
Bodhaswar TJ Maharaj
Babatunde Seun Awoyemi

Developments 
in Cognitive 
Radio 
Networks
Future Directions for Beyond 5G



Developments in Cognitive Radio Networks



Bodhaswar TJ Maharaj
Babatunde Seun Awoyemi

Developments in Cognitive
Radio Networks
Future Directions for Beyond 5G



Bodhaswar TJ Maharaj
University of Pretoria
Pretoria, South Africa

Babatunde Seun Awoyemi
University of Pretoria
Pretoria, South Africa

ISBN 978-3-030-64652-3 ISBN 978-3-030-64653-0 (eBook)
https://doi.org/10.1007/978-3-030-64653-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-64653-0


To family



Foreword

The field of cognitive radio networks is an important field in the development
and realization of modern and future wireless communication networks. As the
technology evolves, it is necessary to have not just an up-to-date account of its
current state in the evolution process but also a detailed insight into its prospects and
directions, especially in its drive towards being a key player in the nearest future of
wireless communications. Thankfully, this book titled, ‘Developments in Cognitive
Radio Networks: Future Direction for Beyond 5G’ meets this need perfectly.

In the book, the authors provide a brief history on cognitive radio networks
before delving into the important aspects of spectrum and resource realization and
utilization for modern cognitive radio networks. The book exposes the most recent
methods and models for resource optimization in cognitive radio networks and
presents adequate analysis of these methods and models. It then examines the latest
tools and techniques being employed to drive cognitive radio networks in the beyond
5G era, such as the concepts of queuing theory, cooperative diversity, stochastic
geometry and deep learning. Ultimately, the book explores the promising prospects
and applications of cognitive radio networks to most other emerging technologies
such as fifth and sixth generation networks, internet-of-things, advanced wireless
sensor networks, smart cities, fourth industrial revolution and many more. The
book is thus comprehensive and compelling in its approach and answers and will
definitely be worth the while for all open-minded readers, engineers and researchers
keen on learning and advancing the field of cognitive radio networks.

The authors are well-known colleagues and seasoned researchers in the field
of wireless communications. The authors’ contributions to modern wireless com-
munications are well covered in various IEEE conferences and journal article
publications. Most of their works have been presented through patents, articles,
book chapters and books in the well-established platforms in Electronic and
Computer Engineering and Telecommunications.
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viii Foreword

It is therefore with deep pleasure that I introduce and welcome this book into the
body of knowledge in the field of cognitive radio networks and trust that many will
find this a useful text.

Johns Hopkins University, Baltimore, MD, USA Ashutosh Dutta, Ph.D.

Fellow of the IEEE
IEEE Future Networks Founding Co-Chair
IEEE Communications Society Distinguished Lecturer
Member-At-Large—IEEE Communications Society
December 2020



Preface

For years now, the cognitive radio networks (CRN) has continued to evolve as a
leading technology to help drive modern and near-future wireless communication
possibilities. With its impressive prospects and intriguing promises, more efforts
and means are being dedicated to studying and developing CRN models that can
achieve outstanding results and remarkable performances. Notably, there are already
a plethora of volumes on the CRN so much that the need for another book on this
subject may be rightly questioned. In response, the authors’ perspective is that,
despite the sizeable number of volumes on the CRN, most volumes seem to have
been too narrow or unintentional in their approach of the CRN. Indeed, there are
works that have focussed on the sensing of unused or underutilised radio-frequency
spectrum for possible CRN application. There are other works that have focussed
on making the sensed spectrum available to help drive CRN operations, and so on.
However, there is still a need for a concise but comprehensive book on the CRN that
covers all the essential aspects, while also presenting the most recent research ideas
and developments on the subject matter. This new book is designed to address that
opportunity.

The first part of the book provides the necessary background on the CRN and
extends to cover the important aspect of spectrum for the CRN. The spectrum
is well established as the most important resource for the CRN. Because of the
spectrum’s importance in the CRN scheme, emphasis is laid on the need to discover
and implement the most efficient techniques for sensing unused and/or underutilised
spectrum for an effective CRN realisation. Then, important recent developments
and new findings from various spectrum sensing efforts for CRN applications are
discussed in depth. Also, the most recently advanced techniques for achieving
optimal or near-optimal spectrum sensing for the CRN, particularly the aspects of
cooperative sensing and predictive sensing, are generously explored.

The second part of the book presents the CRN as being beyond just the spectrum.
While the spectrum is indeed very important for the CRN, there are several other
resources—bandwidth, timeslots, data rates, transmission power and others—that
must be equally considered for an effective CRN realisation. In that case, the
spectrum must be jointly considered, alongside these other CRN resources, in order
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x Preface

to achieve and provide optimal and near-optimal solutions to help realise the utmost
for the CRN. This is covered under the broad aspect of resource allocation (RA)
optimisation for the CRN. In that second part of the book, the most appropriate
optimisation tools for RA in the CRN are exposed, new and/or improved RAmodels
and solutions for modern CRN application are examined, and the performance
analyses of the new RA models are extensively carried out.

In the final part of the book, the most recent developments in CRN modelling,
applications, evaluations and eventual realisation, are explored. In this part, ana-
lytical concepts such as queuing theory and stochastic geometry and technical
concepts such as cooperative diversity and machine/deep leaning are established
as important new ideas and approaches that are being introduced into the modern
RAmodels for the CRN. These relatively newly introduced concepts are specifically
incorporated to help improve the design, analyses and solutions of the CRN models,
to address the aspect of interference management and control, to mitigate the
effects of interference and other limiting constraints, and/or to achieve an overall
greater resource management and productivity for the CRN. In this part still, as
part of the ongoing developments in the CRN, some of the significant areas in
which the CRN is impacting and will continue to impact emerging technologies
such as the fifth-generation and the internet-of-things, and its impact on the drive
towards the realisation of smart cities and a globally interconnected world, are
discussed. Important contributions on how to help fast-track these new technologies
and possibilities through the CRN are graciously offered.

In all, the unique feature of this book is that it is able to concisely relate all the
important aspects of the CRN—spectrum sensing, spectrum availability, resource
optimisation and others—in one simple piece, thereby providing a more holistic
perspective about the CRN than most other volumes that are available on the subject.
The book stands out from others in that it distinctly integrates the new and improved
ideas on spectrum sensing with the recent, most viable solutions on resource
optimisation, as currently achievable for the CRN. The striking contribution of the
book is therefore that it successfully brings together under one title all the important
tools needed to get the most from the CRN. The authors envisage that this book
will assist new researchers and graduate students in understanding the field of CRN
better and also trigger new opportunities and future research directions in this fast
evolving area of modern telecommunications.

University of Pretoria, Pretoria, South Africa Bodhaswar TJ Maharaj

University of Pretoria, Pretoria, South Africa Babatunde Seun Awoyemi
October 12, 2020
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Part I
Fundamentals on Cognitive Radio

Networks

Cognitive radio networks are highly rated among the most-promising emerging
technologies for the near future. The basic definitions, descriptions and deliberations
on cognitive radio networks are presented in this first part of the book. The spectrum
is also discussed as the most essential pivot on which the cognitive radio networks
revolves.



Chapter 1
Introduction to Cognitive Radio
Networks

1.1 A Growing Demand for Wireless Communication

Wireless communication has become an integral part of our everyday life [1].
Having evolved over the years, modern wireless communication is gaining a wide
acceptance and global appeal, most especially because of its tremendous benefits
over other traditional methods of telecommunication. Some of the benefits of
wireless communication over other traditional telecommunication methods can
be summarised as: ubiquity (massive coverage), mobility (on-the-go telecommu-
nication access), capability (can accomplish a lot more), capacity (accomplishes
much more with less), portability (a continuing reduction in component/device
sizes) and affordability (a sustained improvement in service costs). As a result,
the global demand for modern wireless communication paradigms are on an
explosive, exponential rise. As an example, it is estimated that, at end of year
2019, over 5 billion of the world population already have access to mobile wireless
communication through the use of cellular phones [2].

The numerous benefits of modern wireless communication (coverage, capacities,
capabilities, etc.) is driving a continued increase in global demand, even in the so-
called developing countries and continents of the world [3]. The growing increase in
global demand for modern wireless communication is necessitating the development
of new and improved technologies that can meet such demand. It is safe to project
that if the recent trends in modern wireless communication continue, very soon,
there will most likely be an immense, almost insatiable ‘outbreak’ in modern
wireless communication applications, operations and demands all over the world.

Therefore, in response to the growing global demand, modern wireless com-
munication is continuing to develop and advance new technologies that have the
wherewithal to meet such enormous demands. One of the relatively new wireless
communication technologies that is being advanced to help achieve modern com-
munication realities and to meet global telecommunication needs is the cognitive
radio networks (CRN). With its rich history and towering prospects, the CRN is
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continuing to gain worthy interest and global attention as one of the most significant
wireless communication technologies to help meet the world’s telecommunication
needs for the immediate and the near future.

1.2 History of Cognitive Radio Networks

Historically, the CRN can be seen to have evolved as an answer to an all-important
question for modern wireless communication. The question centres around how
modern and evolving wireless communication technologies are to negotiate and
realise the requisite spectrum resource to accomplish their promises and goals.
Quite frankly, the question on spectrum realisation for wireless applications is a
very significant question for modern wireless communication. The answer to this
question is a potential ‘deal-maker’ or ‘deal-breaker’ for most breakthrough wireless
technologies for the immediate and the near future. Till date, the CRN is one of the
most advanced technologies that provide clear and promising response on how to
realise and engage the needed spectrum for driving new wireless communication
possibilities for the immediate and near future.

As earlier mentioned, it is now crystal clear that the sporadically growing demand
for modern wireless communication applications mandates that new technologies
be developed to meet this continuously increasing demand. As new technologies
emerge to meet the growing telecommunication need, there is an expanding increase
in demand for and use of the radio-frequency spectrum needed to drive such
technologies. The big challenge, however, is that the radio-frequency spectrum is
generally a limited, non-expanding and non-ubiquitous resource. In fact, because of
the never-ending demand and agitation from various interest groups, in most parts
of the world, the spectrum is already a scarce resource. There is, as it currently
stands, an ongoing crisis that is emanating due to the problem of spectrum scarcity
for wireless communication applications.

The spectrum scarcity problem arises from the fact that the radio-frequency
spectrum—a fixed and limited resource—is currently adjudged to have already been
overstretched in its allocation and usage, especially in most of the technologically
advanced parts of the world. Consequently, it would seem that the spectrum
resource needed for meeting the demands and expectations of modern wireless
communication is either unavailable or, at best, insufficient. This problem of
spectrum scare and/or inadequacy is obviously one of the greatest threats to modern
wireless communication being able to achieve their promises and possibilities.

In response, the present problem of spectrum scarcity has necessitated the review
of the principles by which the limited spectrum resources are being assigned for use
by the regulatory bodies saddled with the responsibility of allocating the spectrum
resource. There are now a number of examples of such works on the review of
spectrum allocation and usage designs and patterns, and several similar works
are still being carried out in many parts of the world in this regard. Some of the
reports on spectrum usage patterns as carried out by the Federal Communications
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Commission (FCC) in the United States are readily available in references [4, 5].
There are also reports on spectrum usage from the Office of Communications
(OfCom) in the United Kingdom [6, 7] and the Independent Communications
Authority of South Africa (ICASA) [8], among others.

Interestingly, the various investigations into the spectrum allocation and usage
patterns seem to have all come up with a similar finding. The underlying conclusion
from the various investigations on the spectrum is that the limited spectrum resource
has not only been poorly allocated, but that, in most cases, it has also been
inefficiently utilised by the various networks to which it has been allocated for use.
So, while there is indeed the problem of spectrum scarcity, an equally important
problem that arose in the course of the numerous investigations and reports on
the radio-frequency spectrum usage patterns is the existential problem of spectrum
underutilisation.

Solving the problem of spectrum scarcity and underutilisation is very critical
to achieving the promises of modern wireless communication. Efforts to address
this problem are still being investigated. One important finding from the various
reports on the spectrum is that the current strategy being employed for allocating the
spectrum is grossly ineffective. Therefore, there is a great need to establish better
allocation strategies for the scarce radio-frequency spectrum.

The current strategy being employed in allocating the spectrum is a static
allocation strategy. With this strategy, the spectrum is divided into fractions or parts.
Each fraction or part of the spectrum is allocated to a specific operator in a static
manner, without any possibility of an overlap in allocation and usage. This static
allocation strategy has the important advantage of reducing possible interference
among the various operators. However, ongoing reviews on the spectrum allocation
and usage revealed that the static allocation strategy is a highly ineffective one. This
is because, most operators only use their allocated spectrum at certain times (maybe
during the day or at pick periods), while at other times, the spectrum is mostly idle.
Employing this static allocation strategy is actually what led to the current situation
in which the already-limited spectrum is then being significantly underutilised.

With the static allocation strategy, despite the fact that the spectrum is being
underutilised by most operators, spectrum regulators cannot reallocate an allocated
spectrum to any other interested operator, due to strict regulations guiding such
allocations. The regulators are constrained by the fact that since the operators have
obtained licenses to use the spectrum, they must have unlimited access to the
allocated spectrum all the time, whether or not the allotted spectrum is being fully
engaged and/or in use. Besides, no other operator may be assigned such a spectrum,
or have any kind of access whatsoever to such ‘occupied’ spectrum. This static
allocation strategy has now been shown to be grossly inefficient because it creates
multiple spectrum holes of unused and/or unoccupied spectrum spaces formed as a
result of lack of activity on the allocated spectrum spaces at different times by must
operators and occupiers of the spectrum.

In response to the problem described above, a new spectrum allocation strategy,
called the dynamic spectrum allocation/access (DSA), is being advanced. The DSA
proposes that the spectrum can be allocated in a more flexible or dynamic manner,
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such that a specific portion of the spectrum can be assigned to more than one
operator/user at the same or at different times in similar or differing circumstances
and for the same or different operations, provided that there are well-established
guiding principles to govern such dynamics [9]. With the DSA, therefore, the
spectrum is dynamically assigned and utilised. This makes the concept of double
use, co-use and/or re-use of a spectrum space with multiple ‘owners’ meaningful
and realistic [10].

Consequently, a number of modern wireless communication prototypes are now
being designed and developed to employ the DSA in overcoming the spectrum
scarcity challenge, and in achieving improved spectrum utilisation in their com-
munication activities. The CRN emerged as one of the most-important modern,
newly evolving technologies to leverage the DSA. Right now, the CRN is becoming
an highly promising and very potent technology for the realisation of the new
DSA paradigm. With the CRN, by leveraging the DSA, new and improved ways
of sharing and utilising the spectrum are incorporated and employed in achieving
greater resourcefulness and productivity for modern communication realisation.

Mitola is generally accredited for pioneering the works on the CRN [11, 12].
Because of his founding works on the CRN, Mitola has been referred to as the
‘Father of CRN’ [13]. Actually, the earliest available record of the use of the word
‘cognitive radio (CR)’ and the foremost clearest definition and description of CR
are found in Mitola’s work [11]. In his thesis in [12], Mitola described a new kind
of radios which have cognitive capabilities. These new radios, initially referred to as
software defined radios (SDR), have the capability to learn from their environment
and to intelligently and dynamically adjust their operating parameters, based on
what has been learned, to achieve better communication. In other words, SDR or
CR enabled devices should be able to, among other things, dynamically adjust their
frequency spectrum of operation to access/use new frequency spaces to suit their
new environment or to meet their new demands. One thing that stands out clear
from the ground old description of the CRN by Mitola is that the functionality of
CRs and the CRN will greatly depend on the actual implementation of the DSA.

Since that pioneering work, more and more researchers and scholars in the field
have continued to leverage the initial concepts and ideas from Mitola in further
developing and describing CRs and the CRN, especially for practical, realistic
implementations. One such well-known founding contributor whose works have
been quite remarkable in the development of the CRN is Haykin [14]. Others
like Doyle [15] and Akyildiz [16] have also had significant contributions to the
development of the CRN. The important position that has been well established from
the pioneering works on the CRN, and which is still being amplified through recent
works on the CRN is that, in their ultimate design, CRs and the entire CRNs should
be capable of achieving much more than just dynamic access and the ability to
employ free or underutilised spectrum spaces for their communication [12, 14, 15].
The CRN must be beyond the spectrum. However, as the CRN evolves beyond the
spectrum, this historical background on the CRN is important in that it shows in
clear terms that it is the need to improve the use of the spectrum (being achieved
by implementing a more flexible or dynamic mechanism for the allocation and
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usage of the spectrum resource) that formed the basic concept from which the CRN
emanated.

1.3 Application of Dynamic Spectrum Access in Cognitive
Radio Networks

In its design, the CRN leverages the DSA in achieving spectrum sharing and
utilisation between a primary network and a secondary network. The primary
network is made up of one or more original owners or primary users (PUs) of a
spectrum space, while the secondary network is made up of some secondary users
(SUs) of the same spectrum space [16]. The SUs are opportunistic users of the PUs’
spectrum. A number of ways to design the primary-secondary networking for CRN
have been described. A detailed description of various architectural designs for CRN
is provided in the next chapter. In this section, however, a brief mention on possible
designs for CRN is provided to help understand and establish the application of
DSA in CRN.

In the foremost designs of DSA as applicable to the CRN, the SUs of the
secondary network are to first identify spectrum holes. Spectrum holes are spectrum
spaces that are free or available, despite being assigned to a primary network. The
spectrum spaces are free because they are not being occupied or used by the PUs to
which they have been assigned at those time instances. After identifying spectrum
holes, the SUs must then reconfigure themselves to be able to use those frequencies
of the spectrum hole to communicate or transmit their signal. Furthermore, as the
SUs transmit their signal, they must keep an eye on when the PUs return and are
ready to use their spectrum. The SUs must immediately cease transmitting in those
spectrum frequencies and give room for the PUs to use them. Once the PUs re-
occupy their spectrum spaces, the SUs using such spaces have to identify new free
spectrum spaces and reconfigure their parameters again to use those new spaces.
The SUs then continue their transmission in those newly available spectrum spaces.
Again, these SUs have to be alert enough to identify the return of the PUs to those
new spaces so they can vacate them and move to new ones. Interestingly, the entire
process must happen as quickly and seamlessly as possible so that communication
of the PUs and the SUs are not adversely affected.

Newer designs of DSA in the CRN permit the SUs to transmit their data and/or
communicate simultaneously with the PUs at any given time. For this to happen,
the primary-secondary network agreements have to have been reached beforehand.
Such agreements usually mandate that the SUs communicate or send their data
at low power over the entire bandwidth of the PUs (for example, in ultra wide
band networks). This will ensure that the interference caused by the SUs to the
PUs is at a bearable minimal. There could also be some cooperative agreements
that may necessitate the SUs to help transmit some of the PUs’ data, in exchange
for a larger bandwidth, higher transmit power, longer transmission time or some
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other resource gain for the SUs. In fact, some more complex descriptions of the
possible interplay between PUs and SUs in the CRN suggest that the SUs can switch
between fully occupying the spectrum when the PUs are not there and going to the
low transmission state when the PUs arrive. The various dynamics and possibilities
that the CRN can achieve through DSA make the CRN an interesting technology.
The CRN is therefore gaining the right recognition and attention as one of the
most promising modern wireless communication technologies for the immediate
and these near future.

1.4 Cognitive Radio Network Beyond Spectrum

Even though the CRN emerged as one of the technologies for achieving significant
improvements in spectrum allocation and usage in modern wireless communication,
further developments in its conceptualisation and application have established that
the scope of the CRN must be beyond just the spectrum. In reality, modern
communication technologies are generally being developed to have an enlarged
scope so that they can have further appeal and farther reach. In that regard, the
CRN is not an exception. The CRN must go beyond its interest in and ability to
better manage or administer the spectrum.

As the CRN evolves, care is taken to ensure that the importance of the spectrum
to the CRN is not undermined. However, the CRN must not be confined to the
spectrum as it is, in fact, far and above spectrum sensing and/or spectrum availability
alone. One of the clearest descriptions of this broader scope of the CRN, and how it
transcends spectrum availability and usage, is seen in [15]. She described the scope
of the CRN as being beyond just a technique to be employed for administering the
spectrum in a more profitable manner. The author summarised the broader scope of
the CRN as follows:

[T]he CRNmust be a self-organising system - it understands the context it finds itself in and
can configure itself in response to a given set of requirements in an autonomous fashion.
The configuration won’t be on frequency or dynamic spectrum alone, but on other features
too like power, beam pattern, routing algorithm, coding techniques, filtering techniques,
etc. From the user point of view, the CRN will offer the benefit of personalising users’
experiences so as to provide services tailored to the specific needs of individual users [15].

The enlarged scope of the CRN portends a wider, broader and more comprehen-
sive usefulness for the CRN. With such expanded scope for the CRN, its usability
will most likely become global. More so, the CRN will be applicable in almost
all areas of human endeavour. The CRN will find applications in e-transportation,
e-education, e-health, e-commerce, fourth, fifth and other industrial revolutions,
automation, virtual reality, artificial intelligence, etc. Very clearly, therefore, the
CRN will be an integral part of the modern society and/or smart cities and will be
critical in the development and the eventual realisation of a highly interconnected
world. The widened scope of the CRN also means that the technology will be a
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crucial element of global communication. This justifies the growing interest in its
rapid development and almost eventual roll-out.

1.5 Possible Limitations with Cognitive Radio Network
Applications

The CRN promises significant improvement in the capacities and capabilities of
modern wireless communication. This is being achieved by providing ideas on how
to engage or employ the spectrum resource to become more productive, among
others. However, the CRN, as currently being developed, designed and projected,
is not without some worrying signs and/or possible limitations. Some of the more
specific limitations to the possible productivity of the CRN are identified in later
chapters of this book that discusses certain concepts and principles of the CRN in-
depth. However, to provide a brief but complete overview, some of the most generic
limitations that are associated with CRN applications are briefly discussed in this
section.

1.5.1 Resource Limitations

One of the greatest limitations to the effectiveness and productivity of the CRN is,
maybe quite surprisingly, the limitation of the available resources needed to drive its
operations [17, 18]. Since the CRN is designed to be predominantly an opportunistic
network, the available resources to drive its operations are usually limited and,
in many instances, non-guaranteed. This is a great threat to the CRN being able
to achieve its ends. Quite frankly, unless the problem of resource limitations
is addressed, the ideals of the CRN may never be fully realised. Addressing
the problem of resource limitations in the CRN will imply that, especially for
the secondary network, appropriate tools that can achieve effective, efficient and
equitable distribution and utilisation of the limited CRN resources are established
and incorporated in the network design.

1.5.2 Network Complexity

Another possible limitation to the CRN is the problem of network complexity
[19]. The CRN is more complex than most other wireless communication networks
because of the additional components, connections, processing and computational
demands, etc. resulting from the primary-secondary networking for the CRN.
Models that can minimise the effects of the extra complexities in CRN must be
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developed and implemented for the CRN. This will ensure that the CRN is a realistic
and practicable wireless communication technology.

1.5.3 Problem of Interference

One other possible limitation for the CRN is the problem of interference [20, 21].
Interference has always been a great limitation for most wireless networks. Surely,
this problem of interference is even more exacerbated in the CRN because of the
primary-secondary network interplay that happens in the CRN. The PUs need to
be guaranteed that the activities of the SUs will not cause undue interference and
disrupt their network. The SUs too must be able to ensure that the activities of the
PUs do not pose undue threat to their own communication. Solving interference
problems in the CRN is very critical for its overall establishment and effectiveness.

1.5.4 Limitations of Wireless Communication

One important limitation for the CRN, as identified in this book, is the fact that
the CRN, being a wireless communication design, like many others, must be built
to cope with the common constraints and general limitations associated with all
wireless communication networks. For instance, the limitation in the transmission
power of the base station of a wireless communication network is a limitation that
is a common denominator for all wireless communication networks, and for which
the CRN must learn to cope with. For the CRN to achieve the utmost, therefore,
such general limitations and constraints associated with wireless communication
have to be factored in and carefully considered, and such limiting effects have to be
effectively overcome.

1.6 Summary of the Chapter

In this chapter, we have established that the CRN is evolving as one of the most
promising technologies for the near future, primarily because of the important
promise of mitigating the challenge of spectrum scarcity/underutilisation. The CRN
is leveraging the newly described DSA strategy in helping to address and mitigate
the spectrum problem. As the CRN develops, the CRN will eventually achieve
beyond just improving spectrum utilisation as its scope continues to expand. Even
though it is a promising technology, the CRN is not without its own limitations. One
of the most important limitations of the CRN, quite ironically, is the inadequacy
of the resources available to drive the new technology. This is one of the most
significant limitations of the CRN because it particularly relates to its resources
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and its resourcefulness. A significant part of this book is dedicated to seeking and
establishing the most recent activities, attempts and approaches for addressing the
resource limitations of the CRN. Several new interpretations, implementations and
innovations for possible improvement in resource realisation and usage for the CRN
are exposed and explored, making the book an important contribution to the body
of knowledge in the field of CRN.
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Chapter 2
Perspectives on Cognitive Radio
Networks

2.1 Architectural Descriptions of Cognitive Radio Networks

Architectural descriptions of the CRN provide fundamental ideas on how the CRN
have been/are being designed to operate. The basic elements of the primary-
secondary network design for a typical CRN are the primary users (PUs), the
primary user base station (PUBS), secondary users (SUs) and, most likely, a control
point or control unit for the SUs, usually referred to as the secondary user base
station (SUBS) or access point [1]. In the design, PUs and the PUBS form the
primary network while SUs and the SUBS form the secondary network. The
communication and data transmission of the PUs is usually controlled by the PUBS,
while the communication and data transmission of the SUs are controlled by the
SUBS, whenever the SUBS are incorporated in the design. The various network
architectural designs that have been described for the CRN are usually formed by
the manner in which the elements of the CRN are aligned or combined. The diagram
in Fig. 2.1 gives a general description of CRN architecture, indicating the manner in
which the different components combine to form the basic CRN model.

2.1.1 Centralised, Distributed or Mesh

The most common architectural classification of the CRN considers the CRN as
centralised (or infrastructure based), distributed (or ad-hoc based) or mesh (or
combined) [2–5]. In all the three categories, the activities of the primary network
are controlled by the PUBS. In the case of centralised architecture, the SUBS,
control unit or access point is responsible for coordinating and controlling the
communication and data transmission of the SUs in the secondary network. For
distributed architecture, a SUBS or access point is not necessary. Hence, the SUs
simply communicate and transmit their data directly from one SU to another by

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B. TJ Maharaj, B. S. Awoyemi, Developments in Cognitive Radio Networks,
https://doi.org/10.1007/978-3-030-64653-0_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64653-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-64653-0_2


14 2 Perspectives on Cognitive Radio Networks

PU Base Station

SUBS

SU 2

SU 1
PU 5

PU 2

PU... L

PU Base Station

SUBS
SU 1

PU 2

PU 3

PU 4
SU... K

PU 1

Fig. 2.1 A basic architectural description of the CRN

following defined guidelines. In this case, the SUs that are within a geographical
space communicate with one another without the aid of a central communication
hub. In the case of mesh architecture, the ideas of the centralised and distributed
architectural designs are fused together to achieve the best of outcomes, usually
at the expense of increased network complexity. Figures 2.2 and 2.3 give pictorial
representations of the centralised and distributed architectural designs of the CRN.
The mesh architecture is simply a fusion of these two designs and thus need no
representation.

2.1.2 Overlay, Underlay or Hybrid

An equally important and widely used categorisation or classification of the CRN
considers the CRN as underlay CRN, overlay CRN or hybrid CRN. This primary-
secondary network architectural description of the CRN is influenced by the
interference arrangements that exist between the primary network and the secondary
network. This network architecture is a very crucial consideration in CRNmodelling
and practical implementation.
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Fig. 2.2 A description of the centralised architecture for CRN
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Fig. 2.3 A description of the distributed architecture for CRN

With underlay architecture, spectrum availability and usage is always guaranteed
for all the PUs. At the same time, the spectrum space of the primary network is
also to be used over the entire period of time by the SUs in the secondary network.
The caveat, though, is that the secondary network transmission may only interfere
with the primary network transmission up to a pre-agreed interference limit [6, 7].
The specific advantage that the underlay CRN architecture has over most other
types of network designs is that it generates and provides substantial bandwidth
for the secondary network, and that service provisioning for the secondary network
may always be guaranteed all of the time (the possibility of service disruptions is
quite low). The main disadvantage of underlay architecture is that the permissible
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Fig. 2.4 A description of the resource usage pattern for the underlay architecture in CRN

interference limit of the primary network may be stringent and difficult to comply
with. This tends to limit the productivity of the secondary network.

Figure 2.4 gives a simple description of the allocation and usage patterns of
communication resources for the underlay CRN architecture. From the diagram, it
can be observed that the SUs have access at all times to the resources (spectrum or
frequency band, most especially), even at the periods when the PUs are transmitting
or using the resources. However, the SUs are allowed to use the available resources
to transmit at very low power, usually below the interference threshold of the PUs.
This arrangement makes it possible for both the PUs and the SUs to co-exist and
to co-use the resources simultaneously, as long as the interference is within the
acceptable limit for the PUs.

In overlay architecture, the SUs cannot use the primary network’s spectrum all
the time. The SUs in the secondary network can only access the spectrum of the
primary network when the PUs are not available to use their spectrum or frequency
bands [8]. In those instances (of PUs’ absence), the SUs have the liberty to use
the primary network’s spectrum maximally. As such, the SUs can communicate
and transmit their data at high transmission power, data rates and/or modulation
schemes. Once the PUs return, the SUs have to give way by immediately vacating
the spectrum space so that the PUs can use those channels without interference.

The main advantage of overlay architecture is the high level of data transmission
that the secondary network can achieve while the primary network’s spectrum is
available. However, a number of challenges have been identified with the overlay
architecture. There is the problem of multiple service disruptions, whether at known
or unknown intervals. Then, there is the issue of timing or sequencing in the ON-
OFF interchange that happens when PUs arrive and SUs vacate a spectrum space,
and vice versa.

The most common problems with the overlay CRN design are the problems of
miss detection and false alarm [9]. A miss detection occurs when an SU determines,
albeit wrongly, that a spectrum space is vacant or free, and that the PU occupying
that channel is unavailable. Such an SU may then (be instructed to) go ahead to
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Fig. 2.5 A description of the resource usage pattern for the overlay architecture in CRN

transmit its data using the PU’s spectrum. Since the SU (or secondary network
control unit) is wrong in its assessment and the PU is actually using its spectrum,
an unacceptable amount of interference is experienced by the PU. A false alarm
occurs when an SU (or secondary network control unit) thinks that a PU is using
its spectrum, when actually, that PU’s channel is free. In this case, the SU does not
(or is informed not to) transmit its data so as not to cause an undesirable amount
of interference, while, in actual fact, the SU may have used that spectrum space
unhindered since the PU is actually unavailable. The possibilities and effects of
these misjudgements must be considered and well addressed and/or mitigated in
practicable overlay CRN realisations.

Figure 2.5 gives a simple description of the allocation and usage patterns of
communication resources for the overlay CRN architecture. From the diagram, it
can be observed that the SUs have access to the resources (spectrum or frequency
band, most especially) only at the periods when the PUs are not transmitting or
using the resources. However, when the SUs have access to the resources, they are
made to use the entire resources and can transmit at maximum power, without any
fear of causing interference to the PUs. This arrangement means that SUs can only
use the PUs’ resources in an opportunistic manner, and they must be careful to not
misjudge whether the PUs are present or absent, so that extreme interference is not
experienced by the PUs.

