∅.

Definition 11 (Stateless AKE). In Definition 10, if sti is set to ⊥ (i.e., no
state involved) for each party Pi, then the AKE becomes a stateless AKE.
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3.2 Security Model of AKE

We will adapt the security model formalized by [1,11,19], which in turn followed
the model proposed by Bellare and Rogaway [2]. We also include replay attacks
in the security model, leading to a stronger model than those in [1,2,11].

First we will define oracles and their static variables in the model. Then we
describe the security experiment and the corresponding security notions.

Oracles. Suppose there are at most μ users P1, P2, ..., Pμ, and each user will
involve at most � instances. Pi is formalized by a series of oracles, π1

i , π2
i , ..., π�

i .
Oracle πs

i formalizes Pi’s execution of the s-th protocol instance. Since we con-
sider stateful Pi, we have two requirements.

(1) The very first queries to oracles π1
i , π2

i , ..., π�
i by the adversary A must be

in chronological order 1, 2, ..., �. That is, for 1 ≤ s < �, πs+1
i is inaccessible

to A before πs
i is invoked. However, we stress that it does not eliminate the

possibility that A queries πs
i , then πs+1

i , and back to πs
i , π

s−1
i , ... again.

(2) There is a state sti shared and maintained by π1
i , π2

i , ..., π�
i .

Each oracle πs
i has access to Pi’s resource resi := (ski, sti, ppAKE,PKList :=

{pku}u∈[μ]), where sti is the state of the time being. πs
i also has its own variables

varsi := (Pids
i , k

s
i , Ψ

s
i ).

– Pids
i : The intended communication peer’s identity.

– ks
i ∈ K: The session key computed by πs

i . Here K is the session key space. We
assume that ∅ ∈ K.

– Ψs
i ∈ {∅,accept, reject}: Ψs

i indicates whether πs
i has completed the protocol

execution and accepted ks
i .

At the beginning, (Pids
i , k

s
i , Ψ

s
i ) are initialized to (∅, ∅, ∅). We declare that

ks
i �= ∅ if and only if Ψs

i = accept.

Security Experiment. To define the security notion of AKE, we first formalize
the security experiment ExpAKEμ,�,A(λ) with the help of the oracles defined above.
ExpAKEμ,�,A(λ) is a game played between an AKE challenger C and an adversary A.
C will simulate the executions of the � protocol instances for each of the μ users
with oracles πs

i . See Fig. 5 for the formal description of ExpAKEμ,�,A(λ).
Adversary A may copy, delay, erase, replay, and interpolate the messages

transmitted in the network. This is formalized by the query Send to oracle πs
i .

With Send, A could send arbitrary message to any oracle πs
i . Then πs

i will execute
the AKE protocol according to the protocol specification for Pi.

We also allow the adversary to observe session keys of its choices. This can
be reflected by the Reveal query to oracle πs

i .
Corrupt query allows A to corrupt a party Pi and get its long-term secret key

ski. With RegisterCorrupt query, A can register a new party without public key
certification. The public key is then known to all other users.

We introduce Test query to formalize the pseudorandomness of ks
i . For a Test

query to πs
i , the oracle will return ⊥ if the session key ks

i is not generated yet.
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Fig. 5. The strong security experiment ExpstrongAKE,μ,�,A(λ) and the security experiment

ExpAKE,μ,�,A(λ) of AKE, with framed part · · · only in ExpstrongAKE,μ,�,A(λ).

Otherwise, πs
i will return ks

i or a truly random key with half probability. The
task of A is to tell whether the key is the true session key or a random key.

Formally, the queries by A are described as follows.

– Send(i, s, j,msg): If msg = , it means that A asks oracle πs
i to send the first

protocol message to Pj . Otherwise, A impersonates Pj to send message msg
to πs

i . Then πs
i executes the AKE protocol with msg as Pi does, outputs a

message msg′, and updates the state sti and its own variables varsi . In formula,
(msg′, st′i,Pid

s
i , k

s
i , Ψ

s
i ) ← πs

i (msg, resi, var
s
i ). Only the output message msg′ is

returned to A.
If Send(i, s, j,msg) is the τ -th query asked by A and πs

i changes Ψs
i to accept

after that, then we say that πs
i is τ -accepted.

– Corrupt(i): C reveals to A party Pi’s long-term secret key ski. After corruption,
π1

i , ..., π�
i will stop answering any query from A.

If Corrupt(i) is the τ -th query asked by A, we say that Pi is τ -corrupted.
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If A has never asked Corrupt(i), we say that Pi is ∞-corrupted.
– RegisterCorrupt(i, pki): It means that A registers a new party Pi (i > μ). C

distributes (Pi, pki) to all users. In this case, we say that Pi is 0-corrupted.
– Reveal(i, s): The query means that A asks C to reveal πs

i ’s session key. If
Ψs

i �= accept, C returns ⊥. Otherwise, C returns the session key ks
i of πs

i .
If Reveal(i, s) is the τ -th query asked by A, we say that πs

i is τ -revealed.
If A has never asked Reveal(i, s), we say that πs

i is ∞-revealed.
– Test(i, s): If Ψs

i �= accept, C returns ⊥. Otherwise, C throws a coin bs
i

$←−
{0, 1}, sets k0 = ks

i , samples k1
$←− K, and returns kbs

i
to A. We require that

A could ask Test(i, s) to each oracle πs
i only once.

If Test(i, s) is the τ -th query asked by A and Ψs
i = accept, we say that πs

i is
τ -tested.
If A has never asked Test(i, s), we say that πs

i is ∞-tested.

Informally, the pseudorandomness of ks
i asks that any PPT adversary A,

access to Test(i, s), could guess bs
i with probability no better than 1/2 + negl.

Yet, we have to exclude some trivial attacks: (1) A asks Reveal(i, s); (2) A asked
Corrupt(j) before Ψs

i = accept; (3) A asks Reveal(j, t); (4) A asks Test(j, t),
given that πs

i and πt
j have a successful protocol execution with each other.

Definition 12 (Original Key [19]). For two oracles πs
i and πt

j, the original
key, denoted as K(πs

i , π
t
j), is the session key computed by the two peers of the

protocol under a passive adversary only, where πs
i is the initiator.

Remark 1. We note that K(πs
i , π

t
j) is determined by the identities of Pi and Pj ,

the internal randomness and the states stsi and sttj , where stsi and sttj denote the
states when πs

i and πt
j are invoked respectively.

