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Abstract. We propose two new supersingular isogeny-based public key
encryptions: SiGamal and C-SiGamal. They were developed by giving an
additional point of the order 2r to CSIDH. SiGamal is similar to ElGa-
mal encryption, while C-SiGamal is a compressed version of SiGamal. We
prove that SiGamal and C-SiGamal are IND-CPA secure without using
hash functions under a new assumption: the P-CSSDDH assumption.
This assumption comes from the expectation that no efficient algorithm
can distinguish between a random point and a point that is the image
of a public point under a hidden isogeny.

Next, we propose a Naor-Reingold type pseudo random function
(PRF) based on SiGamal. If the P-CSSDDH assumption and the
CSSDDH∗ assumption, which guarantees the security of CSIDH that uses
a prime p in the setting of SiGamal, hold, then our proposed function
is a pseudo random function. Moreover, we estimate that the computa-
tional costs of group actions to compute our proposed PRF are about√

8T
3π

times that of the group actions in CSIDH, where T is the Hamming

weight of the input of the PRF.
Finally, we experimented with group actions in SiGamal and

C-SiGamal. The computational costs of group actions in SiGamal-512
with a 256-bit plaintext message space were about 2.62 times that of a
group action in CSIDH-512.

Keywords: Isogeny-based cryptography · Isogenies · CSIDH · Public
key encryption

1 Introduction

Public key cryptosystems are important technologies for guaranteeing the secu-
rity of communication. Currently, RSA [24] and ECC [11,16] are widely used
public key cryptosystems. Shor showed, however, that both of them can be bro-
ken by using a quantum computer in polynomial time [25]. Thus, we need to
develop new cryptosystems that cannot be broken even by using quantum com-
puters (i.e., post-quantum cryptosystems), before actual quantum computers
that can break RSA and ECC are developed.

Isogeny-based cryptosystems depend on the computational complexity of the
isogeny problem. Because the isogeny problem is considered hard to solve even
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Table 1. Comparison of isogeny-based encryption schemes

Schemes SIKE SIDH CSIDH SÉTA SiGamal

Hash Used Not used Used Not used Used Not used Not used

Security IND-CCA OW-CPA IND-CPA OW-CPA IND-CPA OW-CPA IND-CPA

Assumption SSCDH SSDDH SSCDH CSSDDH CSSCDH RCSSI P-CSSDDH

by using quantum computers, isogeny-based cryptosystems are considered to be
one potential type of post-quantum cryptosystem. In fact, Supersingular Isogeny
Key Encapsulation (SIKE) [1] remained a candidate for the standardization of
post-quantum cryptography in the NIST second-round competition [19].

There are some isogeny-based key encryption schemes. In 2011, Jao and
De Feo proposed an isogeny-based key exchange scheme: Supersingular Isogeny
Diffie-Hellman (SIDH) [10]. In 2018, Castryck, Lange, Martindale, Panny, and
Renes proposed another isogeny-based key exchange scheme: Commutative
Supersingular Isogeny Diffie-Hellman (CSIDH) [3]. Finally, in 2019, de Saint
Guilhem, Kutas, Petit, and Javier proposed a public key encryption scheme:
Supersingular Encryption from Torsion Attacks (SÉTA) [6]. As far as we know,
these key encryptions require hash functions for IND-CPA security.

1.1 Our Results

One of our motivations in this paper is to construct secure schemes under a
minimum assumption. Without using hash functions, we propose two new public
key encryption schemes based on CSIDH: SiGamal and C-SiGamal. SiGamal is
very similar to ElGamal encryption [8], while C-SiGamal is a compressed version
of SiGamal. The bit length of a ciphertext in SiGamal is four times the bit length
of the prime p in the setting, while the bit length of a ciphertext in C-SiGamal
is twice the bit length of the prime p in the setting.

We define two new assumptions: the P-CSSCDH assumption (the Point-
Commutative Supersingular Computational Diffie-Hellman assumption) and
the P-CSSDDH assumption (the Point-Commutative Supersingular Decisional
Diffie-Hellman assumption). These two assumptions come from the idea that
it is hard to compute the image point of a given point under a hidden isogeny.
The P-CSSCDH assumption is a computational assumption, and the P-CSSDDH
assumption is a decisional assumption. We prove that, if the P-CSSCDH assump-
tion holds, then SiGamal and C-SiGamal are OW-CPA secure; furthermore, if
the P-CSSDDH assumption holds, then SiGamal and C-SiGamal are IND-CPA
secure.

We summarize a comparison of isogeny-based public key encryption schemes
in Table 1. Here, we regard SIDH and CSIDH as encryption schemes that use
the simple XOR cipher. As shown in this table, only our proposed schemes can
achieve IND-CPA security without using hash functions.

Next, we construct a new Naor-Reingold type pseudo random function (PRF)
from SiGamal. This PRF is a post-quantum PRF. We prove that the pseudo
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randomness of this function is guaranteed from the P-CSSDDH and CSSDDH∗

assumptions. The CSSDDH∗ assumption guarantees the security of CSIDH that
uses a prime p in the setting of SiGamal. This PRF needs to compute group
actions many times. We estimate, by using approximations, that the compu-

tational costs of our proposed PRF are
√

8T
3π times that of a group action in

SiGamal, where T is the Hamming weight of the input of the PRF.
Finally, to evaluate the proposed key encryption schemes, we implemented

group actions in SiGamal and C-SiGamal and measured their computational
costs. In our experiment, the computational costs of group actions in SiGamal
and C-SiGamal that send 256-bit plaintexts were about 2.62 times that of a
group action in CSIDH-512. Furthermore, we implemented t times group actions
to evaluate the proposed PRF. Our approximation was roughly correct.

Organization. We explain important mathematical concepts and algorithms
in Sect. 2.1 to 2.4. We explain public key encryption in Sect. 2.5. In Sect. 2.6,
we explain the PRF. Then, we propose SiGamal in Sect. 3 and C-SiGamal in
Sect. 4. In Sect. 5, we propose a new isogeny-based PRF. In Sect. 6, we show
our experimentation results, and in Sect. 7, we conclude this paper.

2 Preliminaries

2.1 Basic Mathematical Concepts

Here, we explain the basic mathematical concepts behind isogeny-based cryp-
tography.

Elliptic Curves. Let L be a field, and let L′ be an algebraic extension field of L.
First, an elliptic curve E defined over L is a nonsingular algebraic curve that is
defined over L and has genus one. Denote by E(L′) the L

′-rational points of the
elliptic curve E. Here, E(L′) is an abelian group [27, III. 2]. Next, a supersingular
elliptic curve E over a finite field L of characteristic p is defined as an elliptic
curve that satisfies #E(L) ≡ 1 (mod p), where #E(L) is the cardinality of E(L).
Furthermore, let L be a field whose characteristic is odd. Then, an elliptic curve
E defined by the following equation is called a Montgomery curve:

E : bY 2Z = X3 + aX2Z + XZ2 (a, b ∈ L and b(a2 − 4) �= 0).

Let E and E′ be elliptic curves defined over L. Define an isogeny φ : E → E′

over L
′ as a rational map over L

′ that is a non-zero group homomorphism from
E(L) to E′(L), where L is the algebraic closure of L. A separable isogeny satis-
fying #ker φ = � is called an �-isogeny. Denote by EndL′(E) the endomorphism
ring of E over L′, and represent it as Endp(E) when L

′ is a prime field Fp. Note
also that an isogeny φ : E → E′ defined over L

′ is called an isomorphism over
L

′ if it has the inverse isogeny over L
′.
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If G is a finite subgroup of E(L), then there exists an isogeny φ : E → E′ such
that its kernel is G and E′ is unique up to an L-isomorphism [27, Proposition
III.4.12]. This isogeny can be efficiently calculated by using Vélu formulas [29].
We denote a representative of E′ by E/G.

Next, we define the j-invariant of a Montgomery curve E : bY 2Z = X3 +
aX2Z + XZ2 (a, b ∈ L and b(a2 − 4) �= 0) by the following equation:

j(E) :=
256(a2 − 3)3

a2 − 4
.

It is known that the j-invariants of two elliptic curves are the same if and only
if the elliptic curves are L-isomorphic.

Finally, we define E[k] (k ∈ Z>0) as the k-torsion subgroup of E(L). For an
endomorphism φ of E, we sometimes denote ker φ by E[φ].

Ideal Class Groups. Let L be a number field, and O be an order in L. A
fractional ideal a of O is a non-zero O-submodule of L that satisfies αa ⊂ O for
some α ∈ O \ {0}. Moreover, an invertible fractional ideal a of O is defined as a
fractional ideal of O that satisfies ab = O for some fractional ideal b of O. The
fractional ideal b can be represented as a−1. If a fractional ideal a is contained
in O, then it is called an integral ideal of O. Let J(O) be a set of integral ideals
of O.

Next, let I(O) specifically be a set of invertible fractional ideals of O. I(O)
is then an abelian group derived from the multiplication of ideals with the
identity O. Let P (O) be a subgroup of I(O) defined by P (O) = {a | a =
αO (for some α ∈ L

×)}. We call the abelian group cl(O) defined by I(O)/P (O)
the ideal class group of O. Denote by [a] an element of cl(O) that is an equiva-
lence class of a.

Notation. The Fp-endomorphism ring Endp(E) of a supersingular elliptic curve
E defined over Fp is isomorphic to an order in an imaginary quadratic field [7].
Denote by E��p(O) the set of Fp-isomorphism classes of any elliptic curve E whose
Fp-endomorphism ring Endp(E) is isomorphic to O.