In hybrid architecture, attempts are made to combine the benefits of the underlay
and overlay architectural designs in one scheme, so that improved results are
realised for the CRN [10]. In its design, when the PUs are unavailable and their
spectrum vacant, the SUs communicate with the full transmission power available
and at the highest rates achievable. Immediately the PUs are back, the SUs change
to lower transmission power and data rates, as permissible by the PUs. In hybrid
architecture, therefore, the SUs are made to benefit from the PUs’ resources,
whether the PUs are available to use them or not. As beneficial as the hybrid
architecture for the CRN is, the major setback is the implication of a high network
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Fig. 2.6 A description of the resource usage pattern for the hybrid architecture in CRN

complexity. Simply put, the CRN as a hybrid network is much more complex
to analyse and implement than the other two architectural depictions previously
discussed.

Figure 2.6 gives a simple description of the allocation and usage patterns of
communication resources for hybrid CRN architecture. From the diagram, it can
be observed that the SUs have access to the entire resources (spectrum or frequency
band, most especially) at the periods when the PUs are not available to use those
resources, but when the PUs are available, the SUs use the resources in a very limited
sense. Because of the flexibilities and continuous access to network resources that
the hybrid CRN provides, hybrid architecture achieves the best results in resource
usage for the CRN.

2.1.3 Cooperative or Non-cooperative

Another important architectural description of the CRN classifies the CRN as either
cooperative CRN or non-cooperative CRN. One of the ways in which cooperative
CRN architecture has been described is when there is some agreement among the
SUs in the secondary network to work together or cooperate in their decision-
making processes. This then implies that the SUs make multilateral decisions
on aspects such as spectrum sensing, data transmission, resource management,
etc. and all SUs take instruction from a central controller [11, 12]. In the non-
cooperative CRN design, decisions on spectrum sensing, data transmission, resource
management, etc. are unilateral and made by each SU.

In other cooperative CRN designs, cooperation happens between the primary
network and the secondary network. In such cooperative CRN architecture, the PUs
and the SUs decide to work together, and for one another. One way in which they



2.2 Cognitive Radio Networks as Heterogeneous Systems 19

may work together is that the SUs agree to first help transmit some of the PUs’ data.
Then, after the PUs’ requests have been successfully carried out, the PUs allow
their spectrum to be used by the SUs, or the SUs get some form of benefit from
the PUs [13, 14]. In other words, if the SUs agree to support the PUs in driving the
PUs’ transmission or increasing the PUs’ capacity, the SUs get the benefit of using
a portion or the entirety of the PUs’ assigned radio-frequency spectrum for the SUs
to transmit their own data. Other important cooperative descriptions for the CRN
are cooperative beamforming [15] and cooperative relaying [16]. With cooperative
beamforming, the SUs cooperate to jointly use their antennas in making better and
more accurate decisions on spectrum, data transmission, resource usage, etc. With
cooperative relaying, the SUs cooperate to transmit each other’s data, which helps
to reduce the possibility and effects of high interference to the PUs.

The various architectural descriptions provided in this chapter are the commonest
classes or categories of the CRN. A lot of research works on the various categori-
sations of the CRN so far provided are currently being undertaken. Furthermore,
modern application models and designs of the CRN are being investigated, devel-
oped and deployed using these architectural descriptions and/or classification of the
CRN.

2.2 Cognitive Radio Networks as Heterogeneous Systems

In the ongoing efforts towards developing the CRN, a recent but very crucial
consideration is that the CRN must be developed as a heterogeneous and not a
homogeneous system. Indeed, most of the earlier research works and experimental
applications on the CRN have been carried out with the assumption that the network
would be homogeneous. This is because the homogeneous CRN consideration is
much easier to model, analyse, interpret and apply than the heterogeneous CRN
consideration. However, it is almost certain that the CRN will be a heterogeneous
system.

Recent works on the CRN now develop and study the CRN in the more
practical and realistic consideration of it being heterogeneous. Especially in system
modelling, to achieve a high level of accuracy in the description, interpretation
and applications of the CRN, it must be considered as a heterogeneous system. By
incorporating heterogeneity into the CRN, practicable CRN scenarios can be mod-
elled, developed, analysed and eventually implemented. Investigating heterogeneity
in the CRN is therefore a significant consideration, if the highest levels of network
proficiency and productivity are to be realised for the CRN.

Several aspects of heterogeneity are being investigated for most modern wireless
communication networks. For the CRN, aspects of heterogeneity that are most
applicable are broadly classified under heterogeneous networks, heterogeneous
users (or user demands) and heterogeneous channels.
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2.2.1 Heterogeneous Network

In simple but clear terms, the CRN, by its design and application, is surely an
example of a heterogeneous network. Heterogeneous networks, simply referred to
as HetNet, is a relatively new research interest in the telecommunications research
space. There are a number of ideas on the HetNet already and several others
are on active investigation currently. However, the main idea on the HetNet, it
seems, is that to build very robust and highly productive near-future wireless
communication paradigms, there must be allowance for two or more networks
to work together simultaneously over the same or on different communication
resources and equipment, such as communication standards, base stations, radio
access technologies, configuration parameters, architecture, transmission solutions,
user demands, etc., in order to jointly expand their network capacity and reach [17].

A very good example of the HetNet consideration in the CRN is the primary-
secondary networking in the CRN. A practical description of this primary-secondary
network, as applicable to the CRN, is to consider a possible CRN scenario where a
number of femtocells and/or picocells are made to work alongside a macrocell. In
[18], a thorough study of the ideas and the technical issues that are familiar with
HetNet has been carried out. As the CRN evolves, relevant elements and aspects of
the HetNet must be incorporated in its design. Such relevant HetNet considerations,
when incorporated into the CRN design, will influence the CRN in areas such as
its resource problem formulation, and in attaining the desired level of accuracy in
network realisation. Figure 2.7 provides a pictorial description of the application of
HetNet in the CRN.

2.2.2 Heterogeneous Users or User Demands

The CRN must be developed to cater for a wide range of users demanding for
resources and/or satisfying different kinds of applications and use cases. The idea
of heterogeneous users or user demands, when applied to the CRN, means that
the requirements or demands of one user may differ from another and/or other
users. Therefore, the CRN, based on some defined principles, must be able to
accommodate the need of each user or group of users without disparaging or
disadvantaging other users [19, 20]. A number of things are to be considered when
describing and classifying the various kinds of users and service demands for the
CRN. The most important ones are briefly discussed.

2.2.2.1 Quality of Service Requirements

The SUs in the CRN may be classified using their minimum rate requirement that
can guarantee an acceptable level of quality of service (QoS) for each user or user
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Fig. 2.7 A practical depiction of the HetNet for CRN application

category. If there are SUs that do not make any demands on an acceptable rate
requirements, such SUs can be regarded as best effort service users. This kind of
categorisation has been used for classifying the SUs in CRN designs developed in
[7, 20, 21].

2.2.2.2 Service Type or Traffic Demands

The type of services being offered by SUs in the CRN may be used to categorise or
classify them. In that case, services such as voice call, live-streaming, web surfing,
background services like downloading, etc. may be employed in separating the SUs
into relevant classes and meeting their needs accordingly. Some examples of the use
of this type of categorisation of SUs are found in [22, 23].

2.2.2.3 Service Availability

The SUs in the CRN may be categorised based on whether or not they require
services that are always on and that should never be interrupted. In that case, the
SUs can be classified as either real-time (RT) or non-real-time (NRT) users. When
the SUs in the CRN are classified as either RT or NRT, RT SUs are always given a
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higher priority in resource usage and service provisioning over the NRT users. Some
examples of this method of classification are found in [24, 25].

2.2.2.4 User Sensitivity

The SUs in the CRN may be classified by considering how sensitive they are to
certain stimuli. With this categorisation, for instance, if the sensitivity is based
on their waiting time requirement, some users may be considered as being delay-
sensitive (DS), while other users are said to be delay-tolerant (DT). There are several
other ways of classifying users based on their sensitivity. Some examples of the use
of this method of classifying SUs in the CRN are found in [23, 26].

2.2.3 Heterogeneous Channels

The CRN must be developed with a great deal of flexibility in its application and
usage of the available channels and/or subchannels at its disposal. Therefore, het-
erogeneous channels or subchannels is an important consideration of heterogeneity
in the CRN. In realistic CRN designs, the channels or subchannels that are available
for the SUs will most likely not be around the same frequency range. The likelihood
is that the frequencies that the SUs can employ would be located on separate parts of
frequency bands, probably wide apart. Also, the different frequency channels may
not all have the same properties. What it then means is that, at any given time, CRN
devices must be able and ready to communicate using different channels or channel
combinations to a heterogeneous set of devices within their vicinity [27].

In [28], the authors further explained channel heterogeneity in the CRN by stating
that the channels in the CRN may not always be identical. The channels being
different would imply that the propagation characteristics on each channel would
differ. Furthermore, different channels would most likely support different types of
data rates. Therefore, because the chances that the SUs in the CRN will have to use
multiple channels or subchannels for their communication are quite high, the SUs
in the CRN must be built to incorporate and use a heterogeneous set of radios for
their communication and service propagation.

When designing, prototyping and implementing modern CRN systems, the
aspect of channel heterogeneity must always be put into consideration. The channels
and subchannels to be employed in the CRN must be designed to be in manageable
sizes, with possible flexibility in their allocation and application, so as to achieve
near-accurate representations of the CRN. By employing some of the recently
advanced multi-carrier wireless transmission techniques, the realities of frequency
hopping and mobility in the CRN may be well-taken care of. The orthogonal
frequency division multiple access (OFDMA) and non-orthogonal multiple access
(NOMA) techniques, and their more recent variants, are some useful multi-carrier
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techniques that can be employed for achieving channel heterogeneity in modern
CRN designs.

The categories of heterogeneity thus far presented are the most common and
the most applicable heterogeneous classifications for the CRN. Table 2.1 provides
a concise summary of the various categories of heterogeneity, as applicable to the
CRN.

2.3 Technologies to Drive Cognitive Radio Network

There are a number of other modern and/or newly developing wireless communica-
tion technologies and networks that are related to the CRN one way or another, and
that would help in driving the CRN. One common denominator for all the newly
emerging technologies (the CRN inclusive), which also relates them in a way is
that they seem to all have or share a common goal. This common goal is that of
making wireless communication the driving force for seamlessly interconnecting
our developing modern cities and ultimately, the entire globe.

The drive to develop smart cities and to achieve a highly interconnected world
can only be achieved by employing the right kind of technologies. These newly
emerging technologies that are currently being developed, alongside the CRN,
are grouped together under the umbrella called next-generation (xG) wireless
communication networks. Some of the most prominent examples of xG networks
are the fifth-generation (5G) communication and beyond, such as the internet-of-
things (IoT) networks and the next-generation wireless sensor networks (xWSN). A
more detailed description of how the CRN relates to and will work well with these
other emerging technologies to achieve smart cities and a highly interconnected
world is provided in a later chapter of this book.

Importantly, the CRN and most of the other newly emerging technologies being
developed will rely on and employ some improved technology-driven wireless
communication techniques to help them achieve the level of networking required
for optimal network productivity. Some of the new techniques that are currently
being developed and implemented to drive and actualise the promises of the CRN
and other newly-emerging technologies are discussed in the concluding parts of this
chapter.

2.3.1 Cooperative Diversity and Relaying

Cooperative diversity and relaying are recent propositions for realising improved
wireless channel conditioning for new technologies such as CRN and 5G. With the
cooperative diversity and relaying techniques, cooperating users (also called relays
or nodes), though geographically dispersed, use their antennas to form ‘virtual’
multiple input, multiple output (MIMO) systems. This makes it possible for the
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cooperating users to achieve diversity gains, even though the SUs are spatially
dispersed [16].

When cooperative diversity or relaying is employed in modern wireless commu-
nication networks, cooperating users, though not in the same exact location, have
some understanding and agreement to use their antennas to assist each other in the
transmission (or retransmission) of their data to a particular destination user [29].
This is similar to conventional MIMO systems, therefore, cooperative diversity is
sometimes referred to as virtual MIMO. Cooperative diversity and relaying have
been shown to bring about a worthwhile increase in the achievable capability and
network reliability of modern wireless communication networks, particularly the
CRN and 5G networks [30].

2.3.2 Massive MIMO and Beamforming

Massive MIMO employs a high number of antennas, which are concentrated and
used together within a small space in a transmitter to transmit a given signal. At the
receiver, a large number of antennas are also used to receive multiple versions of
the transmitted signal. The multiple received signals are then combined using some
combination techniques to arrive at the best version of the transmitted signal and to
minimise the need for signal retransmission due to a poor reception.

When MIMO techniques are combined with improved beamforming techniques,
the high number of antennas is well focussed to help concentrate energy into a very
small space. The result is that both the network throughput and the efficiency of
radiated energy are significantly improved [31]. The development and implemen-
tation of modern wireless communication technologies such as the CRN, 5G and
IoT networks will depend greatly on massive MIMO and beamforming techniques.
Some of the benefits that these new technologies will derive from massive MIMO
and beamforming are network robustness, efficient use of the spectrum, energy
efficiency and improved network security [32, 33].

2.3.3 Cloud Computing

Cloud computing is one important technique to help drive modern wireless com-
munication, especially the CRN, IoT and 5G networks. The large capacities and
capabilities, fast processing speeds, etc. that the CRN and other new technologies
promise will most likely result in a massive amount of data being generated. The
low latency expectations of modern communication networks mean that the large
data that are generated have to be transmitted as quickly as possible.
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With cloud computing, provision is made for a large portion of the generated data
to be stored in the cloud. Furthermore, significant portions of the data processing
can be done in the cloud, which reduces the computational demand on the user
equipment [34]. This means that newly emerging technologies, such as the CRN
and autonomous vehicle-to-vehicle networks, will depend on cloud computing to
help store and process significant portions of their data [35, 36].

2.3.4 Orthogonal and Non-orthogonal Multiple Access

Current wireless technologies, such as LTE and LTE-Advanced, have successfully
employed orthogonal frequency division multiplexing (OFDM) and OFDMA tech-
niques, and their variants, in driving their communication. These multiple access
techniques have been shown to have promising prospects for the CRN as well.
However, as promising as these techniques are, their applicability as the ‘best’
multiplexing and multiple access techniques for the CRN and many other emerging
technologies is still in doubt.

The main challenge with OFDM/OFDMA and its variant techniques is that they
usually have the challenge of singular channel allocation. What this means is that,
each channel or subchannel can only be assigned to, and employed by, one user
at a time [37]. To address this limitation of singular channel allocation, a very
recent technique called the non-orthogonal multiple access (NOMA) technique
has been proposed. The NOMA technique is being shown to be a better access
technique for modern wireless technologies such as the CRN. This is because the
NOMA technique attempts to overcome the singular channel allocation challenge
associated with OFDMA techniques. To overcome the problem of singular channel
allocation, the NOMA technique allows multiple users to communicate concurrently
over a given resource by simply applying or following some non-orthogonal sharing
principles [38, 39].

2.4 Summary of the Chapter

To summarise this chapter, we have shown that the modern CRN must be dynamic
enough to blend into various architectural designs and must be capable of meeting
various heterogeneous needs or demands. Also, the chapter discusses some of the
newly developing technologies and new wireless communication techniques that
will all play significant part in driving the CRN and in helping it actualise its many
objectives and promises.
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Chapter 3
Spectrum Resource for Cognitive Radio
Networks

3.1 The Place of Spectrum in the Overall Cognitive Radio
Network Scheme

The CRN, alongside other modern and near-future wireless communication pro-
totypes, will be instrumental in driving global interconnectivity, especially in this
new era of smart cities and an interconnected world. Spectrum will be needed
to make the many promises and possibilities of modern wireless communication
materialise. The limitation in spectrum availability to accommodate the rising
communication prospects is one of the most challenging problems that modern
wireless communication face [1].

Without doubt, the spectrum holds a very special place and plays a highly
significant role in the overall CRN scheme. The spectrum is a fundamental part of
the CRN. Simply put, the CRN cannot exist or operate without the spectrum. There
are two aspects of the spectrum that greatly affects the operation of the CRN, which
are, spectrum sensing and spectrum utilisation. Spectrum sensing helps to identify
the spectrum opportunities that are available for the CRN. Spectrum utilisation
advances how the spectrum opportunities that have been identified are to profitably
engaged for the CRN.

The performance of the CRN is significantly affected by these two aspects of the
spectrum. Both spectrum sensing and spectrum utilisation influence the choice of the
parameters for operation in the CRN such as the modulation schemes, transmission
power, data rates and forward error correction coding rates. Actually, if the spectrum
sensing and spectrum utilisation processes are inaccurately identified and executed,
they pose very detrimental consequences to the operations of the CRN. The
consequences of inaccurate spectrum sensing and poor spectrum utilisation in the
CRN would include inefficient channel selections, preventable delays, suboptimal
throughput realisation and an overall poor performance for the CRN.

More so, it is usually the information obtained during the spectrum sensing
processes that is used for other aspects of the CRN such as channel selection, chan-
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nel prediction and resource distribution and management (the aspect of resource
allocation for the CRN is discussed in a latter chapter of the book). Therefore, if the
spectrum sensing and spectrum utilisation processes are faulty, several other aspects
of the CRN will be negatively affected. Because of its importance, therefore, the
spectrum must be given a high priority in the overall CRN scheme.

3.2 Historical Context on the Spectrum in Cognitive Radio
Networks

From an historical perspective, the spectrum has always been the most critical part
of the CRN. The foundational concepts and ideas on the CRN are generally easily
traced to the spectrum. It is greatly impossible to properly study, analyse and/or
implement the CRN without adequate reference to the spectrum. It is important to
reconsider how the CRN links to the spectrum, even as far back as the earlier works
and thoughts on the CRN’s development and evolution.

We already established in the first chapter of this book that the problem of
spectrum scarcity and underutilisation—which arose because of the inefficient
allocation and usage of the limited spectrum resource—is what birthed the CRN
in the first place. The CRN became one of the earliest and most promising tech-
nologies developed to address this problem of spectrum scarcity/underutilisation.
The CRN achieves this promise by implementing the DSA as a better and more
resourceful alternative to the poorly implemented static spectrum allocation design
that originally brought about the problem of poor utilisation and eventual scarcity
of the spectrum [2, 3].

The CRN, through the DSA, provides the platform for multiple users to jointly
access and use the same spectrum in communicating and transmitting their data.
This brings about an improvement in the overall spectrum allocation and utilisation
for the CRN. In essence, the CRN simply employs the possibilities and principles
of the DSA to establish new and improved application models that optimise the use
of the spectrum.

The foremost/foundational work on the CRN was carried out by Mitola [4].
Mitola’s original description of the content and possibilities of the CRN clearly
provides a sound historical perspective on the inseparable link between the spectrum
and the CRN [5]. More so, the description by Doyle in [6] further supports this
context. From contextual descriptions of the CRN in those works, what is clear
is that the ideal cognitive device or user in a typical CRN system must be able
to, among other things, change its frequency spectrum of operation in a dynamic
manner to access/use the spectrum spaces that are available and that are best suited
for different environments to achieve their desired communication goals.

For the above-mentioned attributes to be possible and/or achievable for the CRN,
the DSA has to be implemented for the CRN. Although, it must be said that, in the
eventual CRN design, cognitive devices or users in the CRN would not be defined
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only by their ability to access and use different spectrum spaces in carrying out
their communication or data transmission. Definitely, the cognitive devices or users
in the CRN will be much more than just spectrum hoppers. The simple point that
is being emphasised is that the CRN, by employing the newly adopted DSA, will
significantly improve the allocation and usage of the spectrum for its operation.

The inseparable link between the spectrum and the CRN shows that one
greatly influences the other. The nexus can be described this way: the CRN will
make better use of the previously underutilised spectrum; meanwhile, spectrum
exploration, availability and usage will be greatly improved by the CRN. The CRN’s
first mandate is therefore to be able to make an adequate amount of spectrum
available (by discovering sufficient spectrum holes) for practical CRN operations
and applications. Fulfilling this mandate is greatly dependent on the ability to rightly
detect or sense the spectrum holes in the network. The spectrum (through the DSA)
and the CRN are thus fundamentally intercepted and significantly intertwined.

3.3 Spectrum Sensing in Cognitive Radio Networks

Spectrum availability and usage for the CRN is greatly dependent on accurate and
adequate spectrum sensing. In many CRN designs, the secondary users (SUs) must
be able to successfully detect both the activities of the primary users (PUs) as
well as the presence of spectrum holes, before they may operate or carry out their
activities. This is achieved through spectrum sensing. Generally, SUs in the CRN use
information that they gather during the spectrum sensing process to make decisions
about their activities. This makes spectrum sensing a very crucial component or
aspect of the CRN. It is through spectrum sensing that the understanding of the
radio environment that is required for an effective CRN operation is discovered,
which makes it possible for its communication to be effectively carried out.

To achieve the most accurate and practicable spectrum sensing results for the
CRN, some spectrum sensing techniques have been promulgated and are being
implemented and applied in most CRN designs. Each technique has its own
peculiarities and challenges, as well as merits and demerits. Some of the well-known
techniques are briefly discussed.

3.3.1 Energy Detection Techniques

One of the most advanced and frequently used approaches for carrying out spectrum
sensing in the CRN is the energy detection technique. This technique has been
shown to have the lowest complexity of the approaches for spectrum sensing.
However, the approach has also been shown to be the least accurate of the spectrum
sensing approaches. With energy detection, a threshold value of signal energy value
that indicates the presence of a PU is first determined. Then, an energy detector is
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used to measure the signal strength of the PU channels at intervals. The measured
signals are compared to the threshold value and the results are used to determine
the presence or absence of a PU on those channels. The advantage of the energy
detection technique is that it does not need to have prior information about the PU
signal. Simply, a band pass filter is used to pre-filter the measured signal. The signal
is then squared and integrated over an interval of time so as to measure the amount
of energy contained within the received waveform [7].

The biggest challenge with the energy detection techniques is that they have
been argued to not be as accurate as most other spectrum sensing approaches. One
other problem with energy detection techniques is that they do not perform well
in low signal-to-noise ratio (SNR) conditions and under Rayleigh fading channel
conditions [8]. Then, when energy detection techniques are used for detecting spread
spectrum signals, they do not give a good sensing efficiency. However, their benefits
of minimal computational demand and comparative ease of implementation still
make them to be fairly accepted and widely used for spectrum sensing in the CRN.

3.3.2 Matched Filter Detection Techniques

The matched filter detection technique is another important detection technique for
the CRN. In this technique, the secondary network devices in the CRN usually have
the knowledge of some of the PU’s signalling features beforehand. They then use
this knowledge to check if a PU is present or not, and can even choose to demodulate
the actual PU signal. The matched filter detection techniques represent the most
optimum schemes for detecting PUs especially if the properties of the PUs’ signal
are well known by the secondary network devices [9]. In essence, matched filter
detection is likely to be the most accurate technique for detecting the presence of a
PU in the CRN scenario. The challenge with the matched filter techniques, however,
is that they usually suffer from impractical levels of receiver complexity [10].

With matched filter detection techniques, the level of complexity required at the
secondary network is usually difficult to meet in practical CRN designs. This is
because, the foreknowledge of the signalling features of the PUs that the secondary
network devices will be required to have will be quite enormous. More so, the
secondary network devices must be capable of demodulating a number of different
signal types. Thus, large samples of PU signals will be required to determine
whether a specific band is occupied or free. The large number of samples required
becomes an inherent limiting factor and, as a result, small periods of band usage
cannot be sufficiently analysed. This is where the issue of the unrealistically high
demands of receiver complexity arise from. This also poses a practical limitation on
the time it will take to set up a network connection, which is a serious challenge for
the CRN.
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3.3.3 Cyclo-stationary Feature Detection Techniques

The cyclo-stationary feature detection technique is another technique that is well
used for spectrum sensing in the CRN. This technique employs certain features of
the PU signal that varies in a cyclic manner to determine whether a PU is present
or not. Furthermore, some statistical attributes of PU signals, especially the mean,
variance and autocorrelation of the signal, are used for detection purposes. Then,
the presence of noise is distinguished from the actual modulated signals by using
the fact that noise is stationary in a wide sense. This fact can also be used to separate
one PU signal from another. The distinction in signals can be achieved by studying
the cyclic spectral density function of the PU signals. Thus, the cyclo-stationary
feature of each signal is used to simply distinguish between noise and a PU signal,
and/or between two or more different PU signals [11].

The advantage that cyclo-stationary feature detection techniques have over other
techniques for spectrum sensing in the CRN is that they are quite useful in situations
when the amount of noise in the system is not pre-known. Therefore, the cyclo-
stationary detection techniques have the advantage of working well even when noise
and channel attenuation in the network are somewhat high. The challenge with these
techniques, however, is that the sampling rate requirement is usually high. This may
result in huge computational demand, which may make them impracticable in some
instances and scenarios of the CRN.

3.3.4 Waveform-Based Sensing Techniques

One other technique of spectrum sensing that is well used in the CRN is the
waveform-based sensing technique. This technique is best employed if the SUs
are fully aware of the waveform patterns of the PUs. The SUs can then correlate
the waveform patterns of the PUs with their own measured signals to determine
whether or not a PU is available [12]. A number of non-statistical patterns may be
used to carry out the comparison. The pilot symbols that have been sent, spreading
sequences, and other known sequences such as preambles and mid-ambles, are some
examples of patterns that may be compared in determining whether a PU is present
or not.

As an example, an empirical model that utilises two different sensing strategies
in the 802.11b wireless local area network (WLAN) frequency band was proposed
in [13]. This type of waveform-based sensing exploits the two states of a channel
(occupied or free) to identify spectrum opportunities using a priori knowledge of the
transmission scheme of the PUs. Another waveform-based sensing technique, which
has been implemented in hardware, uses some ultra wide band (UWB) devices in
the worldwide interoperability for microwave access (WiMAX) band to detect and
avoid WiMAX devices in some specific areas with strict regulatory status [14].
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Performance evaluations of waveform-based sensing have been well conducted
with respect to interference estimation and have been shown to be quite useful.
One advantage that waveform-based detection techniques have over most other
techniques for spectrum sensing is that they have short sensing times. However,
the major challenge with waveform-based sensing techniques is that they usually
have to cope with issues related to synchronisation, which potentially limits their
applicability in CRN designs.

3.3.5 Radio Identification Sensing Techniques

Another technique being used for spectrum sensing in the CRN is by radio identi-
fication. In this case for radio identification sensing, the presence of a PU may be
detected by simply considering the type of transmission technology that PU is using
to transmit its signal. We know that most transmission technologies (Bluetooth,
ZigBee and others) have unique features that distinguishe one from another. In
the radio identification sensing techniques, feature extraction and classification
techniques are used to identify the presence of some known transmission techniques,
thereby establishing the presence of PU communication through such technologies
[15]. Some of the features of a transmission technology that may be identified and
employed to determine the presence of a PU include the amount of energy detected
in a signal, the channel bandwidth and centre frequency of a signal or some other
statistical information of the signal that is being measured.

With radio identification sensing techniques, the extracted features from a
received signal are used to determine and select the most probable PU technology
present, and also to determine if that technology can conveniently accommodate the
SUs in a possible CRN setup. It has been suggested that radio identification-based
sensing may provide improved accuracy over most of the previously mentioned
methods of detecting PU signals in the CRN.

3.3.6 Techniques that Employ Multiple Antennas

In performing spectrum sensing for the CRN, the use of multiple antennas is
another method that has been investigated in literature. In this case, time and spatial
correlation between multiple received signal versions are exploited in determining
the presence or absence of a PU [16]. If we assume M > 1 receiving antennas
and flat fading channel conditions, then some well-known multiple input multiple
output (MIMO) techniques may be used for the suboptimal combining of multiple
received signals, and in ascertaining the PU’s presence in the network [17, 18].
Some examples of MIMO combining techniques that have been well used are the
maximum ratio combining (MRC) and equal gain combining (EGC) techniques.
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When combining signals in a MIMO design, to help realise the best performance
in the spectrum sensing activity for CRN using multiple antennas, the goal should
be to maximise the signal-to-noise ratio (SNR) of the combined signal at the
receiver end of the network [19]. This goal can be achieved by using the best or
most appropriate combining technique for the network design. The challenge of
complexity and possible interference are generally associated with the spectrum
sensing techniques that require the use of multiple antennas.

The sensing techniques discussed in this section are the most referred to and/or
the most employed techniques for sensing spectrum opportunities in possible CRN
scenarios. We do not claim that it is an exhausted list as there may be a number
of other equally good techniques that have not been mentioned which are being
investigated and propagated for achieving spectrum sensing in the CRN. In practical
CRN designs, the important goal would be to be able to identify the ‘best’ technique
that suites each need and apply such technique for achieving the desired level of
spectrum sensing and accuracy in the CRN.

3.4 Problems Associated with Spectrum Sensing in Cognitive
Radio Networks

Depending on the expectations or requirements of the CRN design, any of the
techniques already discussed (usually the one deemed to be the most appropriate or
most beneficial for the CRN design) can be successfully employed and/or deployed
for carrying out spectrum sensing in a typical CRN system. However, none of the
individual spectrum sensing techniques guarantees an always accurate outcome. The
inaccuracies in the outcome of the spectrum sensing activities are usually as a result
of incorrect decisions on the status of the particular band being sensed. The causes
of such misjudgements on the status of the frequency bands have been linked to
some problems associated with spectrum sensing. The most pronounced problems
of spectrum sensing are identified as the hidden node problem, the problem of
shadowing, the problem of multipath fading and the problem of receiver uncertainty
[8, 20].

3.4.1 The Hidden Node Problem

The hidden node problem is one of the problems that could make the spectrum
sensing activities in the CRN to be inaccurate. With the hidden node problem, there
is a particular node (SU, for instance) in the network that is located at such a position
or distance that its sensing range does not cover the location of the PU. This means
that the PU is not in the SU’s sensing range, and thus, the SU does not ‘see’ the PU.
As a result, the SU is completely unaware of the fact that the PU is transmitting its
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signals on the PU’s channel. The SU therefore senses the absence of a PU on that
channel and chooses to transmit its signals, whereas the PU is actually occupying or
using the supposedly free channel, causing significant interference to the PU.

3.4.2 The Problem of Shadowing

Shadowing is another problem that could make the spectrum sensing activities in the
CRN to be inaccurate. In the shadowing problem, even though the PU is within the
sensing range of the SU, the signal transmitted by the PU transmitter does not reach
the SU because of the effects of shadowing caused by the high-rise buildings that
is in between the PU and the said SU. The authors in [20] discussed the effects of
shadowing on spectrum sensing for the CRN. The authors explained that shadowing
may cause the SU to be blocked from the PU’s signal if there are high-rise buildings
between them. The shadowed SU determines that the PU’s channel is free, whereas
the PU is transmitting its signals on that channel. The SU may then attempt to
transmit on the PU’s channel, causing significant interference to the PU.

3.4.3 The Problem of Multipath Fading

Multipath fading is one other problem that could make the spectrum sensing
activities in the CRN to be inaccurate. With multipath fading, the signals that are
transmitted bounces off nearby buildings and vegetations, causing reflection and
scattering of such signals. As a result, multiple attenuated versions of the original
signals get to the SU, making it difficult for the SU to correctly detect the PU’s
original signals. The effects of multipath fading on spectrum sensing outcomes
were also discussed in [20]. Because of the multipath effect, the SU may struggle
in determining correctly whether the signals it receives are from the PU or are from
some other sources. It may or may not decide to transmit because of these extraneous
signals, making the probability of error in its sensing outcomes higher than it should
have normally been.