Definition 13 (Partner [19]). Let K(·, ·) denote the original key function. We
say that an oracle πs

i is partnered to πt
j, denoted as Partner(πs

i ← πt
j)

3, if one of
the following requirements holds:

– πs
i is the initiator and ks

i = K(πs
i , π

t
j) �= ∅, or

– πs
i is the responder and ks

i = K(πt
j , π

s
i ) �= ∅.

For 2-pass AKE, the security model of [11] cannot cover replay attacks. Given
Partner(πs′

i′ ← πt
j), a successful replay attack means that A resends to πs

i the
messages, which were sent from πt

j to πs′
i′ , and πs

i is fooled to compute a session
key, i.e., Partner(πs

i ← πt
j). Now, we add the formalization of replay attacks (see

(3.3) in Fig. 5) in the security model of [11] and define a stronger security notion.

Definition 14 (Strong Security of AKE). Let μ be the number of users
and � the maximum number of protocol executions per user. The strong security
experiment ExpstrongAKE,μ,�,A(λ) (see Fig. 5) is played between the challenger C and
the adversary A.
3 The arrow notion πs

i ← πt
j means πs

i (not necessarily πt
j) has computed and accepted

the original key.
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1. C runs AKE.Setup(1λ) to get AKE public parameter ppAKE.
2. For each party Pi, C runs AKE.Gen(ppAKE, Pi) to get the long-term key pair

(pki, ski) and Pi’s initial state sti. Then it provides A with the public param-
eter ppAKE and public key list PKList := {pki}i∈[μ].

3. A asks C Send, Corrupt, RegisterCorrupt, Reveal, and Test queries adaptively.
4. At the end of the experiment, A terminates with an output (i∗, s∗, b∗), where

b∗ is a guess for bs∗
i∗ of oracle πs∗

i∗ .

Strong Authentication. Let WinAuth denote the event that A breaks authen-
tication in the security experiment. WinAuth happens iff ∃(i, s) ∈ [μ] × [�] s.t.

(1) πs
i is τ -accepted.

(2) Pj is τ̂ -corrupted with j := Pids
i and τ̂ > τ .

(3) Either (3.1) or (3.2) or (3.3) happens. Let j := Pids
i .

(3.1) There is no oracle πt
j that πs

i is partnered to.
(3.2) There exist two distinct oracles πt

j and πt′
j′ , to which πs

i is partnered.
(3.3) There exist two oracles πs′

i′ and πt
j with (i′, s′) �= (i, s), such that both

πs
i and πs′

i′ are partnered to πt
j.

Remark 2. Given (1)∧(2), (3.1) indicates a successful impersonation of Pj , (3.2)
suggests one instance of Pi has multiple partners, and (3.3) corresponds to a
successful replay attack.

Indistinguishability. Let WinInd denote the event that A breaks indistinguisha-
bility in ExpstrongAKE,μ,�,A(λ) above. For simplicity, let (i, s, b∗) := (i∗, s∗, b∗) be A’s
output. WinInd happens iff b∗ = bs

i , and the following conditions are satisfied.

(1′) πs
i is τ -tested andPids

i is τ̃ -corrupt with τ̃ > τ .
(2′) πs

i is ∞-revealed.
(3′) If πs

i is partnered to πt
j (j = Pids

i ), then πt
j is ∞-revealed and ∞-tested.

Note that ExpstrongAKE,μ,�,A(λ) ⇒ 1 iff WinInd happens. Hence, the advantage of A is
defined as

AdvstrongAKE,μ,�,A(λ) : = max{Pr[WinAuth], |Pr[WinInd] − 1/2|}
= max{Pr[WinAuth], |Pr[ExpstrongAKE,μ,�,A(λ) ⇒ 1] − 1/2|}.

An AKE scheme AKE has strong security if for any PPT adversary A, it holds
that AdvstrongAKE,μ,�,A(λ) is negligible.

Remark 3. Indisitinguishability asks the pseudorandomness of the session key
shared between Pi and Pj , excluding trivial attacks such like Pj is corrupted, or
the session key is tested in Pj , or it is revealed.
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Definition 15 (Security of AKE). The security experiment ExpAKE,μ,�,A(λ)
(see Fig. 5) is defined like ExpstrongAKE,μ,�,A(λ) except that (3.3) is eliminated from
WinAuth. Similarly, an AKE scheme AKE has security if for any PPT adversary
A, the following advantage is negligible:

AdvAKE,μ,�,A(λ) := max{Pr[WinAuth], |Pr[ExpAKE,μ,�,A(λ) ⇒ 1] − 1/2|}.

Remark 4 (Perfect Forward Security and KCI Resistance). The security model
of AKE supports (perfect) forward security (a.k.a. forward secrecy [12]) (charac-
terized by “πs

i is τ -tested and Pids
i is τ̃ -corrupt with τ̃ > τ” in WinInd). That is,

if Pi or its partner Pj has been corrupted at some moment, then the exchanged
session keys completed before the corruption remain hidden from the adversary.
Meanwhile, πs

i may be corrupted before Test(i, s), which provides resistance to
key-compromise impersonation (KCI) attacks [16].

4 Generic Construction of AKE and Its Security Proof

4.1 Construction

There are two building blocks in our AKE scheme, namely a MU-EUF-CMAcorr

secure signature scheme SIG = (SIG.Setup,SIG.Gen,SIG.Sign,SIG.Ver) and an
IND-mCPAreveal secure KEM scheme KEM = (KEM.Setup,KEM.Gen,KEM.
Encap, KEM.Decap) with diverse property. Our AKE scheme is shown in Fig. 6.

In our AKE scheme AKE, every party Pi will keep two arrays of static coun-
ters as its state, i.e., sti = {sctri,0[j], sctri,1[j]}j∈[μ]. Static counters sctri,b[j] are
initialized to 0s and will record the serial number of protocol instances. Counter
sctri,0[j] implies that Pi is the initiator and Pj is the responder, while sctri,1[j]
implies Pj the initiator and Pi the responder. For example, sctri,0[j] = 3 denotes
that Pi has initialized 3 protocol instances with Pj , while sctrj,1[i] = 5 denotes
that Pj , as a responder, has 5 protocol instances with Pi.

AKE.Setup(1λ). ppSIG ← SIG.Setup(1λ), ppKEM ← KEM.Setup(1λ). Return
ppAKE := (ppSIG, ppKEM).