2.2 Group Action of Ideal Class Group

In this subsection, we explain an important group action that is a main part of
our proposed encryption system. First, Waterhouse gave the following theorem.

Theorem 1 ([30, Theorem 4.5]). Let O be an order of an imaginary quadratic
field and E be an elliptic curve defined over Fp. If E��p(O) contains the Fp-
isomorphism class of supersingular elliptic curves, then the action of the ideal
class group cl(O) on E��p(O),

cl(O) × E��p(O) −→ E��p(O)
([a], E) �−→ E/E[a],
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is free and transitive, where a is an integral ideal of O, and E[a] is the intersec-
tion of the kernels of elements in a.

In general, we cannot efficiently compute the group action in Theorem 1. Cas-
tryck, Lange, Martindale, Panny, and Renes, however, proposed a method for
computing this group action efficiently in a special case [3]. They focused on the
action of cl(Z[πp]) on E��p(Z[πp]), where πp is the p-Frobenius map over elliptic
curves. In [3], they proved the following theorem.

Theorem 2 ([3, Proposition 8]). Let p be a prime satisfying p ≡ 3 (mod 8).
Let E be a supersingular elliptic curve defined over Fp. Then, Endp(E) ∼= Z[πp]
holds if and only if there exists a ∈ Fp such that E is Fp-isomorphic to a Mont-
gomery curve Y 2Z = X3 + aX2Z + XZ2, where πp is the p-Frobenius map.
Moreover, if such an a exists, then it is unique.

In other words, a Montgomery curve that belongs to an Fp-isomorphism class
E/E[a] is unique. Denote this Montgomery curve by [a]E.

Let the prime p be 4 · �1 · · · �n − 1, where the �1, . . . , �n are small distinct
odd primes. Let integral ideals li (i = 1, . . . , n) in Z[πp] be (�i, πp − 1) and
integral ideals li (i = 1, . . . , n) in Z[πp] be (�i, πp + 1). Because π2

p + p = 0 over
supersingular elliptic curves defined over Fp, it is easy to verify that [li]−1 = [li]
over such elliptic curves. The actions of [li] and [li] are efficiently computed by
Theorem 1 and Vélu formulas on Montgomery curves [15]. Therefore, an action
of [l1]e1 · · · [ln]en ∈ cl(Z[πp]) can be efficiently computed, where e1, . . . , en are
integers whose absolute values are small. According to the discussion in [3],
from some heuristic assumptions, it holds that

#cl(Z[πp]) ≈ #{[l1]e1 · · · [ln]en | e1, . . . , en ∈ {−m, . . . ,m}},
where m is the smallest number that satisfies 2m+1 ≥ 2n

√
p, and we call m a key

bound. Therefore, it suffices to consider the action of [l1]e1 · · · [ln]en , instead of
the action of a random element of cl(Z[πp]). Algorithm 1 specifies this sequence
of group actions.

In this paper, we extend this computational method for our proposed scheme.
In our scheme, we use a prime p that satisfies p = 2r · �1 · · · �n − 1, where r ≥ 3
and the �1, . . . , �n are small distinct odd primes. Therefore, we need the following
theorem.

Theorem 3 ([2, Proposition 3]). Let p > 3 be a prime that satisfies p ≡
3 (mod 4), and let E be a supersingular elliptic curve defined over Fp. If
Endp(E) ∼= Z[πp] holds, then there exists a ∈ Fp such that E is Fp-isomorphic
to Y 2Z = X3 + aX2Z + X2Z. Moreover, if such an a exists, then it is unique.

From Theorem 3, even if we use a prime p = 2r ·�1 · · · �n −1, we can compute
the action of cl(Z[πp]) in the same way as that proposed in [3] (i.e., Algorithm 1).

Moreover, we consider mapping points in E to [a]E by an isogeny whose
kernel is E[a]. Because we use isogenies to compute [a]E, it is easy to map a
point P ∈ E to [a]E. In general, however, the image of P is not unique since
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Algorithm 1. Evaluation of a class group action [3]
Input: a ∈ Fp such that E : Y 2Z = X3 + aX2Z + XZ2 is supersingular, and a list of

integers (e1, . . . , en)
Output: A Montgomery coefficient of [le11 · · · lenn ]E
1: while some ei �= 0 do
2: Sample a random x ∈ Fp

3: x(P ) ← x
4: Set s ← +1 if x3 + ax2 + x is a square in Fp, else s ← −1
5: Let S = {i | sign(ei) = s}
6: if S = ∅ then
7: Go to line 2
8: end if
9: k ← ∏

i∈S �i, x(P ) ← x(((p + 1)/k)P )
10: for all i ∈ S do
11: x(Q) ← x((k/�i)P )
12: if Q �= (0 : 1 : 0) then
13: Compute an �i-isogeny φ : Ea → Ea′ with ker φ = 〈Q〉
14: a ← a′, x(P ) ← x(φ(P )), k ← k/�i, ei ← ei − s
15: end if
16: end for
17: end while
18: return a

there are various isogenies E → [a]E whose kernels are E[a]. In particular, in
general, the image of P over the isogeny E → [a]E → [a][b]E and that of P over
the isogeny E → [b]E → [a][b]E are not same. The following theorem guarantees
that the image of P is unique up to {±1}.

Theorem 4. Let E be a supersingular elliptic curve defined over Fp. Let Φ[a],(F )

denote an isogeny φ : F → [a]F such that ker φ = F [a]. If the following isogenies
are defined over Fp, then they satisfy the following equations:

Φ[b],([a]E) ◦ Φ[a],(E) = [±1] ◦ Φ[a],([b]E) ◦ Φ[b],(E).

To prove Theorem 4, we need the following lemma.

Lemma 1. Let E1 and E2 be supersingular elliptic curves defined over Fp. Let G
be a finite subgroup of E1(Fp) defined over Fp (i.e., πp(G) = G). Let φ : E1 → E2

and ψ : E1 → E2 be separable isogenies defined over Fp. If ker φ = ker ψ = G,
then φ = ψ, or φ = [−1] ◦ ψ.

Proof. From [9, Theorem 9.6.18], there are unique isogenies λ1 : E2 → E2 and
λ2 : E2 → E2 defined over Fp such that ψ = λ1 ◦φ and φ = λ2 ◦ψ. Furthermore,
from the uniqueness of isogenies in [9, Theorem 9.6.18], it holds that λ1 = λ−1

2 .
Therefore, λ2 is an automorphism of E2 defined over Fp.

Next, from [27, Theorem III.10.1], if j(E2) �= 0 and j(E2) �= 1728, then there
are no automorphisms other than [±1]. Therefore, we have λ2(x, y) = (x,±y) =
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[±1](x, y). Since E2 is supersingular, if j(E2) = 0, then p ≡ 2 (mod 3), and if
j(E2) = 1728, then p ≡ 3 (mod 4). Therefore, from [27, Theorem III.10.1], even
if j(E2) = 0 or j(E2) = 1728, there are no automorphisms defined over Fp other
than [±1], and we have λ2(x, y) = (x,±y) = [±1](x, y). �
Now, we can prove Theorem 4.

Proof of Theorem 4. From Lemma 1, it suffices to show that

ker (Φ[b],([a]E) ◦ Φ[a],(E)) = ker (Φ[a],([b]E) ◦ Φ[b],(E)).

Indeed, this holds from [30, Proposition 3.12]. �
As shown above, the image of P ∈ E under the isogeny defined by the integral

ideal a in End(E) is unique up to [±1]. We denote this equivalence class of two
points by aP . Note that, even if [a] = [a′], it does not always hold that aP = a′P .
In fact, when [a][a] = [1], we have aaP = N(a)P , where N(a) is the norm of a.

All elements of J(Z[πp]) appearing in this paper are defined by (α)le1
1 · · · len

n ,
where α is an integer. An equivalence class (α)le1

1 · · · len
n P is a class of images of

αP under the isogeny defined by le1
1 · · · len

n .

2.3 CSIDH

CSIDH (Commutative Supersingular Isogeny Diffie-Hellman) is a Diffie-
Hellman-type key exchange scheme [3]. It is based on actions of the ideal class
group cl(Z[πp]) on E��p(Z[πp]).

The exact scheme is as follows. Suppose that Alice and Bob want to share a
shared key denoted by SKshared.

Setup. Let p be a prime that satisfies p = 4 · �1 · · · �n − 1, where �1, . . . , �n are
small distinct odd primes. Then, let p and E0 : Y 2Z = X3 + XZ2 be public
parameters.

Key generation. Randomly choose an integer vector (e1, . . . , en) from
{−m, . . . ,m}n. Define [a] = [le1

1 · · · len
n ] ∈ cl(Z[πp]). Then, calculate the action

of [a] on E0 and the Montgomery coefficient a ∈ Fp of [a]E0 : Y 2Z = X3 +
aX2Z + XZ2. The integer vector (e1, . . . , en) is the secret key, and a ∈ Fp is
the public key.

Key exchange. Alice and Bob have pairs of keys, ([a], a) and ([b], b), respec-
tively. Alice calculates the action [a][b]E0. Bob calculates the action [b][a]E0.
Denote the Montgomery coefficient of [a][b]E0 by SKAlice and that of [b][a]E0

by SKBob.

From the commutativity of cl(Z[πp]) and Theorem 2, SKAlice = SKBob holds.
This value is the shared key SKshared.

CSIDH is secure under the following assumption.