3.4.4 The Problem of Receiver Uncertainty

The problem of receiver uncertainty could also result in poor sensing outcomes
for the CRN. In this case, a particular SU, even though it is located within its own
secondary network, is just at the boundary of the range of the PU transmitter. The SU
is then unsure of and/or cannot properly determine whether the PU is transmitting or
not, thus suffering the problem of receiver uncertainty. The problem with receiver
uncertainty is that if the SU chooses to transmit, it could interfere with the PU



3.5 Determining Sensing Accuracy 37

receiver. The possible effect of receiver uncertainty on spectrum sensing outcomes
was also demonstrated in [20]. Due to the SU’s position, which is just outside the
PU’s range, if the SU decides to communicate using that particular channel of the
PU, the interference caused to the PU could be beyond the acceptable interference
threshold, casting reasonable doubts on the sensing outcomes for the CRN.

3.5 Determining Sensing Accuracy

Given that is it possible for errors to occur in the sensing activities for the CRN, it
is imperative to always check the accuracy of the spectrum sensing outcomes and
results as they occur. To determine whether the spectrum sensing outcomes in the
CRN are okay or not, the accuracy of the results from spectrum sensing activities is
usually measured by using a simple binary hypothesis. In the hypothesis, a channel
that is unoccupied or free is represented as H0, while a channel that is occupied is
represented as H1. The parameters H0 and H1 are given by:

H0 : a(n) = w(n), (3.1)

H1 : a(n) = b(n) + w(n), (3.2)

where a(n) is the signal that is measured during the spectrum sensing activity,
b(n) is the actual signal that was transmitted and w(n) denotes the additive white
Gaussian noise. Therefore, s(n) = 0 when a PU is not using a channel. In other
words, |s(n)| > 0 whenever the PU is available and/or occupying its channel or
subchannel.

Using the energy detection technique as an example, we denote the absolute
energy measured for a(n) by X. Then, a binary occupancy decision D can be made
by comparing X to a noise threshold λ, such that:

D =
{
1, X > λ

0. otherwise
(3.3)

It is important to always have accurate spectrum sensing results, if the CRN is to
achieve the level of performance that is desired for the network. Therefore, spectrum
sensing must be carried out with the sole aim of achieving the most accurate
outcome possible for the CRN that is designed. Spectrum sensing performances
are characterised by two performance measures: the probability of detection Pd and
the probability of error Pe. These measures are defined as follows:

Pd = Pr {X > λ | H1} , (3.4)

Pe = Pmd + Pf , (3.5)
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where Pmd = (1 − Pd) is the probability of misdetection and Pf is the probability
of false alarm. The probability of sensing a frequency space to be unoccupied and
available when it is actually occupied by a PU is referred to as the probability of
misdetection. The probability of sensing a channel to be unavailable because it is
occupied by a PU when, in actuality, that channel is free or unoccupied by the PU
is referred to as the probability of false alarm. Pf is given as:

Pf = Pr {X > λ | H0} . (3.6)

The parameters Pmd , Pf , Pd and Pe are all critical in the determination of the
accuracy of sensing outcomes in the CRN. When performing spectrum sensing, for
the best sensing outcomes and results, the goal is always to minimise Pe and to
maximise Pd .

3.6 Cooperative Spectrum Sensing in Cognitive Radio
Networks

The problems of possible misjudgements in sensing outcomes in the form of
misdetections and false alarms, which are usually caused by the effects of the hidden
node, shadowing, multipath, etc., can significantly limit sensing results and render
sensing outcomes inaccurate, unreliable and/or unusable. To achieve better sensing
outcomes, therefore, collaborative or cooperative approaches to spectrum sensing
has been proposed to give improved results in sensing outcomes than any and/or
all the sensing techniques already discussed. In other words, cooperative sensing
techniques are more beneficial in that they are able to achieve better outcomes in
the overall spectrum sensing activities than any of the spectrum sensing techniques
employed by themselves alone.

3.6.1 Benefits of Cooperative Sensing

In cooperative sensing, by some agreement, the information gathered on the sensing
outcomes of each SU are shared with other SUs. As a result, significant reductions
in the probabilities of error (misdetection and false alarm) are realised. Furthermore,
when cooperative sensing is employed, spectrum sensing results can be improved
further by exploiting frequency, space and/or time diversities. The gains as a result
of employing cooperative spectrum sensing are mainly experienced in the form of
significant improvements in the accuracy of PU signal detection and an increase in
the agility of the secondary network.

With cooperative sensing, more than one sensing nodes cooperate to sense the
presence of PU signals and/or a free spectrum. Thus, the concepts of cooperative
probability of detection Qd and cooperative probability of false alarm Qf have
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been postulated. Assuming the use of the k-out-of-N fusion rule (this is the most
frequently employed hard decision fusion rule for combining multiple units of an
entity), the probabilities Qd and Qf may be defined as:

Qd = Pr

{
N∑

i=1

Di ≥ k | H1

}
, (3.7)

Qf = Pr

{
N∑

i=1

Di ≥ k | H0

}
. (3.8)

In the extreme case where the k-out-of-N rule results in an OR decision (in which
case, k = 1), Qd and Qf become:

Qd = 1 −
N∏

i=1

(1 − Pd,i), (3.9)

Qf = 1 −
N∏

i=1

(1 − Pf,i). (3.10)

Similarly, in the extreme case where the k-out-of-N rule results in an AND
decision (in which case, k = N ), Qd and Qf become:

Qd =
N∏

i=1

Pd,i , (3.11)

Qf =
N∏

i=1

Pf,i . (3.12)

The values of the probabilities Qd and Qf have been shown to be improved (Qd

is higher and Qf is lower) when cooperative sensing is employed than by the use of
any of the non-cooperative sensing techniques earlier discussed.

3.6.2 The Cost of Cooperative Sensing

The benefits of cooperative sensing are the immediate and definite improvements in
the correct detection of PU signals and less misjudgements due to misdectections
and false alarms. However, these benefits of cooperative sensing are not without a
cost. When cooperative sensing is employed, the complexity of the CRN becomes
higher and network algorithms become more challenging to develop and analyse.
More so, with cooperative sensing, the process of identifying whether a PU is
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present or not may result in significant time delays, especially if there is poor
synchronisation of the reporting process of the SUs. Again, cooperative sensing
requires more energy than non-cooperative sensing. This is because, in cooperative
sensing, energy is required not only to drive the process of spectrum sensing by
individual SUs, but also for each SU to report the outcomes of their spectrum
sensing endeavours for cooperative decisions to be reached on the presence or
absence of a PU.

Further, there are usually security concerns when cooperative sensing is
employed for spectrum sensing. The security issues associated with cooperation
are primarily due to incorrect reporting of local spectrum sensing results by some
individual SUs. Generally, SUs that give false reports are either malicious or have
malfunctioned. If not properly handled, they can negatively influence the overall
cooperative decision of the CRN system.

3.6.3 Techniques for Cooperative Sensing

In cooperative spectrum sensing for the CRN, two techniques are prominently
employed which are the data fusion and the decision fusion cooperative techniques.
In the data fusion technique, the SUs cooperate by sending their sensed information
to a central processing unit or fusion centre where decisions on the spectrum are
made and communicated to each SU in the network [21]. The data fusion technique
is a centralised cooperative sensing approach. In the decision fusion technique,
multiple users perform their spectrum sensing independently but share their results
with other neighbouring SUs. The output from the collective SUs is received by each
individual SU and used for their final decision making on whether or not a PU is
available and using its channels [22]. The decision fusion technique is a distributed
cooperative sensing approach.

Finally, decision making during cooperative spectrum sensing can be by soft
combination (some examples of soft combining are the maximal ratio combining,
the optimal combining or the equal gain combining techniques) or by hard
combination (some examples of hard combining are by the use of linear fusion rules
or the majority rules of combining). The soft combination approaches for cooper-
ative spectrum sensing generally achieve better results than the hard combination
approaches in decision making activities for the CRN [23].

3.7 Spectrum Prediction for Cognitive Radio Network
Applications

As already explained, spectrum sensing is very critical to a successful CRN
implementation. In the previous sections, the most promising spectrum sensing
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techniques for the CRN have already been discussed. However, all the spectrum
sensing techniques and approaches (both the non-cooperative and the cooperative
techniques discussed) still have some significant limitations and drawbacks that
could potentially negatively affect their sensing results.

One of the greatest limitations of spectrum sensing is that some significant
amount of time is spent to perform the spectrum sensing activities. This reduces
the overall time available for use to carry out actual data transmission. Another
important drawback of spectrum sensing in the CRN is that, with spectrum sensing,
the overall power consumption of the SUs are increased. To help improve spectrum
sensing outcomes and make the effort well worthwhile, therefore, new and improved
models for spectrum sensing that address the limitations of spectrum sensing are still
required.

To address some of the most significant drawbacks of spectrum sensing in the
CRN, the concept of spectrum sensing prediction has been recently advocated.
The main idea of spectrum sensing prediction is that, if it were possible to make
accurate predictions about the future activities of the PUs, then we may reduce the
total amount of time being spent on spectrum sensing by simply using some of
the predicted results of PU activities [8]. Another important advantage of spectrum
sensing prediction is that, if the behaviour of PUs are accurately predicted, it will
help to make proactive decisions on the channels for the CRN. The process of
selecting channels in the CRN can be significantly improved by employing accurate
sensing prediction models [24].

In order to make accurate predictions on the future spectrum occupancy of the
PUs, the SUs have to first gather sufficient information about the traffic patterns
of the PUs. The data generated from the information about the traffic patterns of
the PUs can then be used to model or predict the behaviour of the PUs. Predictive
models that can be used in predicting PU behaviours can be classified into three
categories namely, the artificial-intelligence-based models, the linear models and
the statistical and moving-average-based models.

3.7.1 Artificial Intelligence Models

It must be stated that the process of predicting the spectrum occupancy activities
of PUs can be a very difficult and complex process. One of the methods that have
been proposed to achieve the prediction of the spectrum activities of PUs is by the
use of various artificial intelligence techniques. Some artificial intelligence models
that have been proposed are neural networks, the use of support vector machines,
Markov chains and hidden Markov models.

For neural network models, artificial neural networks can be employed for
spectrum occupancy predictions in the CRN, such as in [25]. An artificial neural
network is an adaptive and non-linear model which makes use of an interconnected
network of artificial neurons to map an input data to an output data. Specific
mathematical or computational models are then used by the neurons to process
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the information obtained from the mapping exercise. Artificial neural networks
have some advantages over other prediction models. For instance, unlike statistical
methods, artificial neural networks do not need a priori knowledge of the actual
statistical distributions of PU activities in order to make predictions [26]. However,
the major problem associated with artificial neural networks is that it can be tedious
process to train the model before accurate predictions can be achieved.

The support vector machine models perform spectrum prediction in the CRN by
combining empirical mode decomposition models with support vector regression
models [27]. To perform regression estimations, support vector regression models
employ support vector machines and use the principle of structural risk minimisation
in determining possible outcomes of such estimations, which can be used in
predicting the activities of the PUs.

The Markov chain and hidden Markov models are designed on the basis that if
it is possible to use a sequence of binary states to describe whether a channel is
occupied or not, then we can model the presence or absence of a PU on a particular
channel by a simple two-state Markov chain [28]. With the two-state model, if no
PU is present, the OFF state is activated. If a PU is present, the ON state comes to
play. We may then assume that there is a statistical relationship between the PU’s
past occupancy state, its present state and its future state. Further still, since we
know that it is not impossible to record errors in the spectrum sensing outcomes,
the probability of getting wrong predictions in the results of the PU state must
be incorporated. To achieve this, the Markov chain approach can be extended to
using the hidden Markov models. The hidden Markov models ensure that an error
probability is assigned to each PU state, thereby mitigating the effects of error in the
results of the prediction outcomes [29].

3.7.2 Linear Models

The linear models are relatively more simplistic than other models, which gives
them a competitive advantage over the other models for predicting PU activities in
the CRN. The linear models are based on correlation, auto and linear regressions
and least squares. Some linear models that have been employed in predicting PU
activities in the CRN are the normalised least mean square algorithm models [30,
31], the logistic regression models [32], the linear regression models incorporated
with binary time series analysis [33], the linear regression models incorporated
with correlation analysis [34], the autoregression models [35] and the recursive
least squares algorithm models [36]. Each of these models have their peculiars
characteristics, advantages and shortcomings.
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3.7.3 Statistical Models

Statistical models are also being used for predicting PU activities in the CRN [37].
Most statistical methods that have been employed for predicting PU activities in the
CRN are usually based on either the exponential distribution approach or the simple
nearest neighbour approach. In the exponential distribution approach, channel
occupancy of PUs are modelled using independently exponentially distributed
processes of network activities [38]. In the simple nearest neighbour approach, the
channel occupancy state of PUs is determined by comparing the measured signal to
a predetermined threshold signal value [39].

3.8 Cooperative Spectrum Prediction for Cognitive Radio
Network Applications

We have established in a previous section that, for the CRN, cooperative spectrum
sensing approaches achieves better sensing results than most other non-cooperative
spectrum sensing approaches. A good and logical progression would then be to
also consider cooperative spectrum prediction for the CRN. Cooperative spectrum
prediction would imply that the activities of the PUs can be predicted collectively
or in a cooperative manner by the SUs in the CRN. The underlying premise for
cooperative spectrum prediction is that, since it is possible to improve the spectrum
sensing process and results by employing multiple SUs in the sensing activities, then
it is possible to achieve better accuracy in the prediction process and results of the
PU activities in the CRN if the SUs also collaborate to carry out the prediction.

Cooperative spectrum predicting has its challenges too. One main problem
that comes up with cooperative spectrum prediction in the CRN is the additional
computational complexity of the system due to the predicting process being incor-
porated. Of course, we understand that accuracy and timeliness are two important
qualities that define how successful the prediction outcomes of PU activities are.
Consequently, for cooperative spectrum predicting to be practicable for the CRN,
models that are computationally less demanding, but yet fairly accurate in the
prediction of PU activities, are required. One such model is developed in [8].

The cooperative spectrum prediction model developed in [8] uses both a forecast
engine and a fusion centre to achieve near-accurate prediction of future activities of
the PUs. The forecast engine predicts the future patterns and behaviour of the PUs.
The fusion centre combines the information from cooperating obtained by the SUs
to make the right decisions on the activities of the PUs.

In the model developed in [8], each SUs perform their own spectrum sensing and
make their own decisions about the activities of the PUs. Each SU then performs
predictions based on the future availability of a channel. Information is collected
and collated from the different SUs on their presumed activities of the PUs. The
information fusion principle is then used to make a collective decision on the future
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availability of the channel. The results showed that cooperative spectrum prediction
provides greater accuracy than single spectrum prediction. The results are more
pronounced at instances when individual SUs have poor channel conditions and
had to make predictions on the activities of the PUs under such conditions.

3.9 Practical Examples of Recent Campaign Efforts on
Spectrum Availability

We have discussed some of the new and modern attempts by which the outcomes
of spectrum sensing endeavours can be improved, particularly by cooperation,
prediction or both. These investigations are all geared towards making more
and more spectrum available for new technologies. Spectrum improvement is
achieved by addressing the problem of spectrum scarcity and revealing spectrum
opportunities to help drive newly-evolving wireless networks, such as the CRN.

In this final part of the chapter, we provide some classical examples of mea-
surement campaigns on spectrum usage and availability that have been carried
out in recent times. The spectrum campaign examples provided are to buttress all
the points that have been clearly articulated, which are the current inefficiencies
in spectrum allocation and usage, the potentials that the spectrum offers when
such inefficiencies are eradicated, and how those potentials can be fully harnessed,
especially through new technologies such as the CRN.

It must be noted that almost all the reports on spectrum measurement campaigns
that are available suggest that most of the campaigns have been carried out in the
more technologically-advanced countries of the world. The main goal of the various
measurement campaigns on the spectrum has been to study the usage patterns of
the spectrum, and to discover and expose areas or portions of the spectrum that
are being underutilised and, by extension, that could be made available for possible
utilisation by the newly-emerging networks such as the CRN. Some good examples
of such measurement campaigns around the world on the spectrum and its utilisation
patterns, challenges, etc. are found in references [40–43].

Even though there seem to be a fairly sizeable amount of measurement cam-
paigns on the spectrum being carried out in the more technologically-advanced
countries of the world, in contrast, the general knowledge on spectrum occupancy
in Africa is still very poor. To fill this knowledge gap, a number of campaigns on
spectrum occupancy in several parts of Africa are recently being undertaken. Two
clear examples of such campaigns in Africa are recent works carried out in the
SENTECH Laboratory at the University of Pretoria (this is the authors’ research
laboratory). These research works have been well reported in references [44] and
[45]. These two campaigns are briefly discussed in this section of this chapter.
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3.9.1 Spectrum Measurement Campaign on the UHF and
GSM Bands

The research project carried out in [44] was specifically to help bridge the wide
research gap on spectrum usage measurements in Africa. In the research project,
a sizeable amount of information on the degree of occupancy of some spectrum
bands in South Africa was collected over a relatively wide frequency rage and,
for long time periods, through a mobile autonomous system. Furthermore, the
research project developed and used a modular hardware system and a special
software environment to measure the degree to which these commercial bands in
South Africa are being utilised. The particular frequency bands of interest in the
campaign were the ultra-high frequency (UHF) and the global system for mobile
communications (GSM) bands. The campaign took sufficient measurements on the
UHF (470–854MHz) band, the GSM 900 downlink (935–960MHz) band and the
GSM 1800 downlink (1805–1880MHz) band.

A period of 6 weeks was used for the measurement campaign. Over this period
of time, the well-developed energy detection technique was employed to carry out
continuous data collection in Hatfield, Pretoria, South Africa. The GPS coordinates
of the measurement site are S 250 45′ 11′′ and E 280 13′ 42′′. The actual site
where the measurements were taken is the Hatfield campus of the University of
Pretoria. The campus is typically an urban area with a significant amount of student
presence. There are lots of office spaces/blocks, sales shops, business premises,
primary and secondary schools and student accommodations in the surrounding area
of the measurement site.

For the campaign to be successful, noise signals must be properly separated from
the actual signals being measured. The authors developed a maximum normal fit
method to achieve this. This maximum normal fit method developed by the authors
extracts the component that carries information in a signal from the component
that is noise, and uses this information to calculate how occupied the bands are,
or how much of the spectrum is being employed at any given time. The authors then
compared the results they gathered on the degree of occupancy of the particular
bands that were measured with the results from other measurement campaigns from
around the world. Some interesting results of the campaign in comparison with the
results of other similar campaigns from around the world were reported and well
documented.

One of the interesting results from the measurement campaign was that only
about approximately 20% of the UHF band was being occupied. However, that
percentage of occupancy remained fairly constant and continuous over long periods
of time. For the GSM 900 MHz band, the level of occupancy was at approximately
92%, a much higher value than the value obtained for the UHF band. For the GSM
1800 band, the level of occupancy was measured to be at approximately 40%. From
the results of the campaign, a significant difference between the occupancy patterns
of the UHF and the GSM bands was observed. While the UHF band had an almost
constant occupancy pattern, the occupancy patterns of the GSM 900MHz and
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1800MHz frequency bands fluctuated, depending on the time of day. Fluctuations
of about 10% was recorded for the GSM 900MHz band, while fluctuations of about
20% was reported for the GSM 1800MHz band. More so, over the days of the week,
slight variations of between 1% and 3% were also reported for the GSM 900MHz
and the GSM 1800MHz bands, respectively.

The final analysis of the results obtained from the spectrum occupancy efforts of
[44] examined how the results compare with similar results of the spectrum occu-
pancy measurements from other parts of the world. The comparison indicates that
the occupancy for the UHF and GSM bands in South Africa vary, to some degrees,
when compared with the results from other countries. The most important discovery
from the campaign is that, in South Africa, there is a high level of underutilised
spectrum. This is most likely to be true for many other African countries as well,
since South Africa is one of the most technologically advanced countries in the
continent. Importantly, this underutilised spectrum, if well exploited, can help drive
the realisation of new technologies such as the CRN.

3.9.2 Spectrum Measurement Campaign on the TV Broadcast
Bands

Most countries in the world have either switched completely or are on the verge
of switching over from analogue to digital television (TV) broadcasting. Most
countries that are yet to make the complete switch from analogue TV to digital
TV do already have target dates by which such complete switch are expected to be
completed. A complete switch from analogue to digital TV will provide spectrum
regulators the opportunity to accommodate newly emerging technologies such as
the CRN. The spectrum bands that will be freed up as a result of this analogue-to-
digital switch are called the TV white spaces (TVWS). The TVWS will represent
the parts (sizeable, of course) of the spectrum in the very high frequency (VHF)
and ultra-high frequency (UHF) bands that will become available for use when the
analogue-to-digital switch is complete.

The work in [45] studied the potential TVWS opportunities for South Africa. The
motivation behind the campaign is the need to discover portions of the spectrum
that will become available for potential use by new technologies such as the CRN,
when TV becomes fully digitalised in South Africa. In the campaign, three different
mechanisms were employed to compare the spectral opportunities that would accrue
from TV digitalisation in South Africa. The mechanisms were some localised
spectrum measurements obtained by the measurement platform developed in [44],
actual spectrum assignments that was carried out by the South African spectrum
regulator [46] and a locally built and readily available static geolocation database
that was developed from standard wireless propagation models [47].

In the campaign, the authors used the measurement system developed in [44] to
take appropriate measurements of the power spectrum of the broadcast TV bands.
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The measurements were carried out at six different locations on the Hatfield campus
of the University of Pretoria, South Africa. Measurements were taken on the UHF
band (470–854MHz) and the VHF band (174–254MHz). A frequency resolution of
500 kHz was used to take the measurements. This meant that 500 consecutive time
samples were taken in each minute. This was done every minute for a 1 h period.

The report of the campaign in [45] revealed that there are numerous spectrum
opportunities through the TVWS. In fact, in some locations, free spectrum spaces
worth between 216 and 376 MHz were identified. When the results obtained from
the campaign were compared with the results of similar measurement campaigns
from other parts of the world, the results from the campaign correlated with the
comparative results from similar works in other parts of the world. This strongly
validates the campaign process.

3.10 Summary of the Chapter

To summarise our discussions in this chapter, we have shown and emphasised that
the spectrum, being an integral component of the CRN, must be well-sourced (or
sensed) for optimal opportunities and applications. There are indeed opportunities
with the spectrum, and several spectrum measurement campaigns in Africa and
other parts of the world confirm this. The concepts of cooperative sensing and
predictive sensing are recent but vital tools that will definitely help to make sufficient
spectrum available for practical CRN realisations.
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Part II
Resources to Drive Cognitive Radio

Networks

Even though the spectrum has been rightly adjudged to be the most significant
resource for cognitive radio networks, there are several other resources that are
almost equally essential for an effective and efficient cognitive radio network
realisation. The optimal allocation and usage of the spectrum, in combination with
all the other network resources for cognitive radio networks, form the important
backbone on which this emerging technology can thrive.



Chapter 4
Resource Optimisation Problems in
Cognitive Radio Networks

4.1 Complementary Resources for Cognitive Radio Network
Applications

In the previous chapter, the spectrum was identified as the most important resource
for the successful rollout of most of the modern and newly-evolving next-generation
(xG) wireless technologies, especially the cognitive radio networks (CRN). How-
ever, the spectrum is not the only and/or exclusive resource on which these
technologies depend. In other words, alongside the spectrum resource, there are a
number of other very important resources that have to be considered for a successful
CRN implementation. The mostly-referred and highly-used resources for the CRN,
alongside the spectrum or frequency band, are the bandwidth, modulation schemes,
subchannels or subcarriers, time slots, transmission power and the bit or data rates.

Thus, apart from the spectrum, the above-mentioned resources for the CRN are
equally needed for and used up in CRN applications. These network resources,
alongside the spectrum, jointly form the strong backbone that supports the oper-
ations of the CRN. A CRN system may still not be optimally operated if one or
more of these other resources are not available or if they are poorly administered,
despite the presence of the requisite spectrum resource. Hence, the appropriate CRN
models must jointly consider these resources, alongside the spectrum resource, to
be able to fully study, analyse and implement the CRN.

Just like the spectrum, the other resources in the CRN are also scarce, limited and
generally unavailable. Hence, when developing the CRN, mechanisms by which the
limited and scarce resources of the CRN would be assigned, administered, appro-
priated or allocated so as to realise the utmost productivity must be incorporated
in the design of the CRN. In essence, therefore, the discussion in this chapter on
resource allocation, administration and management in the CRN is very crucial for
its development, its operation and its eventual rollout.
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4.2 Resource Allocation in Cognitive Radio Networks

The concept of resource allocation (RA) in CRN covers all aspects of resource (spec-
trum and others) sharing, distribution or administration for optimal productivity in
the CRN. Actually, RA is not exclusive to the CRN. In reality, the concept of RA
has been a core part in the design and application of most wireless communication
networks. For instance, the concept of RA has been actively researched for
orthogonal frequency division multiple access (OFDMA) wireless networks, such
as the 4G and LTE-Advanced networks, and for several other conventional and
currently operational wireless communication systems.

Since the OFDMA and its newer variants are being actively considered as viable
techniques for the CRN, it is important to carefully examine RA concepts and
models for OFDMA-based systems. There are already a good number of useful
research works on RA in OFDMA-based networks. Readers with keen interest
on RA for OFDMA-based systems may consult these references for an in-depth
exploration of RA in OFDMA networks [1–7].

Particularly, the study of RA in the CRN is a very critical area of research.
In fact, the study of RA is much more important in the CRN than in many other
types of wireless communication. The reason is that, unlike in most other wireless
communication designs, in the CRN, a primary network must work alongside with
a secondary network. Both networks depend on the scarce network resources to
drive their communication process. As a result, the problem of resource scarcity in
the CRN is much more pronounced than it is in most other wireless communication
systems. To reinstate this fact, the important point being stressed is that, in the CRN,
both the primary network and the secondary network have some form of right or
access to the already scarce resources for the system, making the resources in the
CRN to be much more limited and very problematic to allocate or share.

4.3 Resource Allocation Problems in Cognitive Radio
Networks

As previously mentioned, when we talk about RA in wireless communication
systems, we are essentially talking about the means by which the limited or scarce
resources of a particular wireless communication network of interest can be well
administered to achieve optimal results. Again, RA problems are very common
problems and they are not peculiar to the CRN. For the CRN, particularly, ‘RA
problems in the CRN’ are the problems that arise in the process of seeking the
means to best allocate the limited and scarce resources of the CRN fairly and
favourably to all the primary and secondary network users or devices, in order to
achieve the desired goals of the CRN. The important resources of the CRN have
already been identified as the spectrum, subchannels, time slots, bit rates, frequency
band, modulation schemes, transmission power, bandwidth, data rates and others.
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To help describe the RA problems in the CRN, we again consider how RA
problems in wireless communication systems have been described. Generally, RA
problems in wireless communication systems, such as the OFDMA-based networks,
have been classified into two main groups, which are the rate adaptive resource
allocation (RARA) problems and the margin adaptive resource allocation (MARA)
problems [4]. When a RA problem is developed as a RARA problem, in most
occasions, the objective is to maximise a given function of the throughput, data
rates, fairness, etc. of the primary users (PUs) and/or the secondary users (SUs)
in the CRN, with a limited maximum transmission power at the primary and/or
secondary base station(s) of the CRN. There are a good number of researchers that
have employed the RARA approach to develop and solve their RA problems in
wireless communication networks. Some important examples are [8–10].

When a RA problem is developed as a MARA problem, in most instances, the
objective is usually to minimise the total transmission power of the network, all the
while making sure that the demands of all primary and secondary network users
in terms of data rates, throughput, fairness, etc. are all met. Also, there are a good
number of researchers that have already employed the MARA approach to develop
and solve their RA problems in wireless communication networks. Some important
examples are [11–13].

In recent times, there have been useful adaptations of both the RARA and
MARA approaches that were originally developed to address RA problems in
wireless communication systems to now help in analysing and addressing RA
problems in the CRN as well [14, 15]. By adopting these approaches, it makes it
much easier to classify RA problems in the CRN. If this classification approach is
well adopted for the CRN, it implies that we may broadly classify RA problems
in the CRN into two categories, namely RARA-CRN problems and MARA-CRN
problems.

While the adaptation of the RARA and MARA classifications of the RA
problems in the CRN is a good development for studying and analysing the
problems, it must be noted, however, that the RA problems in the CRN are a
lot more complex and difficult to analyse and solve than in most other wireless
communication systems, such as the OFDMA-based networks. Several useful
reasons can be given to buttress this position. The first and very significant reason
for the unusual difficulty in the RARA-CRN and MARA-CRN problems is that the
spectrum, bandwidth and frequency bands that are available for use in the CRN are
never constant, but rather they are always fluctuating [16].

The second and equally important reason for the unusual difficulty in the RARA-
CRN and MARA-CRN problems is the extra complexities involved in considering
the CRN as a heterogeneous system. Even though it is the more realistic CRN
consideration, designing the CRN to be heterogeneous poses a great deal of
challenge. In such heterogeneous CRN designs, the communication infrastructure
should be able to service more than one user or user categories at the same time, on
different channels, using different standards and technologies [17, 18]. This makes
the CRN to become very complex and difficult to analyse, study or implement.
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The third reason for the unusual difficulty in the RARA-CRN and MARA-CRN
problems is the challenge of interference. Indeed, there has to be interference issues
in the CRN, since both the primary and the secondary networks have to transmit
their data, sometimes at the same time. The CRN may lack in productivity if the
interference threshold of the primary users (PUs) in the network is unbearably high.
More so, there is the possibility of interference among the SUs themselves. It must
be stressed that limitation due to interference is one of the greatest challenge the
CRN faces in its bid to achieving its promise of great resourcefulness and optimal
productivity, and of being the preferred new wireless communication paradigm.

As a result of the possible challenges with the RARA-CRN and MARA-CRN
classifications mentioned above, it is imperative to properly investigate and study the
basic principles to be employed while adopting and/or adapting the approaches of
RARA and MARA used in other wireless communications to the CRN. Thankfully,
there are recent and/or ongoing efforts in this regard. The recent developments or
studies on MARA and RARA for CRN (for instance, the ones provided in some
chapters of this book) are very useful in the evolution of the CRN. This is because
they help to ascertain the suitability and applicability of the MARA and RARA
approaches for solving the RA problems in the CRN.

4.4 Resource Allocation in Cognitive Radio Networks as
Optimisation Problems

It is important to properly define and describe the RA problems in the CRN if
we are to be able to adequately analyse and solve them. What stands out in most
cases of RA problems in the CRN is the fact that they are usually optimisation
problems. Therefore, it is important to have a sound understanding of optimisation
or programming if we are to be able to develop the right solution models and to
provide proper analysis of the solutions derived for the RA problems in the CRN.

Without doubt, optimisation is a very potent tool that can be employed and
explored for solving RA problems in the CRN. Optimisation is an old and powerful
analytical tool that has been developed and employed for solving different kinds
of problems in the fields of sciences, engineering and technology. Because of its
versatility and dependability, optimisation is still being used extensively today in
the fields of operations research, pure and applied mathematics, economics, business
and financial management, engineering, technology, etc.

When developing a problem as an optimisation problem, the essence is usually to
accomplish at least one objective (some optimisation problems do have more than
one objective to be achieved). The objective(s) can either be the maximisation or
minimisation of a parameter, an entity or a number of entities. An objective function
is used to capture and describe the objective(s) that the optimisation problem seeks
to achieve. Then, before the objectives(s) can be fully realised, one or more limiting
constraints have to be considered and overcome.
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To arrive at viable solutions to optimisation problems that have been developed,
care must be taken so as not to violate the constraints; otherwise, the solutions that
are obtained for such problems are not going to remain valid. The decision variables
are a set of components that helps complete the optimisation problems. The decision
variables are the parameters to be calculated and obtained when an optimisation
problem is being solved. Generally, the solutions obtained for optimisation problems
are either optimal or suboptimal solutions. Further discussions and details on
optimisation are not provided in this book. For readers who are interested in
understanding the preliminaries on optimisation, we suggest these volumes to
help provide the needed foundational or fundamental knowledge on optimisation
[19–22].