AKE.Gen(ppAKE, Pi). (vki, ski) ← SIG.Gen(ppSIG), sctri,0[u] := 0; sctri,1[u] := 0
for u ∈ [μ], sti := {sctri,0[u], sctri,1[u]}u∈[μ]. Return ((vki, ski), sti).

AKE.Protocol(Pi � Pj). Pi has access to resi = (ski, sti, ppAKE,PKList =
{vku}u∈[μ]) and Pj has access to resj = (skj , stj , ppAKE,PKList = {vku}u∈[μ]).
As an initiator, Pi invokes (pkKEM, skKEM) ← KEM.Gen(ppKEM), increases its
counter with sctri,0[j] := sctri,0[j] + 1, and uses ski to sign a signature σ1 of
message m1 := (Pi, Pj , sctri,0[j], pkKEM). Then Pi sends (m1, σ1) to Pj .

After Pj obtains (m1, σ1), it will verify σ1 with vki and check whether its
own counter sctrj,1[i] is less than ctr contained in m1 = (Pi, Pj , ctr, pkKEM).
If everything goes well, then Pj takes m1 as a valid message; otherwise Pj



Two-Pass Authenticated Key Exchange 801

returns (reject, ∅). If m1 is valid, Pj stores (m1, σ1), encapsulates a key K
via (K,C) ← KEM.Encap(pkKEM) and synchronizes sctrj,1[i] := ctr. Then Pj

signs m1||m2 with m2 := (Pi, Pj , sctrj,1[i], C) via σ2 ← SIG.Sign(skj ,m1||m2)
and sends (m2, σ2) to Pi. Pj will accept K as the session key with Pi by
returning (accept,K).

After Pi obtains (m2, σ2), it will verify whether (m1||m2, σ2) is a valid
message-signature pair w.r.t. vkj . It also checks synchronization of its own
counter sctri,0[j] and the counter ctr′ in m2 = (Pi, Pj , ctr

′, C), i.e., whether
sctri,0[j] = ctr′. If everything goes well, Pi will take m2 as a valid message and
decapsulate the ciphertext C in m2 to obtain K ′ ← KEM.Decap(skKEM, C).
Pi will accept K ′ as the session key with Pj by returning (accept,K ′). If m2

is invalid, Pi returns (reject, ∅).

Correctness. The correctness of AKE follows from the correctness of SIG &
KEM and the fact of sctri,0[j] ≥ sctrj,1[i]. The increasing mode of counters in
our AKE is as follows: the initiator Pi always increases the counter sctri,0[j],
while the responder Pj synchronizes its counter sctrj,1[i] := sctri,0[j] only if
the received message m1 is valid. If m1 is invalid, sctrj,1[i] stays the same, so
sctri,0[j] > sctrj,1[i]. Consequently, sctri,0[j] ≥ sctrj,1[i] holds in either case.

We can also construct a stateless AKE scheme AKEstateless, where all states
are removed from the AKE scheme. See Fig. 6.

Remark 5 (Synchronization). A failed execution of AKE does not lead to desyn-
chronization. If m1 or m2 is lost (due to the network) or modified by active
attacks, then the underlying session fails (i.e., Pi does not accept). In this sce-
nario, it keeps that sctri,0[j] ≥ sctrj,1[i], and Pi can launch a new session as the
initiator latter and correctness (synchronization) still holds.

Remark 6 (PKI Setting). Our security model simply assumes that each party
has access to the public key list. In practice, the users’ public keys are regis-
tered via certificates from PKI. In some real-world protocols (like TLS [21]),
public keys and certificates are also exchanged through the protocol (by send-
ing (m1, vki, certi, σ1) and (m2, vkj , certj , σ2)). In this case, σ1 is a signature
of (m1, vki, certi), and so is σ2. (Identities are suggested to be included in the
signature to prevent unknown key-share (UKS) attacks [3].)

4.2 Security Proof

Before the proof, we define two sets Sentsi and Recvs
i for πs

i and event (4) for
each (i, s) ∈ [μ] × [�] in ExpstrongAKE,μ,�,A(λ).

– Sentsi : The set collecting messages sent by πs
i .

– Recvs
i : The set collecting valid messages received and stored by πs

i . We stress
that invalid messages will be discarded and do not appear in Recvs

i .
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Fig. 6. Generic construction of AKE and AKEstateless from KEM and SIG, with
gray parts only in AKE.

Message Consistency. πs
i is message-consistent with πt

j as a responder, if
πs

i is a responder with Recvs
i = {(m1, ·)} �= ∅ and πt

j is an initiator with
Senttj = {(m1, ·)} �= ∅. πs

i is message-consistent with πt
j as an initiator, if πs

i

is an initiator with Sentsi = {(m1, ·)} �= ∅, Recvs
i = {(m2, ·)} �= ∅ and πt

j is a
responder with Recvt

j = {(m1, ·)} �= ∅, Senttj = {(m2, ·)} �= ∅.

Define Event (4) for (i, s): Let j := Pids
i . If πs

i is responder, then �t ∈ [�] such
that πs

i is message-consistent with πt
j as a responder; if πs

i is an initiator, then
�t ∈ [�] such that πs

i is message-consistent with πt
j as an initiator.
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Claim 1. For a specific pair (i, s) with j := Pids
i , if ¬(4) happens, there exists

t ∈ [�] such that πs
i is not only message-consistent with πt

j either as a responder
or as an initiator, but also Partner(πs

i ← πt
j).

Proof of Claim 1. If ¬(4) happens, then πs
i must be message-consistent with

some πt
j . Hence πs

i and πt
j are executing the protocol following the specification

of AKE, and πs
i must be accepted with ks

i (�= ∅). According to the correctness
of AKE, ks

i must be the original key, so Partner(πs
i ← πt

j).

Claim 2. For a specific pair (i, s), if (1) πs
i is accepted; (2) Pj with j = Pids

i

is uncorrupted; and (4) happens, then πs
i can always collect a valid message-

signature pair (m,σ) from Sentsi and Recvs
i , such that SIG.Ver(vkj ,m, σ) = 1

with j := Pids
i . Meanwhile, m must be different from any message m′ signed by

πt
j for all t ∈ [�].

Proof of Claim 2. (1) means πs
i is accepted, so Recvs

i �= ∅ and Sentsi �= ∅. (2)
says Pj is not corrupted yet, so πt

j is accessible.