Definition 1 (Commutative Supersingular Decisional Diffie-Hellman
assumption (CSSDDH assumption)). Let p be a prime that satisfies p =
4·�1 · · · �n−1, where �1, . . . �n are small distinct odd primes. Let E0 be the elliptic
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curve Y 2Z = X3 + XZ2 and [a], [b], and [c] be random elements of cl(Z[πp]).
Set λ as the bit length of p.

The CSSDDH assumption holds if, for any efficient algorithm (e.g., any prob-
abilistic polynomial time (PPT) algorithm) A,

∣∣∣∣∣∣∣
Pr

⎡
⎢⎣ b = b∗

∣∣∣∣∣∣∣

[a], [b], [c] ← cl(Z[πp]), b
$←− {0, 1},

F0 := [a][b]E0, F1 := [c]E0,

b∗ ← A(E0, [a]E0, [b]E0, Fb)

⎤
⎥⎦ − 1

2

∣∣∣∣∣∣∣
< negl(λ).

Remark 1. In the above definition, we sample elements of cl(Z[πp]) by taking
(e1, . . . , en) uniformly from {−m, . . . , m}n that represents [le1

1 · · · len
n ] ∈ cl(Z[πp]).

This is not a uniform sampling method from cl(Z[πp]). For instance, refer to [21].

2.4 Pohlig-Hellman Algorithm [23]

Pohlig and Hellman proposed an algorithm in 1978 to solve the discrete log-
arithm problem [23]. The Pohlig-Hellman algorithm indicates that, if a cyclic
group G has smooth order, then the discrete logarithm problem over G can
be efficiently solved. In this subsection, we explain this algorithm to solve the
discrete logarithm problem over Z/2r

Z.
Let μ be an element of Z/2r

Z, and P be a generator of Z/2r
Z. Let

μ0, . . . , μr−1 be numbers in {0, 1} that satisfy μ =
∑r−1

j=0 μj2j . For given P
and μP , we want to compute μ efficiently.

Step 0: First, we compute 2r−1 · μP . If μ0 = 0, then 2r−1 · μP = 0, while if
μ0 = 1, then 2r−1 · μP �= 0. Therefore, we can obtain the value of μ0 by
computing 2r−1 · μP .

Step i (1 ≤ i ≤ r − 1): Define μ(i) = μ − ∑i−1
j=0 μj2j . From the definition

of μ0, . . . , μr−1, it is clearly true that μ(i) =
∑r−1

j=i μj2j . We thus compute
μ(i)P = μP −∑i−1

j=0 μj2jP . Furthermore, we compute 2r−i−1 ·μ(i)P . If μi = 0,
then 2r−i−1 · μ(i)P = 0, while if μi = 1, then 2r−i−1 · μ(i)P �= 0. Therefore,
we can obtain the value of μi by computing 2r−i−1 · μ(i)P .

As a result, from the r − 1 steps above, we obtain the value of μ.
Algorithm 2 is the Pohlig-Hellman algorithm for points in Montgomery

curves.

2.5 Public Key Encryption

In this subsection, we introduce the definition and security of public key encryp-
tion.
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Algorithm 2. The Pohlig-Hellman algorithm for Montgomery curves
Input: a ∈ Fp such that E : Y 2Z = X3 + aX2Z + XZ2 is supersingular, and x-

coordinates of points P, Q ∈ E that have order 2r and satisfy Q ∈ 〈P 〉
Output: μ or 2r − μ such that P = μQ
1: x(P0) ← x(P )
2: x(Q0) ← x(Q)
3: for all i ∈ {1, . . . , r − 2} do
4: x(Pi) ← x(2Pi−1)
5: x(Qi) ← x(2Qi−1)
6: end for
7: M ← 1
8: for all i ∈ {2, . . . , r − 1} do
9: x(R) ← x(MQr−i)

10: if x(Pr−i) �= x(R) then
11: M ← M + 2i

12: end if
13: end for
14: return M

Definition of Public Key Encryption

Definition 2 (Public key encryption (PKE)). An algorithm P(λ) is called
a public key encryption scheme (i.e., a PKE scheme) if it consists of the
following algorithms that can be computed efficiently (e.g., PPT algorithms):
KeyGen,Enc,Dec.

KeyGen: Given a security parameter λ as input, output public keys pk, secret
keys sk, and a plaintext message space M.

Enc: Given a plaintext μ ∈ M and pk, output a ciphertext c.
Dec: Given c and sk, output a plaintext μ̃.

Definition 3 (Correctness). If a public key encryption scheme P(λ) holds for
any plaintexts μ, i.e.,

Dec(Enc(μ,pk), sk) = μ,

then P(λ) is correct.

Security of Public Key Encryption. Here, we introduce some security def-
initions.

Definition 4 (OW-CPA security). Let P be a public key encryption with
a plaintext message space M. We say that P is OW-CPA secure if, for any
efficient adversary A,

Pr

[
μ = μ∗

∣∣∣∣∣
(pk, sk) ← KeyGen(λ), μ

$←− M,

c ← Enc(pk, μ), μ∗ ← A(pk, c)

]
< negl(λ),

where μ
$←− M means that μ is uniformly and randomly sampled from M.
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Definition 5 (IND-CPA security). Let P be a public key encryption with
a plaintext message space M. We say that P is IND-CPA secure if, for any
efficient adversary A,
∣∣∣∣∣∣∣

Pr

⎡
⎢⎣ b = b∗

∣∣∣∣∣∣∣

(pk, sk) ← KeyGen(λ), μ0, μ1 ← A(pk),

b
$←− {0, 1}, c ← Enc(pk, μb),

b∗ ← A(pk, c)

⎤
⎥⎦ − 1

2

∣∣∣∣∣∣∣
< negl(λ).

Definition 6 (IND-CCA security). Let P be a public key encryption with
a plaintext message space M. We say that P is IND-CCA secure if, for any
efficient adversary A,
∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎣ b = b∗

∣∣∣∣∣∣∣∣

(pk, sk) ← KeyGen(λ), μ0, μ1 ← AO(·)(pk),

b
$←− {0, 1}, c ← Enc(pk, μb),

b∗ ← AO(·)(pk, c)

⎤
⎥⎥⎦ − 1

2

∣∣∣∣∣∣∣∣
< negl(λ),

where O(·) is a decryption oracle that outputs Dec(sk, c∗) for all c∗ �= c.

Natural ElGamal-Like PKE Based on CSIDH. We explain a natural way
of constructing a PKE based on CSIDH without using hash functions.

KeyGen: Let p be a prime that satisfies p = 4 · �1 · · · �n − 1, where �1, . . . , �n are
small distinct odd primes. Let E0 be an elliptic curve Y 2Z = X3 + XZ2.
Alice takes random integers e1, ..., en, defines [a] = [le1

1 · · · len
n ] ∈ cl(Z[πp]),

and then computes E1 := [a]E0. Alice publishes (E0, E1) as public keys and
keeps (e1, . . . , en) as a secret key. Let {0, 1}log2 p be a plaintext message space
M.

Enc: Let μ be a plaintext in M. Bob takes random integers e′
1, . . . , e

′
n, defines

[b] = [le
′
1

1 · · · le′
n

n ] in cl(Z[πp]), and computes a point E3 := [b]E0, E4 := [b]E1.
Let the Montgomery coefficient of E4 be S. Then, Bob computes c := μ ⊕ S
and sends (E3, c) to Alice as a ciphertext.

Dec: Alice computes [a]E3 and gets the Montgomery coefficient of [a]E3, which
is S. Alice then computes c ⊕ S as a plaintext.

It is trivial that c ⊕ S = μ, and this key encryption scheme is thus correct.

Theorem 5. This key exchange scheme is not IND-CPA secure.

Proof. Let (E3, c) be a ciphertext of a plaintext μb, where b = 0, 1. An adversary
A computes μ0 ⊕ c and μ1 ⊕ c. Note that the probability that a random elliptic
curve defined over Fp becomes supersingular is exponentially small. If μb′ ⊕ c
represents a supersingular elliptic curve, then b = b′ holds with high probability.
Therefore, A can guess b, and the scheme is not IND-CPA secure. �

By using an entropy-smoothing hash function H, however, we can construct
an IND-CPA secure scheme under the CSSDDH assumption (Definition 1). In
this scheme, the ciphertext is (E3, μ⊕H(S)) instead of (E3, μ⊕S). Refer to [26,
§3.4] for the details.
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2.6 Pseudo Random Function

In this subsection, we explain the pseudo random function (PRF).

Definition of PRF. Below is the definition of the basic PRF.

Definition 7 (Pseudo random functions). Let f (s) : {0, 1}t → {0, 1}t′
be a

function indexed by s ∈ SKey, where SKey is a set of keys. A family of functions
F = {f (s) | s ∈ SKey} is called a pseudo random function family if it satisfies
two properties:

1. There is an efficient algorithm to compute fs(x) from given s and x.
2. For any efficient adversary A that makes poly(λ) queries to the oracle,

∣∣∣∣∣∣
Pr

⎡
⎣ b = b∗

∣∣∣∣∣∣
b

$←− {0, 1}, pk $←− SPubKey,

f0
$←− F , f1

$←− R, b∗ ← Afb(·)(pk)

⎤
⎦ − 1

2

∣∣∣∣∣∣
< negl(λ),

where R is a set of functions mapping from {0, 1}t to {0, 1}t′
, λ is a bit length

of p, and SPubKey is a set of public keys.