4.5 A General Representation of the Resource Allocation
Problems in Cognitive Radio Networks

In this section, a general representation of the formulation of RA optimisation
problems in the CRN is presented. This formulation provides a good description of
how to represent the objective functions, the constraints and the decision variables
in typical RA scenarios for the CRN and the possible interplay between them. The
general mathematical representation of the RA problem formulation for the CRN
presented in this section follows the basic RA optimisation formulation described
in [23].

The authors in [23] established that the RA optimisation problems in the CRN
have generally been developed or formulated using the mathematical programming
concept known as integer programming (IP). This IP area of optimisation is a
well-developed branch of programming or optimisation that is mostly used for
selecting the most appropriate integer variables to help arrive at optimal solutions
to some particular optimisation problems. There are some variants of the IP branch
of optimisation that are also very relevant to the development of RA optimisation
problem formulations for the CRN, and for solving such RA problems. Some of the
variants of IP that are most relevant to the RA problems in the CRN are the integer
linear programming (ILP), the integer non-linear programming (INLP), the binary
integer linear programming (BILP), the mixed integer linear programming (MILP)
and the mixed integer non-linear programming (MINLP) approaches.

To represent a typical RA optimisation problem for the CRN, we define two
vectors m and n to have dimensions x and y, respectively. In the context of RA
optimisation for the CRN being discussed, the vector m could represent the set of
transmission power allocations for the SUs in the network, while the vector n could
represent indicators of the subchannel allocation, which, in that case, would then
be zero-one variables. Also, we define the set of positive integers I = {0, 1, 2, . . .}.
Assume that our goal or objective is to maximise the entire network sum throughput.
To achieve this objective, the values ofm and n that maximises the function f (m,n),
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must be obtained. This must be achieved with consideration of the constraints
gi (m,n) ≤ ai , i = 1, 2, . . . , r . All the variable are non-negative. A mathematical
representation of the RA problem becomes:

maxQ = f (m,n) (4.1)

subject to

gi (m,n) ≤ ai, i = 1, 2, . . . , d, (4.2)

mj ≥ 0, j = 1, 2, . . . , x, (4.3)

nk ∈ I, k = 1, 2, . . . , y. (4.4)

It is simpler to write Eq. (4.2) as:

g(m,n) ≤ a,

where

g(m,n) =

⎡
⎢⎢⎢⎣

g1(m,n)

g2(m,n)
...

gd(m,n)

⎤
⎥⎥⎥⎦ ,

and a = [a1, a2, . . . , nd ]T .
It is possible that the RA problem in the CRN is developed as a minimisation and

not a maximisation problem. Such cases may occur if, for instance, our objective
is to minimise the total transmission power or the total energy consumed by the
network. The general RA formulation for the CRN developed above still applies in
such cases. What only needs to happen is that the function Q = f (m,n) should
be changed back to a form of maximisation function. This is achieved by negating
the original (minimisation) objective function. With such negation, the objective
function is now a maximisation function. Simply put, maxR = −f (m,n).

In the general RA problem formulation for the CRN given in Eqs. (4.1)–(4.4), the
objective function is captured in Eq. (4.1), the constraints are captured in Eqs. (4.2)–
(4.4), while the decision variables are the components mj and nk . Essentially, the
RA problem has one objective function (Eq. (4.1)). The resource constraints could
be more than one; therefore, d resource constraints are accommodated in Eq. (4.2).
The variables x are the non-negative variables, while the variables y are the non-
negative integer variables.

We can use the general RA formulation for the CRN given above to describe
practical CRN scenarios. Say, we assume that the goal of the CRN was to maximise
the entire network sum throughput, subject to some resource constraints. In such
practical CRN considerations, therefore, Eq. (4.1) would simply be the function
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that maximises the network throughput, vector m would be the set that indicates
the transmission power for all the SUs, vector n would be the set that indicates
subchannel allocation for each SU (this usually takes binary integer values, that is,
0 or 1) and Eq. (4.2) would be the resource constraints (rate requirement constraint,
interference limit constraint, transmit power constraint and/or any other resource
constraint, as applicable to the network). In most cases, each of these constraints
would be individually represented as different equations in the problem formulation.

The basic ideas presented above have already been employed by a wide range
of researchers in formulating and/or describing their RA problems for the CRN.
Table 4.1 presents classical examples of some works in which the RA problems
for the CRN have been formulated using the ideas from the problem definition,
mathematical formulation and optimisation for the CRN, as discussed in this
section. Indeed, all the RA problems in Table 4.1 were developed and addressed as
optimisation problems. In Table 4.1, the decision variables, constraints and objective
function for each of the referenced works are highlighted. Such clarity in problem
formulation helps researchers seek and analyse solution models that can achieve the
goal of optimising resources for the CRN being investigated.

The examples given in Table 4.1 may not have covered all types of problem
formulations on RA in the CRN available in literature. Indeed, it is practically
impossible to identify and mention all problems and problem formulation on RA
in the CRN in this chapter. However, the examples in Table 4.1 are given to provide
the needed context on the critical components of RA problem formulations in the
CRN, and how they are set up. The examples in Table 4.1 also show how these
essential components of the RA problem formulations all work together so as to
realise optimal and/or close-to-optimal solutions for the CRN.

4.6 Unique Characteristics of Resource Allocation
Optimisation Problems in Cognitive Radio Networks

The general optimisation formulation provided in the previous section represents
how most of the RA problems in the CRN have been formulated. In almost all
cases and analyses of the RA problems in the CRN, the RA problems have been
accurately described to be complex, non-deterministic polynomial-time hard (NP-
hard) optimisation problems. Therefore, a careful examination of NP-hard problems
would give us a much clearer understanding of the nature and characteristics of the
RA problems in the CRN.

An NP-hard problem is a problem that requires a non-deterministic algorithm
to solve them. If such non-deterministic algorithms exist, the NP-hard problem
will be solved in polynomial time. The concept of determinism, when applied to
optimisation, explains that events do not occur all by themselves without causes,
rather, there is always a necessary chain of causation for and event to happen
[39]. In other words, before a particular event can occur, there must be a proper
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consideration of the set of actions (such actions are usually finite and manageable)
that will help drive such an event. The fact that NP-hard problems are said to be
‘non-deterministic’, therefore, means that investigating possible solutions to those
problems is not restricted to one set of actions.

Indeed, there may be a number of actions or a combination of actions that may
need to happen to arrive at a correct solution to a particular NP-hard problem.
Therefore, there is no need to select a predetermined choice of actions for the
solution algorithms, by imposing on them some particular values, parameters
or states that limit their choice. Instead, at every solution attempt, the solution
algorithms must be allowed to make their choice of the best actions among several
opportunities that are possible for solving the particular problem at that time. What
this implies is that, it is very possible that, when using a solution algorithm to solve
a given problem, even though the same input parameters are used, multiple solutions
at different solution attempts may be obtained.

It is necessary to use non-deterministic algorithms while solving NP-hard
problems. This is because, non-deterministic algorithms are capable of making
important guesses at crucial points in their operation to help their cause of action
towards achieving solutions to the problem at hand [40, 41]. Importantly, if the
non-deterministic algorithms are correct in their guesses at those crucial points,
appropriate solutions to those problems are easily obtained. The other important
part of an NP-hard problem is the polynomial time part. The meaning of ‘polynomial
time’ in an NP-hard problem is simply that, if the solution algorithm being employed
is a non-deterministic one, and it makes correct and timely guesses, then the time it
will take for the algorithm to solve a particular problem is generally bounded by a
polynomial.

4.7 Useful Observations on the Resource Allocation
Optimisation Problems in Cognitive Radio Networks

From the description of NP-hard problems provided in the previous section, one may
infer that it will be quite difficult, though not impossible, to obtain good solutions to
the NP-hard optimisation problems in the CRN. Furthermore, the non-determinism
of the solution algorithms creates uncertainties in the amount of time required to
solve these NP-hard problems. What this means, therefore, is that it may take more
time to solve a problem than the time it takes to develop and describe the problem.
Without any doubt, the issue of time and timing can be critical for NP-hard problems
and solutions.

What we do understand is that, for solutions to be useful and meaningful,
they have to be arrived at in good time, especially in modern or emerging
wireless communication prototypes such as the CRN. Long-delayed solutions are
unacceptable because of the quick changing nature of such networks. If solutions
are delayed, the initial conditions upon which a problem is designed may have
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been significantly altered, and the solutions obtained would no longer be applicable.
An ongoing challenge for the CRN is that of developing generalised RA solution
models that arrive at solutions very quickly and are not too complex to implement.
If such solution methods and/or models are achieved for the RA problems in the
CRN, this will definitely go a long way in the implementation and eventual rollout
of the CRN.

4.8 Summary of the Chapter

In this chapter, we have been able to establish the important fact that RA problems in
the CRN are indeed optimisation problems. Furthermore, we showed that, because
of the characteristics of the RA optimisation problems in the CRN (they are
usually NP-hard optimisation problems), it is generally very difficult to obtain
solutions for them. Therefore, as a matter of urgency, new and/or improved methods
or approaches for achieving viable solutions for these problems, with adequate
consideration of the peculiar characteristics and limitations of the CRN, must be
investigated and delivered.

More so, since it is still an active research space, continuous studies on RA
problems and solution approaches for the CRN is pivotal to helping the CRN achieve
its goals. Importantly, the new studies on RA problems and solutions for the modern
CRN design must consider and identify the key components of the CRN that have
been oversimplified or completely ignored by previous researchers, and determine
the impact of those omissions or commissions on the results so far provided. After
identifying the pros and cons of previous solution attempts, approaches and models,
the new and improved RA models must be developed and designed. These new
RA models should incorporate all the critical aspects and needs of the evolving
CRN, and they should seek to overcome its many limitations. The benefits of the
newly-developed RA models for the CRN must be clear in that, when compared
with older models, they must show significant improvements in the productivity
and performance of the CRN with the incorporation of the new ideas being thought
about and implemented.
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Chapter 5
Tools for Resource Optimisation in
Cognitive Radio Networks

5.1 Solving Resource Allocation Problems in Cognitive Radio
Networks

In the previous chapter, we established that the problems of resource allocation
(RA) in cognitive radio networks (CRN) are indeed complex problems, and that
they may pose a great deal of difficulty when trying to solve them. Thus, being able
to adequately, timeously and optimally solve the RA problems that are developed
for the CRN is very crucial to its eventual implementation [1]. Already, there are
several tools, methods or approaches that have been and are still being developed,
investigated and employed to help address or solve these complex non-deterministic
polynomial-time (NP)-hard RA problems in the CRN [2].

This chapter examines in depth the various tools or approaches that are being
developed and used to solve the RA problems in the CRN. Of course, each tool has
its own advantages and disadvantages, and these are well identified and discussed
in this chapter. Furthermore, we make good comparison between the tools and
draw up useful reports and conclusions on each one of them. We also identified the
limitations associated with each solution tool and make useful recommendations on
how to address those limitations in order to make those tools usable and productive
for the CRN.

A broad classification of the various tools being employed to solve RA problems
in the CRN is as follows:

1. The tool of classical optimisation
2. The tool of studying the structure of an RA optimisation problem
3. The tool of the use of heuristics
4. The tool of the use of meta-heuristics.
5. The tool of game theory or multi-objective optimisation
6. The tool of soft computing-based optimisation.
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Each one of these tools is critically examined and discussed in details in this
chapter.

5.2 The Tool of Classical Optimisation

Classical optimisation is an old, well-developed and very versatile branch or tool
of optimisation or programming. Despite its simplicity, classical optimisation still
has relevance in modern applications and has been considered and used in solving
RA problems in the CRN. Generally, if an RA problem in the CRN falls into any
class of classical optimisation, optimal solutions to such a problem can be obtained
by using the tool of classical optimisation. One important point with the tool of
classical optimisation is that standard solutions already exist to almost all classical
optimisation problems. The two most prominent aspects of classical optimisation
are linear programming (LP) [3] and convex optimisation (CO) [4].

In the LP approach of classical optimisation, for a problem to be identified as
an LP problem, all the components of that optimisation problem must be linear
in nature. The objective function must be a linear function, and all the constraints
in the problem formulation must be all linear. There are already a good number
of methods that have been well advanced for optimally solving LP problems. Two
good examples of such well-established methods for solving LP problems are the
simplex method and the interior point method. Therefore, if an RA problem that is
developed for the CRN happens to be an LP problem, by employing an appropriate
classical LP method, such a problem will surely be solved and optimality will be
achieved for the CRN model being investigated.

As an example, the authors in [5] developed a frequency-time allocation problem
in cognitive radio wireless mesh network as an LP problem. This problem was
solved easily and optimally using the simplex method. Another good example of
the use of the simplex method for solving an RA problem in the CRN can be seen in
[6]. The problem that was solved was to optimally allocate the frequency bands of
the PUs to the SUs in the network. This RA problem was developed and addressed
as an LP. The LP solution further demonstrated the region or envelope in which
network stability and balance can be achieved for the CRN. In [7], the authors used
the interior point method to address the problem of RA (joint transmission, power
control and beamforming) for the SUs in the CRN, at instances when the SUs and
the PUs are transmitting their data simultaneously.

The CO approach is another classical optimisation approach that has been
vastly used for solving complex and modern optimisation problems. For CO, the
optimisation problem does not have to be linear before it can be solved. However,
such a problem must be shown to be convex. In practical applications of CO to solve
RA problem in the CRN, non-linear RA problems can still be solved if the convexity
of such problems are proven. Also, just as in LP, a good number of methods of
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CO have been developed and used to solve CO problems. The Lagrangian duality
method is a very good example of a CO method that is well developed for solving
optimisation problems [8]. The Lagrangian duality approach is mostly applied
alongside with the Karush-Kuhn-Tucker (KKT) conditions when employed for the
CRN [9].

To be able to successfully employ classical optimisation approaches to optimally
solve RA problems in the CRN, the important condition is that such RA problems
must fit into certain structures of classical optimisation. Such structures are the
linearity or the convexity of optimisation problem. When the RA problems in the
CRN have these structures or when they can be modified to have these structures
without jeopardising the originality or essence of such problems, the tool of classical
optimisation is the best tool for solving such RA problems in the CRN.

As a general observation, most of the classical optimisation methods that are
being used to solve the LP or OC RA problems in the CRN are branches of
either the simplex method or the interior point method. The following are about
the commonest classical optimisation methods, and the corresponding works in
which they have been used, to solve RA problems in the CRN: the barrier method
[10, 11], the gradient decent method [12], the branch-and-bound method [13, 14],
the lift-and-shift method [15], the branch-and-cut method [16], the iterative and
double-loop iterativemethods [17, 18], the Lagrangian dualitymethod [19, 20], the
dual decomposition method [17, 19] and the column generation method [21, 22].

The most significant advantage of the classical optimisation tool and methods for
solving RA problems, especially in modern communication networks, is the benefit
of obtaining optimal solutions for the RA problems being investigated. Because
they achieve optimal solutions, classical optimisation solutions are used as bounds
for the solutions obtained from using other optimisation tools or methods, which
are most times suboptimal. However, the classical optimisation tool also has its
own disadvantages or challenges. A major challenge with classical optimisation
methods is that it is very difficult to find RA problems in the CRN that just
fit nicely into the standard classical optimisation models. This makes it difficult,
sometimes impossible, to address and solve such RA problems in the CRN as
classical optimisation problems.

Another problem with using classical optimisation to solve RA problems in the
CRN is that it is usually difficult, sometimes impossible, to prove that the non-linear
programming problems are indeed convex, and that they can be solved as such. The
final challenge with classical optimisation being used to solve RA problems in the
CRN is that the complexity and computational demands on network resources being
used while solving classical optimisation problems can be very high. Unfortunately,
time demand and other network resources are usually limited in the CRN, making
the classical optimisation tool a not-so-promising tool to consider in practical CRN
applications.
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5.3 The Tool of Studying the Structure of the Resource
Allocation Problems

We have already discussed that, in very many cases of RA problems in the
CRN, it is often difficult to nicely fit those RA problems into any standard
classical optimisation model. This makes it difficult to directly apply the classical
optimisation tool to addressing those problems and obtaining solutions for them.
This does not, however, mean that such RA problems in the CRN cannot be
solved. In fact, there have been a number of other optimisation tools that have been
examined and exploited for solving the RA problems in the CRN, and several other
tools are still being investigated.

The tool of studying the structure of the RA problem is one important tool that
has been considered for solving RA problems in the CRN. This tool depends on
carrying out a careful study of the structure of an RA problem to determine special
feature(s) in the problem that can be exploited to either reduce the complexity of
the problem or to make the RA problem fit into a classical optimisation model. The
resulting problem may be very close to the original problem, if the restructuring
process is well done. As such, the solutions obtained from solving the restructured
problem may approach optimal, or at least, be close to optimal. There are a number
of optimisation methods that employ the study of structure of the problem to solve
RA optimisation problems. These optimisation methods are briefly discussed.

5.3.1 The Method of Separation or Decomposition

In RA problems developed for the CRN, it is sometimes possible to separate an
RA problem into two (or more) simpler problems, while still not destroying the
main property or characteristics of the main problem. In other words, the structure
of a given RA problem may be studied and exploited to successfully separate
or decompose the original problem into some simpler sub-problems. Each sub-
problem may then be solved on their own, most times posing a lot less challenge
to achieve this. It is usually possible to combine the solutions obtained from
the individual sub-problems to obtain a final solution for the RA problem. The
combined solution may be the exact solution that would have been obtained if the
original problem was solved by itself, or the combined solution may not be the exact
solution of the original problem. Even if the solution obtained through separation or
decomposition do not exactly equal the solution that would have been obtained by
solving the problem directly, the solution through separation may still be useful if it
is sufficiently close to the actual solution of the original problem.

There are a number of separation or decomposition methods being employed to
solve RA problems in the CRN, such as the Dantzig-Wolfe decomposition method
[23]. Some good examples of the use of the method of decomposition for solving
RA problems in the CRN are the works in [24] and [17]. The authors in [24], for
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instance, used the primal-dual decomposition method to obtain optimal solutions to
the RA problem being investigated for the CRN. In the analysis of the RA problem,
the main problem is split into a number of sub-problems of power allocation for
individual users. The sub-problems are easily solved for every decision variable
pair, and individual solutions are combined to achieve the final solution for the RA
problem in the CRN model being investigated.

In [17], the authors developed a joint spectrum-power allocation model for
multiband CRN. To analyse the model, the RA problem was separated into two
parts and solved using an iterative dual decomposition method. The work in [25]
investigated a decomposition method for solving RA problem in the CRN. The goal
of the RA solution was to maximise the utility of the CRN. The RA problem was
split into three sub-problems. The first sub-problem was to optimise the assignment
of the signal-to-interference-and-noise ratio (SINR), the second sub-problem was
to optimise the transmission power of the CRN, while the third sub-problem was to
optimise the interference temperature of the secondary network devices in the CRN.

In [22], the authors addressed the combined problem of spectrum sensing, power
allocation and channel assignment in cellular CRN by the use of the decomposition
method. The original RA problem was developed as a mixed integer non-linear
programming (MINLP) problem. However, the RA problem was separated into
two sub-problems. The first sub-problem was to optimally sense the spectrum
that is available for use in the CRN. The second sub-problem was to optimally
allocate the channel and power to all SUs in the CRN. The two sub-problems were
solved optimally, meaning that the optimality of the CRN was not sacrificed by the
decomposition process.

The most important benefit of the separation or decomposition method for
solving RA problems in the CRN is that it is very possible to achieve optimal or
very close-to-optimal solutions for the RA problem, usually at a much reduced
computational demand. One of the major challenges with the decomposition
method, especially when applied to the CRN, is that it is not always possible to
decompose all RA problems in the CRN. Another challenge with the decomposition
method is that, a good number of RA problems in the CRN will not retain their
composition or import when they are separated into smaller sub-problems in order
to make them easier to solve.

5.3.2 The Method of Relaxation

As well established, the RA problems in the CRN are usually complex and may be
very difficult to solve them. In some cases, the complexity and subsequent difficulty
in solving the RA problems developed for the CRN may be because of the presence
of an integer constraint in the problem formulation. Integer constraints are common
with the CRN since it deals with channel (or subchannel) allocation to network users
or devices. Allocating subchannels are usually binary decisions. A subchannel is
either allocated to a particular user or it is not allocated to that user. If the subchannel
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is allocated to a particular user, it takes the value of 1 for that user. If the subchannel
is not allocated to that particular user, it takes the value of 0 for that user.

The RA problems in the CRN that have binary integer constraints can be
addressed more easily if the integer constraint is relaxed. The relaxation of the
binary integer constraint means that the decision variable is no longer imposed to be
either 0 or 1. Rather, the decision variable may take any value between 0 and 1. We
may then round up or round down the resulting values of the decision variable to get
approximate solutions to the RA problem for the CRN that is being considered.

The work in [26] is an example of the use of the method of relaxation for solving
RA problems in the CRN. The RA problem in the CRN was initially developed
as a mixed integer non-linear programming problem. However, the problem was
changed to an LP problem by simply relaxing the integer constraint. This made it
possible for the problem to be solved more easily. Another example of the works
that have used the method of relaxation to solve their RA problems for the CRN is
the work in [27].

The main benefit of the method of relaxation for solving RA problems in the
CRN is that it reduces the complexity of the RA problem very significantly, making
it easier to arrive at solutions. The disadvantage of the method of relaxation for
solving RA problems in the CRN is that they do not give optimal solutions for the
RA problems being solved. Furthermore, there may be a significant gap between
the solution obtained after relaxation and the optimal solution to the RA problem,
which may be undesirable for practical CRN applications.

5.3.3 The Method of Linearisation

While the LP is surely a potent tool for solving RA problems in the CRN, in most
cases, the original RA problem developed for the CRN is hardly ever linear in their
composition. In many RA problems for the CRN, the objective functions are not
linear. Even in cases when the objective functions are linear, there may be one or
more constraints that are non-linear. An optimisation problem cannot be treated
as an LP problem once the linearity of either the objective function or any of the
constraints is difficult to prove.

One important method that can be used to solve non-linear RA problems in the
CRN is the method of linearisation. In this method of optimisation, attempt is made
to linearise the non-linear part or expression of either the objective function or any of
the constraints in the RA problem. If the linearisation is realised, it becomes pretty
straightforward to use the tool of classical optimisation to obtain solutions to the
linearised problem. It may happen that the resulting linearised part or expression of
the original problem is an approximate of the original part or expression of the initial
problem. Still, if the values obtained from the linearisation process are sufficiently
close to the values of the original expression, the solutions obtained, though they
may be suboptimal, are very useful and profitable.
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The works in [28, 29] and [27] are good examples of the application of
linearisation methods for solving RA problems in the CRN. The work in [27] used a
combination of the methods of linearisation, reformulation and relaxation (the meth-
ods of reformulation and relaxation are discussed in latter subsections) to solve their
RA problem developed for the CRN. In the part where linearisation was employed,
one of the constraints was successfully changed into a linear form. The particular
constraint was non-linear because both division and multiplication operations were
combined. However, the combined multiplication-division operation was changed
to a logarithm function, which has linear expressions. It was possible to maintain
the equivalency of the RA problem because of the monotonic characteristic of the
logarithm function.

The most important benefit of the linearisation method for solving RA problems
in the CRN is that if the linearisation process is successful and the RA problem
becomes an LP problem, it is much easier to solve the resulting LP in comparison
with the original non-LP problem. The major limitation with the linearisation
method is that some of the common functions or expressions in the objective
functions or constraints of RA problems in the CRN do not have simple equivalent
linear expressions that may be employed in achieving the linearisation.

5.3.4 The Method of Reformulation

The method of reformulation is an important method that has been well used
for solving NP-hard RA problems in the CRN. The concept of reformulation
simply means to generate an equivalent or nearly-equivalent problem to an original
problem. This problem regeneration is normally possible after carefully observing
the structure of the original RA problem. There are usually some distinct attributes
of the problem that may be exploited to generate a distinct replica of the original
problem, while still not losing the most important details in the original problem.
In many cases, the regenerated or reformulated problem is an easier version of the
original problem. Sometimes, it may even be possible to now use the tool of classical
optimisation to solve these reformulated problems.

There are a good number of works that have employed the method of refor-
mulation to solve their RA problems in the CRN. The works in [14, 25, 30–34]
are all very good examples. In [25], for instance, the authors developed their RA
problem as a utility maximisation problem to help share the spectrum available
for CRN operations. The RA problem was complex and non-convex because of
the tight coupling between the network interference and the transmission power
for the network. To help solve the RA problem, it had to be reformulated. The
formulated problem now contained the spectral radius constraint sets. A tuning-free
geometrically fast convergent algorithm was used to obtain optimal solutions for the
reformulated RA problem.

The work in [30] centred on developing useful algorithms to help make decisions
that can optimise the use of radio resources in a heterogeneous cognitive wireless
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network environment. A significant aspect of the solution process was when the
problem of heterogeneous base station selection was reformulated. The reformu-
lated problem simply became a minimum cost-flow problem. The reformulated
problem was easily solved at minimal computational demands using directional
graphs.

The authors in [14, 32–34] used a similar approach in the reformulation of
their RA problems in the CRN. All the RA problems were originally non-linear,
non-convex NP-hard problems. However, these RA problems were successfully
reformulated into integer linear programming (ILP) problems. The newly generated
ILP problems were optimally solved by employing the Branch-and-Bound (BnB)
LP tool.

The most important benefit of the use of the method of reformulation for solving
RA problems in the CRN is that it is possible to obtain optimal solutions to RA
problems that are seemingly difficult, once the reformulation process is successfully
carried out. Another advantage of the method of reformulation is that, sometimes,
the reformulated problems are a lot less computational demanding than the original
RA problems. The major challenge with the method of reformulation is that, in
some RA problems of the CRN, it may be very difficult to find that special feature
or structure of the original problem that can be exploited to achieve the problem
reformulation.

5.3.5 The Method of Approximation

The method of approximation is another useful method for solving RA problems
in the CRN. A careful study of the structure of an RA problem for the CRN may
reveal that it is indeed a particular function in the problem formulation that makes
the problem complex. This problematic function may be in the objective function
or in one of the constraints. The function may be responsible for making a problem
that should have been linear to become non-linear or a problem that should have
been convex to become non-convex. This then makes the entire problem difficult
to solve. If it were possible to find an approximate substitute to that problematic
function, finding solution to the entire problem becomes much easier.

When the method of approximation is to be employed for solving RA problems
in the CRN, care must be taken so that the approximate value or function is always
close to the original or initial function being approximated. A number of works have
used the method of approximation to obtain solutions to the RA problems developed
for either the OFDMA-based networks or the CRN. A good example is the work
in [35]. In the work, the authors obtained a piece-wise linear function as a close
approximate of their best-effort user utility function. An LP-based cluster allocation
algorithm was then used to solve the approximated problem. As a result, they were
able to achieve maximum utility for their network.

The greatest benefit of the use of the method of approximation for solving RA
problems in the CRN is that, even though it is only suboptimal solutions that can
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be realised, if the substitutes of the approximated functions are very good, these
suboptimal solutions can be very close to the optimal and therefore extremely useful.
Another important advantage of the use of the method of approximation is that the
computation complexity, analyses of problems and time duration for solving the
RA problems are well minimised as a result of the approximation of the difficult
functions in the problem formulation.

However, there are some disadvantages with the use of the method of approxi-
mation for solving RA problems in the CRN. The first problem with the method of
approximation is that the approximate values or functions of the original functions
being approximated may now have some extra variables. This usually means
that more decision variables will appear in the RA problem for the CRN to be
solved. Another disadvantage of the method of approximation is the fact that
only suboptimal solutions can be obtained once approximate substitutes of original
functions are used in arriving at solutions to the RA problems in the CRN.

5.4 The Tool of Heuristics

Heuristics is one of the commonest tools being employed for solving RA problems
in the CRN. Actually, for most RA problems in the CRN, it will be almost
impossible to solve them through classical optimisation. For many other RA
problems, no matter the special feature that is sought to be employed to make them
solvable, solving those RA problems will still not work out. Besides, even if it were
possible to employ one or more of the tools and methods that have already been
discussed to help solve the RA problems for the CRN, in a good number of cases, it
may still happen that the solutions provided, though optimal or near-optimal, would
have required a great deal of time that would be impracticable in real-life situations.
This means that, as a result of the huge computational demands, such solutions
would, to a high degree, be difficult to implement, especially for large, practical
networks.

As a result of the huge computational and time demands of most of the solution
tools being employed for solving RA problems in the CRN, better and faster solution
tools are therefore still required. These tools must be able to obtain solutions for the
RA problems at a much faster speed and with less complexity or computational
demand. In a lot of cases, a heuristic is usually employed to achieve the expectation
of obtaining solutions that are good enough for the RA problem in the CRN,
usually at a time frame that is reasonable and workable for practical network
implementation.

Heuristics do not employ mathematical, analytical or numerical derivations to
solve problems. Rather, they use logic and quick reasoning abilities. Because of
this, most heuristics are usually designed to solve specific problems. In solving RA
problems in the CRN using heuristics, therefore, the solutions are always problem-
specific, and in most cases, they are non-transferable to solve other RA problems
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in the CRN. Besides, heuristic solutions seldom achieve optimal solutions, they are
mostly suboptimal.

There are some benefits that heuristic solutions have over other types of solutions
for the RA problems in the CRN. One of the greatest advantages of heuristics is that
several RA problems that may not be solvable by any other tool of optimisation may
be solved by the use of heuristics. Another advantage is that heuristic solutions are
usually obtained at reasonable time frames, much less than the time taken by using
other optimisation tools, even when the CRN in consideration is large network. The
major disadvantage with the use of heuristics for solving the RA problems in the
CRN is that they usually only give suboptimal solutions for the RA problem being
solved.

There are several methods of heuristics that have been investigated and applied
to solve RA problems in the CRN. Some of these methods are discussed.

5.4.1 Greedy Algorithms

Heuristics that employ the method of greedy algorithms are premised on the idea
that, in all situations, the immediate or current best step or line of action or operation
must be taken. This is usually without any consideration of the choice that would
have provided some better results in some latter parts of the solution process if other
steps or actions were decided. Some examples of greedy algorithms are the selective
greedy algorithms and the distributed greedy algorithms. Some good examples of
works that have used greedy algorithms to solve their RA problems in the CRN are
[13, 28, 36–38]. Although the solutions that are obtained by using greedy algorithms
may not be optimal, such solutions are obtained in good time, making the method a
very useful one.

5.4.2 Water-Filling Schemes

Another method of heuristics that has been developed and employed to solve RA
problems in the CRN is the water-filling method. The idea used in the water-filling
heuristic, and the many variants of this heuristic, is developed from a very popular
problem called the water jug problem. There are a good number of works that have
used the water-filling heuristic method to solve their RA problems in the CRN. Some
of these examples are in [39–44]. The water-filling schemes have the advantage of
ease of development and implementation. They also give results that are quite close
to optimal and they are usually less computationally demanding than most other
methods of achieving solutions to RA problems in the CRN.
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5.4.3 Recursive-Based and Iterative-Based Heuristics

One other method of heuristics that has been employed for solving RA problems
in the CRN is the recursive-based and the iterative-based heuristics. In this method
of heuristics, resource assignment or allocation to users is carried out in either a
recursive or an iterative manner. The recursive heuristics use a structure that is based
on the process of selection. On the other hand, the iterative heuristics use a structure
repetition. What is important in both methods is that the utility of the network or
users is gradually increased until when a new process of recursion or iteration does
not bring about any significant improvement in the value of the utility being realised.
At such a time, the process is terminated. The works in [11, 32] are good examples of
works that have employed the method of recursive and iterative heuristics in solving
their RA problems in the CRN.