Case 1: Responder πs
i . Let Recvs

i = {(m1, σ1)}, we have SIG.Ver(vkj ,m1, σ1) =
1 since m1 is valid. And for any πt

j with Senttj = {(m′
1, σ

′
1)} �= ∅, we know

that σ′
1 is a signature of m′

1 signed with skj . Meanwhile, (4) implies m1 �= m′
1.

Case 2: Initiator πs
i . Let Sentsi = {(m1, σ1)} and Recvs

i = {(m2, σ2)}, we have
SIG.Ver(vkj ,m1||m2, σ2) = 1 since m2 is valid. And for any πt

j with Recvt
j �= ∅

and Senttj �= ∅, let Recvt
j = {(m′

1, σ
′
1)} and Senttj = {(m′

2, σ
′
2)}, then σ′

2 is a
signature of m′

1||m′
2 signed with skj . Similarly, m1||m2 �= m′

1||m′
2 by (4).

We analyse WinAuth first in the proof of AKE’s strong security.

Theorem 3. Suppose that SIG is MU-EUF-CMAcorr secure, KEM is IND-
mCPAreveal secure and has diverse property, then AKE has strong authentica-
tion. More precisely, for any PPT adversary A against AKE, there exists a PPT
adversary BSIG such that Pr[WinAuth] ≤ 2Advm-corr

SIG,μ,BSIG
(λ) + 2−Ω(λ).

Proof. In ExpstrongAKE,μ,�,A(λ), A is allowed to ask Send, Corrupt, RegisterCorrupt,
Reveal, and Test queries adaptively. According to the definition, WinAuth happens
iff ∃(i, s) such that (1) ∧ (2) ∧ ((3.1) ∨ (3.2) ∨ (3.3)) holds, where

(1) πs
i is τ -accepted;

(2) Pj is τ̂ -corrupted with j := Pids
i and τ̂ > τ ;

(3.1) �t ∈ [�] s.t. Partner(πs
i ← πt

j), where j := Pids
i ;

(3.2) ∃ t ∈ [�], (j′, t′) ∈ [μ] × [�] with (j, t) �= (j′, t′) s.t. Partner(πs
i ← πt

j) ∧
Partner(πs

i ← πt′
j′), where j := Pids

i ;
(3.3) ∃ t ∈ [�], (i′, s′) ∈ [μ] × [�] with (i, s) �= (i′, s′) s.t. Partner(πs

i ← πt
j) ∧

Partner(πs′
i′ ← πt

j), where j := Pids
i ;
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Pr[WinAuth] = Pr
∃(i,s)

[(1) ∧ (2) ∧ ((3.1) ∨ (3.2) ∨ (3.3))]

≤ Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.1)] + Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.2)] + Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.3)]. (1)

Lemma 1. There exists a PPT algorithm BSIG such that

Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.1)] ≤ Pr
∃(i,s)

[(1) ∧ (2) ∧ (4)] ≤ Advm-corr
SIG,μ,BSIG

(λ).

Proof of Lemma 1. First we prove Pr∃(i,s)[(1)∧(2)∧(3.1)] ≤ Pr∃(i,s)[(1)∧(2)∧(4)].
This can be done by a proof of Pr∃(i,s)[(1)∧(2)∧¬(3.1)] ≥ Pr∃(i,s)[(1)∧(2)∧¬(4)].
For a specific pair (i, s), if (1) ∧ (2) ∧ ¬(4) happens, according to Claim 1, there
exists t ∈ [�] such that Partner(πs

i ← πt
j), hence (1) ∧ (2) ∧ ¬(3.1) must happen.

Next we prove that Pr∃(i,s)[(1) ∧ (2) ∧ (4)] ≤ Advm-corr
SIG,μ,BSIG

(λ).
To this end, we construct a PPT algorithm BSIG against the MU-EUF-

CMAcorr security of SIG. Let CSIG be the challenger of BSIG in Expm-corr
SIG,μ,BSIG

(λ).
BSIG gets a list of verification keys {vki}i∈[μ] from CSIG. CSIG also provides BSIG

with ppSIG, oracles OSign(·, ·) and OCorr(·), where OSign(i,m) returns a signature
with σ ← SIG.Sign(ski,m), and OCorr(i) returns the signing key ski.

BSIG simulates the strong security experiment of AKE for A. First BSIG

invokes ppKEM ← KEM.Setup(1λ), sets ppAKE := (ppSIG, ppKEM), and sends ppAKE
and PKList := {vki}i∈[μ] to A. Then BSIG answers the queries of A as follows.

– Send(i, s, j,msg): BSIG answers just like the challenger in ExpstrongAKE,μ,�,A(λ).
Whenever there is a message m to be signed with ski, BSIG asks its own oracle
OSign(i,m) to get the corresponding signature. In this way, BSIG answers the
Send query perfectly.

– Corrupt(i): Given i, BSIG asks its own oracle OCorr(i) to get ski. Then it
returns ski to A.

– RegisterCorrupt(u, vku): BSIG registers a new party Pu (0-corrupted) and adds
vku to PKList. Then BSIG returns PKList.

– Reveal(i, s): BSIG answers just like the challenger in the experiment.
– Test(i, s): BSIG answers just like the challenger in the experiment.

In the simulation, BSIG checks whether ∃(i, s) such that (1) ∧ (2) ∧ (4) hap-
pens. If yes, there exists a τ -accepted oracle πs

i with j := Pids
i . Claim 2 tells

us that a valid message-signature pair (m,σ) can be derived from Sentsi ∪
Recvs

i = {(m1, σ1), (m2, σ2)}, such that SIG.Ver(vkj ,m, σ) = 1. BSIG then out-
puts (j,m, σ) as its forgery.

Now BSIG simulates the experiment perfectly. Event (2) implies that Pj is
not corrupted yet, so BSIG never queries OCorr(j). And by Claim 2, m must be
different from any message signed by πt

j for all t ∈ [�]. Therefore, BSIG never
queries OSign(j,m) and m is a fresh message. So if (1) ∧ (2) ∧ (4) happens, BSIG

wins in Expm-corr
SIG,μ,BSIG

(λ), thus Pr[(1) ∧ (2) ∧ (4)] ≤ Advm-corr
SIG,μ,BSIG

(λ).

Lemma 2. Pr∃(i,s)[(1) ∧ (2) ∧ (3.2)] = 2−Ω(λ).
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Proof of Lemma 2. For a specific pair (i, s), if event (1) ∧ (2) ∧ (3.2) happens,
then there exist at least two oracles to which πs

i is partnered. Suppose πs
i is

partnered to two distinct oracles πt
j and πt′

j′ .