Naor-Reingold PRF. Naor and Reingold proposed an efficient PRF under
the Decisional Diffie-Hellman assumption (DDH assumption) [18].

Definition 8 (Naor-Reingold PRF). Let p be a prime, let q be a prime divi-
sor of p − 1 that satisfies p ≈ q, and let g be an element of (Fp)× whose order
is q. The set {p, q, g} is a public key. Take a0, . . . , at from (Fq)× as secret keys.
Define a function f{a0,...,at} : {0, 1}t → 〈g〉:

f{a0,...,at}((x1, . . . , xt)) := ga0
∏t

i=1 a
xi
i .

If the DDH assumption holds, this function is a PRF [18, Theorem 4.1], and it
is called the Naor-Reingold PRF.

3 SiGamal

In this section, we explain the first proposed scheme: SiGamal.

3.1 Overview

The main idea of this scheme is to send plaintexts by using isogenies. Alice
publishes (E0, P0), where E0 is an elliptic curve, and P0 is a point of E0. Bob
computes an isogeny φ : E0 → E′

0 and a point μφ(P0), where μ is a plaintext.
If Alice can learn φ(P0) in some way, then she gets μ by solving the discrete
logarithm problem.
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Algorithm 3. Evaluation of a class group action with a point P0

Input: a ∈ Fp such that E : Y 2Z = X3 + aX2Z + XZ2 is supersingular, the x-
coordinate of a point P0 of E, and a list of integers (α, e1, . . . , en)

Output: A Montgomery coefficient of [le11 · · · lenn ]E, and the x-coordinate of
(α)le11 · · · lenn P0

1: P0 ← αP0

2: while some ei �= 0 do
3: Sample a random x ∈ Fp

4: x(P ) ← x
5: Set s ← +1 if x3 + ax2 + x is a square in Fp, else s ← −1
6: Let S = {i | sign(ei) = s}
7: if S = ∅ then
8: Go to line 2
9: end if

10: k ← ∏
i∈S �i, x(P ) ← x(((p + 1)/k)P )

11: for all i ∈ S do
12: x(Q) ← x((k/�i)P )
13: if Q �= (0 : 1 : 0) then
14: Compute an �i-isogeny φ : Ea → Ea′ with ker φ = 〈Q〉
15: a ← a′, x(P ) ← x(φ(P )), k ← k/�i, x(P0) ← x(φ(P0)), ei ← ei − s
16: end if
17: end for
18: end while
19: return a, x(P0)

SiGamal achieves this in a similar way to ElGamal encryption [8]. The main
diagram of SiGamal is as follows.

(E0, P0)
a ��

b

��

([a]E0, aP0)

[μ]◦b
��

([b]E0, bP0)

a ��

([a][b]E0,µabP0)

([a][b]E0, abP0)

3.2 Encryption Scheme of SiGamal

In this subsection, we explain the scheme of SiGamal in precise detail.

KeyGen: Let p be a prime that satisfies p = 2r · �1 · · · �n − 1, where �1, . . . , �n are
small distinct odd primes. Let E0 be the elliptic curve Y 2Z = X3 + XZ2,
and P0 be a random point in E0(Fp) of order 2r. Alice takes random integers
α, e1, . . . , en, defines a = (α)le1

1 · · · len
n ∈ J(Z[πp]), and computes E1 := [a]E0

and P1 := aP0, where α is a uniformly random element of (Z/2r
Z)×.
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Alice then publishes (E0, P0) and (E1, P1) as public keys, and she keeps
(α, e1, . . . , en) as a secret key. Let {0, 1}r−2 be a plaintext message space.

Enc: Let μ ∈ {0, 1}r−2 be a plaintext. Bob embeds μ in (Z/2r
Z)× via μ �→

2μ + 1 ∈ (Z/2r
Z)×. Bob takes random integers β, e′

1, . . . , e
′
n and defines b =

(β)le
′
1

1 · · · le′
n

n ∈ J(Z[πp]), where β is a uniformly random element of (Z/2r
Z)×.

Next, Bob computes (2μ + 1)P1, E3 := [b]E0, P3 := bP0, E4 := [b]E1, and
P4 := b((2μ+1)P1). Bob then sends (E3, P3, E4, P4) to Alice as a ciphertext.

Dec: Alice computes aP3 and solves the discrete logarithm problem over Z/2r
Z

for aP3 and P4 by using the Pohlig-Hellman algorithm. Let M be the solution
of this computation. If the most significant bit of M is 1, then Alice changes
M to 2r − M . Finally, Alice computes (M − 1)/2 as a plaintext μ̃.

Remark 2. In the above scheme, any point is described by its x-coordinate. For
instance, to be precise, Bob sends (E3, x(P3), E4, x(P4)) to Alice.

Remark 3. For computing a group action, we use Algorithm 3.

Remark 4. In this paper, we construct SiGamal based on CSIDH key exchange
[3]. Similarly, we can construct SiGamal based on SIDH key exchange [10] accord-
ing to [13]. In that case, we take a prime p satisfying p = 2r3eA5eB − 1, where
3eA ≈ 5eB .

Moreover, we can construct SiGamal based on CSURF [2]. In the CSURF
algorithm, we need to compute 2-isogenies. Therefore, we embed a plaintext μ
in a subgroup of order �r, where � is an odd prime.

Theorem 6. SiGamal is correct.

Proof. By Theorem 4, aP3 is bP1 or −bP1. Therefore, Alice gets 2μ + 1 or
2r − (2μ + 1). Since the bit length of μ is less than r − 2, the most significant
bit of 2μ + 1 is always 0. Thus, if the most significant bit of M is 1, then
M = 2r − (2μ + 1). Therefore, after adjusting this, Alice gets 2μ + 1 as M .
Hence, μ̃ = μ, and SiGamal is correct. �

3.3 Security of SiGamal

In this subsection, we prove the security of SiGamal.
First, we define new assumptions: the P-CSSCDH assumption and the P-

CSSDDH assumption. These assumptions are based on the idea that it is hard to
compute the image of a fixed point under a hidden isogeny. In [6,28], problems of
computing images over isogenies in SIDH settings are considered hard to solve.
Petit provided a method for computing an isogeny between two given elliptic
curves in an SIDH setting by using image points of sufficiently large degree under
the isogeny [22]. Because the isogeny problem is hard, the problem of computing
image points in the SIDH setting is considered hard. When we translate these
problems into those in the CSIDH setting, the P-CSSCDH assumption and the P-
CSSDDH assumption are one of natural constructions of assumptions. Therefore,
we consider these new assumptions below to be correct.
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Definition 9 (Points-Commutative Supersingular Isogeny Computa-
tional Diffie-Hellman assumption (P-CSSCDH assumption)). Let p be
a prime that satisfies p = 2r · �1 · · · �n − 1, where �1, . . . �n are small distinct odd
primes. Let E0 be the elliptic curve Y 2Z = X3+XZ2, P0 be a uniformly random
point in E0(Fp) of order 2r, and a and b be random elements of J(Z[πp]). Set λ
as the bit length of p.

The P-CSSCDH assumption holds if, for any efficient algorithm A,

Pr

[
abP0 = P ∗

∣∣∣∣∣
P0

$←− E0(Fp)order 2r , a, b ← J(Z[πp]),
P ∗ ← A(E0, P0, [a]E0, aP0, [b]E0, bP0, [a][b]E0)

]
< negl(λ).

Definition 10 (Points-Commutative Supersingular Isogeny Decisional
Diffie-Hellman assumption (P-CSSDDH assumption)). Let p be a prime
that satisfies p = 2r · �1 · · · �n − 1, where �1, . . . �n are small distinct odd primes.
Let E0 be the elliptic curve Y 2Z = X3 + XZ2, P0 be a uniformly random point
in E0(Fp) of order 2r, and a and b be random elements of J(Z[πp]) whose
norms are odd. Furthermore, let Q be a uniformly random point of order 2r

in ([a][b]E0)(Fp). Set λ as the bit length of p.
The P-CSSDDH assumption holds if, for any efficient algorithm A,
∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎣ b = b∗

∣∣∣∣∣∣∣∣

P0
$←− E0(Fp)order 2r , a, b ← J(Z[πp]), b

$←− {0, 1},

Q
$←− ([a][b]E0)(Fp)order 2r , R0 := abP0, R1 := Q,

b∗ ← A(E0, P0, [a]E0, aP0, [b]E0, bP0, [a][b]E0, Rb)

⎤
⎥⎥⎦ − 1

2

∣∣∣∣∣∣∣∣
< negl(λ).

Remark 5. An equivalence class abP0 is uniquely determined from

E0, P0, [a]E0, aP0, [b]E0, bP0, [a][b]E0.

Now, we prove this fact.
Let a, a′, b, and b′ be elements of J(Z[πp]) such that [a] = [a′], [b] = [b′],

aP0 = a′P0, bP0 = b′P0, and the norms of a, a′, b, and b′ are coprime to the
order of P0. Now, we prove that abP0 = a′b′P0. From the definition of an ideal
class group, there exist α, β ∈ Q(πp)× such that a = a′α and b = b′β. Then,
α(P0) = ±P0 holds because the norms of a and a′ are coprime to the order of P0,
and aP0 = a′P0. Similarly, β(P0) = ±P0. Therefore, abP0 = a′b′αβP0 = a′b′P0.

Remark 6. In the above definitions, we sample elements of J(Z[πp]) by tak-
ing (α, e1, . . . , en) uniformly from (Z/2r

Z)× × {−m, . . . ,m}n that represents
αle1

1 · · · len
n ∈ J(Z[πp]).