5.4.4 Pre-assignment and Reassignment Algorithms

Pre-assignment and reassignment algorithms have been used to solve a number
of RA problems in the CRN. When pre-assignment and reassignment algorithms
are being used, some network resources, say subchannels or transmission power,
are initially given as base resources to some or all users in the network. The
remaining resources are now allocated to the other users as fairly and optimally
as possible. With each run of the algorithm, one or more users are allocated more
resources, which increase the overall capacity or productivity of the network. The
algorithm checks that the constraints are not violated after each run. After each run,
if the algorithm determines that there are some residual resources, it reallocates
(or reassigns) such resources to the appropriate users thereby improving the overall
productivity of the network. The works in [13, 45] are good examples of the use of
the pre-assignment and reassignment method for solving RA problems in the CRN.

5.5 The Tool of Meta-heuristics

The tool of meta-heuristics is an important tool that has been well used for
addressing RA problems in the CRN. Meta-heuristics are mostly used when the
RA problems in the CRN are very computationally demanding. Meta-heuristics
have a broad range of application. They are particularly well suited for solving RA
problems in which it is possible to have local ‘optimal’ solutions. They can also
solve RA problems which do not have satisfactory problem-specific algorithms that
can solve them.

The important benefit of meta-heuristics is that they can give approximate
solutions to any kind of wide range or hard optimisation problem. They also have the
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advantage of not having to adapt too deeply to each problem before they can solve
them [46]. Another important advantage of meta-heuristics is their use of tricks that
frees them from a local minima or maxima solution, in order to achieve a possibly
better solution. There are a number of methods of meta-heuristics that are being
used to solve RA problems in the CRN. Some of these methods are discussed.

5.5.1 Genetic Algorithms

In genetic algorithms, the idea of genetics is being employed to solve RA problems
in the CRN. To achieve this, resources are defined in the form of genes and
chromosomes. Furthermore, the quality of service requirements for each user or
user category are given as the input to the algorithm and used to obtain solutions
for the RA problem. One good example of the use of genetic algorithm for solving
RA problems in the CRN is the work in [47]. In the work, spectrum allocation in
the CRN was optimised by the use of a genetic algorithm. In the work in [48],
a genetic algorithm was employed to optimise spectrum utilisation, guaranteeing
fairness among the users in the CRN.

5.5.2 Simulated Annealing

The method of simulated annealing is another important meta-heuristic method that
has been applied for solving RA problems in the CRN. The simulated annealing
method uses the process of continuous ‘heating’ and ‘cooling’ of the ‘search space’
of a problem to solve such a problem. This ‘heating’ and ‘cooling’ process is carried
out in an iterative manner under strict monitoring and control. Usually, the process
produces an optimal ‘temperature’, which is indicative of the optimal utility for the
CRN. The works in [49, 50] employed the simulated annealing method to solve the
RA problems of subchannel allocation and utility maximisation in the CRN.

5.5.3 Tabu Searches

The method of Tabu searches is another method of heuristics that has been employed
for achieving RA solutions in the CRN. The Tabu search algorithms explicitly
use historical results of past searches that have been carried out to arrive at new
solutions. They can use these past results to help them escape from a local minima
or a local maxima solution that is not optimal. They can also use these past results to
implement an explorative strategy to help achieve new results for the network. The
important advantage of the use of Tabu searches is that they use mechanisms. that
are inspired by the human memory. One good example of the use of Tabu searches
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in solving RA problems in the CRN is found in the work in [51]. In the work, Tabu
searches were employed to achieve optimal channel allocation for all users in the
CRN.

5.5.4 Evolutionary Algorithms

Another important method of meta-heuristics that has been well used for solving
RA problems in the CRN is the use of evolutionary algorithms. These algorithms
attempt to simulate the processes that occurred as certain organisms evolved. The
particular processes of interest are the processes of selection, recombination and
mutation that happened in the cause of generating better species or solutions. There
are already a good number of evolutionary algorithms that are applied to solving RA
problems in the CRN, and several more evolutionary algorithms are being developed
and implemented for the CRN.

The most commonly used evolutionary algorithms are the particle swarm
optimisation algorithm, the coco search algorithm, the bee colony algorithm and
the ant colony algorithm. An example of a work that used the particle swarm
optimisation algorithm to solve a RA problem in the CRN is the work in [52].
In the work, the particle swarm optimisation algorithm was used to carry out
power allocation for users in the CRN. The work in [53] employed the bee colony
algorithm to carry out relay assignment and power allocation for users in the CRN.

The discussions thus far presented on the use of the tools of heuristics and meta-
heuristics for solving RA problems in the CRN show that these tools are very
powerful and quite important when solving practical RA problems in the CRN,
especially when the networks are substantial. The greatest challenge with the use
of heuristics and meta-heuristics for solving RA problems in the CRN is that they
lack analytical definitions and numerical representations of the RA problems being
solved. This makes it very difficult to transfer the knowledge used or acquired in
solving a particular problem to help solve other RA problems in the CRN.

5.6 The Tool of Multi-objective Optimisation and Game
Theory

The tool of multi-objective optimisation and game theory is a great tool that is being
used to solve RA problems in the CRN. The tool of multi-objective optimisation and
game theory is especially useful when the RA problems have multiple objectives.
Actually, it is not impossible to have RA problems in the CRN that have more
than one objective. In such cases, the resulting RA optimisation problems are
multi-objective optimisation problems. Usually, such problems require that two or
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more possibly conflicting objectives are optimised simultaneously, subject to some
defined constraints.

An important approach that has been used to solve a good number of multi-
objective optimisation problems in the CRN is to convert them to conventional
single-objective optimisation problems. There are a number of conversion methods
that are being used to change multi-objective optimisation problems to single-
objective optimisation problems. The most common methods are the Min-Max
method, the reducing dimension method, the interactive programming method, the
ideal point method, the virtual target method, the weighted sum of squares method,
the feasible direction method, the centre method and the sequencing method [54].

Even though some of the RA problems in the CRN that are originally devel-
oped as multi-objective optimisation problems may be successfully changed to
conventional optimisation problems, it is not in all cases that such conversion
can take place. Besides, even if the conversion does take place, there are many
instances in which, despite the conversional to conventional optimisation problems,
solving those multi-objective problems may still be very difficult or impossible
using conventional optimisation. In all of those exceptional cases, the use of multi-
objective optimisation methods such as game theory is most critical to solving those
RA problems in the CRN.

There are several multi-objective optimisation or game theory methods that are
being used to solve multi-objective RA problems in the CRN. The most common
game theory methods that have been used for solving RA problems in the CRN,
and some of the works in which those methods have been employed, are the
Nash bargaining (or Pareto optimisation) [55, 56], the Stackelberg game [57, 58],
the cooperative game [43, 44] and the non-cooperative game [59]. The greatest
advantage of the tool of multi-objective optimisation and game theory for solving
RA problems in the CRN is that they are very useful for solving those RA problems
with multiple objectives in their problem formulation. The major disadvantage of
this tool is that they may not give optimal solutions in most use cases.

5.7 The Tool of Soft Computer-Based Optimisation

One of the most recent tools that is being employed to solve RA problems in the
CRN is the tool of soft computing-based optimisation. This tool uses software and
computer programming to optimally allocate resources among the users and user
categories in the CRN. The software and computer programmes that are being
developed and used to achieve the RA optimisation employ modern intelligent-
based methods to carry out the RA in the CRN. These intelligent methods can learn
from their past solution attempts to improve on current and future solutions for the
RA problem being investigated. The learning process is referred to either machine
learning or deep learning. The most common intelligence-based methods being used
to solve RA problems in the CRN are neural networks, artificial intelligence, fuzzy
systems method and the Q-learning method [60].
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There are already few works that have employed the tool of soft computing in
solving their RA problems in the CRN. The work in [61] employed a special type of
Q-learning, calledmulti-agent reinforcement learning, to achieve RA in a multi-user
CRN scenario. In the course of carrying out the learning activity, each SU takes the
channel and other SUs to be its learning space. They use their learning experiences
to update their Q-values and to make decisions on what they think would be the
most viable course of action or activity, usually based on the immediate condition
of the network.

The work in [62] developed a powerful tool for making decisions on allocating
resources in the CRN using the method of artificial intelligence. In the work, a
decision-making engine was proposed using the basic idea of Bayesian network.
This engine was used to achieve cognitive radio learning and to obtain optimum
configuration rules for the network. The model was able to adapt to the different
environmental situations with the learning algorithms that was developed.

The authors in [63] used a fuzzy neural system to carry out spectrum allocation
in the CRN. The model developed used some important network parameters such as
the degree of mobility of the SUs, the distance of the SUs to the PUs, the spectrum
utilisation efficiency of the network, etc. as the input parameters to the fuzzy logic
engine to use in making decisions for the network. The output from the fuzzy logic
engine is usually the decisions on spectrum access and allocation for the SUs.
The fuzzy logic engine used linguistic knowledge of some preconceived rules in
reaching its decisions.

The most important benefit of the use of the tool of soft computing-based
optimisation for solving RA problems in the CRN is that, since they are based on
the use of software and computer programming, they can achieve optimal solutions
in reasonable time frames. More so, since they can learn from their past solutions,
they can adapt to new environments and challenges and can always improve the
current and future solutions they provide to RA problems in the CRN. The major
limitation of this tool for solving RA problems in the CRN is that most of the
soft computing tools are still works-in-progress, since they are still being actively
researched, developed and implemented. Besides, some of these tools are very
complex and quite difficult to develop, analyse and implement for practical CRN
realisations.

5.8 Summary of the Chapter

This chapter has explored the various tools that have been/are being developed and
employed for solving RA problems in the CRN. The tools discussed in this chapter
are the most common tools successfully exploited for obtaining solutions to the
complex A problems for the CRN. The chapter has presented the classifications of
the various solution tools and explained their workability, benefits and challenges.
As we conclude, Table 5.1 provides a succinct summary of the distinct characteris-
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Table 5.1 A summary of the optimisation tools for solving RA problems in the CRN

S/N Solution tools
Examples of
solution models Specific features Drawbacks

1. Classical
optimisation,
e.g. LP, convex
optimisation,
etc.

Simplex and its
variants (BnB, BnC,
LnS, implicit
enumeration, etc.);
interior point method
and its variants
(barrier method,
Newton’s method,
etc.); Lagrangian
duality; knapsack;
travelling salesman
problem, etc.

Approach gives optimal
solutions; solutions act
as bounds (upper or
lower) to other solution
models

Usually, most RA
problems do not fit
into any class of
classical optimisation;
proving convexity can
be very challenging;
obtaining solutions
can be rather
computationally
complex and time
consuming

2. Studying
problem
structure

Decomposition;
linearisation;
relaxation;
approximation;
reformulation

Solutions can be
optimal or very close to
optimal; computational
complexity is
significantly lowered

Special features might
be unavailable or
difficult to find;
transformed problem
may be a far cry from
the original; new
problem may generate
more decision
variables than in the
original one; solutions
are mostly suboptimal

3. Heuristics Greedy algorithms;
water-filling
algorithms;
pre-assignment and
reassignment
algorithms;
iterative-based and
recursive-based
algorithms

Solutions are quick to
find; less computational
complexity; requires
little or no numerical
analysis; solutions are
usually suboptimal but
could be close to
optimal; approach is
suitable for large and
practical networks

Solutions are
problem-specific and
most times are not
transferable; solutions
cannot be numerically
analysed; solutions
are always suboptimal

4. Meta-heuristics Genetic algorithms;
simulated annealing;
evolutionary
algorithms; tabu
searches

Algorithms are mostly
nature-inspired; they
make use of stochastic
components (e.g.
random variables); they
are good with large,
practical and/or
computationally
demanding problems
that have large search
spaces; they use ‘tricks’
so as not to get stuck at
a local optimal but to
try obtain a global
optimal solution

Solutions are not
transferable; solutions
cannot be analysed
numerically

(continued)
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Table 5.1 (continued)

S/N Solution tools
Examples of
solution models Specific features Drawbacks

5. Multi-objective
optimisation
(using game
theory)

Cooperative game;
non-cooperative
game; Nash
bargaining (Pareto
optimisation);
Stackelberg game

They are good with
problems that have
multiple objectives;
they employ ideas from
game theory to solve
optimisation problems;
they are useful for large,
practical networks with
large search spaces

Solution models can
be complex; they are
not transferable; there
may be difficulty in
achieving analytical
modelling of solutions

6. Soft
computing-based
optimisation

Artificial intelligence;
neural networks;
Q-learning; fuzzy
systems, etc.

Software/computer-
based programming is
used in allocating
resources to users
within the network; the
developed programmes
use intelligent and very
powerful/sophisticated
techniques

They are very difficult
and complex to
develop, analyse and
apply in real-life
scenarios

tics of each solution tools for RA optimisation in the CRN, as already well discussed
in this chapter.
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Chapter 6
Modelling and Analyses of Resource
Allocation Optimisation in Cognitive
Radio Networks

6.1 Need for Resource Allocation Models in Cognitive Radio
Networks

Usually, new and/or emerging technologies follow some well-defined developmen-
tal processes or stages in their evolution, from the initial conception of the ideas
to the final realisation of the usable product, service or application. After the
initial conceptualisation of the idea, the developmental stages for new technologies
usually involve some form of computer modelling of a prototype of the particular
technology of interest. After computer models have been developed, this is most
likely followed by the simulation or emulation of the models or prototypes.
Thereafter, experimentation (using test-beds, for example) of the models are carried
out.

Still, experimental designs are usually carried out alongside or followed by the
numerical analyses of the models or prototypes (there are instances too where
numerical analyses are carried out before experimentation or test-bed designs). By
leveraging the initial results obtained through the experimentation and analyses, a
lot more fine-tuning is carried out on the models or prototypes to obtain the best
results possible. Only after sufficient fine-tuning has been achieved are the new
technologies (products, applications, etc.) rolled out. Of course, there would be
necessary reviews and feedback, which will usually lead to further improvements
in the various versions of the developing technologies in the long run.

It is interesting to note that most emerging next-generation (xG) wireless com-
munication technologies do follow the same developmental processes highlighted
above in their evolution. The cognitive radio networks (CRN), being an emerging
xG network itself, is also undergoing some of these evolutionary stages. Network
modelling is a very significant aspect of technological evolution. As the CRN
evolves, several models are being developed to study different aspects of it,
particularly the aspect of resource optimisation for practical CRN realisation.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B. TJ Maharaj, B. S. Awoyemi, Developments in Cognitive Radio Networks,
https://doi.org/10.1007/978-3-030-64653-0_6

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64653-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-64653-0_6


86 6 Modelling and Analyses of Resource Allocation Optimisation in Cognitive. . .

Since there are already a plethora of works and materials that are currently
available on modelling of resource allocation (RA) for the CRN, it is almost
impossible to identify, study, analyse and discuss each one of them in details.
Therefore, the approach that we use for our discussion on RA modelling for the
CRN is to develop generic but very useful RA models, which we then study and
analyse. To a large degree, the RA modelling for the CRN, as discussed in this
chapter, can be used to interpret and study almost all RA models and designs for
modern CRN applications.

Further, the RA models that are discussed in this chapter do have some important
characteristics and/or advantages over most other RA models for the CRN. The first
is that they are quite generic in their design. The RA models are generic in that they
capture very succinctly the most essential elements or components of the modern
CRN designs. Secondly, these RA models take into consideration the important
aspect of heterogeneity for the CRN. This makes the RAmodels to be more accurate
in their representation of the modern CRN. The third advantage of the RA models is
that it is possible to analyse them in order to achieve both optimal and near-optimal
solutions for the RA problems that are developed. Another important advantage
is that the RA models discussed can be easily modified to accommodate any other
(new) objective or constraint(s) without significantly changing the outlook, analyses
and complexities of the RA problems or solutions for the CRN. Finally, the RA
models that are developed are implementable in practical CRN applications.

6.2 System Modelling for Resource Allocation in
Heterogeneous Cognitive Radio Networks

The system model shown in Fig. 6.1 is a generic model for heterogeneous CRN.
The model is applicable for studying and analysing RA problems and solutions
in modern CRN. The model is well-designed in that it incorporates the different
kinds of heterogeneous considerations or classifications for the CRN. For example,
the concept of network heterogeneity is well captured in the model. Network
heterogeneity is achieved by separating the secondary network from the primary
network, while each network is controlled by its own base station. Furthermore,
network heterogeneity is achieved in the model by enabling each network to
operate using different configurations of transmission power, modulation schemes,
interference threshold, etc.

The concept of channel heterogeneity is also incorporated in the model in
Fig. 6.1. Channel heterogeneity is achieved by the use of the orthogonal frequency
division multiple access (OFDMA) technique for the CRN. This makes it possible
for different secondary users (SUs) to use different parts of the spectrum band of
the primary users (PUs) at the same time. Some newer variants of the OFDMA, and
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Fig. 6.1 A generic system model for heterogeneous CRN

even the non-orthogonal multiple access (NOMA) technique, are all useful medium
access techniques to help realise channel heterogeneity for the CRN. Finally, the
concept of user heterogeneity is incorporated in the model since all the SUs fall into
classes or groups and each class is served based on some predetermined criteria.

The heterogeneous CRN model presented in Fig. 6.1 is a centralised model.
However, by some slight modification, the model can be employed to study the
distributed CRN representation as well. In the centralised CRN being considered,
the SUBS has the responsibility of informing the SUs on the resources (modulation
scheme, data rate, subchannels, transmission power, etc.) that have been allotted
or assigned to them. However, in the distributed CRN, there is no central control.
Each SU determines its resource usage by some ground rules that are applicable
to all SUs in the network. More importantly, the underlay, overlay and hybrid
architectural designs for the CRN, which are the most common descriptions of the
CRN, are studied by slightly modifying the model to fit the various classifications.
In the remaining parts of this section, we develop the generic system model to fit the
underlay, overlay and hybrid CRN considerations.



88 6 Modelling and Analyses of Resource Allocation Optimisation in Cognitive. . .

6.2.1 Modelling Underlay Cognitive Radio Networks

The underlying ideas for the development of a generic RA model for the underlay
CRN are presented in this subsection. In the underlay consideration, the SUs are free
to transmit their data within the interference range of the PUs, but they must do so
using very low power levels that they do not cause excessive interference to the PUs
[1]. In the underlay model, we assume that there are N OFDMA subchannels within
the coverage region of the secondary user base station (SUBS). Further, within the
coverage range of the SUBS, there are K heterogeneous SUs and L similar PUs
geographically dispersed in that region or space.

Since it is a centralised network, in the underlay, overlay and hybrid RA models
studied, the SUBS is responsible for selecting the subchannels for each SU in the
network. The SUBS then sends its decision to the SU on a distinct control channel.
We assume seamless communication between the SUs and the SUBS over the
control channel. We also assume a slow fading environment for the subchannels.
The data rate c achieved by a subchannel depends on the modulation scheme through
which that subchannel transmits its data. Four possible modulation schemes are
considered in the model, namely, the binary phase shift keying (BPSK), the 4-
quadrature amplitude modulation (4-QAM), the 16-QAM and the 64-QAM. The
respective data rates for the four modulation schemes are c = 1, 2, 4 and 6 bits per
OFDMA symbol. A rate weight w (w > 0) is associated with each category of SUs
in the network.

Given that a particular value of the bit error rate (BER) ρ is to be realised, the
BPSK modulation requires a minimum transmission power P(c, ρ) given as [2]:

P(c, ρ) = Nφ[c × erf c−1(2ρ)]2
(c = 1).

(6.1)

Similarly, for the M-ary QAM, the minimum transmission power that is required is
given as:

P(c, ρ) = 2(2c − 1)Nφ

3

(
erf c−1

(
(

cρ
√
2c

2(
√
2c − 1)

))2

(c = 2, 4 or 6 for 4 − QAM, 16 − QAM and 64 − QAM, respectively),
(6.2)

where erf c(x) = ( 1√
2π

)
∫ ∞
x

e
−t2
2 dt is the complementary error function, π =

(22/7) and Nφ is the single-sided noise power spectral density. The value of Nφ

is taken to be the same value for all the subchannels.
To maintain a particular ρ value, an increase in the number of bits on a

subchannel will result in a non-linear increase in the amount of transmission power
required to communicate on that subchannel. The subchannel power gain matrix
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between SUs and the SUBS is given as Hs ∈ RK×N . Therefore, Hs
k,n represents the

power gain between the SUBS and the SU k on subchannel n. The minimum power
Pk,n(ck,n, ρ) that SU k needs on subchannel n to transmit ck,n bits is calculated by
dividing the power P(ck,n, ρ) of SU k on subchannel n by the channel gain Hs

k,n

between the SUBS and SU k on subchannel n. This is given as:

Pk,n(ck,n, ρ) = P(ck,n, ρ)

Hs
k,n

. (6.3)

We denote the power gain matrix between the PUs and the SUBS by Hp ∈ RL×N .
Therefore, the vector H

p
l,n represents the subchannel power gain between the SUBS

and PU l on subchannel n.
The parameters so far defined and represented are the basic parameters for

modelling the RA problems in the underlay CRN.

6.2.2 Modelling Overlay Cognitive Radio Networks

The underlying ideas for the development of a generic RA model for the overlay
CRN are presented in this subsection. In the overlay model, the K heterogeneous
SUs use the PUs’ licensed spectrum in an opportunistic manner. There are L PUs
licensed to use the spectrum. In this case, the entire spectrum space is divided into
M subchannels. However, through periodic spectrum sensing, a subset N of the M

subchannels is identified and selected to transmit data for the SUs.
Thus, the selected spectrum band N are the non-active frequency bands of the

PUs during the particular time period of operation. This means that the SUs only use
the subchannels that are in the vacant sub-bands of the PUs for their communication.
Besides, all the other definitions and representations for the underlay RA model
already discussed in the previous subsection (data rates, modulation schemes,
transmission power, BER, weight, etc.) are applicable to the overlay RA model
being discussed in this chapter. The main difference is that, in the overlay modelling,
the possibilities of miss detection and false alarms are taken into consideration in
the design and analysis. Miss detection brings about the possibility of co-channel
interference to the PUs. False alarm usually results in the minimisation of the
utilisation efficiency of the spectrum for the CRN.

Let the probability of miss detection on subchannel n be P md
n and the probability

of false alarm on subchannel n be P
f
n . Let P1,n be the probability that subchannel n

is truly occupied by a PU and the CRN detects this correctly, then:

P1,n = P L
n (1 − P md

n )

P L
n (1 − P md

n ) + P
f
n (1 − P L

n )
, (6.4)
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where P L
n is the priori probability that the sub-band of subchannel n is occupied by

PUs. Again, let P2,j be the probability that subchannel j is truly occupied but the
CRN has made a wrong judgement (that is, adjured it to be free). Then, an interfer-
ence value of Il,n is experienced by PU l because an SU has accessed the subchannel
n to transmit with unit transmission power. The interference Il,n is given as:

Il,n =
∑

j∈Ml
o

P1,j I
n
l,j +

∑
j∈Ml

v

P2,j I
n
l,j , (6.5)

where Ml
o is the set of subchannels that are sensed to be occupied in the sub-band

of PU l, Ml
v is the set of subchannels that are sensed to be vacant in the sub-band

of PU l and In
l,j is the interference to subchannel j , which is in the sub-band of PU

l, when an SU is transmitting on subchannel n with unit power.

6.2.3 Modelling Hybrid Cognitive Radio Networks

The underlying ideas for the development of a generic RA model for the hybrid
CRN are presented in this subsection. In the hybrid model, theK heterogeneous SUs
use the licensed spectrum of the PUs when the PUs are not available. Even when
the PUs are around, the SUs are still allowed to use the PU sub-bands by simply
reverting to the low power transmission (underlay) mode at such instances. There
are L PUs licensed to use the spectrum. If N represents the number of available or
inactive subchannels (i.e., the subchannels that are free because they are unoccupied
by the PUs) and M represents the number of unavailable or active subchannels (i.e.,
the subchannels that are being used by the PUs), then the total available spectrum
sub-bands in the hybrid case is actually the entire (N + M) subchannels.

Again, in the hybrid CRN consideration, the SUs share both the active subchan-
nels and the non-active subchannels with the PUs. For the hybrid model being
considered, it is assumed that the activities of the PUs are stable during each
time period or time frame. All the other definitions and representations for the
underlay and overlay RA models discussed in the previous subsections (data rates,
modulation schemes, transmission power, BER, weight, etc.) are applicable to and
holds for the hybrid RA model developed.

6.3 Representing User Heterogeneity in the Resource
Allocation Modelling for Cognitive Radio Networks

So far in our network modelling for the underlay, overlay and hybrid CRN
considerations, the aspects of network heterogeneity and channel heterogeneity
have been well represented in the RA models developed. Albeit, the aspect of
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user heterogeneity has not been captured in these models. This is because user
heterogeneity is usually captured by defining different constraints for different
user categories in the RA problem formulations. In this section, a general rule for
capturing different categories of user heterogeneity in the RA modelling for the
CRN is presented.

We assume that the K heterogeneous SUs in each design (underlay, overlay and
hybrid CRN) are categorised into v different groups or classes of SUs. Any useful
criterion can be used to classify these SUs. An example of a useful criterion for
classifying SUs is the minimum data rate requirement for an acceptable quality of
service (QoS). We number the different classes of SUs as 1, 2, 3, . . . , v, so that K1
represents the number of SUs in class 1, K2 represents the number of SUs in class
2 and so on. We attach weight wi to the SUs in class i ∈ v. Therefore, w1 is the
weight attached to meeting the demands of the SUs in class 1, and wv is the weight
attached to meeting the demands of the SUs in v. We use throughput maximisation
as our objective in the RA problem formulation. Therefore, the objective of the CRN
design is to maximise the total data rate for all the SUs in all classes, which is the
same as the throughput of the network. The objective function is then given as:

max z =
N∑

n=1

⎛
⎝ K1∑

k=1

w1ck,n +
(K1+K2)∑
k=K1+1

w2ck,n

+
(K1+K2+K3)∑
k=K1+K2+1

w3ck,n + . . . +
(K1+K2+...+Kv)∑

k=K1+...+Kv−1+1

wvck,n

⎞
⎠ ;

ck,n ∈ {0, 1, 2, 4, 6}. (6.6)

To make the classification more practical, we assume that the K heterogeneous
SUs are classified using their minimum data rate demand. If R1 represents the
minimum rate demand of the SUs in class 1, R2 represents the minimum rate
demand for the SUs in class 2 and so on, then Rv will be the minimum rate demand
for the SUs in class v. We now write the minimum rate constraints for the different
classes of SUs as follows:

N∑
n=1

ck,n ≥ R1; k = 1, 2, · · · ,K1 (6.7)

N∑
n=1

ck,n ≥ R2; k = K1 + 1,K1 + 2, · · · ,K1 + K2 (6.8)

N∑
n=1

ck,n ≥ R3; k = K1 + K2 + 1,K1 + K2 + 2, · · · ,K1 + K2 + K3 (6.9)

...
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N∑
n=1

ck,n ≥ Rv; k = (K1 + K2 + . . . + Kv−1 + 1),

(K1 + K2 + . . . + Kv−1 + 2), · · · , (K1 + K2 + . . . + Kv). (6.10)

The equations given above are used to capture the different classes of users or
user demands in any heterogeneous CRN consideration. While we have used the
minimum data rate as a criterion for classifying the SUs, any other criterion could
have been used to classify the SUs without significantly changing the format or
shape of the representation.

6.4 General Formulation of Resource Allocation Problems
in Cognitive Radio Networks

In this section, the various components of the RA modelling for the CRN discussed
in the previous sections are finally combined to present generic RA formulations
for the underlay, overlay and hybrid heterogeneous CRN. For ease of representation
and analysis, it is assumed that the SUs are classified using their minimum rate
requirements. Further, to keep the model as simple and straightforward as possible,
we categorise the K heterogeneous SUs into just two classes. The class 1 SUs are
represented by K1 and they are the high-rate demand (HD) SUs. The class 2 SUs are
represented by (K − K1) and they are the low-rate demand (LD) SUs. Each class
has a minimum data rate demand for an effective QoS realisation.

We stress that we have only limited the classification of the heterogeneous
SUs in the discussions and analyses presented in this chapter to two classes. The
reason is simply to make the RA models quite manageable and easy to analyse and
understand. However, it is very easy to extend the classes of SUs to three, four or any
desired number of classes, using any classification criteria, following the general
formulation approach presented in the previous section. Increasing the number of
classes of SUs will not significantly change the solutions or results that are obtained
for the CRN.

Using the definitions and representations that have so far been provided in
the previous sections of this chapter, the formulation of the generic underlay
RA optimisation problem for heterogeneous CRN, considering the minimum rate
demands of the different classes of SUs as the criterion for categorising the SUs, is
presented as follows:

max z =
N∑

n=1

⎛
⎝ K1∑

k=1

w1ck,n +
K∑

k=K1+1

w2ck,n

⎞
⎠ ;

ck,n ∈ {0, 1, 2, 4, 6}
(6.11)
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subject to

N∑
n=1

ck,n ≥ RI ; k = 1, 2, · · · ,K1 (6.12)

N∑
n=1

ck,n ≥ RII ; k = K1 + 1,K1 + 2, · · · ,K (6.13)

N∑
n=1

K∑
k=1

Pk,n ≤ Pmax (6.14)

N∑
n=1

�nH
p
l,n ≤ εl; l = 1, 2, . . . , L (6.15)

ck,n = 0 if ck′,n �= 0, ∀k′ �= k; k = 1, 2, . . . , K (6.16)

where RI is the minimum data rate demand of SU k in class 1 and RII is the
minimum data rate demand of SU k in class 2, w1 is the weight attached to the
class 1 SUs and w2 is the weight attached to the class 2 SUs, �n = 	K

k=1Pk,n is the
total power on subchannel n, Pk,n is the transmission power of SU k on subchannel
n, Hp

l,n is the magnitude of the interference channel gain between the SUBS and PU
l on subchannel n, εl is the threshold interference power to PU l from all the SUs in
the network and Pmax is the SUBS’ maximum transmission power.

Equation (6.11) captures the objective function for the RA problem in underlay
heterogeneous CRN. In this case, the objective function is indicative of the sum
throughput or total weighted data rate that is realised by all the SUs in the network.
The constraints in Eqs. (6.12) and (6.13) are the minimum data rate constraint.
These constraints ensure that the respective minimum data rate requirements for
the two classes of SUs are satisfied. The constraint in Eq. (6.14) ensures that the
total transmission power of all the SUs do not exceed the maximum transmission
power of the SUBS. The constraint in Eq. (6.15) is to ensure that the amount of
interference that reaches each PUwhen the SUs are transmitting on the PU’s channel
do not exceed the set threshold interference value. The constraint in Eq. (6.16) is the
mutually exclusive constraint. The constraint ensures that only one SU is assigned to
each subchannel. Therefore, once we have allocated subchannel n to the SU k′ �= k,
the data rate for subchannel n must be 0 for any other user k.

In the case of the overlay model, the formulation of the generic RA optimisation
problem for heterogeneous CRN, using the minimum rate demands of the different
classes of SUs to categorise the SUs, is the same formulation for the underlay
CRN, as presented in Eqs. (6.11)–(6.16), EXCEPT for Eq. (6.15) which captures the
interference constraint to the PUs. For the overlay RA model, Eq. (6.15) becomes:
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N∑
n=1

�nH
p
l,nIl,n ≤ εl; l = 1, 2, . . . , L, (6.17)

in which case, Il,n represents the possible interference that is caused to the PUs as
a result of the problems of miss detection and false alarm (already given in Eq. 6.5).
All other parts of the problem formulation in Eqs. (6.11)–(6.16) are unchanged for
the overlay CRN.