Case 1: Responder πs
i . Let pkKEM, pk′

KEM be the public keys of KEM

determined by the internal randomness of πt
j and πt′

j′ . On the one hand,
Partner(πs

i ← πt
j) means ks

i = K, and the original key K is derived from
(K,C) ← KEM.Encap(pkKEM; r); on the other hand, Partner(πs

i ← πt′
j′) means

ks
i = K ′ and K ′ is derived from (K ′, C ′) ← KEM.Encap(pk′

KEM; r). Here r is
the internal randomness chosen by πs

i . This suggests K = K ′. According to
the diverse property of KEM, this occurs with probability 2−Ω(λ).

Case 2: Initiator πs
i . Let pkKEM be the public key of KEM determined by

the internal randomness of πs
i , and r, r′ be the randomness chosen by πt

j

and πt′
j′ , respectively. Let (K,C) ← KEM.Encap(pkKEM; r) and (K ′, C ′) ←

KEM.Encap(pkKEM; r′). Since Partner(πs
i ← πt

j) and πs
i is the initiator, we

have ks
i = KEM.Decap(skKEM, C). Similarly Partner(πs

i ← πt′
j′) implies ks

i =
KEM.Decap(skKEM, C ′). By the correctness of KEM, we have K = ks

i = K ′,
which occurs with probability 2−Ω(λ) by the diverse property of KEM.

There are μ� choices for (i, s) and C2
μ� choices for (j, t) and (j′, t′). By a union

bound, Pr∃(i,s)[(1) ∧ (2) ∧ (3.2)] = μ� · C2
μ� · 2−Ω(λ) = 2−Ω(λ).

Lemma 3. If there exists an accepted πs
i with j := Pids

i , and Pj is uncorrupted
when πs

i accepts, then there exists a unique πt
j, which πs

i is partnered to and
message-consistent with, except with probability Advm-corr

SIG,μ,BSIG
(λ) + 2−Ω(λ), i.e.,

Pr∃(i,s)[(1) ∧ (2)] − Pr∃(i,s)[(1) ∧ (2) ∧ ¬(4) ∧ ¬(3.2)] ≤ Advm-corr
SIG,μ,BSIG

(λ) + 2−Ω(λ).

Proof of Lemma 3. This is done by the total probability rule, Lemmas 1 and 2.

Pr
∃(i,s)

[(1) ∧ (2)]

= Pr
∃(i,s)

[(1) ∧ (2) ∧ (4)] + Pr
∃(i,s)

[(1) ∧ (2) ∧ ¬(4) ∧ (3.2)] + Pr
∃(i,s)

[(1) ∧ (2) ∧ ¬(4) ∧ ¬(3.2)]

≤ Pr
∃(i,s)

[(1) ∧ (2) ∧ (4)] + Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.2)] + Pr
∃(i,s)

[(1) ∧ (2) ∧ ¬(4) ∧ ¬(3.2)]

≤ Advm-corr
SIG,μ,BSIG

(λ) + 2−Ω(λ) + Pr
∃(i,s)

[(1) ∧ (2) ∧ ¬(4) ∧ ¬(3.2)]

Lemma 4. Pr∃(i,s)[(1) ∧ (2) ∧ (3.3)] ≤ Advm-corr
SIG,μ,BSIG

(λ) + 2−Ω(λ).

Proof of Lemma 4. Suppose that there exists (i, s) such that (1) ∧ (2) ∧ (3.3)
holds. That is to say, ∃ (i, s), (i′, s′), t with (i, s) �= (i′, s′) and j := Pids

i , such
that Pj is uncorrupted, Partner(πs

i ← πt
j) and Partner(πs′

i′ ← πt
j).

According to Lemma 3, except with probability Advm-corr
SIG,μ,BSIG

(λ) + 2−Ω(λ),
both πs

i and πs′
i′ must be uniquely partnered to and message-consistent with πt

j .
In this case, Pids

i = Pids′
i′ = j. Meanwhile, the message sent by πt

j contains a
unique identity indicating its peer, so i = i′.

Given i = i′, we have the following fact. Suppose s′ < s.
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Fact 1. Let stsi = {sctrsi,0[u], sctrsi,1[u]}u∈[μ] and sts
′

i = {sctrs′
i,0[u], sctrs

′
i,1[u]}u∈[μ]

be the current states when πs
i and πs′

i′ are invoked. If Ψs′
i = accept and Pids′

i =
j, then sctrs

′
i,0[j] < sctrsi,0[j] and sctrs

′
i,1[j] ≤ sctrsi,1[j].

We then show that the counters in states will make (1) ∧ (2) ∧ (3.3) impossible.

Case 1: Responder πs
i . Suppose that ((m2, σ2), st

s′
i , ...) ← πs′

i ((m1, σ1), ...),
where st

s′
i = {sctrs

′
i,0[u], sctrs

′
i,1[u]}u∈[μ]. Let ctr be the counter contained in

m1, then sctrs
′

i,1[j] < ctr = sctr
s′
i,1[j]. By Fact 1 we have sctr

s′
i,1[j] ≤ sctrsi,1[j].

Consequently ctr ≤ sctrsi,1[j], which means Ψs
i = reject. This contradicts to

Ψs
i = accept.

Case 2: Initiator πs
i . Let (m2, σ2) be the message sent by πt

j . Message m2

contains a counter ctr and defines a unique partner. Ψs′
i = Ψs

i = accept
means sctrs

′
i,0[j] + 1 = sctrsi,0[j] + 1 = ctr. By Fact 1 we have sctrs

′
i,0[j] <

sctrsi,0[j], and this leads to a contradiction.

Theorem 3 follows from Eq. (1), Lemmas 1, 2 and 4. ��

Theorem 4. Suppose that SIG is MU-EUF-CMAcorr secure, KEM is IND-
mCPAreveal secure and has diverse property, then AKE is strongly secure.
More precisely, for any PPT adversary A against AKE, there exist PPT
adversaries BSIG and BKEM such that AdvstrongAKE,μ,�,A(λ) ≤ 2Advm-corr

SIG,μ,BSIG
(λ) +

Advr-m-cpa
KEM,μ�,BKEM

(λ) + 2−Ω(λ).

Proof. We prove it by three games, Game 0, Game 1 and Game 2.