Next, we prove the security of SiGamal under the above assumptions.

Theorem 7. If the P-CSSCDH assumption holds, then SiGamal is OW-CPA
secure.
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Proof. Assume that SiGamal is not OW-CPA secure. In that case, there exists an
efficient algorithm (adversary) A′ that, with high probability, outputs a hidden
plaintext μ from

(E0, P0, [a]E0, aP0), ([b]E0, bP0, [a][b]E0, (2μ + 1)abP0).

Now, we construct a new algorithm A that outputs abP0 from

(E0, P0), ([a]E0, aP0), ([b]E0, bP0), [a][b]E0

with high probability (i.e., ω
(

1
poly(λ)

)
). Taking a random point Q of order 2r

from [a][b]E0, we compute

μ := A′((E0, P0, [a]E0, aP0), ([b]E0, bP0, [a][b]E0, Q)).

Here, Q = (2μ + 1)abP0 holds with high probability. Note that 2μ + 1 belongs
to (Z/2r

Z)×. From Q and μ, we compute 1
2μ+1Q. That is, algorithm A outputs

1
2μ+1Q, which is abP0 with high probability.

It is clear that A is an efficient algorithm. Therefore, the P-CSSCDH assump-
tion does not hold. �
Theorem 8. If the P-CSSDDH assumption holds, then SiGamal is IND-CPA
secure.

Proof. Assume that SiGamal is not IND-CPA secure. In that case, there exists
an efficient algorithm (adversary) A′ judging whether a given ciphertext was
encrypted from μ0 or μ1. Denote the advantage of A′ (i.e., the left side of the
inequality in Definition 5) by AdvA′(λ). Note that AdvA′(λ) = ω

(
1

poly(λ)

)
.

Now, we construct a new algorithm A that outputs b, with a probability of
ω

(
1

poly(λ)

)
+ 1

2 , from

E0, P0, [a]E0, aP0, [b]E0, bP0, [a][b]E0, Rb,

where R0 = abP0, and R1 = Q. Taking b̃ ∈ {0, 1} uniformly at random, we
compute (2μb̃ + 1)Rb. Let

b∗ := A′((E0, P0, [a]E0, aP0), ([b]E0, bP0, [a][b]E0, (2μb̃ + 1)Rb)).

If b̃ = b∗, then A outputs 0, while if b̃ �= b∗, A outputs 1.
Next, we discuss the probability that A outputs the correct b. If b = 0, then

b∗ = b̃ with a probability of AdvA′(λ) + 1
2 or −AdvA′(λ) + 1

2 . If b = 1, then
the adversary A′ cannot get any information about μb̃ since (2μb̃ + 1)Rb is a
uniformly random point. Therefore, if b = 1, b∗ �= b̃ with a probability of 1

2 .
Consequently, the probability that A outputs the correct b is

1
2

(
±AdvA′(λ) +

1
2

+
1
2

)
= ±1

2
AdvA′(λ) +

1
2

= ω

(
1

poly(λ)

)
+

1
2
.

Therefore, as algorithm A is an efficient algorithm, the P-CSSDDH assump-
tion does not hold. �
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Note that SiGamal is not IND-CCA secure, because anyone can easily com-
pute a ciphertext of a plaintext 3μ+1: ([b]E0, bP0, [b]E1, 3(2μ+1)bP1) from the
ciphertext of a plaintext μ: ([b]E0, bP0, [b]E1, (2μ + 1)bP1).

Remark 7. In the SiGamal scheme, Bob can omit sending [a][b]E0 in the
ciphertext ([b]E0, bP0, [a][b]E0, (2μ + 1)abP0). Note that Bob sends only the x-
coordinate of (2μ+1)abP0. When Bob omits sending [a][b]E0, it is hard to com-
pute the ciphertext of a plaintext 3μ + 1 from that of a plaintext μ, because the
elliptic curve [a][b]E0 is hidden. The question of whether SiGamal with hidden
[a][b]E0 is IND-CCA secure is an open problem.

Remark 8. SiGamal is attacked by computing a group element [a] from E0 and
[a]E0. This method of attack is the same as that for CSIDH. Therefore, the
security level of SiGamal is the same as that of CSIDH for the same security
parameter.

4 C-SiGamal (Compressed-SiGamal)

In this section, we explain the second proposed scheme: C-SiGamal, which is a
compressed version of SiGamal. The bit length of a ciphertext in C-SiGamal is
half that of a ciphertext in SiGamal, but the scheme of C-SiGamal is a little bit
more complicated than that of SiGamal.

4.1 Encryption Scheme of C-SiGamal

In this subsection, we explain the scheme of C-SiGamal in precise detail.
Let E be a supersingular elliptic curve Y 2Z = X3 + aX2Z + XZ2. Let PE

be a point in E such that PE = �1 · · · �nP̃E , where P̃E is the point in E(Fp) that
has the largest x-coordinate in {−2,−3, . . . ,−p+1} among points whose orders
are divisible by 2r. We use this point to construct C-SiGamal. The reason why
we define P̃E as above is explained in Appendix A.

The scheme of C-SiGamal is as follows.

KeyGen: Let p be a prime that satisfies p = 2r · �1 · · · �n − 1, where �1, . . . , �n are
small distinct odd primes. Let E0 be the elliptic curve Y 2Z = X3 + XZ2,
and P0 be a random point in E0(Fp) of order 2r. Alice takes random integers
α, e1, . . . , en, defines a = (α)le1

1 · · · len
n ∈ J(Z[πp]), and computes E1 := [a]E0

and P1 := aP0. Alice then publishes (E0, P0) and (E1, P1) as public keys,
and keeps (α, e1, . . . , en) as a secret key. Let {0, 1}r−2 be a plaintext message
space.

Enc: Let μ be a plaintext. Bob takes random integers β, e′
1, . . . , e

′
n, defines b =

(β)le
′
1

1 · · · le′
n

n in J(Z[πp]), and computes E3 := [b]E0, P3 := bP0, E4 := [b]E1,
and P4 := bP1. Bob computes (2μ+1)PE4 and gets μ∗ satisfying (2μ+1)PE4 =
μ∗P4 by using the Pohlig-Hellman algorithm. Bob then computes P ′

3 := μ∗P3

and sends (E3, P
′
3) to Alice as a ciphertext.
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Dec: Alice computes E4 = [a]E3 and aP ′
3. Alice then solves the discrete logarithm

problem over Z/2r
Z for aP ′

3 and PE4 by using the Pohlig-Hellman algorithm.
Let M be the solution of this computation. If the most significant bit of M
is 1, then Alice changes M to 2r − M . Finally, Alice computes (M − 1)/2 as
a plaintext μ̃.

The main diagram of C-SiGamal is as follows.

(E0, P0)
a ��

b

��

([a]E0, aP0)

b

��
([b]E0, bP0)

[µ∗]
��

([a][b]E0, abP0)

([b]E0, μ
∗bP0)

a ��

([a][b]E0, (2μ + 1)P[a][b]E0)

([a][b]E0, μ
∗abP0)

Theorem 9. C-SiGamal is correct.

Proof. The proof of this theorem is similar to that of Theorem 6. �

4.2 Security of C-SiGamal

In this subsection, we prove the security of C-SiGamal.

Theorem 10. If the P-CSSCDH assumption holds, then C-SiGamal is OW-
CPA secure.

Proof. Assume that C-SiGamal is not OW-CPA secure. In that case, there is an
efficient algorithm (adversary) A′ that, with high probability, outputs a hidden
plaintext μ from

(E0, P0, [a]E0, aP0), ([b]E0, μ
∗bP0).

Now, we construct a new algorithm A that outputs abP0 from

(E0, P0), ([a]E0, aP0), ([b]E0, bP0), [a][b]E0

with high probability (i.e., ω
(

1
poly(λ)

)
). Taking a random element ν in (Z/2r

Z)×

and the point P[a][b]E0 in [a][b]E0, we compute

μ := A′((E0, P0, [a]E0, aP0), ([b]E0, νbP0)).

Here, (2μ + 1)P[a][b]E0 = νabP0 holds with high probability. Then, we compute
2μ+1

ν P[a][b]E0 . That is, algorithm A outputs 2μ+1
ν P[a][b]E0 , which is abP0 with

high probability.
It is clear that A is an efficient algorithm. Therefore, the P-CSSCDH assump-

tion does not hold. �
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Theorem 11. If the P-CSSDDH assumption holds, then C-SiGamal is IND-
CPA secure.

Proof. Assume that C-SiGamal is not IND-CPA secure. In that, there exists
an efficient algorithm (adversary) A′ judging whether a given ciphertext was
encrypted from μ0 or μ1. Denote the advantage of A′ (i.e., the left side of the
inequality in Definition 5) by AdvA′(λ). Note that AdvA′(λ) = ω

(
1

poly(λ)

)
.

Now, we construct a new algorithm A that outputs b, with a probability of
ω

(
1

poly(λ)

)
+ 1

2 , from

E0, P0, [a]E0, aP0, [b]E0, bP0, [a][b]E0, Rb,

where R0 = abP0, and R1 = Q. Taking the point P[a][b]E0 in [a][b]E0 and b̃ ∈
{0, 1} uniformly at random, we compute a point (2μb̃ + 1)Rb and a value μ∗

b̃
∈

(Z/2r
Z)× such that μ∗

b̃
P[a][b]E0 = (2μb̃ + 1)Rb. Then, let

b∗ := A′((E0, P0, [a]E0, aP0), ([b]E0, μ
∗
b̃
bP0)).