For the hybrid CRN consideration, the formulation of the generic RA optimi-
sation problem for heterogeneous CRN, using the minimum rate demands of the
different classes of SUs to categorise the SUs, is slightly modified to reflect that all
available subchannels (occupied or unoccupied) are used by the SUs. In this case,
the general formulation given in Eqs. (6.11)–(6.16) becomes:

max z =
(N+M)∑

n=1

⎛
⎝ K1∑

k=1

w1ck,n +
K∑

k=K1+1

w2ck,n

⎞
⎠ ;

ck,n ∈ {0, 1, 2, 4, 6}
(6.18)

subject to

(N+M)∑
n=1

ck,n ≥ RI ; k = 1, 2, · · · ,K1 (6.19)

(N+M)∑
n=1

ck,n ≥ RII ; k = K1 + 1,K1 + 2, · · · ,K (6.20)

(N+M)∑
n=1

K∑
k=1

Pk,n ≤ Pmax (6.21)

∑
n∈N

�nH
p
l,n +

∑
n∈M

�nH
p
l,nIl,n ≤ εl; l = 1, 2, . . . , L (6.22)

ck,n = 0 if ck′,n �= 0, ∀k′ �= k; k = 1, 2, . . . , K. (6.23)

6.5 General Problem Formulation While Employing Other
Heterogeneous User Classifications

To further broaden the scope of the generic RA problem formulations for the
underlay, overlay and hybrid CRN considerations discussed in the previous section,
we explore how the developed RA problems can be made to accommodate other
possible heterogeneous classifications of the SUs. While the formulation in the
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previous section employed the minimum rate requirements to classify the heteroge-
neous SUs, that criterion alone is not the only criterion for the possible classification
of heterogeneous SUs in the CRN. There are other criteria for classifying the SUs
in the CRN which must also be put into consideration for the RA formulation to be
indeed generic.

Again, since the RA models discussed in this chapter are meant to be generic, the
general formulation of the RA problem should not be limited to cover heterogeneous
user classification based on the minimum rate requirements alone. The generic RA
problem formulation should be such that it can be easily extended to cater for other
user categorisations as well. In other words, if the heterogeneous classification of
the SUs were based on any other criterion, it should be possible to easily modify the
generic RA problems, as discussed in the previous section, to now address such new
classes of SUs. In this section, we seek to establish how the generic RA formulation
that is developed in the previous section can be easily modified to capture other
possible user classifications for wider applicability.

As previously mentioned, apart from the minimum rate requirements, there are
other criteria for classifying user heterogeneity that have been studied in some
of the RA models developed for heterogeneous CRN. For example, in the work
in [3], a number of criteria for classifying heterogeneous users in the CRN were
considered. Some of the most common criteria that have been employed for
classifying heterogeneous SUs are the minimum rate requirements of the SUs [1, 4],
the level of priority or sensitivity of the SUs [5, 6], the delay tolerance profile of the
SUs [7, 8], among others.

The RA problems developed in the previous section (Eqs. (6.11)–(6.17)) can
indeed be easily modified to accommodate almost all other criteria for classifying
the SUs. In other words, the RA problems developed in the previous section are
indeed generic in that, almost all the criteria for classifying user heterogeneity can
be incorporated into the general RA model developed for the underlay, overlay and
hybrid CRN. We provide an example of how this can be achieved. We use the
instance where the SUs are classified based on their priority levels to achieve the
above-mentioned claim. We consider only two categories of users still, for ease of
representation and analysis. In the instance of priority classification, the SUs can be
classified as either ‘high priority (HP)’ SUs or ‘best effort service (BE)’ SUs.

Using the above priority classification, the class 1 SUs, which are the HP
SUs, will have the higher priority and their demands will always be met first.
The class 2 SUs, which are the BE SUs, will share what is left of the resources
among themselves, using a proportional fairness constraint. The total number of
heterogeneous SUs K is now divided into the two classes of SUs. Let K1 represent
the HP SUs and K2 represent the BE SUs. The sets of the two classes of SUs are
denoted as κA and κB , respectively.

Furthermore, we use Rk to represent the minimum data rate demand of SU k in
κA and γk to represent the predefined value of the normalised proportional fairness
factor for each SU in κB . Also,Ri represents the data rate for the element i in κB ,w1
represents the weight of SU k in κA and w2 represents the weight of SU k in κB . In
comparison, all other parts of the RA problem formulation in Eqs. (6.11)–(6.17) are
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unchanged EXCEPT for the constraints in Eqs. (6.12) and (6.13). The constraints
in Eqs. (6.12) and (6.13), which captured the minimum data rate requirement in the
previous classification, are now modified to capture the new priority classification
for the heterogeneous SUs as follows:

N∑
n=1

ck,n ≥ Rk; ∀k ∈ κA (6.24)

Rk∑
i∈κB

Ri

= γk; ∀k ∈ κB, (6.25)

in which case, the new Eq. (6.18) now satisfies the HP SUs while the new Eq. (6.19)
now satisfies the BE SUs.

In like manner, all other heterogeneous user classifications can be easily accom-
modated by slightly adjusting the generic RA problem formulation of Eqs. (6.11)–
(6.23). The work in [3] gives some practical examples of other heterogeneous
classifications and how the generic RA formulation can be easily modified to
accommodate them without significantly affecting the problem structure, analyses
and results of the RA problems for the CRN. In light of the discussions so far
presented, we may generalise that almost all the constraints or categories/classes
of heterogeneity in the RA problems for the CRN can be accommodated by
slightly modifying the RA problems developed in Eqs. (6.11)–(6.17). Therefore,
we make the case that the RA problems developed and discussed in this chapter
are indeed generic RA optimisation problems for the underlay, overlay and hybrid
heterogeneous CRN considerations.

6.6 Relating Other Resource Allocation Problem
Formulations to the General Formulation

Although we have attempted to present a broadly generic RA problem formulation
for the underlay, overlay and hybrid CRN, it is still necessary to point out that the
generic RA problem formulations developed and discussed in this chapter are not
the only possible RA formulations for the CRN. Indeed, there are several other RA
formulations for the CRN that have been presented and/or analysed in the literature.
Obviously, a good number of the other RA formulations would likely have some
kind of variation to the generic RA formulations for the underlay, overlay and hybrid
heterogeneous CRN developed in this Chapter.

In reality, since individual presentations and goals are different, RA problem
formulations for the CRN are usually diverse from one research work to another
such that it may be difficult to find the RA problem formulations of two different
works to be exactly alike in all respects, assumptions, analyses, etc. Therefore, to
further establish the generic nature of the RA problem formulation developed in this
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chapter, in this section, we attempt to relate the generic problem formulations in this
chapter to a few other RA problem formulations that have been developed by other
researchers in the field.

6.6.1 Other Underlay Formulations in Relation to the General
Formulation

There is already a sizeable volume of RA problem formulations for the underlay
CRN that have been developed in various research works in the literature. These RA
problem formulations may not be exactly like or completely similar to the generic
RA problem formulation for heterogeneous underlay CRN presented in the previous
sections of this chapter. However, a good number of the RA problem formulations
may be easily related to the generic RA problem formulation developed and
discussed in this chapter. We examine some works on RA for underlay CRN and
establish how these models relate to the generic RA model for the underlay CRN
presented in this chapter.

The authors in [9] developed and analysed an RAmodel for centralised, underlay
CRN. In the model, there were K SUs, L PUs and N subchannels. The power gain
between the SUBS and PU l at subchannel n was represented by H

p
l,n, the maximum

permissible interference to PUs was represented by ϒl , the total power allocated to
subchannel n was represented by φn, the maximum available power at the SUBS
was represented by Pmax and the minimum required data rate for each SU k was
represented by Rk . Furthermore, the transmission power needed at the SUBS to
transmit ck,n bits to SU k on subchannel n with a BER threshold ρ was represented
by Pk,n(ck,n, ρ), the set of all possible values for ck,n was represented by D =
0, d1, . . . , dC = 0, 1, 2, 4, 6, where C stands for the number of possible modulation
schemes (ck,n = 0 meant that SU k did not use subchannel n for data transmission,
ck,n = 1 meant that SU k used subchannel n for BPSK transmission and so on). The
objective was to maximise the sum throughput for the network. The optimisation
problem in [9] was formulated as:

max
ck,n∈D

N∑
n=1

K∑
k=1

ck,n (6.26)

subject to

N∑
n=1

φnH
p
l,n ≤ ϒl, l = 1, 2, . . . , L, (6.27)

N∑
n=1

ck,n ≥ Rk, k = 1, 2, . . . , K, (6.28)
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N∑
n=1

K∑
k=1

Pk,n(ck,n, ρ) ≤ Pmax, (6.29)

ck,n = 0, if ck′,n �= 0, ∀k �= k′, k = 1, 2, . . . , K. (6.30)

The constraint in Eq. (6.27) ensured that the interference leakage to PU l was always
below the threshold value ϒl , the constraint in Eq. (6.28) ensured that each SU
achieved the minimum required data rate Rk , the constraint in Eq. (6.29) limited the
total transmission power below the available power Pmax at the SUBS, the constraint
in Eq. (6.30) ensured mutual exclusive SU allocation to each subchannel.

In comparison with the generic RA problem for underlay CRN developed in
Eqs. (6.11)–(6.16), the RA problem in [9] is a very fair representation of the
underlay CRN. Most of the important details for the underlay CRN are well-
captured, except for the aspects of heterogeneous users and the effects of weight.
The general RA formulation is thus a fuller and more comprehensive representation
of the RA problems for underlay CRN than the problem presented in [9].

Another good example of the RA problem formulation for underlay CRN is
found in [10]. In the model, the authors developed a multi-carrier CRN composed
of a primary cell and N secondary cells. The secondary cells could use either the
channel underlay or the channel interweave (hybrid) approach in accessing the
PU subchannels. Index 1 referred to the primary network while indexes i with
i ∈ {2, . . . , N + 1} referred to the secondary networks. The primary network
occupied a licensed bandwidth B with L adjacent subchannels using the OFDMA
technique. The SUBS sought to access the same bandwidth B for the SUs. The
SUs cooperated for multiple access, allowing only one SU to transmit its data in
each subchannel. The SU that was selected to use subchannel k ∈ 1, . . . , L was
denoted by i[k]. The rate on link i ∈ {2, . . . , N + 1} at iteration n was denoted
by Rk

i , the set of subchannels that were allocated to SU i was denoted by Si , the
function of the primary power at iteration n1 that indicated the channel gains was
denoted by bk

i,(n−1), the different rate values which were determined by the different

secondary network cases employed in the system were represented by ak
i and ck

i ,
the channel gain was denoted by hk

1,i and the threshold interference for subchannel

k was denoted by I k
th. The objective was to maximise the sum rate on the primary

link and on the secondary links. Subchannel allocation was first carried out to select
one secondary transmitter per subchannel. Thereafter, an iterative power allocation
algorithm was used to allocate power to each SU. The optimisation problem for each
SU i ∈ {2, . . . , N + 1} at iteration n in [10] was formulated as:

max
Pi,n

B

L

∑
k∈Si

log2(1 + bk
i,(n−1)P

k
i,n) (6.31)

subject to
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ak
i P

k
i ≥ ck

i ∀k ∈ Si (6.32)

|hk
1,i |2P k

i ≤ I k
th ∀k ∈ Si if P k

1,(n−1) > 0 (6.33)

P k
i ≥ 0 ∀k ∈ Si (6.34)∑

k∈Si

P k
i ≤ Pi,max ∀k ∈ Si. (6.35)

The constraint in Eq. (6.32) indicated the achievable rate on each subchannel, the
constraint in Eq. (6.33) expressed the interference limitation on the primary receiver,
while the last two constraints were the power constraints for the secondary network.

In comparison with the generic RA problem for underlay CRN developed in
Eqs. (6.11)–(6.16), the RA problem in [10] is fairly comprehensive, even though
its network classifications do not properly represent heterogeneous users in typical
CRN. Furthermore, its problem formulation is slightly cumbersome, making it more
complex for proper analysis than in the generic underlay RA problem formulation
developed for heterogeneous CRN.

6.6.2 Other Overlay Formulations in Relation to the General
Formulation

Just as in the underlay consideration, there is already a sizeable volume of RA
problem formulations for the overlay CRN that have been developed in various
research works in the literature. These RA problem formulations may not be exactly
like or completely similar to the generic RA problem formulation for heterogeneous
overlay CRN presented in the previous sections of this chapter. However, a good
number of the RA problem formulations may be easily related to the generic RA
problem formulation developed and discussed in this chapter. We examine some
works on RA for overlay CRN and establish how these models relate to the generic
RA model for the overlay CRN presented in this chapter.

The authors in [11] developed an overlay CRN model that is, in fact, very
similar to the generic model described in this chapter. In the model, the SUs used
the licensed spectrum of the PUs in an opportunistic manner with the aid of an
access point (the equivalence of the SUBS). There were L PUs, K heterogeneous
SUs (divided in K0 non-real-time (NRT) SUs with each SU allotted resources by
a rate proportionality factor γk , and K − K0 real-time (RT) SUs with fixed rate
requirements R

req
k ) and N subchannels detected to be free by the SUs and over

which they were permitted to transmit their data. The rate of SU k was represented
by Rk , the interference introduced to PU l by the access of a SU on subchannel n

with unit transmission power was denoted by In,l , the interference threshold for PU
l was denoted by I th

l , the power allocated to SU k on subchannel n was denoted
by pk,n, the signal-to-noise ratio (SNR) of subchannel n being used by SU k with
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unit power was represented by Hk,n, the transmission power limit of the SUBS was
denoted by PT and ρk,n denoted the subchannel allocation index which was either
1 (indicating that the subchannel n has been occupied by SU k) or 0 (indicating
otherwise). The objective of the RA problem for the overlay CRN developed in [11]
was to maximise the downlink sum capacity of the SUBS, with guarantee on the
rate demands of all SUs, under power limitation and interference constraints. The
RA optimisation problem was formulated as:

max
ρk,n,pk,n

K∑
k=1

N∑
n=1

ρk,n log(1 + pk, nHk,n), (6.36)

subject to

pk,n ≥ 0, ∀n ∈ N, ∀k, (6.37)

K∑
k=1

N∑
n=1

ρk,npk, n ≤ PT , (6.38)

K∑
k=1

N∑
n=1

ρk,npk, nIn,l ≤ I th
l , l = 1, 2, . . . , L, (6.39)

R1 : R2 : . . . : RK0 = γ1 : γ2 : . . . : γK0, (6.40)

Rk = R
req
k , k = K0 + 1, . . . , K, (6.41)

ρk,n ∈ {0, 1}, ∀n ∈ N, ∀k, (6.42)

K∑
k=1

ρk,n = 1, ∀n ∈ N. (6.43)

The constraint in Eq. (6.39) indicated that the permissible interference limit to
PU l must not exceed its threshold value I th

l . The constraint in Eq. (6.40) was the
constraint that indicated the proportional rate of the NRT SUs. The constraint in
Eq. (6.41) was the constraint that indicated the fixed rate requirements of the RT
SUs. The constraints in Eqs. (6.42) and (6.43) were to ensure that each subchannel
was not shared by more than one SU.

In comparison with the generic RA problem for overlay CRN developed in
Eqs. (6.11)–(6.17), except for the weight implications for the different categories of
SUs, the RA problem for overlay CRN developed in [11] is a very close substitute of
the generic problem. All the important aspects of the overlay CRN captured in the
generic formulation are equally represented in the problem formulation in [11]. The
formulation in [11] is therefore a very detailed and a well-thought-out RA problem
for overlay CRN.

Another good example of the RA problem for overlay CRN that can be compared
with the general RA problem for the overlay CRN is found in [12]. In the
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model, there were G (index by g) multiple CRN systems (secondary networks)
coexisting with a primary network. There wereK heterogeneous SUs in the multiple
CRN system, divided into single-network SUs (these SUs chose the best wireless
networks that was available to access and send data through a single network at a
time) and multi-homing SUs (these SUs accessed multiple networks simultaneously
with multiple access technologies). There were N subchannels shared for the
entire network. Through sensing, the subchannels in CRN g were divided into the
subchannels that were available, Na

g and the subchannels that were unavailable, Nu
g .

The interference introduced to the PU in CRN g by the SU k over the subchannel
n was denoted by In

k,g . The value of In
k,g was below the permissible interference

limit I th
g of the PU in each CRN. The transmission power of SU k on subchannel n

in CRN g was denoted by pn
k,g , the total transmission power of SU k was denoted

by p̄k , the rate capacity of SU k on subchannel n in CRN g was denoted by Rn
k,g ,

the minimum capacity requirement for each SU to guarantee the QoS demand was
denoted by Rmin, ψk was an indicator to show the type of SU that k was (ψk = 1
if SU k was a single network SU, ψk = G if SU k was a multi-homing SU) and
ρn

k,g was the channel allocation indicator (ρn
k,g = 1 meant that subchannel n had

been allocated to SU k in CRN g and ρn
k,g = 0 meant otherwise). The objective of

the problem formulation was to maximise the total capacity of the multiple CRN
system. The RA problem in [12] was formulated as:

max
ρn

k,g,pn
k,g

K∑
k=1

G∑
g=1

∑
n∈Na

g

Rn
k,g (6.44)

subject to

K∑
k=1

ρn
k,g ≤ 1, ∀g, n, (6.45)

ρn
k,g + ρn′

k,g′ ≤ ψk, ∀k, g �= g′, n, n′, (6.46)

pn
k,g − p̄kρ

n
k,g ≤ 0 ∀k, gn, (6.47)

G∑
g=1

∑
n∈Na

g

pn
k,g ≤ p̄k ∀k, (6.48)

K∑
k=1

∑
n∈Na

g

pn
k,gI

n
k,g ≤ I th

g ∀g, (6.49)

Rk ≥ Rmin ∀k, (6.50)

pn
k,g ≥ 0 ∀k, g, n, (6.51)
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ρn
k,g ∈ {0, 1} ∀k, g, n. (6.52)

In comparison with the generic overlay RA problem developed in Eqs. (6.11)–
(6.17), the overlay RA problem in [12] is much more cumbersome and quite
intractable. There are so many extraneous parameters that render the problem
unnecessarily complex and almost-certainly impracticable for real-life CRN appli-
cations. The general RA problem formulation for overlay CRN is thus a much better
representation of the problem than the one developed in [12].

6.6.3 Other Hybrid Formulations in Relation to the General
Formulation

Unlike the cases for underlay and overlay, the volume of work on RA problem
formulations for the hybrid CRN is not very much. Still, a few works are cited
and compared to the generic hybrid RA problem formulation developed in this
chapter. The few RA problem formulations for hybrid CRN by other researchers
may not be exactly like or completely similar to the generic RA problem formulation
for heterogeneous hybrid CRN presented in the previous sections of this chapter.
However, the few works on RA problem formulations may be easily related to
the generic RA problem formulation developed and discussed in this chapter. We
examine some works on RA for hybrid CRN and establish how these models relate
to the generic RA model for the hybrid CRN presented in this chapter.

The authors in [13] developed an RA model for mobile SUs in a hybrid CRN
environment to enhance spectrum efficiency. In the model, the activities of the PUs
were assumed to be unchanged in each time frame. The SUs in the CRN were
assumed to be mobile, with individual speed and direction for each SU in the CRN.
The RA problem was defined to be a maximum throughput and fair access problem,
where each SU sought fair access opportunities in such a way that the maximum
expected throughput would be achieved for the entire CRN.

In the model developed in [13], the hybrid design that was employed was quite
an interesting one. In the model, when the PU was unavailable, the SUs used the
licensed subchannels of the PU at the highest power possible. When the PU was
available, a power control mechanism was used to regulate the interference on the
subchannels of the PU. In cases when the SUs were in very close interference range
to the PU, the subchannels of the PU were completely unavailable to the SUs due
to the uncontrollable interference they would cause. In essence, only the SUs at
a comfortable distance to the PUs could access the subchannels at those times.
Therefore, even though the hybrid sharing model was employed [13], there was
still no guarantee that all the subchannels would always be available to all SUs at all
the times.

For the analysis, the hybrid RA problem in [13] was developed as a subchannel
assignment and power allocation problem. The objective was to maximise the
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expected network throughput and to guarantee access fairness for all the SUs. Since
the PUs’ activities were considered to be stable during each time period T , network
throughput was optimised for only that period. The hybrid RA problem in [13] was
formulated as:

max z =
T∑

t=0

N∑
n=1

K∑
k=1

ak,n(t)Rk,n(t) (6.53)

subject to

N∑
n=1

ak,n(t) ≥ 1, (6.54)

K∑
k=1

ak,n(t) ≤ 1; ak,n(t) = {0, 1} (6.55)

Pn(t) ≤ P lim
n ;

N∑
n=1

Pn(t) ≤ Pmax, (6.56)

where ak,n(t) represented the instantaneous subchannel allocation result, which
was 1 when subchannel n was assigned to SU k and 0 otherwise, P lim

n was the
power limit on subchannel n and Pmax was the maximum transmission power of the
SUBS. The constraint in Eq. (6.54) guaranteed that there was at least one subchannel
being assigned to each SU. The two constraints in Eq. (6.55) ensured that only one
connection was permitted on each subchannel. The two constraints in Eq. (6.56)
represented the power constraints. The optimisation problem in Eqs. (6.53)–(6.56)
was time-varying and was said to be very difficult to solve directly. The authors
solved the problem suboptimally by dividing it into a number of sub-problems,
which were then solved per time using the approach of graph theory.

In comparison with the generic hybrid RA problem developed in Eqs. (6.18)–
(6.23), the hybrid RA problem in [13] completely left out the important aspect of
interference to PUs, making it incomplete and insufficient to adequately analyse
hybrid RA for the CRN. All other parts of the RA problem in [13] are well captured
in the generic RA problem for hybrid CRN. The generic RA problem is thus a more
comprehensive and/or a more inclusive version of the RA problem developed in
[13].

Another example of the RA problem for hybrid CRN that can be compared with
the generic RA problem for hybrid CRN developed in this chapter is found in [14].
In the model, the SUs in the overlay region used the overlay method to access
the spectrum, whereas the SUs in the hybrid region used the underlay or sensing-
free method to access the spectrum. The OFDMA technique was used for the
primary network and the secondary network. The PUs’ spectrum band was divided
into N equal-sized subchannels, while each subchannel experienced flat fading.
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The authors assumed perfect sensing and did not consider the case of imperfect
sensing. The network was centralised and not distributed. The objective was that
of minimising the total power being consumed by the network. This was subject to
meeting a minimum data rate demand. The RA problem for hybrid CRN in [14] was
formulated as:

min
Pi,kρi,k∀i,k

K∑
k=1

∑
i∈N∪M

ρi,kPi,k (6.57)

subject to

Rk =
∑
i∈N

ρi,kC

(
Pi,kh

SS
i,k

σ 2

)
+ α(k)

∑
i∈M

ρi,kC

(
Pi,kh

SS
i,k

σ 2 + PphPS
i

)
≥ Rmin ∀k,

(6.58)∑
i∈N∪M

ρi,kPi,k ≤ Pmax
k ∀k, (6.59)

α(k)ρi,kPi,kL
SP
i,k ≤ Imax

i ∀i ∈ M ∀k, (6.60)

K∑
k=1

ρi,k ≤ 1, ρi,k ∈ {0, 1} ∀k, i (6.61)

where N represented the set of subchannels that were detected to be free or
unoccupied, M represented the set of subchannels that were detected to be occupied
or unavailable, Pi,k denoted the transmission power allocated on subchannel i for
SU k, Pp represented the transmission power of the PUBS, Rmin denoted the
minimum rate requirement of the SUs, Pmax

k represented the power budget of SU
k, Imax

i denoted the QoS threshold of subchannel i for the primary network, hSS
i,k

represented the instantaneous channel gain on subchannel i from SU k to the SUBS,
hPS

i denoted the instantaneous channel gain on subchannel i from the PUBS to the
SUBS, LSP

i,k represented the average channel gain on subchannel i from SU k to

the worst-case PU, σ 2 denoted the noise power of each subchannel at the SUBS,
α(k) represented the spectrum sharing indicator of SU k (α(k) = 0 for SUs in the
overlay region and α(k) = 1, otherwise) and ρi,k represented the channel allocation
indicator (ρi,k = 1 meant that subchannel i had been allocated to SU k and ρi,k = 0
meant otherwise).

In comparison with the general hybrid RA problem for the CRN presented in
Eqs. (6.18)–(6.23), the RA problem in [14] is fairly comprehensive and detailed.
The general RA problem maximises the overall network throughput (or the total
data rate for the network), subject to a constraint on the maximum transmission
power. On the other hand, the RA problem in [14] minimised the overall power
consumption for the network, subject to a constraint on the data rate requirement.
The interchange in the objectives for the two RA problems is completely in order.
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Both power consumption and throughput are equally essential in the network design,
therefore optimising either one (subject to the limiting effects of the other one) is
perfectly alright. Even though the RA problem in [14] is well-developed and fairly
comprehensive, it again omitted the aspect of interference to PUs, which makes it
inadequate and incomplete. Thus, the general RA problem for hybrid CRN studied
in this chapter is a more comprehensive RA representation for the CRN than the RA
problem developed in [14].

6.7 Exploring Practical Solutions for the Resource Allocation
Problems in Cognitive Radio Networks

The generic RA problem formulations for heterogeneous underlay, overlay and
hybrid CRN, as developed and presented in the previous sections, are non-linear and
non-deterministic polynomial-time hard (NP-hard) problems, particularly because
of the power constraints in those formulations. Similarly, most other RA problems
and problem formulations for the underlay, overlay and hybrid CRN are almost
always non-linear and NP-hard problems. In an earlier chapter of this book, the
non-linearity of the RA problems in the CRN was established, and also, appropriate
optimisation tools to help solve such RA problems were discussed. In this section,
we explore and employ one of the most-promising optimisation tools to solve the
generic RA problems in the CRN, as formulated in this chapter.

In almost all certainty, practicable solutions to and analyses of the RA problems
in heterogeneous CRN would employ some of the well-developed optimisation
solution tools and methods for solving RA problems in the CRN, as already
well-documented in an earlier chapter of this book. In this section, therefore, we
investigate and present a solution tool that combines the methods of studying the
problem structure and problem reformulation in transforming the non-linear, NP-
hard optimisation problems into the more-solvable integer linear programming
(ILP) problems. The resulting ILP problems are easily solved through classical
optimisation. The important advantage of the solutions provided through the
combined methods explored in this section is that the solutions are optimal and
are fairly practicable, especially if the heterogeneous CRN is not too large.

6.7.1 Studying the Structure of the Problems

To help solve the complex non-linear NP-hard RA problems for heterogeneous
underlay, overlay and/or hybrid CRN, such as the ones presented in this chapter,
a good practise is to examine the structure of the problem for any clues that may be
explored in arriving at good solutions. In the case of the generic RA problems for the
underlay, overlay and hybrid CRN discussed in this chapter, a careful consideration
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of the structure of the problem gives useful clues on how to solve them. By a careful
observation of the structure of the problems, two important points are noted. These
two striking points on the structure of the RA problems can be employed to achieve
the ILP reformulation of the initial RA problems. These two important aspects of
the structure of the RA problem are discussed.

The first observation on the structure of the RA problems for heterogeneous CRN
is the fact that only integer bits are allocated to the various subchannels in the
network. This is an important observation. It simply means that no fraction of bits
can be assigned to any user at any given time of the network operation. In other
words, all bit allocations to all the SUs in the CRN are simply in whole numbers or
zero. The RA problem formulations make it impossible to allocate half bits or some
other fractions of bits to any SU at any time of the network cycle.

The second important observation on the structure of the RA problems developed
for heterogeneous CRN is that the allocation of the network subchannels is an
‘either’ ‘or’ (binary) decision. The subchannels are either allocated integer bit(s)
to transmit data or they are not assigned bit(s) to transmit data. In more details, the
decision on whether or not to give data rates to a subchannel to transmit data is made
by considering the channel interference on that subchannel. If a subchannel has a
channel interference gain to the PUs that is within some acceptable limit permitted
by the PUs, that subchannel is allocated some bits to transmit data. However, if
the channel interference gain to the PUs is high for a particular subchannel, such
a subchannel will not be assigned any bit to transmit data, or at best, it will only
be allocated very minimal bits to transmit data. This decision helps to ensure that
the interference to the PUs is always minimal and within the acceptable limit to the
PUs.

6.7.2 Problem Reformulation

The two important observations on the structure of the RA problems for heteroge-
neous CRN discussed in the previous subsection are exploited to achieve a linear
reformulation of the initial RA problems developed in the previous sections of this
chapter. The linear reformation process carried out in this subsection is applicable
to the underlay, overlay and hybrid RA problems. The ILP reformulation of the RA
problems is explained in this subsection.

We set x1 to be the bit allocation vector for all the subchannels allocated to the
SUs in class 1 and x2 to be the bit allocation vector for all the subchannels allocated
to the SUs in class 2. The parameters x1 and x2 are expressed as:

x1 = [(x1
1,N )T (x2

1,N )T · · · (xN
1,N )T ]T ∈ {0, 1}NK1C×1 (6.62)

x2 = [(x1
2,N )T (x2

2,N )T · · · (xN
2,N )T ]T ∈ {0, 1}N(K−K1)C×1 (6.63)
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where xn
1,N = [xT

1,1,n xT
1,2,n · · · xT

1,K1,n
]T ∈ {0, 1}K1C×1 indicates that subchannel

n is allocated with x1,k,n = [xk,n,1 xk,n,2 · · · xk,n,C ]T ∈ {0, 1}C×1; n =
1, · · · , N; k = 1, · · · ,K1; C is the number of modulation schemes considered
(for the model and analysis discussed in this chapter, C = 4). This implies that
x1,k,n = [xk,n,1 xk,n,2 xk,n,3 xk,n,4 ]T . The value of x2 is arrived at in a similar
manner. Then, the value x = x1 + x2 is the value of the combined bit allocation
vector. The mutually exclusive constraint ensures that xn

1,N and xn
2,N take the shape

of any of the vectors {[0 0 . . . 0]T , [1 0 . . . 0]T , [0 1 . . . 0]T , . . . , [0 0 . . . 1]T }.
This implies that just one of the components in xn

1,N is 1 and all other components
are 0s (also true for xn

2,N ). When xk,n,c is 1, it shows that the subchannel n has been
allocated to SU k to transmit c bits per symbol. When xn

1,N (or xn
2,N ) has an all 0s

component, it means that the subchannel n has not been allocated to any SU at all.
We define the modulation order vectors for the SUs in class 1 as b1 and for the

SUs in class 2 as b2. These modulation vectors are defined as:

b1 = [(b11,N )T (b21,N )T · · · (bN
1,N )T ]T ∈ Z

NK1C×1 (6.64)

b2 = [(b12,N )T (b22,N )T · · · (bN
2,N )T ]T ∈ Z

N(K−K1)C×1 (6.65)

where bn
1,N = [bT

1,1,n bT
1,2,n · · · bT

1,K1,n
]T ∈ Z

K1C×1 and b1,k,n =
[bk,n,1 bk,n,2 · · · bk,n,C ]T ∈ Z

C×1. The value of b2 is obtained in a similar
fashion. Since we only considered four modulation schemes (i.e., the BPSK, 4-
QAM, 16-QAM and 64-QAM), bk,n = [1 2 3 4]T .