Game 0. Game 0 is the original game. Thus

Pr[ExpstrongAKE,μ,�,A(λ) ⇒ 1] = Pr[Game 0 ⇒ 1]. (2)

Game 1. Game 1 is the same as Game 0 except that the experiment will abort
if bad happens, where bad := ∃(i, s) ((1) ∧ (2) ∧ (4)). In words, bad means there
exists an accepted πs

i such that πs
i is not message-consistent with any oracle πt

j .
If bad does not happen, Game 0 is identical to Game 1. By the difference lemma
and Lemma 1, we have

|Pr[Game 1 ⇒ 1] − Pr[Game 0 ⇒ 1]| ≤ Pr[bad] ≤ Advm-corr
SIG,μ,BSIG

(λ). (3)

Game 2. Game 2 is the same as Game 1 except that D-Partner(πs
i , π

t
j) in the

experiment is changed to a new one, where D-Partner(πs
i , π

t
j) is the algorithm to

check whether πs
i is partnered to πt

j .
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D-Partner(πs
i , πt

j) in Game 1 D-Partner(πs
i , πt

j) in Game 2

Initiator πs
i :

If ks
i = K(πs

i , πt
j) �= ∅: Return 1

Responder πs
i :

If ks
i = K(πt

j , π
s
i ) �= ∅: Return 1

Else: Return 0

If Ψs
i �= accept: Return 0

If πs
i is message-consistent with πt

j

as a responder: Return 1
If πs

i is message-consistent with πt
j

as an initiator: Return 1
Else: Return 0

In Game 2, deciding Partner(πs
i ← πt

j) is implemented by simply checking the
message consistency between πs

i and πt
j . It gets rid of computation of original

keys as in Game 1, and this is a preparation for the proof of Lemma 5.
We then prove that the new algorithm D-Partner(πs

i , π
t
j) has the same func-

tionality as the old one except with probability 2−Ω(λ).
Note that D-Partner(πs

i , π
t
j) is only invoked in testing (1′) ∧ (2′) ∧ (3′). (1′)

implies the existence of an accepted πs
i with j := Pids

i and Pj uncorrupted. If
bad does not happens, according to Claim 1, there exists t ∈ [�] s.t. Partner(πs

i ←
πt

j) and πs
i is message-consistent with πt

j . So, if πs
i is uniquely partnered, then

Partner(πs
i ← πt

j) if and only if πs
i is message-consistent with πt

j . Hence, Game
1 and Game 2 are the same unless πs

i is partnered to multiple oracles, which
happens with probability no more than 2−Ω(λ) by Lemma 2. Thus,

|Pr[Game2 ⇒ 1] − Pr[Game1 ⇒ 1]| ≤ 2−Ω(λ). (4)

Lemma 5. There exists a PPT algorithm BKEM such that

|Pr[Game2 ⇒ 1] − 1/2| ≤ Advr-m-cpa
KEM,μ�,BKEM

(λ). (5)

Proof of Lemma 5. Let (i∗, s∗, b∗) be the output of A. For simplicity, define
(i, s, b∗) := (i∗, s∗, b∗) and j := Pids

i . Recall that ExpstrongAKE,μ,�,A(λ) outputs 1 iff
b∗ = bs

i under the following conditions.

(1′) πs
i is τ -tested and Pids

i is τ̃ -corrupt with τ̃ > τ .
(2′) πs

i is ∞-revealed.
(3′) If ∃t ∈ [�] s.t. πs

i is partnered to πt
j , then πt

j is ∞-revealed and ∞-tested.

Now we construct a PPT algorithm BKEM to break KEM’s IND-mCPAreveal

security (Definition 5) by simulating Game 2 for A. BKEM first obtains from its
challenger CKEM the public parameter ppKEM of KEM and a list of μ� public keys
PKListKEM := {pk1, pk2, ..., pkμ�}. Meanwhile, BKEM has access to two oracles
OEncap(·) and OReveal(·, ·). See Fig. 7 for BKEM’s simulation of Game 2.

In the simulation, to send the first message (m1, σ1) for πs
i , BKEM can

always use public key pk(i−1)μ+s ∈ PKListKEM as pkKEM in m1 and sign m1

with ski. Hence BKEM’s simulation of (m1, σ1) is perfect. After receiving a mes-
sage (m1, σ1), to generate (m2, σ2) for πt

j , BKEM invokes its oracle OEncap(·) to
generate (K,C) if pkKEM ∈ PKListKEM (pkKEM is in m1). In this case, BKEM

stores (pkKEM,K,C) into CList, but BKEM cannot determine the session key
kt

j , since K might be random with half probability. So BKEM sets kt
j := ∗. If
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Fig. 7. BKEM’s simulation of Game 2.

pkKEM /∈ PKListKEM, then m1 must be forged by A. In this case, BKEM can
invoke (K,C) ← KEM.Encap(pkKEM) and set kt

j := K. Thus in either case,
BKEM’s simulation of (m2, σ2) for πt

j is perfect, just like Game 2 does.
After receiving the last message (m2, σ2) for πs

i , BKEM retrieves pkKEM from
m1 and C from m2 (pkKEM ∈ PKListKEM since m1 is generated by BKEM). If
(pkKEM, C,K) ∈ CList for some K, then BKEM has asked OEncap(·) to generate
(K,C) w.r.t pkKEM, so BKEM sets ks

i := ∗. Otherwise, C is forged by A. In
this case, BKEM uses its oracle OReveal(·, ·) to reveal the real key K ′, and sets
ks

i := K ′. At last, BKEM returns ∅ to A as Game 2 does.
BKEM’s simulation makes sure that if Ψs

i = accept and ks
i �= ∗, then ks

i must
be the real session key. Hence, upon a Reveal(i, s) query, BKEM will return ks

i if
ks

i �= ∗. Otherwise, it will ask OReveal(·, ·) to get the real key and return it to A.
Therefore, BKEM’s answers to Reveal queries are perfect.
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Upon a Test(i, s) query, if ks
i �= ∗, then ks

i is the real session key. If ks
i = ∗

and A has asked Test(j, t), where Partner(πs
i ← πt

j), then BKEM asks OReveal(·, ·)
to get the real session key. In either case, BKEM can answer Test queries with
the help of the real session key, exactly like Game 2 does. We stress that BKEM

checks partnership with message consistency, instead of computing the original
key. If ks

i = ∗ and there is no such a partner which has been tested, BKEM

retrieves CList[i, s] = (pkKEM, C,K) associated with πs
i , and returns K to A.

This simulation is also perfect, since K is either a real key or a random key with
half probability.