If b̃ = b∗, then A outputs 0, while if b̃ �= b∗, A outputs 1.
Next, we discuss the probability that A outputs the correct b. If b = 0, then

b∗ = b̃ with a probability of AdvA′(λ) + 1
2 or −AdvA′(λ) + 1

2 . If b = 1, then
the adversary A′ cannot get any information about μb̃ because (2μb̃ + 1)Rb is
a uniformly random point and μ∗

b̃
is a uniformly random value. Therefore, if

b = 1, then b∗ �= b̃ with a probability of 1
2 . Consequently, the probability that A

outputs the correct b is

1
2

(
±AdvA′(λ) +

1
2

+
1
2

)
= ±1

2
AdvA′(λ) +

1
2

= ω

(
1

poly(λ)

)
+

1
2
.

As algorithm A is an efficient algorithm, the P-CSSDDH assumption does
not hold. �

Finally, note that C-SiGamal is not IND-CCA secure for the same reason
that SiGamal is not.

4.3 Comparing Key Size of Each Scheme

In this subsection, we compare the key sizes of CSIDH, SiGamal, and C-SiGamal.
The result of comparison is shown in Table 2, where p is a prime in the setting
of each scheme, and r is an exponent of a prime factor 2 of p + 1.

From this table, the bit length of a ciphertext in SiGamal is twice that of a
ciphertext in CSIDH; however, that of a ciphertext in C-SiGamal is the same as
that of a ciphertext in CSIDH. Therefore, though C-SiGamal is more complicated
than SiGamal, the cost of sending ciphertexts in C-SiGamal is as small as that
in CSIDH.
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Table 2. Comparison of key sizes of CSIDH, SiGamal, and C-SiGamal

CSIDH SiGamal C-SiGamal

Sizes of plaintexts (2r‖(p + 1)) − r − 2 r − 2

Alice’s public key 2 log2 p 4 log2 p 4 log2 p

Bob’s public key (ciphertext) 2 log2 p 4 log2 p 2 log2 p

5 Naor-Reingold Type PRF Based on SiGamal

In this section, we propose a new Naor-Reingold type pseudo random function
based on SiGamal. This type of PRF can be realized by using CSIDH in a
similar way to [18, Construction 4.2]. In this construction, we need a family
of pairwise independent hash functions because the output of this function is
a supersingular elliptic curve. However, by using SiGamal, we can construct a
Naor-Reingold type PRF without using hash functions.

5.1 Definition of Our Proposed PRF

Definition 11. Let a prime p satisfy p = 2r�1 · · · �n − 1, where �1, . . . , �n are
small distinct odd primes. Let E0 be the supersingular elliptic curve Y 2Z =
X3 + XZ2, and P0 be a point of order 2r in E0(Fp). Let a0, . . . , at be random
integral ideals of Z[πp] whose norms are odd. Denote by A the set (a0, . . . , at).

We define the function fp,E0,P0,A : {0, 1}t → {0, 1}r−2 = {0, . . . , 2r−2 − 1} as
follows. From x = (x1, . . . , xt) ∈ {0, 1}t, fp,E0,P0,A outputs νx, where νx is the
value in {0, 1}r−2 satisfying

a0

t∏
i=1

axi
i P0 = (2νx + 1)P[a0]

∏t
i=1[ai]xiE0

.

The function defined in Definition 11 is a pseudo random function over the
P-CSSDDH assumption and the CSSDDH∗ assumption. First, we define the
CSSDDH∗ assumption. This assumption is essentially the same as the CSSDDH
assumption (Definition 1). The difference between the CSSDDH assumption and
the CSSDDH∗ assumption is the setting of the prime p.

Definition 12 (CSSDDH∗ assumption). Let p be a prime that satisfies p =
2r · �1 · · · �n − 1, where �1, . . . �n are small distinct odd primes. Let E0 be the
elliptic curve Y 2Z = X3 + XZ2, and [a], [b], and [c] be random elements of
cl(Z[πp]). Set λ as the bit length of p.

The CSSDDH∗ assumption holds if, for any efficient algorithm A,
∣∣∣∣∣∣∣

Pr

⎡
⎢⎣ b = b∗

∣∣∣∣∣∣∣

[a], [b], [c] ← cl(Z[πp]), b
$←− {0, 1},

F0 := [a][b]E0, F1 := [c]E0,

b∗ ← A(E0, [a]E0, [b]E0, Fb)

⎤
⎥⎦ − 1

2

∣∣∣∣∣∣∣
< negl(λ).
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Next, we prove that the function defined in Definition 11 is a pseudo random
function.

Theorem 12. If the P-CSSDDH assumption and the CSSDDH∗ assumption
hold, the function defined in Definition 11 is a pseudo random function.

Before proving Theorem 12, we prove the following lemmas.

Lemma 2. Let a prime p satisfy p = 2r�1 · · · �n − 1, where �1, . . . , �n are small
distinct odd primes, and let λ be the bit length of p. If the P-CSSDDH assumption
and the CSSDDH∗ assumption hold, for any efficient adversary A,

∣∣∣∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎢⎢⎢⎣

b = b∗

∣∣∣∣∣∣∣∣∣∣∣

P0
$←− E0(Fp)order 2r , a, b, c ← J(Z[πp]),

b
$←− {0, 1}, F0 := [a][b]E0, R0 := abP0,

F1 := [c]E0, R1 := cP0,

b∗ ← A(E0, P0, [a]E0, aP0, [b]E0, bP0, Fb, Rb)

⎤
⎥⎥⎥⎥⎥⎦

− 1
2

∣∣∣∣∣∣∣∣∣∣∣

< negl(λ).

Proof. For simplicity, let Sp := {E0, P0, [a]E0, aP0, [b]E0, bP0}. From the P-
CSSDDH assumption,
∣∣∣Pr [A(Sp, [a][b]E0, abP0) = 1] − Pr

[
A(Sp, [a][b]E0, kabP0) = 1

∣∣∣k $←− (Z/2r
Z)×

]∣∣∣ < negl(λ).

Note that aP0, bP0, and cP0 are uniformly random points in ([a]E0)(Fp)order 2r ,
([b]E0)(Fp)order 2r , and ([c]E0)(Fp)order 2r , respectively. From the CSSDDH∗

assumption,
∣∣∣Pr

[
A(Ap, [a][b]E0, kabP0) = 1

∣∣∣k $←− (Z/2r
Z)×

]
− Pr [A(Sp, [c]E0, cP0) = 1]

∣∣∣ < negl(λ).

Therefore,

|Pr [A(S, [a][b]E0, abP0) = 1] − Pr [A(S, [c]E0, cP0) = 1]| < 2 · negl(λ).

This inequality is equivalent to what we want to prove. �
Lemma 3. Let a prime p satisfy p = 2r�1 · · · �n − 1, where �1, . . . , �n are small
distinct odd primes, let λ be the bit length of p, and let v be a small integer such
that v = poly(λ). If the P-CSSDDH assumption and the CSSDDH∗ assumption
hold, for any efficient adversary A,
∣∣∣∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎢⎢⎢⎣

b = b∗

∣∣∣∣∣∣∣∣∣∣∣

P0
$←− E0(Fp)order 2r , b

$←− {0, 1},

a, b1, . . . , bv, c1, . . . , cv ← J(Z[πp]), F
(i)
0 := [a][bi]E0,

R
(i)
0 := abiP0, F

(i)
1 := [ci]E0, R

(i)
1 := ciP0,

b∗ ← A(E0, P0, [a]E0, aP0, {[bi]E0, biP0, F
(i)
b , R

(i)
b }i=1,...,v})

⎤
⎥⎥⎥⎥⎥⎦

− 1
2

∣∣∣∣∣∣∣∣∣∣∣

< negl(λ).
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Proof. For simplicity, let Sp := {E0, P0, [a]E0, aP0}. From Lemma 2, for any
efficient adversary A′,

|Pr[A′(Sp, [b]E0, bP0, [a][b]E0, abP0) = 1] − Pr[A′(Sp, [b]E0, bP0, [c]E0, cP0) = 1]| < negl(λ).

Therefore, for any j ∈ {1, . . . , v},

|Pr[A(Sp,DHj , Rj) = 1] − Pr[A(Sp,DHj−1, Rj−1) = 1]| < negl(λ),

where DHj is the set {[bi]E0, biP0, [a][bi]E0, abiP0 | i = 1, . . . , j}, and Rj is the
set {[bi]E0, biP0, [ci]E0, ciP0 | i = j + 1, . . . , v}. We have

|Pr[A(Sp,DHv, Rv) = 1] − Pr[A(Sp,DH0, R0) = 1]|

≤
v∑

j=1

|Pr[A(Sp,DHj , Rj) = 1] − Pr[A(Sp,DHj−1, Rj−1) = 1]|

<v · negl(λ).

This inequality is equivalent to what we want to prove. �
Now, we prove Theorem 12.

Proof of Theorem 12. This proof is similar to that of [18, Theorem 4.1].
Let A be an efficient adversary. Let a prime p satisfy p = 2r�1 · · · �n−1, where

�1, . . . , �n are small distinct odd primes. Let E0 be the supersingular elliptic curve
Y 2Z = X3 + XZ2. Now, we prove

∣∣∣∣∣∣∣∣
Pr

⎡
⎢⎢⎣ b = b∗

∣∣∣∣∣∣∣∣

P0
$←− E0(Fp)order 2r , b

$←− {0, 1},

A ← J(Z[πp])t+1, f0 := fp,E0,P0,A,

f1
$←− R, b∗ ← Afb(·)(p,E0, P0)

⎤
⎥⎥⎦ − 1

2

∣∣∣∣∣∣∣∣
< negl(λ),

where R is a set of functions mapping from {0, 1}t to {0, 1}r−2, and λ is a bit
length of p.