We define the respective data rate matrices for the two classes of SUs, Bi ∈
Z

K1×NK1C and Bj ∈ Z
(K−K1)×N(K−K1)C as follows:

Bi =

⎡
⎢⎢⎢⎣

b1 b1 · · · b1

b2 b2 · · · b2
...

...
. . .

...

bK1 bK1 · · · bK1

⎤
⎥⎥⎥⎦ , B i ∈ Z

K1×NK1C (6.66)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b1 = [bT 0T
C · · · 0T

C] ∈ Z
1×K1C

b2 = [0T
C bT · · · 0T

C] ∈ Z
1×K1C

...
...

. . .
...

bK1 = [0T
C 0T

C · · · bT ] ∈ Z
1×K1C

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Bj =

⎡
⎢⎢⎢⎣

bK1+1 bK1+1 · · · bK1+1

bK1+2 bK1+2 · · · bK1+2
...

...
. . .

...

bK bK · · · bK

⎤
⎥⎥⎥⎦ , Bj ∈ Z

(K−K1)×N(K−K1)C (6.67)
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bK1+1 = [bT 0T
C · · · 0T

C] ∈ Z
1×(K−K1)C

bK1+2 = [0T
C bT · · · 0T

C] ∈ Z
1×(K−K1)C

...
...

. . .
...

bK = [0T
C 0T

C · · · bT ] ∈ Z
1×(K−K1)C

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Since the rate weight for category one SUs is w1 and the rate weight for category
two SUs isw2, we now write the total data rate in the objective function of Eq. (6.11)
as maxx[(w1�b1)

T x1+ (w2�b2)
T x2], where � is the Schur-Hadamard (or entry-

wise) product.
Now, we define RI � [R1 R2 · · · RK1 ]T ∈ R

K1×1 and RII �
[RK1+1 RK1+2 · · · RK ]T ∈ R

(K−K1)×1. Then, the constraint of Eq. (6.12), which
gives the minimum data rate for the SUs in class 1, becomes Bix1 ≥ RI . Similarly,
the constraint of Eq. (6.13), which gives the minimum data rate for the SUs in class
2, becomes Bjx2 ≥ RII .

We then define a power transmission vector p such that:

p = [(p1
N)T (p2

N)T · · · (pN
N)T ]T ∈ R

NKC×1 (6.68)

where pn
N = [pT

1,n pT
2,n · · · pT

K,n]T ∈ R
KC×1 and pk,n = [pk,n,1 pk,n,2 · · ·

pk,n,C ]T ∈ R
C×1; pk,n,c is the amount of power needed to transmit c bits of

data for user k on subchannel n. The power constraint in Eq. (6.14) now becomes
pT x ≤ Pmax.

For the underlay, overlay and hybrid CRN considerations, the interference power
constraints have to be written in terms of the bit allocation vector x. In order to write
the interference power constraint in Eq. (6.15) (for the underlay CRN), Eq. (6.17)
(for the overlay CRN) and Eq. (6.22) (for the hybrid CRN) in terms of the vector x,
we define a matrix A ∈ {0, 1}N×NKC as follows:

A =

⎡
⎢⎢⎢⎣
1T
KC 0T

KC · · · 0T
KC

0T
KC 1T

KC · · · 0T
KC

...
...

. . .
...

0T
KC 0T

KC · · · 1T
KC

⎤
⎥⎥⎥⎦ , A ∈ {0, 1}N×NKC (6.69)

1KC =

⎡
⎢⎢⎢⎣
1
1
...

1

⎤
⎥⎥⎥⎦ ∈ {1}KC×1, 0KC =

⎡
⎢⎢⎢⎣
0
0
...

0

⎤
⎥⎥⎥⎦ ∈ {0}KC×1.

If p � x is the Schur-Hadamard (or entry-wise) product of p and x, then
A(p � x) will be that N × 1 vector in which case the nth element indicates the
total power used by the nth subchannel for carrying out its data transmission. We
define εl � [ε1 ε2 . . . εL]T ∈ R

L×1. The constraint in Eq. (6.15), which indicates
the interference power constraint for the underlay CRN, becomes:
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Hp[A(p � x)] ≤ εl , (6.70)

while, for the overlay CRN, Eq. (6.17) is now written as:

H
p
o [A(p � x)] ≤ εl , (6.71)

where H
p
o is the interference gain to the PUs as a result of the SU transmission

when the probabilities of miss detection and false alarm (Eq. (6.5)) are inculcated.
For the hybrid network, Eq. (6.22) is written as:

H
p
o [A(p � x)] ≤ εl , (6.72)

By putting all the above descriptions together, the RA problem for underlay
heterogeneous CRN given in Eqs. (6.11)–(6.16) can now be represented in the
reformulated ILP form as follows:

z∗ = max
x

[(w1 � b1)
T x1 + (w2 � b2)

T x2] (6.73)

subject to

Bix1 ≥ RI ; k = 1, 2, · · · ,K1 (6.74)

Bjx2 ≥ RII ; k = K1 + 1,K1 + 2, · · · ,K (6.75)

pT x ≤ Pmax (6.76)

Hp[A(p � x)] ≤ εl (6.77)

0N ≤ Ax ≤ 1N (6.78)

x1, x2, x ∈ {0, 1} w1, w2 ∈ R
+. (6.79)

The RA problem for the overlay heterogeneous CRN, in the ILP form, is the
same as the ILP formulation provided in Eqs. (6.73)–(6.79) EXCEPT for Eq. (6.77).
In the overlay case, Eq. (6.77) becomes:

H
p
o [A(p � x)] ≤ εl . (6.80)

The RA problem for the hybrid heterogeneous CRN is also similar to the ILP
formulation provided in Eqs. (6.73)–(6.79) EXCEPT for Eq. (6.77). In the hybrid
case, Eq. (6.77) becomes:

Hp[A(p � x)] + H
p
o [A(p � x)] ≤ εl . (6.81)
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6.7.3 Classical Optimisation Solutions

The reformulated RA optimisation problems for the underlay, overlay and hybrid
CRN, as given in Eqs. (6.73)–(6.81), are combinatorial ILP problems. The refor-
mulated ILP problems can be solved using any of the classical optimisation tools
or methods that are most suited for solving ILP problems. An example of such
suitable methods for solving ILP problems is the Branch-and-Bound (BnB) method.
This BnB method is very adequate for solving linear combinatorial programming
problems, and is employed in solving the ILP problem for RA in heterogeneous
CRN developed in this chapter.

To further reduce the computational demand of the solution process, a special
technique of the BnB method that is best suited to solve binary ILP problems,
is employed. The special BnB technique is called implicit enumeration [15]. The
technique of implicit enumeration is equipped with the information that each
variable (in this case, the bit allocation vector x) can only take a binary number
(i.e., x is either 0 or 1). It uses the binary-decision information to simplify the BnB
processes of branching and bounding. It also uses the information to efficiently
ascertain when a node is not going to be feasible, thereby reducing the overall
computational demand of the solution process, while still not sacrificing optimality
in the solution results for the CRN.

6.7.4 Other Possible Solution Methods

While we have employed the tool of studying the problem structure, alongside
the tool of classical optimisation, in analysing and solving the RA problems
in the heterogeneous CRN developed for the underlay, overlay and the hybrid
representations, we must be clear that the solutions provided in this chapter are
not necessarily exclusive or exhaustive. We emphasise that there are several other
good solution tools and methods being explored by researchers for addressing their
RA problems developed for the underlay, overlay and hybrid CRN. Since the RA
problems for the CRN are diverse, so are the solution methods being employed to
solve them.

The various solution tools and methods being used for solving RA problems in
the CRN have been well discussed in the previous chapter of this book. Some of
these tools, such as the heuristic and the meta-heuristic tools, give solutions that
are computationally less demanding than the results from the use of the classical
optimisation tools employed in this chapter. In a subsequent chapter of this book,
we employ the tool of heuristics to solve a similar but expanded problem of the RA
model for the CRN and compare the solutions from both the classical optimisation
and the heuristic. However, we limit the solutions provided in this chapter to
the ones from the classical optimisation tool. This is because it achieves optimal
results for the RA problems in heterogeneous CRN. The benefits that the solution
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explored in this chapter have over most other solutions are its generic nature,
transferability, practicality, ease of analysis and ease of implementation in possible
real-life scenarios of the CRN.

6.8 Important Results from the Resource Allocation
Modelling and Solution for Heterogeneous Cognitive
Radio Networks

This section presents some important results of the generic RA model for heteroge-
neous CRN, as developed and analysed in this chapter. The MATLAB software
is used for simulating the model. The YALMIP solver is used to carry out the
optimisation. The following parameters are used for the simulations: the number
of OFDMA subchannels N = 64, the number of PUs L = 4 and the number
of SUs K = 4. Based on the heterogeneous user classifications discussed in
the chapter, the SUs are categorised as: class 1 SUs K1 = 2 (this represents
the high-rate demand or high priority SUs, as the case may be) and class 2 SUs
K2(which is equivalent toK − K1 ) = 2 (this represents the low-rate demand or
best-effort service SUs). For all simulation results presented in this chapter, we used
statistically independent Gaussian random variables to generate random multipath
fading channels for the PUs and SUs.

Further, we set the average channel gain between the SUBS and SUs to 1 and
the average channel gain between the SUBS and PUs to 0.1. We set the maximum
permissible interference limit to the PUs as 0.001mW. The interference caused by
the PUs was considered as noise by the SUs. The PUs’ interference to the SUs
had a power spectral density of (0.01/64)mW/subchannel. We used 100 randomly
generated channel pairs Hs and Hp in obtaining all the simulation results. We set
the BER value ρ at 0.01 for all SUs. We used a weight of unity for all the classes of
SUs, except in the final results where the effects of weight were discussed.

For the results, the minimum data rate requirement for the high-rate demand class
1 SUs is 64 bits/user, while the minimum data rate requirement for the low-rate
demand class 2 SUs is 32 bits/user. Generally, since the class 1 SUs have a higher
data rate demand, the SUs in this class may be billed higher, or there might be some
other criteria by which they are made to pay for the better QoS being provided for
them. The higher priority or higher rate demand usually come at a cost for such
category of SUs.

Only the results of the underlay CRN consideration are presented and discussed
in this chapter. This simple reason is so as not to unnecessarily duplicate the results.
In short, the results from the underlay, overlay and hybrid CRN designs follow a
similar pattern and the differences are minimal. The significant differences are that,
for the overlay and hybrid CRN, the interference to PUs are worse off than in the
case of the underlay CRN (this is because of the effects of the interference due
to probabilities of miss detection and false alarm). Therefore, in terms of the bit
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allocation, the results for the overlay and hybrid scenarios are slightly worse than
the results obtained for the underlay CRN, the hybrid CRN performing the poorest.
However, in terms of the average and total data rates, the hybrid CRN performed
the best.

6.8.1 The Effects of Interference on the Bit Allocation

Figure 6.2 presents the plot of the interference channel gain between the SUBS and
the PUs against the number of subchannels available in the CRN, while Fig. 6.3
presents the plot of the channel gain between the SUBS and the SUs against the
number of subchannels available in the CRN for the underlay consideration. The
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Fig. 6.4 The plot of the bit allocation for each SU against the number of subchannels

importance of the channel gain is the impact it has on the allocation of data rates to
each of the SUs. The actual data rate (bits per symbol) that is allocated to each SU
is plotted in Fig. 6.4. In the bit allocation plot of Fig. 6.4, an ‘x’ at a bit allocation
of 6 for subchannel 9 simply means that subchannel 9 has been assigned to SU 3 to
transmit 6 bits.

From the plots in Figs. 6.2, 6.3, and 6.4, we note the important point that the bit
allocation is carried out with careful consideration of the interference gains to the
PUs. When the interference gain is high (indicating that there is low or less fading),
low data rates are assigned to the subchannels. The reason is that high data rates
(usually from a high modulation scheme) on a subchannel will need high power,
and if there is a high interference gain on such subchannel, the negative effect on the
PUs will be quite significant. In the other vein, if the interference gains to the PUs
are low (indicating that there is high or deep fading), assigning high data rates to the
subchannels (usually from high modulation) causes minimal interference to the PUs.
Therefore, the SUBS do not assign higher order modulation (e.g., the 64-QAM) to
the subchannels that have high interference channel gains in order to minimise the
amount of interference caused to the PUs.

It is necessary to further highlight the important idea that the RA solution model
employs to help achieve optimal results in the allocation of resources for the SUs
in the heterogeneous CRN. The RA model simply uses the fact that, since higher
order modulation schemes usually use more power, if such modulation schemes
are employed for the subchannels that have high interference channel gains to the
PUs, they will cause significant harm to the PUs using those subchannels. The
RA solution model therefore either completely avoids allocating data rates to those
subchannels or it assigns very low data rates to those subchannels. Some examples
of the use of this idea can be seen in the allocations for subchannels 2, 3, 9, 57, 63
and 64 of Fig. 6.4. In the subchannels highlighted, the data rates allocated to them
are quite high. But we see that if we check in Fig. 6.2, the combined interference to
the PUs on those subchannels is lower than the combined interference on the other
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subchannels. Conversely, the combined interference to PUs on subchannels 14–27
and 39–52 is quite high. Therefore, the data rates allocated on those subchannels are
very low. This idea or principle is what the RA model employs in obtaining optimal
results in the overall network utility (average data rates, throughput, etc.) for the
CRN.

6.8.2 Average and Total Data Rates

Figure 6.5 is a plot of the average data rate that the SUs in each class can realise,
as the interference power to the PUs is being increased. We varied the permissible
interference limit of each PU, that is εl , between 20 and 30 dBm. The maximum
SUBS power was initially set at 12 dBm but then increased to 30 dBm. From the
plot, we first note that below the interference value of 20 dBm, solving the RA
problem is infeasible. Next, we observe that, in the feasible region of the problem,
the minimum data rate demand the class 1 SUs is achieved at all points.

Furthermore, the plot in Fig. 6.5 shows that the RA results follow a similar trend
(i.e., continuous improvement) until when the permissible interference limit is about
24 dBm. After that point, the average data rate for the SUs in both classes become
stable at the maximum SUBS power of 12 dBm. However, the average rate for the
class 2 SUs continue to increase when the maximum SUBS power is at 30 dBm (the
increase is not indefinite because if the interference limit is increased beyond the
range used in this plot, the average rate will also reach its saturation point). The
reason for this is that, with a higher power at the SUBS, the average data rate of
the SUs improves significantly if all the other constraints remain intact. The final
observation from this plot is that the RA solution model prefers to increase the
average data rate of the class 2 SUs than the class 1 SUs when there is a slight
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different SUBS power

increase in resources. The reason is that it is easier to improve resource allocations
to the class of SUs that have the most flexibility in their demands rather than the
class of SUs that are more rigid and fixed in their demands.

Figure 6.6 presents the plot of the total data rate or throughput of the CRN
against the permissible interference limit to the PUs. The permissible interference
limit to the PUs is varied between 20 and 30 dBm. The maximum SUBS power at
initially set at 12 dBm and later increased to 30 dBm. The result clearly shows that
as the permissible interference power to the PUs is relaxed (i.e., the permissible
interference power to the PUs is allowed to take higher values), the CRN achieves
higher throughput. Also, we note that, at a higher SUBS power (30 dBm), the
throughput keeps improving, unlike in the case of a lower SUBS power (12 dBm)
where the throughput quickly stabilises, even with an increasing permissible
interference limit.

6.8.3 Effects of Weight

The weight factor is one of the most important factors in the allocation of resources
to different SUs or classes of SUs in the heterogeneous CRN. Indeed, the weight
factor can influence the decision of the allocation model to favour some classes of
SUs over other classes. Therefore, the weight factor can be used as a powerful bias
mechanism in the RA decision-making process for heterogeneous CRN to provide
options for further improvement that would not have been feasible or achievable if
the classes of SUs do not have such weight considerations.

Figure 6.7 is a plot of the average data rate against different weight ratios for
the CRN. The plot demonstrates the usefulness of weight on the amount of data
rate that the different classes of SUs can achieve. We use the minimum data rate
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Fig. 6.7 The plot of the average data rate against different weight ratios for the different classes
of SUs

classification and employ the results in Fig. 6.5 for comparison. The weight ratios
between the two classes of SUs were steadily increased from unity to some higher
values. From the plot, we observe that, for larger values of weight ratio, the average
data rate for the SUs in class 1 increases, while the average data rate for SUs in class
2 decreases.

The implication of the results in Fig. 6.7 is that, contrary to the results obtained in
Fig. 6.5, the higher weight in this case has compelled the RA model to assign higher
data rates (or resources) to the SUs that has the higher demand (that is, the SUs in
class 1). Without any doubt, the SUs in class 1 are the most valuable SUs. This is
because, the SUs in class 1 pay a higher price, in some way, in order to get better
services. It is therefore very meaningful to give them preference in the allocation of
resources when there is a slight increase in the amount of resources available for the
CRN. The weight factor is employed to make this happen. Despite the weight, the
RA model still ensures that the minimum data rate demand for each class of SUs is
still achieved in all cases, otherwise the problem will become infeasible.

Figure 6.8 is the plot that compares the performance of different weight distribu-
tions for the CRN. The work in [16] employed weights that were random numbers
between 0 and 1. The weights were normalised so that the sum of all user weights
became 1. To improve the results in [16], we plot three different weight distributions
(the uniform, normal and exponential distributions) and compare the results. The
plot shows that the normal weight distribution outperforms the exponential and
uniform distributions. Of the three distributions, the uniform distribution performed
the least. The plot shows that the performance of the SUs in the heterogeneous CRN
could be slightly influenced by the choice of the weight distributions that is used in
the network design.
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Fig. 6.8 The plot of the total data rate against the mean parameter for different weight distributions

6.9 Summary of the Chapter

This chapter has developed, analysed and discussed significant RA solution models
for the heterogeneous CRN. The RA models for the heterogeneous CRN discussed
in this chapter are generic models that fit the modern and practicable CRN designs.
The RAmodels are developed for the underlay, overlay and hybrid CRN. To achieve
optimal or very-close-to-optimal solutions for the RA problems, the optimisation
tool of studying the problem structure is employed in realising an ILP reformulation
of the NP-hard problems. The reformulated ILP problems are then solved by the use
of the tool of classical optimisation. Some useful results are presented and discussed
to show the relevance of interference, user classification and weights on the overall
performance of the heterogeneous CRN.
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Part III
New Directions in the Development of

Cognitive Radio Networks

The field of cognitive radio networks is still very much a new and evolving field of
modern technology. As cognitive radio networks evolve, some recently-introduced
and highly-significant analytical tools (such as queueing theory) and techniques
(such as cooperative diversity) are being explored in order to achieve an improved
overall network performance and productivity for cognitive radio networks. Fur-
thermore, new works are focussing on how cognitive radio networks are interacting
with and/or influencing some of the other newly-developing technologies such as
the fifth-generation and the internet-of-things networks. In some cases, the influence
of cognitive radio networks on such other emerging technologies are already well
established while in other cases, the impact is not yet fully exposed. In this part
of the book, new concepts that explore possible/ongoing interactions between
cognitive radio networks and other emerging technologies are discussed. Some
useful and exciting ideas for further development and eventual implementation of
the cognitive radio network are proposed.



Chapter 7
Queuing Systems in Resource Allocation
Optimisation for Cognitive Radio
Networks

7.1 Queuing-Related Problems in Heterogeneous Cognitive
Radio Network

In typical cognitive radio networks (CRN) scenarios, the primary users (PUs) of
the network usually have the upper hand in the access and usage of the resources,
especially the spectrum resource. This is because the PUs are likely to be the
licensed owners of the spectrum in which the SUs are designed to co-operate.
As a result, the secondary users (SUs) in the secondary network operate under
the stringent conditions or constraints imposed on them by the primary network.
To achieve optimal results, therefore, the secondary networks in the CRN must
develop and devise mechanisms by which they can overcome the effects of the
strict conditions imposed on them by the primary network, while still achieving
their communication goals [1, 2].

The crippling conditions and/or constraints on secondary networks in the CRN
become exacerbated when the CRN is developed as heterogeneous systems. In
most heterogeneous CRN designs, the demands of one SU may differ from the
demands of another SU, or one category of SUs may have different demands to
the demands of other categories of SUs. In good network designs, therefore, the
different demands of the SUs or SU categories must be efficiently and timeously
met [3, 4]. For this to be feasible, there is a high demand to develop resource
allocation (RA) models for the CRN that will incorporate the peculiar properties and
dynamics of the different heterogeneous categories of SUs into their CRN designs
[5]. Similarly, better solution models for the RA problems in the CRN that can
achieve optimal allocation of the limited CRN resources in a manner that is fair and
favourable to all categories of SUs are a new necessity [6, 7].

As modern RA models and solutions for heterogeneous CRN are being devel-
oped and analysed, an important condition that must be considered is that different
SUs or SU categories have different levels of delay tolerance for them to meet an
acceptable quality-of-service (QoS) requirement. In most cases, the different SUs
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or SU categories usually have differing delay tolerance characteristics. The time
delay characteristics of SUs or SU categories in the CRN are often dependent on
the kind of services being provided by the SUs. Therefore, the delay tolerance
levels for different SUs can actually be a useful criterion for separating the SUs
in the heterogeneous CRN into different classes or categories for proper analyses
and optimal resource usage.

Since the various SUs in the heterogeneous CRN do have different delay
tolerance levels, the CRN can be designed to leverage the time delay characteristics
in providing improved services for all SUs. To achieve this, the SUs can be
categorised and serviced based on their delay tolerance characteristics, for instance.
This would then imply that, if resources are not immediately available, the SUs or
SU categories that do not require or demand immediate services could use a buffer
(or queue) to store their data. Those SUs or SU categories must then wait, in most
cases, for some acceptable duration of time, until there are enough resources being
provided for them to carry out or complete their data transmission.

To achieve optimal resource usage and management in heterogeneous CRN
designs, it is important to know the instances and durations of time delays that
are acceptable for different SUs or SU categories in the CRN. This knowledge,
alongside the knowledge of the characteristics of the queues resulting from such
delays, are essential in achieving the QoS requirements of the SUs, and in providing
optimal or near-optimal solutions for the RA problems in heterogeneous CRN. The
aspect and concept of queues in telecommunication networks are well addressed
by studying and applying queuing theory or queuing systems. Queuing theory
is a powerful tool that can be employed for studying and analysing RA for
heterogeneous CRN, especially when time delays and buffer considerations are a
part of the CRN design.

Apart from time-delay problems, there are other problems in the RA optimisation
for heterogeneous CRN that are best captured and addressed using queuing descrip-
tions and analyses. Such problems include user prioritisation, resource sharing,
data buffering, etc. A good study on queuing is therefore very necessary to study
queuing theory or queuing systems for RA in the CRN. This chapter discusses
useful ideas, models and practises of queuing theory for solving RA problems in
heterogeneous CRN. Some useful examples and analyses of the use of queuing
theory models to solve RA-related problems in heterogeneous CRN are also well
discussed in this chapter.

7.2 Description of Queuing Theory for Resource Allocation
in Cognitive Radio Network

A queuing system involves one or more customers (which could take the form of
persons, systems, connections, users, packets, etc.) that need some form of service
(which could be in form of transaction, transmission, access, etc.) being served by
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one or more servers designed to render such services. A queuing model encapsulates
the probability distribution of the inter-arrival times of customers, the probability
distribution of times to render services to customers, the number of servers that
are available to render services at any particular time and the queue capacities (if
the queue is assumed to have a finite length) of the queuing system [8]. Queuing
theory (systems and models) is a well-established tool for studying, analysing and
implementing new, advanced and/or improved technological designs, especially in
science and engineering.

For the CRN, queuing theory and the analyses of queue characteristics can help
improve the RA performances of new CRN designs. To achieve this, appropriate
queuing models must be developed for the CRN. The appropriate queuing model for
heterogeneous CRN must incorporate buffers for the different SUs or SU categories
since different SUs (or category of SUs) have different delay priorities or delay
profiles. If such models are developed and properly analysed using queuing theory,
the delay characteristics of SUs in the CRN may be exploited in realising significant
improvements in the RA solutions for the heterogeneous CRN.

7.3 Queuing-Based Resource Allocation Solutions for
Cognitive Radio Network

Most recent heterogeneous CRN systems are designed in such a way that multiple
SUs can be allowed to transmit in a single subchannel at different time. The
RA solutions for heterogeneous CRN must determine the optimal approach for
assigning individual SUs to particular subchannels for their data transmission at
definite instances of time, and for specific time durations, so as to be able to
realise the best productivity for the CRN. These are indeed RA optimisation or
optimisation-related problems and they are best treated as such.

As already discussed in a previous chapter, there are a number of optimisation
tools and methods that have been and are being developed and employed for
carrying out RA in the CRN. These RA solutions have been quite useful in
describing and signifying how the subchannels available in the CRN should be
allocated to the heterogeneous SUs for them to transmit their data, for how long
such transmissions should take place, etc. While the tool of optimisation has been
most useful in solving the RA problems in the CRN, however, it seems that the
performances of a good number of RA solutions and solution models can still
be further improved. The tool of queuing theory is one useful tool that is being
incorporated into the optimisation solution models in order to help achieve further
improvements in the RA performances of the CRN. In this chapter, some very
useful applications of queuing theory in achieving improved RA solutions for
heterogeneous CRN are discussed.
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7.4 Queuing Model for Multi-Modal Switching Service
Levels

For optimal resource utilisation in the CRN, the possibility of a hybrid design that
combines both the overlay and underlay architectural designs have been proposed
(see Chap. 2). The hybrid CRN is a rather complex CRN design. In the hybrid
CRN, if the PUs are unavailable to use their subchannels, the SUs operate in the
overlay mode. In the overlay mode, the SUs are allowed to transmit their data using
entire resources such as high transmission rates, maximum transmission power, etc.
However, immediately the PUs are back to use their subchannels, the SUs must
switch to the underlay mode. In the underlay mode, the SUs transmit at a lower
resource level (lower transmission power, modulation, etc.) so that they do not
cause significant interference to the PUs. During underlay transmission, the SUs
must still be able to achieve signal-to-noise ratio (SNR) values that meet some QoS
requirements. The work in [9] is a classic example of the use of queuing theory in
achieving the needed inter-switch between the different possible modes in a hybrid
CRN. The work further studied how the switching activity between different levels
or modes of spectrum access can affect the overall performance of the RA solutions
for the CRN.

7.4.1 Different Modes as Different Service Levels

In the work in [9], being a hybrid CRN system, the SUs are made to operate in
different or distinct modes. These different modes are indicative of the different
‘service levels’ that the SUs can operate by. In the overlay mode, the SUs operate
at the highest transmission rate. In the underlay mode, the SUs operate at different
service levels of lower transmission rates. The SUs can switch from one service level
to another service level, depending on the prevailing circumstances of the CRN.

The discrete-time single-server queuing models are useful models for analysing
networks in which there are different service levels being provided by the same
server. Individual probability distributions are used to describe the service time of
each service mode. This interesting idea of servicing the SUs in different modes is
equated to analysing queues with working vacations [10]. In the case considered in
[9], when the server is at full service, the overlay mode, which is the mode with the
highest service rate, is activated. All the other working rates of the server, which
correspond to the different service levels in the underlay mode, are the services that
are activated during the periods of the working vacation.
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7.4.2 Description of the System Model for Multi-Modal
Switching Service Levels

The system model in [9] represents the case of the CRN with multiple SUs
attempting to transmit to a base station using a common channel that is licensed
to a PU. A single server queue with infinite capacity is used to describe the model.
In the model, the arriving units are the SUs. The single server represents the channel
access for the SUs. The PU has the highest service priority. After the PU, the SU
at the head of the queue has the next priority of service. The first-come-first-serve
(FIFO) scheme is employed in servicing the SUs. The scheduling of channel access
for the SUs in the queue is carried out by a base station.

In the network, a discrete-time process is used to describe the queuing model
employed. In discrete-time processes, equally spaced discrete time points are used to
represent the various events and state transitions in the system. Non-negative integer
numbers 0, 1, 2, . . . are used to indicate the discrete time points. The SUs arrive
in discrete time with their workloads (i.e., their data for transmission) according
to a general distribution. Furthermore, in this single server system, the discrete
Markovian arrival process (MAP) is used to describe the inter-arrival times of the
SUs’ data. Sub-stochastic matrices D0 and D1 of dimensions n × n are used to
establish the discrete MAP events. The authors explained that this discrete MAP
is best for modelling the correlation between the inter-arrival times. In that case,
the elements in D0 represent the transitions between the transient states when there
is no arrival and the elements in D1 represent an arrival event which leads to an
instantaneous restart of the process into one of the transient states.

In the model developed in [9], the server could operate at different transmission
rates with more than one service modes. Therefore, the total time used to provide
services for the SUs is dependent on the spectrum that is activated for use in each
mode, as the server interchanges the modes. To help capture these behavioural
changes in the model, a distinction is made between the time already used up and
service time left for each unit that arrives, subject to the condition that service rates
may change when the service modes change in the course of servicing the SU.

A discrete phase-type (PH) distribution is used to model the workload (W) of the
SU that has just arrived into the system. Similarly, the work habit (H) of the server
is modelled using the discrete PH distribution. The value of H is a reflection of the
stochastic processing time required to carry out a unit of work. Both W and H are
discrete random variables with finite supports. This implies that the service time (S)
that will be required to satisfy an SU that has just arrived, having a workload W,
will have a PH distribution of the order that is obtained by multiplying the orders of
W and H.

Further, in the analysis of the model presented in [9], one important aspect that
has been neglected in most works on hybrid architectural designs of the CRN, that
is, the aspect of the changing power levels of the PU as they transmit their data, is
incorporated. This means that the PU’s transmission power levels Pp can change in
the course of the period of data transmission by the SUs. Therefore, the power level
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at which the SU must transmit Pst would also have to be dynamic. The implication
of this is that, in a particular session, the rate of data transmission for the SU may
change before the session elapses. To capture this reality, a multi-modal service level
for the SUs is developed. This further extends the construction of the PH distribution
of S.

7.4.3 Analysis and Performance Results of the Multi-Modal
Switching Model

In the analysis of the model developed in [9], the total number of service modes
in the system is represented by N . Therefore, n = 0, 1, 2, . . . , N − 1 represents
all the different modes that are available or applicable to the system. Any SU that
arrives into the system starts being serviced in one of the N modes, as long as the
server is not being used at that time and no other SUs are waiting for service. If
these conditions are not met, the SU that has just arrived will have to wait and move
in the queue until it gets to the top of the queue. To make the model complete and
accurate, there is a further (N +1)th mode that is applicable. Because of the method
employed in analysing the model, since the first mode is the mode n = 0, then this
last (N + 1)th mode will be the mode n = N . In this mode n = N , the server is
incapable of attending to any SU, making it impossible for the SUs to transmit at
any power level in the underlay mode. The channel is simply being fully used by
the PU, and therefore, there is a zero service rate to the SUs.

Putting all of the possible modes of transmission together, it means that when
the SU transmits its data in mode n = 0, it transmits at the highest mode with
the highest power level possible (i.e., it is in the overlay mode with the PUs being
unavailable). If mode n = 0 is not applicable, it may use any of the other modes
n = 1; 2; . . . ;N − 1. This translates to different lower modes with lower power
levels for the SUs to transmit their data, while the PU is also using that channel
(i.e., the underlay mode). In general, when the SU uses a mode/power level n, it
achieves a better data transmission than when it uses the mode/power level n + 1.
Therefore, Hn ≤ Hn+1; n = 0, 1, 2, . . . , N − 1. If the SU is in mode n = N , this
is the worst case where the channel conditions do not allow the SUs to transmit any
data alongside the PUs. Once an SU joins the queue, it requires a total processing
time S to complete its service after it starts to be served.