Given A’s outputs (i∗, s∗, b∗), let (i, s, b∗) := (i∗, s∗, b∗) and j := Pids
i . Con-

dition (1′) implies that Pj is uncorrupted when πs
i is tested (hence accepted).

Thus there exists a unique πt
j to which πs

i is partnered, and this implies the
existence of CList[i, s] = (pkKEM, C,K). Conditions (2′) ∧ (3′) said that πs

i , πt
j

are ∞-revealed, and πt
j is ∞-tested. Hence BKEM has never asked OReveal(·, ·)

for (pkKEM, C). Consequently, BKEM implicitly sets bs
i = β where β is the ran-

dom coin chosen by CKEM. Thus BKEM wins as long as b∗ = bs
i , and Lemma 5

follows.
By Eqs. (2), (3), (4), (5), we have

|Pr[ExpstrongAKE,μ,�,A(λ) ⇒ 1] − 1/2| ≤ Advm-corr
SIG,μ,BSIG

(λ) +Advr-m-cpa
KEM,μ�,BKEM

(λ) + 2−Ω(λ).

AdvstrongAKE,μ,�,A(λ) := max{Pr[WinAuth], |Pr[ExpstrongAKE,μ,�,A(λ) ⇒ 1] − 1/2|}
≤ 2Advm-corr

SIG,μ,BSIG
(λ) + Advr-m-cpa

KEM,μ�,BKEM
(λ) + 2−Ω(λ). ��

Note that in the strong security of AKE, only the proof of Pr[(1)∧(2)∧(3.3)] ≤
Advm-corr

SIG,μ,BSIG
(λ) + 2−Ω(λ) in Lemma 4 makes use of the non-decreasing property

of counters in states. For our stateless AKE scheme AKEstateless, the normal (not
strong) security requirement (see Fig. 5) does not need (1)∧(2)∧(3.3). Therefore,
AKEstateless can be proved to be secure, and the security proof almost verbatim
follows that of Theorems 3 and 4. Hence we have the following corollary.

Corollary 1. Suppose that SIG is MU-EUF-CMAcorr secure, KEM is IND-
mCPAreveal secure and has diverse property, then our stateless AKE scheme
AKEstateless is secure. More precisely, for any PPT adversary A against
AKEstateless, there exist PPT adversaries BSIG and BKEM such that

Adv stateless

AKE,μ,�,A(λ) ≤ Advm-corr
SIG,μ,BSIG

(λ) + Advr-m-cpa
KEM,μ�,BKEM

(λ) + 2−Ω(λ).

5 Instantiations of AKE with Tight Security

In this section, we present specific constructions of AKE by instantiating the two
building blocks KEM and SIG, where KEM has tight IND-mCPAreveal security
and diverse property, and SIG has tight MU-EUF-CMAcorr security.
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5.1 Instantiations of KEM with Tight IND-mCPAreveal Security

We present two KEM schemes. The first one is derived from the twin ElGamal
encryption [5] based on the CDH assumption in the RO model. The other is
derived from [14] and based on the MDDH assumption in the standard model.

KEMst2DH from the st2DH Assumption in the RO Model. Now we
present KEMst2DH, and prove that its IND-mCPAreveal security can be tightly
reduced to the st2DH assumption [5], which is in turn to the CDH assumption
by Theorem 2, in the random oracle model. See Fig. 8

Fig. 8. KEMst2DH from the strong twin DH assumption.

Correctness. Correctness is due to ((gx1)y, (gx2)y) = ((gy)x1 , (gy)x2).

Theorem 5. The KEM scheme KEMst2DH is IND-mCPAreveal secure in the ran-
dom oracle model. More precisely, for any PPT adversary A against the IND-
mCPAreveal security, there exists a PPT adversary B solving the st2DH problem
such that Advr-m-cpa

KEMst2DH,θ,A(λ) ≤ Advst2DH
G,B (λ) ≤ AdvCDH

G (λ) + 2−Ω(λ).

Proof Sketch. We construct a PPT algorithm B that simulates Expr-m-cpa
KEMst2DH,θ,A(λ)

to the KEM adversary A, and uses A’s ability to solve the st2DH problem. Due
to the space limitation, we sketch the high-level idea of the proof in the single
user setting. The formal proof can be found in our full version in ePrint.

Let (gx1 , gx2 , gy) be the tuple needed to be solved. Intuitively B will
embed (gx1 , gx2) to the public key, and embed gy to the challenge cipher-
text C = gy+b. If A never asked H(gx1 , gx2 , C, Cx1 , Cx2), then k =
H(gx1 , gx2 , C, Cx1 , Cx2) is truly random and A has no advantage at all. If A
ever asked H(gx1 , gx2 , C, Cx1 , Cx2), then B can find the answer (Cx1/gb, Cx2/gb)
to the st2DH problem. The difficult part of B’s simulation is the reveal of
encapsulated key k = H(gx1 , gx2 , C, Cx1 , Cx2) to A, when the secret key
(x1, x2) and logg C are unknown. This difficulty is circumvented by B’s sim-
ulation of random oracle H(·) and the decision oracle 2DH. If A has not asked
H(gx1 , gx2 , C, Cx1 , Cx2) before, B samples a random key k and implicitly set
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H(gx1 , gx2 , C, Cx1 , Cx2) = k. If A has asked H(gx1 , gx2 , C, Cx1 , Cx2), B must
have stored item ((gx1 , gx2 , C, Cx1 , Cx2), k) in the hash list. Then B can resort
to the decision oracle 2DH(gx1 , gx2 , C, Cx1 , Cx2) = 1 to locate this item, and
return k to A. In this way, B successfully simulates the reveal oracle to A.

The diverse property of KEMst2DH is proved in our full version.

KEMMDDH from the MDDH Assumption in the Standard Model. In
[14], Han et al. proposed a public key encryption (PKE) scheme based on the
MDDH assumption over bilinear groups. The PKE scheme has almost tight IND-
mCCA security. In the encryption, the plaintext is masked by K, which can be
regarded as an encapsulated key. As a result, from the PKE we can derive an
IND-mCCA secure KEM KEMMDDH. The definition of the MDDH assumption
and the scheme KEMMDDH appear in the full version (see ePrint).