Let a, b1, . . . , bv, c1, . . . , cv be random elements of J(Z[πp]) whose norms are
odd. Let F

(j)
0 := [a][bj ]E0, R

(j)
0 := abjP0, F

(j)
1 := [cj ]E0, and R

(j)
1 := cjP0. Let

the queries asked by A be x(1), . . . , x(u). We define an efficient adversary A′ as
follows.

1. Receive Sp,b := (p,E0, P0, [a]E0, aP0, {[bj ]E0, bjP0, F
(j)
b , R

(j)
b }j=1,...,u), where

b is 0 or 1.
2. Take a random element J from {1, . . . , t}.
3. Take random elements aJ+1, . . . , at from J(Z[πp]) whose norms are odd.
4. Give (p,E0, P0) to A.
5. For the query x(u′), reply with⎛

⎝ ∏
i=J+1,...,t

[ai]x
(u′)
i F

(j)
b ,

∏
i=J+1,...,t

a
x
(u′)
i

i R
(j)
b

⎞
⎠ (if x

(u′)
J = 1),

⎛
⎝ ∏

i=J+1,...,t

[ai]x
(u′)
i [bj ]E0,

∏
i=J+1,...,t

a
x
(u′)
i

i bjP0

⎞
⎠ (if x

(u′)
J = 0),
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where u′ = 1, . . . , u, and

j = j(u′) = min {u′′ | (x(u′′)
1 , . . . , x

(u′′)
J−1) = (x(u′)

1 , . . . , x
(u′)
J−1)}.

6. Output whatever A outputs.

From Lemma 3, it holds that, for any i = 1, . . . , t,

|Pr[A′(Sp,0) = 1 | J = i ] − Pr[A′(Sp,1) = 1 | J = i ]| < negl(λ).

By the definition of A′,

Pr[A′(Sp,1) = 1 | J = i ] = Pr[A′(Sp,0) = 1 | J = i + 1 ],

Pr[A′(Sp,0) = 1 | J = 1 ] = Pr[Af0(·)(p,E0, P0) = 1],

Pr[A′(Sp,1) = 1 | J = v ] = Pr[Af1(·)(p,E0, P0) = 1].

Therefore,
∣∣∣Pr[Af0(·)(p,E0, P0) = 1] − Pr[Af1(·)(p,E0, P0) = 1]

∣∣∣
= |Pr[A′(Sp,0) = 1 | J = 1 ] − Pr[A′(Sp,1) = 1 | J = t ]|

≤
t∑

J=1

|Pr[A′(Sp,0) = 1 | J = i ] − Pr[A′(Sp,1) = 1 | J = i ]|

<t · negl(λ).

This inequality is equivalent to what we want to prove. �

5.2 Evaluating Cost of Computing Our Proposed PRF

In this subsection, we discuss the cost of computing our proposed PRF.
It seems that the main cost of computing our proposed PRF is the cost of

computing group actions T times, where T is the Hamming weight of an input
(i.e., the number of 1s contained in the bit string of input is T ). However, the cost
of the calculations can be reduced by adding integer vectors before computing

group actions. We show that the cost of group actions for the PRF is about
√

8T
3π

times that of an original group action under some approximations.
From [12], the cost of group actions are evaluated approximately by the L1-

norm of an integer vector (e1, . . . , en). Therefore, if we compute these actions
straightforwardly, the cost is about

T∑
k=1

n∑
j=1

E
[
|i|

∣∣∣ i
$←− {−m, . . . ,m}

]
= Tn · 1

2m + 1

m∑
i=−m

|i| =
Tnm(m + 1)

2m + 1
,

where E[X] is the expected value of a random value X. However, if we consider
that liliP = �iP , we can reduce the number of computations of isogenies. How
much it costs to compute group actions T times is not trivial.
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The expected value of the L1-norm of the integer vector of T times group
actions is

n∑
j=1

E

[∣∣∣∣∣
T∑

i=1

mi

∣∣∣∣∣

∣∣∣∣∣ m1, . . . ,mT
$←− {−m, . . . , m}

]
.

From the Central Limit Theorem, when T → ∞,

Pr

[
T∑

i=1

mi = s

∣∣∣∣∣ m1, . . . ,mT
$←− {−m, . . . ,m}

]
≈ 1√

2πTσ2
exp

(
− s2

2Tσ2

)
,

where σ2 = E[ i2 | i
$←− {−m, . . . ,m}] = m(m+1)

3 . Based on this equation, we
approximate as follows.

E

[∣∣∣∣∣
T∑

i=1

mi

∣∣∣∣∣

∣∣∣∣∣ m1, . . . ,mT
$←− {−m, . . . , m}

]
≈

∞∑
s=−∞

|s|√
2πTσ2

exp
(

− s2

2Tσ2

)
,

≈
∫ ∞

−∞

|s|√
2πTσ2

exp
(

− s2

2Tσ2

)
ds,

=

√
2Tm(m + 1)

3π
.

The expected value we want is about n
√

2Tm(m+1)
3π . Note that the expected

value of the L1-norm of an integer vector of one group action is nm(m+1)
2m+1 . In

conclusion, the cost of our proposed PRF when the Hamming weight of input is
T is about √

2Tm(m + 1)
3π

· 2m + 1
m(m + 1)

≈
√

8T

3π

times that of a group action in SiGamal.
This result was confirmed in our experiment in Subsect. 6.3.

Remark 9. Our discussion in this subsection focuses on a non-constant time algo-
rithm of group actions. When we use a constant time algorithm (e.g., algorithms
proposed in [4,14,20]), this discussion does not hold.

6 Experimentation

In this section, we show the results of our experimentation to estimate the com-
putational costs of our proposed schemes. We fixed the security levels of all
schemes to the security level of CSIDH-512. In other words, we chose primes
that satisfied the condition that their bit lengths were about 512 in all exper-
iments. Our source codes of MAGMA are published on http://tomoriya.work/
code.html.

http://tomoriya.work/code.html
http://tomoriya.work/code.html
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6.1 Parameters

In this subsection, we propose two parameters for SiGamal and C-SiGamal:
(p128, P128) for the case when the plaintext message space is {0, 1}128 and
(p256, P256) for the case when the plaintext message space is {0, 1}256. Let the
bit lengths of p128 and p256 be about 512 to adapt the security level of SiGamal
and C-SiGamal to that of CSIDH-512.

(p128, P128). Let p128 be a prime 2130 · �1 · · · �60 − 1, where �1 through �59 are
the smallest distinct odd primes, and �60 is 569. The bit length of p128 is 522.
Set a key bound m128 over p128 as 10. Finally, let a point P128 of order 2130 in
E0(Fp128) be �1 · · · �60P̃128, where P̃128 is a point whose x-coordinate is 331.

(p256, P256). Let p256 be a prime 2258 · �1 · · · �43 − 1, where �1 through �42 are
the smallest distinct odd primes, and �43 is 307. The bit length of p256 is 515.
Set a key bound m258 over p258 as 32. Finally, let a point P256 of order 2258 in
E0(Fp256) be �1 · · · �43P̃256, where P̃256 is a point whose x-coordinate is 199.

Table 3. Computational costs of group actions

Parameters (p128, P128) (p256, P256) CSIDH-512

Bit lengths of primes 522 515 512

M 511,531 866,000 328,301

S 158,849 302,400 116,953

a 480,134 838,330 332,933

Total 662,617 1,149,836 438,510

6.2 Computational Costs of SiGamal and C-SiGamal

In this subsection, we show the results of our experiment on SiGamal and C-
SiGamal. The schemes of SiGamal and C-SiGamal consist of group actions, scalar
multiplications, and the Pohlig-Hellman algorithm. The computational complex-
ity of scalar multiplications is O(r), and that of the Pohlig-Hellman algorithm is
O(r2). Their computational costs have a little effect on all computational costs
of SiGamal and C-SiGamal.

We implemented group actions of cl(Z[πp]) over p128, p256, and, as a reference
value, p0. Here, p0 is a prime proposed in the original CSIDH paper [3]: a prime
4�1 · · · �74 − 1 such that �1 . . . �73 are the smallest distinct odd primes and �74 =
587, and the key bound m0 is 5. We implemented Algorithm 3 over p128 and
p256 and Algorithm 1 over p0 according to [15]. Then, for each case, we measured
the average computational cost over 50,000 trials. Refer to [17, Appendix A.1]
for the computational costs of each formula for the Montgomery curves. The
results are listed in Table 3, in which we denote field multiplication by M, field
squaring by S, and field addition, subtraction, or doubling by a. The quantity
“total” means the total number of M, where 1S = 0.8M, and 1a = 0.05M.
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Remark 10. There are techniques for improving the efficiency of group actions in
CSIDH, such as SIMBA [14], optimal addition chains for scalar multiplications
[4], and key space optimization [12]. These techniques can be adapted to SiGamal
and C-SiGamal.

Next, we implemented the schemes of SiGamal and C-SiGamal. We used
Algorithm 2 for the Pohlig-Hellman algorithm in our experiments. The result
is shown in Table 4. The computational costs of the encryption algorithms of
C-SiGamal over p128 were about 108% higher than that of two group actions,
and those over p256 were about 117% higher than that of two group actions.
Moreover, that of the decryption algorithms of SiGamal and C-SiGamal over
p128 were about 116% higher than that of one group action, and those over p256
were about 134% higher than that of one group action.

Table 4. Computational costs of SiGamal and C-SiGamal (numbers of M)

Parameters (p128, P128) (p256, P256)

A bit length of plaintexts 128 256

Schemes SiGamal C-SiGamal SiGamal C-SiGamal

Key generation 663,411 1,154,035

Encryption 1,327,899 1,434,944 2,306,317 2,703,339

Decryption 761,058 768,602 1,538,498 1,545,253

From Table 3, the computational cost of a group action over (p256, P256) was
about 2.62 times that of a group action of CSIDH-512. Therefore, SiGamal and
C-SiGamal need more computation than CSIDH. However, when we use CSIDH
for secure communication, we need to use hash functions since a shared key in
CSIDH is a supersingular elliptic curve. If these hash functions are attacked, the
communication is less secure, even if CSIDH is not broken. In fact, the ElGamal
like encryption based on CSIDH in Subsect. 2.5 is not IND-CPA secure with-
out using hash functions. In comparison, when we use SiGamal or C-SiGamal,
the security of communication is guaranteed by the security of SiGamal or C-
SiGamal. Moreover, bit lengths of shared keys in CSIDH are determined by
the security parameter (i.e., the bit length of the prime p) and hash functions,
while bit lengths of plaintexts in SiGamal and C-SiGamal are determined by r.
Because the only condition that r satisfies is r < log2 p, bit lengths of plain-
texts in SiGamal and C-SiGamal are determined relatively freely. In summary,
SiGamal and C-SiGamal are less efficient than CSIDH; however, SiGamal and
C-SiGamal are superior to CSIDH in terms of security and functionality.

6.3 Computational Costs of Our Proposed PRF

In this subsection, we show the result of our experiment with our proposed
PRF. We measured the computational costs of T = 128 and 256 times group



576 T. Moriya et al.

Table 5. Computational costs of T times group actions over (p128, P128)

T = 128 T = 256 T = 1

Computational costs 7,196,112 10,184,430 662,617

(Costs of T times)/(Costs of one time) 10.860 15.370 1√
8T

3π
(in Subsect. 5.2) 10.424 14.741 −

actions over (p128, P0,(128)). These costs are close to the computational costs of
our proposed PRF, where T is the Hamming weight of an input. Moreover, we
computed the value of the computational costs of T times group actions divided
by that of one time group action, and we compared them with the approximation√

8T
3π in Subsect. 5.2.
All of the results are shown in Table 5. As can be seen, the approximation√

8T
3π has some precision.

7 Conclusion

We proposed new isogeny-based public key encryptions: SiGamal and C-
SiGamal. We developed SiGamal by giving CSIDH additional points of order
2r, where r − 2 is the bit length of a plaintext. The scheme of SiGamal is simi-
lar to that of ElGamal encryption, while C-SiGamal is a compressed version of
SiGamal. These schemes do not use hash functions.

In addition, we proved that, if the new P-CSSCDH assumption holds, then
SiGamal and C-SiGamal are OW-CPA secure, and if the new P-CSSDDH
assumption holds, then SiGamal and C-SiGamal are IND-CPA secure.

Next, we constructed an isogeny-based Naor-Reingold type PRF from SiGa-
mal. We showed that if the P-CSSDDH assumption and the CSSDDH∗ assump-
tion hold, then our proposed function is a PRF. Furthermore, we estimated the
computational cost of the PRF when the Hamming weight of an input is T .

In our discussion, the computational cost is about
√

8T
3π times that of a group

action in SiGamal.
Finally, we experimented with group actions in SiGamal and C-SiGamal and

measured their computational costs. The costs of these group actions in SiGamal
and C-SiGamal with r = 258 were about 2.62 times that of a group action in
CSIDH-512. Moreover, we experimented with T times group actions, and we

confirmed the approximated value
√

8T
3π .

7.1 Future Work

CSIDH also has an algorithm that uses Edwards curves [17]; however, it is not
obvious how to implement SiGamal and C-SiGamal on Edwards curves because,



SiGamal: A Supersingular Isogeny-Based PKE and Its Application to a PRF 577

in [17], p ≡ 3 (mod 8) is crucial. It will be a future work for us to realize SiGamal
and C-SiGamal with Edwards curves.

Another important direction for future work will be developing high-level
schemes (e.g., homomorphic encryptions, an oblivious PRF) based on SiGamal
and C-SiGamal.

Acknowlegements. This work was supported by JST CREST Grant Number
JPMJCR14D6, Japan.

Appendix A Generating Points of order 2r

In this section, we explain the properties of points in Montgomery curves. These
properties give us an efficient method for generating points of order 2r for C-
SiGamal.

Definition 13. Let E be a Montgomery curve defined over a field K and P =
(X : Y : Z) be a point in E(K) \ {(0 : 1 : 0)}. Define the function x : E → K as
x(P ) := X/Z, and define the function y : E → K as y(P ) := Y/Z.

Proposition 1. Let p be a prime satisfying p ≡ 3 (mod 4) and E be a supersin-
gular Montgomery curve defined over Fp satisfying Endp(E) ∼= Z[πp]. If a point
P ∈ E belongs to E[πp − 1] \ E[2], then

x(P ) ∈ (F×
p )2 ⇐⇒ P ∈ 2E[πp − 1].

If a point P ∈ E belongs to E[πp + 1] \ E[2], then

x(P ) �∈ (F×
p )2 ⇐⇒ P ∈ 2E[πp + 1].

Proof. We prove the case that P ∈ E[πp−1]\E[2]. The other case can be proven
in a similar way.

Assume that P ∈ 2E[πp−1]. Let Q be a point in E[πp−1] such that P = 2Q.
From doubling formulas of Montgomery curves,

x(P ) =
(x(Q)2 − 1)2

4y(Q)2
.

Since x(Q), y(Q) ∈ Fp, x(P ) belongs to (Fp)2. Note that (0 : 0 : 1) is a point of
order 2. We have x(P ) ∈ (F×

p )2.
Conversely, assume that P �∈ 2E[πp − 1]. First, we assume E = E0 (i.e.,

E : Y 2Z = X3 + XZ2). Take x′ ∈ F
×
p such that x′2 + 1 �∈ (F×

p )2. Note that
x′ exists since, if it does not exist, all elements in F

×
p belong to (F×

p )2. Define
a point Q = (x1, y1) ∈ E as Q := (x′,

√
x′(x′2 + 1)). If Q does not belong to

E[πp − 1], we retake −x′ as x′. Now, x1 �∈ (F×
p )2 holds because x2

1 + 1 �∈ (F×
p )2

and x3
1 + x1 ∈ (F×

p )2. Therefore, by the previous paragraph, Q �∈ 2E[πp − 1].
Define a point R = (x2, y2) ∈ E as R := P − Q. By considering the order of R,
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we have R ∈ 2E[πp − 1]. Since x2 and y2
2 = x3

2 + x2 belong to (F×
p )2, it holds

that x2
2 + 1 ∈ (F×

p )2. From the addition formulas of Montgomery curves,

x(P ) =
(

y2 − y1
x2 − x1

)2

− x1 − x2 =

(√
x1(x2

2 + 1) −
√

x2(x2
1 + 1)

)2

(x2 − x1)2
.

Since x1, x
2
1 + 1 �∈ (F×

p )2 and x2, x
2
2 + 1 ∈ (F×

p )2, it holds that x1(x2
2 + 1) and

x2(x2
1 + 1) are not in (F×

p )2. For any d /∈ F
2
p, we can write Fp2 = Fp(

√
d).

Therefore, there exists α ∈ Fp such that
√

x1(x2
2 + 1) −

√
x2(x2

1 + 1) = α
√

d.

Then, we have α �= 0 since an easy calculation shows that α = 0 if and only if
x1x2 = 1 or x1 = x2. Therefore, it holds that x(P ) �∈ (F×

p )2.
Next, we prove the general case. By Theorem 1, there exists an ideal class [a] ∈

cl(Z[πp]) such that E = E0/E0[a]. We can take a representative a as an integral
ideal prime to πp − 1. This means that there is an isogeny ϕ : E0 → E defined
over Fp whose degree is prime to p + 1. Then, the isogeny ϕ induces a bijection
from E0[πp − 1] to E[πp − 1], and maps 2E0[πp − 1] onto 2E[π − 1]. Furthermore,
by a formula of isogenies with odd degree between Montgomery curves (e.g., see
Theorem 1 in [5]), we have x(P ) ∈ (F×

p )2 if and only if x(ϕ(P )) ∈ (F×
p )2 for

P ∈ E0[π − 1]. Therefore, the general case follows from the case of E0. �
Define p = 2r�1 · · · �n −1, where �1, . . . , �n are small distinct odd primes, and

r ≥ 3. From the law of quadratic reciprocity, 2, �1, . . . , �n are all square in Fp.
Therefore, according to Proposition 1, points in E(Fp) whose x-coordinates are
products of these primes belong to 2E[πp − 1]. Therefore, we need to exclude
these points to generate a point of order 2r in E(Fp). Conversely, points in
E(Fp) whose x-coordinates are −1 times products of 2, �1, . . . , �n do not belong
to 2E[πp −1]. Therefore, to generate points of order 2r in E(Fp), it is convenient
to take x-coordinates of points from −2 to −p + 1.
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