Theorem 6 (IND-mCCA Security of KEMMDDH). Let �′ ≥ 2k + 1. If (i)
the D�′,k-MDDH assumption holds over both G1 and G2, (ii) H is a collision-
resistant function family, then KEMMDDH is IND-mCCA secure. More precisely,
for any PPT adversary A who makes at most Qe times of Enc queries and Qd

times of Dec queries, there exist PPT adversaries B1, B2 and B3, such that

Advm-cca
KEMMDDH,θ,A(λ) ≤ (4
log Qe� + �′ − k + 2) · (

AdvMDDH
D�′,k,G1,B1(λ) + AdvMDDH

D�′,k,G2,B2(λ)
)

+ Advcr
H,B3(λ) + 2−Ω(λ).

The diverse property of KEMMDDH can also be easily tested.

5.2 Instantiations of SIG with Tight MU-EUF-CMAcorr Security

We review two signature schemes. The first one SIGDDH was proposed by Gjøsteen
and Jager [11] and its MU-EUF-CMAcorr security was based on the DDH assump-
tion in the random oracle model. The other one SIGMDDH was proposed by Bader
et al. [1] and its MU-EUF-CMAcorr security was based one the MDDH assump-
tion over bilinear group but in the standard model.

SIGDDH from the DDH Assumption in the RO Model. The DDH-based
signature scheme SIGDDH in [11] is shown in our full version, and its MU-EUF-
CMAcorr security can be tightly reduced to the DDH & CDH assumptions in the
random oracle model. See Theorem 7.

Theorem 7. [11] For any PPT adversary A against SIGDDH, there exist PPT
adversaries BDDH and BCDH against the DDH and CDH problems such that

Advm-corr
SIGDDH,μ,A(λ) ≤ AdvDDH

G,BDDH
(λ) + 2AdvCDH

G,BCDH
(λ) + 2−Ω(λ).

SIGMDDH from the MDDH Assumption in the Standard Model. The
MDDH-based signature scheme SIGMDDH in [1] is shown in our full version, and
its MU-EUF-CMAcorr security can be tightly reduced to the MDDH assumption.
See Theorem 8.



812 X. Liu et al.

Theorem 8. [1] For any PPT adversary A against SIGMDDH, there exist PPT
adversaries B1 and B2 against Dk-MDDH in G1 and G2 such that

Advm-corr
SIGMDDH,μ,A(λ) ≤ AdvMDDH

Dk,G1,B1
(λ) + 2λ · AdvMDDH

Dk,G2,B2
(λ) + 2/q.

5.3 Instantiations of AKE

Following the generic construction of AKE in Fig. 6, if we instantiate the KEM
and SIG schemes with KEMst2DH and SIGDDH, then we obtain a practical 2-pass
AKE scheme AKEDDH (AKEstateless

DDH ) with tight security in the random oracle
model.

By Theorems 2, 4, 5, 7, we have the following corollary.

Corollary 2. AKEDDH is strongly secure (AKEstateless
DDH is secure) in the ran-

dom oracle model. More precisely, for any PPT adversary A against AKEDDH

(AKEstateless
DDH ), there exist PPT adversaries BDDH and BCDH against the DDH and

CDH problems such that

AdvAKEstateless
DDH

,μ,�,A(λ) ≤ AdvstrongAKEDDH,μ,�,A(λ) ≤ 2AdvDDH
G,BDDH

(λ) + 5AdvCDH
G,BCDH

(λ) + 2−Ω(λ).

Similarly, if we instantiate the KEM and SIG schemes with KEMMDDH and
SIGMDDH, then we obtain another 2-pass AKE scheme AKEMDDH (AKEstateless

MDDH )
with tight security in the standard model.

We refer the reader to our full version for the AKEDDH and AKEMDDH schemes.
By Theorems 1, 4, 6, 8, we have the following corollary.

Corollary 3. AKEMDDH is strongly secure (AKEstateless
MDDH is secure) in the stan-

dard model. More precisely, for any PPT adversary A against AKEMDDH

(AKEstateless
MDDH ), there exist PPT adversaries B1, B2, B′

1, B′
2 and B3 such that

Adv
AKEstateless

MDDH
,μ,�,A(λ) ≤ AdvstrongAKEMDDH,μ,�,A(λ) ≤ 2

−Ω(λ)
+ 2AdvMDDH

Dk,G1,B1
(λ) + 4λ · AdvMDDH

Dk,G2,B2
(λ)

+ 2Advcr
H,B3

(λ) + (8�log Qe	 + 2�′ − 2k + 4) · (
AdvMDDH

D
�′,k

,G1,B′
1
(λ) + AdvMDDH

D
�′,k

,G2,B′
2
(λ)

)
.
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9. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1 8

10. Fischlin, M., Günther, F.: Replay attacks on zero round-trip time: the case of the
TLS 1.3 handshake candidates. In: 2017 IEEE European Symposium on Security
and Privacy, EuroS&P 2017, Paris, France, 26–28 April 2017, pp. 60–75 (2017)

11. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part
II. LNCS, vol. 10992, pp. 95–125. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96881-0 4

12. Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 5

13. Halevi, S., Krawczyk, H.: One-pass HMQV and asymmetric key-wrapping. In:
Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol.
6571, pp. 317–334. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19379-8 20

14. Han, S., Liu, S., Lyu, L., Gu, D.: Tight leakage-resilient CCA-security from quasi-
adaptive hash proof system. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019, Part II. LNCS, vol. 11693, pp. 417–447. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26951-7 15

15. Jin, Z., Zhao, Y.: Generic and practical key establishment from lattice. In: Deng,
R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol.
11464, pp. 302–322. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
21568-2 15

16. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

https://doi.org/10.1007/3-540-49162-7_12
https://doi.org/10.1007/3-540-49162-7_12
https://doi.org/10.1007/3-540-45708-9_10
https://doi.org/10.1007/978-3-540-78967-3_8
https://doi.org/10.1007/978-3-030-26954-8_25
https://doi.org/10.1007/978-3-642-33167-1_42
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/3-540-46885-4_5
https://doi.org/10.1007/978-3-642-19379-8_20
https://doi.org/10.1007/978-3-642-19379-8_20
https://doi.org/10.1007/978-3-030-26951-7_15
https://doi.org/10.1007/978-3-030-26951-7_15
https://doi.org/10.1007/978-3-030-21568-2_15
https://doi.org/10.1007/978-3-030-21568-2_15
https://doi.org/10.1007/11535218_33


814 X. Liu et al.

17. Krawczyk, H., Wee, H.: The OPTLS protocol and TLS 1.3. In: IEEE European
Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, 21–24
March 2016, pp. 81–96 (2016)

18. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-
5 1
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