The model is analysed using the discrete-time Markov chain (DTMC) queuing
model. By assuming that the system is stable, it was possible to carry out the
steady-state analysis of the system. From the steady-state analysis, results on the
distribution of the number of SUs in the system at different times were obtained.
Some other important performance measures, such as the mean queue length and
the mean number of SUs in the system, were also obtained. The results showed that,
on average, the SUs that initiate their services in a low mode (such as n = 4 or 5)
usually require more time to complete the data transmission than those that initiate
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their services in a high mode (such as n = 0 or 1). This is because of the lower
service rates that are obtainable at low service modes. The eventual consequence
of carrying out data transmissions using the lower modes is that the SUs’ data are
backlogged for a longer time, which may cause longer queue lengths and higher
service times. Therefore, more SUs prefer to initiate their services in higher modes
because of the better service rates that they can achieve. The results from the model
can be employed in devising a good policy for making decisions for the SUs to help
optimise their performance and to significantly reduce their ‘costs’ of operation
as they switch from one service mode to other service modes in modern CRN
applications.

7.5 Queuing Model for Increased Spectrum Utilisation

The work in [11] used the tool of queuing theory or system to devise a mechanism
for achieving channel sharing, whereby two SUs can occupy and share the same
channel simultaneously with the PU, in order to further improve resource utilisation
in the CRN. When channel sharing is employed, the interference to the PU
as a result of the combined transmission of the SUs must still be within the
permissible temperature (power) limit of the PU. This means that the SUs must
share the available transmission power, which must still be below the PUs’ threshold
interference. Some network rules are employed to allocate power to each SU to use
for their respective data transmission. In the rules, more power is allocated to the
SU that has the higher priority. If the second SU is absent, the single SU can use a
transmission power that is as high as the permissible interference threshold of the
PU.

7.5.1 System Model and Analysis of the Queuing Model for
Increased Spectrum Utilisation

The system is modelled using the underlay CRN architecture. While the PU
operates, the model used the weighted head of line processor sharing technique
to prioritise how the two SUs are to share the resources for an optimal network
experience. The systemwas analysed using theM/M/1 queuing model. Two possible
implementations of the model are considered, namely, the pre-emptive case and the
non-pre-emptive case.

In a pre-emptive case, the class that arrives must pre-empt the service of the class
that is already being served. In the context of the secondary network for the underlay
CRN that was considered in [11], the pre-emptive case means that if there is only
one SU that is using the channel and the other SU arrives, the transmission power
of the initial SU is immediately adjusted so as to accommodate the SU that has just
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arrived. The implication is that the power that will be used to complete the service
of the SU that was already in the system is going to be reduced. There are two
classes of SUs considered in the CRN model developed, namely the high priority
(HP) SUs and the low priority (LP) SUs. An infinite number of HP SUs is allowed
in the CRN system whereas a finite number of LP SUs is permitted in the system.
A buffer of magnitude K is used to limit the number of LP SUs. This means that,
at any particular time, the CRN only allows a maximum of K + 1 LP SU packets
in the system. The well-used first-come-first-serve queue discipline is employed for
the network.

The mean arrival rate of the entire CRN system is obtained by adding the mean
arrival rates for the two SU categories. There are four different mean service rates
that were defined. The first one is the mean service rate of the HP queue when
there is no LP SU present. The second one is the mean service rate of the LP queue
when there is no HP SU present. The third one is the mean service rate of the HP
queue when there are LP SUs present. The final one is the mean service rate of
the LP queue when there are HP SUs present. The model is analysed using the
state space approach for obtaining the steady-state responses for the system. The
transition probability matrix is seen to have a quasi birth death (QBD) process
structure. Furthermore, the R-matrix obtained was shown to have a somewhat
special structure, which was that the R-matrix had repeating rows and columns. This
special structure of the R-matrix was said to be due to the fact that queue arrivals
do not depend on the state of the other queue and as a result, the packets in the LP
queue could reduce even though there were still HP packets in the system.

In a non-pre-emptive case, the class that arrives does not need to pre-empt the
service of the class that is already being served. In the context of the secondary
network for the underlay CRN that was studied in [11], the non-pre-emptive case
means that if there is only one SU that is using the channel and the other SU
arrives, the transmission power of the initial SU will not be immediately adjusted to
accommodate the new SU that has just arrived. This implies that, until transmission
is completed, there will be no interruption to the transmission power being used
in the service of the SU packet that was already in the system. It is only after the
completion of the service of the SU packet that is currently being served that the
transmission power can be adjusted to now serve both categories of SUs, if they
both have packets in their queues. The shared rate will continue to be employed to
serve the two SUs until one SU completes its transmission. The queue of the SU that
is remaining will then be served at the maximum transmission power until a packet
of the other SU arrives again. This is applicable to the HP SUs and LP SUs. Similar
to the pre-emptive case, an infinite number of HP SUs is allowed in the system while
a buffer of size K is used for the finite LP SUs, implying a maximum of K + 1 LP
SU packets in the system at any given time.

The state space analysis for the non-pre-emptive case was more complex than in
the pre-emptive case. This is because, at every point, the analysis had to capture the
type of SU that was currently being served while a new SU arrived. To achieve
this, the authors used dummy states to keep track of the packet that is already
in service on arrival of a packet to the other queue. Steady-state analysis of the
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system was carried out using the state space approach. Similar to the pre-emptive
case, the transition probably matrix also had a QBD process structure. However,
unlike in the pre-emptive case, because of the dummy states that were included in
the non-pre-emptive case, the elements of the resulting R-matrix were made up of
smaller matrices themselves, making the problem more difficult to solve. Despite
the complexity, some simulation results were obtained for the network.

7.5.2 Performance Results of the Queuing Model for Increased
Spectrum Utilisation

The authors in [11] did carry out some simulation tests to evaluate the performance
of the CRN system in consideration. The results show that in all cases, the
queuing model introduced through the channel share priority scheme benefited both
queues (i.e., the queues of both SUs or category of SUs that were present in the
CRN system being considered) in the important aspect of spectrum access and
utilisation. More so, the queue of the LP SUs benefited the most from the channel
sharing scheme that was incorporated into the CRN design. In most occasions,
there were huge improvements in the normal transmission rates of the SUs to the
maximum allowable transmission rates for the network. The improvements were
more pronounced when the traffic intensity on the queue of the HP SUs was low. The
work therefore helps to establish the importance of queuing theory as a great tool
for improving resource utilisation in different heterogeneous CRN considerations.

7.6 Queuing Model for Heterogeneous Users with Different
Delay Profiles

Another important work that had demonstrated use of queuing theory or system for
improving RA solutions in the CRN is the work in [12]. The work incorporated the
possibility of the SUs having different delay considerations in the development and
analysis of an RA model for heterogeneous CRN. The authors used the demands of
the SUs to place them into different classes. Each class had its own queue or buffer
and its own service capacity. Each SU was placed into a queue by considering its
distance from the secondary user base station (SUBS). The assumption was that
the SUs were mobile, and therefore, they could move from one queue to another.
Additionally, for optimal results in the RA process, it was possible to move some
demands from one queue to another queue if there was a chance of getting served
better in the new queue. This resulted in significant improvements in the network
performance for the CRN.
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Fig. 7.1 A description of the system model for heterogeneous buffered CRN

7.6.1 System Model of the Heterogeneous Buffered Cognitive
Radio Network

The system model of the heterogeneous CRN developed in [12] is shown in Fig. 7.1.
The heterogeneous CRN that was considered in the work was a centralised underlay
CRN design. This meant that the SUs were permitted to transmit using all of
the spectrum space of the PUs, as long as they did not violate the permissible
interference limit of the PUs. In the model, two classes of SUs were considered,
namely, the delay-sensitive (DS) SUs and the delay-tolerant (DT) SUs. The amount
of delay time that was acceptable to achieve the desired quality of service (QoS)
was used to differentiate the DS SUs from the DT SUs. All the SUs had mobility
characteristics. They were also able to change their modulation and coding schemes
in a dynamic manner because they were equipped with the adaptive modulation and
coding (AMC) technique.

Furthermore, each SU was placed in a virtual ring. The ring to which an SU
belongs was dependent on its distance from the SUBS. The ring that was closest
to the SUBS employed the highest AMC technique for its operation. The ring that
was farthest from the SUBS employed the lowest AMC technique for its operation.
There was a queue or buffer for each ring. All the data transmission requests of the
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SUs in a particular ring were placed in a queue of that ring. The network subchannels
were then used to carry out the data transmission or service provisioning for the SU
requests. The queues acted as a buffer that kept the transmission requests of the SUs
which were not immediately attended to for an acceptable delay time until resources
were available to attend to such requests.

7.6.2 Model Analysis of the Heterogeneous Buffered Cognitive
Radio Network

In the CRN model developed in [12], there are N subchannels, corresponding to the
number of parallel servers in each ring (or queue). Each queue was finite and had
a maximum length of Y . Since the SUs were mobile, it was possible to adjust the
arrival rates into queues in order to achieve the best productivity for the CRN. To
adjust the arrival rates into queues, some part of the DT requests were moved from
a farther ring (queue) to a closer ring (queue). This made it possible to transmit such
data demands at a higher rate. This arrangement helped to reduce the energy and
time needed to transmit the data, which resulted in meaningful improvements in the
capacities of the SUs in the CRN.

For the CRN model developed in [12], the queuing analysis was carried out to
particularly emphasise the importance of the fraction of demands that was moved
from one queue to another queue. For clarity and ease of representation, just two
concentric rings were analysed. In that case, there were just two parallel queues
but more than one server (subchannels) could serve each queue. However, more
than two rings could also be used and the analysis would still be applicable. The
ring that was nearest to the SUBS employed the 64-QAM modulation technique
(this meant that it used 6 bits per symbol) and the ring that was farthest to the
SUBS employed the 4-QAMmodulation technique (this meant that it used 2 bits per
symbol). The Poisson distribution was used to model the arrivals into the queues.
The arrival rate for queue 1 was λ1 while the arrival rate for queue 2 was λ2. An
exponential distribution was used to model the service for the queues. The service
rate for queue 1 was μ1 while the service rate for queue 2 was μ2. The values of
μ1 and μ2 were equivalent to the data rates of the AMC techniques being operated
in rings 1 and 2, respectively. This meant that 6 bits per symbol was achievable for
queue 1 and 2 bits per symbol was achievable for queue 2.

Since the rate of service for queue 1 was higher than for queue 2, the service
per unit time was much faster in queue 1 than in queue 2. Also, since both DT
and DS demands arrived into each queue, and users were mobile, the productivity
of the CRN may be improved if some of the DT demands of a farther ring were
moved to a closer ring. The model therefore established the value of the fraction
of the DT demands of queue 2, that is θ , that should be moved to queue 1 so that
a higher transmission rate could be achieved. The greatest problem solved in [12]
was to obtain an optimal value for θ . This value corresponded to the best fraction
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of the demands to be moved from one queue to another queue in order to realise the
optimal resource usage for the CRN.

The queuing model used to analyse the system was the continuous-time Markov
chain (CTMC) queue with a finite buffer. From the model, the sum of initial arrival
to queue 1 and the fraction of arrival to queue 2 that was brought to queue 1 gave
the total arrival into queue 1. The total arrival into queue 1 was thus λ1 + θλ2. In
essence, the total arrival to queue 2 was the remaining part of the initial arrival to
queue 2 minus the part that had been moved to queue 1, that is, θλ2. If there was no
portion of queue 2 that was transferred to queue 1 or if there were no arrivals at all
into queue 2, then θλ2 = 0 and arrival to queue 1 just remained λ1.

The model was analysed by using the state space approach to obtain steady-
state responses for the system. Equilibrium balance equations for the developed
CRN system were obtained by applying the steady state conditions. The balanced
system was solved using the standard M/G/1 queue analysis. The ‘M’ indicated
that the arrival was the standard memoryless distribution while the ‘G’ meant that
the service followed a hyper-exponential distribution (i.e., the combination of two
exponential distributions). The arrival of packets was combined into a single arrival
stream. Furthermore, to obtain optimal values for the parameter θ and to study its
effects, the queuing system was solved using the state reduction approach. With the
state reduction approach, the value of θ was easily varied while adjusting the arrival
rates into each queue. This made it easy to evaluate the effects of θ on the overall
network performance of the CRN.

The state reduction approach also made it possible to obtain the equilibrium
probabilities of the Markov chain that developed in the course of the analysis of the
model. With the equilibrium probabilities, it became possible to obtain the optimum
value of the parameter θ by applying the Newton’s method of numerical analysis.
The authors noted that the parameter θ is not limited in definition and application to
only mean the fraction of the DT demands that is transferred from one queue to the
other. There may be other definitions or applications for the parameter θ . It could
actually be defined to be any other factor that may be used to determine the relation
between one set of users and another. For instance, if user priorities are used in
classifying and/or categorising the SUs, θ could be a fraction of the higher priority
demands. The important point is that, by defining and obtaining the value of θ that
optimises resource utilisation, the overall productivity of the heterogeneous CRN
can be greatly improved.

7.6.3 Performance Results for the Heterogeneous Buffered
Cognitive Radio Network

Some important performance measures were investigated in [12] to show the effect
of θ on the CRN. Two particular performance measures were investigated, namely,
blocking probability and system throughput. Both performance measures were
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obtained from the steady-state probabilities. Several other performance measures,
such as the average number of packets in the queue or in the system, could be
easily obtained from the blocking probability and system throughput. The results
showed that the blocking probability decreased for an increasing value of θ , while
the throughput increased for an increasing θ value. This is important because
it indicated that the overall performance of the CRN was improved through the
queuing model incorporated.

Further results showed, however, that the performance of the CRN did not
increase indefinitely with an increasing θ value. Rather, at some point, the improve-
ment in performance was completely eliminated and a gradual reduction in per-
formance began to take place. This happened because the continuous transfer of
the DT demands in queue 2 to queue 1 in anticipation of a better service resulted
in a tipping point, which corresponded to the optimum θ value. After this point,
any further increase in the amount of queue 2 demands that was transferred to
queue 1 did not result in an improvement in the performance of the CRN. In fact,
beyond the optimum value of θ , there was a significant increase in the blocking
probability. This was because the data in queue 1 became too large, eventually
causing the overall productivity of the CRN to decrease. It is therefore clear from
the analysis and results of the model in [12] that only by moving the right amount
of data requests from one queue to another using appropriate queuing models can
the desired improvement in the allocation and utilisation of the limited resources in
the heterogeneous CRN be realised.

7.7 Performance Evaluation of Queuing-Related Resource
Allocation Solutions in Cognitive Radio Networks

We have already established that the newly developing CRN systems are being
designed to serve heterogeneous multiple users, especially in the secondary net-
works. Moreover, the SUs in the secondary network must be capable of sharing
the diverse spectrum bands with the PUs in the network. The manner in which the
multiple PU channels are assigned to the SUs can affect or impart the QoS that
is realised or achieved for the CRN. Optimisation, especially when applied with
queuing theory, has been shown to be one of the most powerful tools for achieving
the best results in the RA for heterogeneous CRN.

As more and more solution models that incorporate queuing theory into RA opti-
misation for the CRN are being developed, it is becoming very difficult but highly
necessary to establish means by which the various RA solutions can be compared,
so as to evaluate the performances of the various models and approaches being
developed for achieving optimal RA for the CRN. However, despite its importance,
the works on performance evaluation of different queuing-based solution models for
RA in the CRN have been quite few. We present some recent/ongoing efforts that
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discuss joint evaluating and comparison of performance measures for RA solutions
in the heterogeneous CRN.

In designing performance methods and models for measuring and comparing
RA solutions in the CRN, it is necessary to develop and employ methods or models
that are configurable. For a performance method to be configurable, it means that
the analytic model and the results of the performance evaluation carried out are
not necessarily fixed while employing or applying that performance method. In
other words, the method is such that a number of the input parameters can be
easily adjusted so that the performance measures can be fitted to meet different
requirements.

Unfortunately, most RA solutions for the CRN have not employed very con-
figurable performance evaluation methods in their designs. The implication of
non-flexibility in the RA approaches and solutions is that, if there are significant
or even slight changes in the input parameters (such as a change in the channel
conditions), the performance of the CRN may become unpredictable because the
allocation methods employed in the design are simply non-configurable and as
such, they cannot adapt to such changes in network conditions or requirements. It
is therefore necessary to investigate and develop configurable performance methods
to properly study, evaluate and compare RA solutions for the heterogeneous CRN.

7.8 Performance Framework for Queuing-Based Resource
Allocation in Cognitive Radio Network

The works in [13–15] are recent attempts at developing configurable queuing-
based frameworks for modelling, studying and evaluating RA performance of
heterogeneous CRN. In such frameworks, various environmental parameters and
CRN settings can be jointly considered and/or are incorporated into the CRN
system. We use the work in [14] as a base framework for our study and analysis.
In the spectrum sensing section of the framework, imperfect spectrum sensing is
assumed, which easily incorporates the perfect spectrum sensing conditions. The
framework developed a spectrum sensing model to help understand and interpret
the relationship between the sensing outcome of the SUs and the occupancy states
of the PU channels. The parameters that indicate the activities of the PUs and the
parameters that indicate the results of the spectrum sensing activities by the SUs are
built into this sensing model.

Furthermore, in the section of the framework that deals with channel allocation,
the allocation procedure is modelled as a Markov process that combines the
spectrum sensing model and a newly proposed flexible channel allocation protocol
(called the distribution probability matrix (DPM) protocol) in carrying out the
channel allocation. In the section of the framework that deals with data transmission,
an adapted AMC technique is employed. A truncated automatic repeat request
(ARQ) technique is incorporated into the AMC technique to improve the adaptation
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in the modulation and coding scheme. The work then developed an analytic
procedure to describe how the framework can adapt to different conditions, while
still achieving impressive results in its data transmission using the AMC technique
incorporated with the truncated ARQ scheme. The works used the ideas of queuing
modelling to establish how the framework can evolve and be analysed, and for
deriving various performance measures for the CRN.

7.8.1 System Model and Analysis of the Performance
Framework

The performance framework in [14] is developed using the centralised or
infrastructure-based CRN architecture. The SU network operates within the
coverage range of the PU network, but each network is controlled by its own
base station. Information exchange (channel conditions, spectrum sensing results,
synchronisation, etc.) between the base stations of the SUs and the PUs is assumed
to be reliable. In each time slot, all the physical layer frames in the PU network
and the SU network are synchronised and they have similar time duration. The
frequency band authorised to the PU network is divided into subchannels. These
PU subchannels are also used by the SUs in an overlay architectural design. Each
SU’s mobile device stores its data packets in a finite buffer.

Furthermore, in describing the PU activities, the highly used first-order Markov
process with two states is employed. This means that for each PU, transmission slot
is either ‘busy’ or ‘free’. The time slot of an SU is divided into three successive
parts, namely, the spectrum sensing part, the channel allocation part and the data
transmission part. In the sensing part, the possibility of imperfect spectrum sensing
is assumed. Therefore, the probabilities of false alarm and miss detection are
incorporated. In the part that addresses channel allocation for the CRN, the SU base
station assigns all the subchannels that have been sensed to be ‘free’ to the SUs,
while using the flexible and configurable DPM protocol that has been developed for
this purpose. In the part that addresses data transmission for the CRN, the model
employed the AMC technique, alongside the truncated ARQ technique, to achieve
the data transmission for the network.

The truncated ARQ technique works on the principle of positive feedback. If a
data packet is successfully transmitted, the transmitter receives an acknowledgement
message from the receiver. If the data packet is not successfully transmitted, the
receiver sends back a non-acknowledgement message. This prompts the transmitter
to retransmit the data packet. A data packet that has been retransmitted for a number
of consecutive times and is yet unsuccessful is dropped by the transmitter. Once
the data transmission process has been completed, all the data packets that arrived
during that time slot are placed in the buffer. The network rejects all the data packets
that arrive after the buffer is full.
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The tool of queuing theory/system is employed to analyse the RA performance
framework proposed for heterogeneous CRN. The queuing analytical framework
developed simultaneously evaluates individual users in the system. The framework
establishes the link between various channel allocation protocols and performance
measures for the CRN. The framework is very useful for analysing the impact of
system settings and environmental parameters on the optimal allocation results and
network performance of the heterogeneous CRN.

7.8.2 Benefit of a Performance Framework

The important advantage that the performance frameworks have over other means
of evaluating RA performances for the CRN is that all the activities and processes
considered in a framework are configurable to adapt to various possible situations
and/or scenarios of the CRN. Hence, even if the CRN that is being considered or
investigated is not exactly the same as the one that was employed in the framework,
the framework may still provide near-accurate estimate results for the RA problem
of the CRN being considered. This is possible because the framework will help fit
the different settings of the new CRN design to the parameters in the framework
model and will generate appropriate results for the CRN in consideration.

7.9 Performance Implications of Queuing-Based Resource
Allocation in Cognitive Radio Networks

In the relatively new analytical framework developed in [14] and others for studying
the performance measures of the RA solutions in the CRN, the important goal is
to design the network such that the configurable components, such as the arrival
process, the service process and the allocation protocol, are flexible to adapt to as
many situations or scenarios as may be required. With this framework, it is easy
to obtain numerical results for the typical parameters that are mostly used in the
literature for studying RA problems in the CRN. The results from the framework
can also be used to determine how the performance measures of a particular SU will
change if the environmental parameters and settings are altered in a CRN system.

7.9.1 Important Performance Measures

Several performance measures to evaluate and compare RA solutions for the CRN
can be easily obtained using the framework developed in [14] and [15]. The most
important performance measures that can be used to study RA solutions for the
CRN are the gross throughput of the CRN, average queue length, the packet
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rejecting rate, the average packet delay, the packet collision rate and the packet
dropping rate for SUs in the network. Furthermore, with the framework, some useful
generalisations on the CRN can be derived. For instance, one of the most interesting
results obtained by using the framework, which also confirms an intuitive concept
about the CRN, is that if a particular SU has a higher chance of being allocated to PU
subchannels, the average number of packets in the buffer will decrease because the
SU has a better chance of transmitting its packets. Other such important generic
observations on the performance of the CRN can also be drawn by employing
frameworks that are versatile, configurable and reliable.

7.9.2 Implications of Proper Performance Evaluation

From the results obtained using the framework proposed in [14] and [15], a number
of important information on the network performance of RA solutions for the
CRN are deduced. The most important implications of the performance measures
and evaluations achieved using the framework developed in [15] for obtaining RA
solutions for the CRN are described as follows:

• In the design of the CRN, if there are certain limitations on some of the
performance measures in consideration (say for instance, that the data rate cannot
be lower than a certain threshold value), a good framework can help to obtain
the boundary of distribution probability of the SU that the channel allocation
protocol must apply in order to guarantee an effective CRN realisation.

• A good framework can be used to optimise one or more performance measures
for the CRN. For instance, in the framework developed in [15], the relationship
between DPM parameters and other performance measures (such as the average
number of collision packets, the average number of packets in the buffer and the
average number of rejected packets) can be used to carry out the optimisation.

• In the situation where the CRN is made to share a number of subchannels or
even the subchannels from a different kind of system with different parameters,
the allocation protocol that is employed in the framework can be easily altered
to meet the performance requirements or to simply optimise the overall perfor-
mance of the CRN.

• The relationship that is established between the performance measures and the
settings of the CRN can be used to analyse and identify the most important CRN
settings that can influence the performance measures the most. Moreover, by
employing the framework, the CRN can be better designed to meet some specific
selected performance requirements of the CRN.

• In designing channel allocation schemes for the CRN, there is usually a trade-off
between the performance to be considered and the complexity of the network. A
good framework can help in determining and studying the important complexity-
performance trade-off for practical applications, and to assist in providing the
needed information for QoS decision making in the CRN.
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7.10 Summary of the Chapter

This chapter has presented and discussed the concept of queuing theory and queuing
systems as a powerful tool for achieving improved RA solutions, particularly for
modern heterogeneous CRN. Furthermore, the tool of queuing theory and systems
(which incorporates queuing models and analyses) can be well employed for
addressing the problems of time delays, buffering, fairness in resource sharing, etc.
in the RA optimisation for heterogeneous CRN. Finally, the introduction of new
performance frameworks that combine both the tools of optimisation and queuing
theory in designing configurable performance measures and procedures for the
RA solutions in heterogeneous CRN is a positive development in the design and
implementation of modern CRN.
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Chapter 8
Cooperative Diversity for Resource
Optimisation in Cognitive Radio
Networks

8.1 The Problem of Interference in Cognitive Radio
Networks

As already well established, cognitive radio networks (CRN) promises to help
mitigate or resolve the problem of spectrum scarcity for new and emerging next-
generation (xG) wireless communication networks [1, 2]. The improvement in
spectrum efficiency and system throughput, as promised through the primary-
secondary networking arrangement in the CRN, provides an enabling platform
for achieving xG wireless communication capabilities. With this huge promise,
the CRN is being developed as one of the key technologies to drive near-future
telecommunication possibilities [3, 4]. While there are still some challenges with the
CRN, a lot of research works on the CRN continue to go on and new breakthroughs
are emerging for some of the challenges of the CRN that have already been
identified.

One of the main challenges of the CRN that still require a lot of work to help
resolve is the problem of network interference [5]. Interference concerns in the CRN
are mostly of the situation that the secondary users (SUs) should not be allowed
to cause undue amount of interference to the primary users (PUs) when the SUs
carry out their communication. Even still, the possibility of the SUs causing undue
interference among themselves is surely a worthy cause for concern. The reason
is that network interference—any and all forms of it—can negatively affect the
performance of the CRN in many undesirable ways.

In most CRN set ups, the primary network has priority over the secondary
network in the use of resources and other things. Therefore, if the primary network
has stringent interference conditions, the secondary network productivity may
become very low. For instance, in the underlay architecture, even though the SUs can
use all the frequency band of the PUs, their transmission power much be low enough
such that the amount of interference to the PUs is very bearable [6]. In cases where
the PUs are highly sensitive or they have incredibly low permissible interference
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thresholds, it becomes a big challenge for the CRN to realise the utmost for the
network. And just as the underlay architecture has interference issues, the overlay
architecture has significant interference issues too, as the problems of miss detection
and false alarm in the overlay CRN designs are both interference-related problems.

In the likely CRN scenarios or situations where the amount of interference that
the PUs permit during the data transmission of the SUs is very low, the total data
rate or network capacity that the CRN achieves can be negatively affected [7].
This problem of permissible interference can, in fact, cast doubts on the CRN’s
worthiness, and/or on whether or not the ongoing investments in the CRN would
be a worthwhile pursuit, unless the interference problem is adequately addressed.
Solving the interference problem in the CRN is thus an important aspect of its design
and implementation.

8.2 Attempts at Solving the Interference Problem in
Cognitive Radio Networks

Indeed, there are recent/ongoing efforts to address and solve the interference
problem in the CRN. In [7], for instance, to help ameliorate the effects of high
interference received by the PUs as a result of the SUs’ data transmission, the
authors proposed to use a power control estimation mechanism that is adaptive,
distributed and neighbour coordinated. With this mechanism, the SUs can sense
when the PUs are sending their signals and then avoid the use of the subchannels
being used by the PUs in carrying out their transmission. This ensures that
the possibility of harmful interference reaching the PUs is minimal. The major
challenge with this arrangement is that it does not exactly solve the interference
problem, rather, it seeks to avoid it. Hence, the productivity of the CRN may still
be very low, because the SUs only carry out their data transmission at the periods
when the PUs are not using their spectrum, just as in most other regular overlay
arrangements.

In the work in [8], some models that jointly consider pre-coding in the physical
layer and channel allocation in the medium access layer to help limit the amount
of interference that the SUs can cause to the PUs when they transmit their signals
are developed and investigated. The authors then proposed some distributed cross-
layer algorithms to maximise the throughput of the network, while also minimising
the interference between the PUs and the SUs in the system. The problem with the
suggested solution, however, is that the already complex RA formulations for the
CRN became even more complex by the cross-layer optimisation solution being
proposed.

The work in [9] developed a model that simultaneously optimises both the
channel assignment and the transmission power control for RA in the CRN. The
authors did claim that because of the joint optimisation, the effects of both the
adjacent-channel interference between the PUs and the SUs, as well as the co-
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channel interference among the SUs, are mitigated. However, this claim cannot be
substantiated as there was no interference mitigation technique that was employed
for the network.

Importantly, in the works mentioned above and in many other similar works that
have attempted to address the challenge of interference in the RA problems and
solutions for the CRN, the aspect of heterogeneity has been mostly ignored. We
have shown in previous chapters of this book that the concept of heterogeneity is
very important in providing RA formulations for the CRN that are realistic and
practicable. This was also established in [10]. Therefore, the limited solutions that
have been proposed still leaves the problem of interference in the CRN as open-
ended, and one that requires new and urgent solutions. The work in [5] is a good
example of ongoing works in this regard.

8.3 Cooperative Diversity Approach to Solving the
Interference Problem in Cognitive Radio Networks

In previous chapters of this book, we did show that, in order to achieve optimal or
very-close-to-optimal solutions to the RA problems in the CRN, the best practice
would be to allocate low data rates (or even zero data rate) to the subchannels
that have high PU interference profiles and high data rates to the subchannels that
have low interference profiles. This is a reasonable practice. The reason is that, if
high data rates are allocated to the subchannels that have significant interference
profiles, the SUs will use high modulation schemes and transmission power on
those subchannels. This will result in a high amount of interference being caused
to the PUs due to the high interference gains on those subchannels [11, 12]. This
important decision of not allocating high data rates to the subchannels with high PU
interference profiles has been shown to have greatly increased the throughput and
productivity of the CRN.

However, even with those important decisions and rules for minimising possible
interference in place, the productivity that can be achieved for the CRN is still
limited. The reason is that, with such rules, there would be a number of subchannels
which, due to the possible high interference channel gains to the PUs, are either
not allocated at all or are allocated to only carry out data transmission at data rates
that are quite low. Therefore, if the goal is to improve the productivity of the CRN
further, it will require that new and/or better channelling procedures that can help
actualised the possibility of high data rates for almost all the subchannels that are
available in the secondary network of the CRN, while still not causing significant
interference to the PU network, are investigated.

This chapter introduces and investigates cooperative diversity as a new and
highly promising solution for the interference limitation in the CRN. Cooperative
diversity has been recently proposed to achieve an improved wireless channel
conditioning by employing diversity gains among spatially dispersed users [13, 14].
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The improvement in wireless channel conditioning using cooperative diversity
happens when the cooperating users (also referred to as relays or nodes) unit to form
a virtual multiple-input multiple-output (MIMO) arrangement. In other words, just
as it happens in conventional MIMO systems, the cooperating users in a cooperative
diversity setting, though in different locations, use their antennas in helping each
other transmit (or retransmit) their data to a given destination. This usually brings
about sizeable increases in the capability and reliability of the communication
system.

Even though it is still a relatively new communication tool, there are already a
fairly impressive number of cooperative diversity methods that have been and/or
are being developed and applied for xG wireless communication systems. The
most commonly used cooperative diversity methods are the amplify-and-forward
method, the decode-and-forward method, the store-and-forward method and the
coded cooperation method [15].

In terms of relay-selection classification, there are a number of cooperative
diversity categories that have been described. If the cooperative diversity is classified
based on the number of cooperators that are selected, we may have single-
relay cooperation or multiple-relay cooperation. If the cooperative diversity is
classified based on whether the cooperation actually happens or not, we may
have opportunistic cooperation or incremental cooperation [14]. Regardless of the
method and/or category of cooperative diversity employed, what is important is that
at the destination, there is an impressive improvement in the network capacity as
a result of the better signal quality that is realised when cooperative diversity is
employed.

In the remaining parts of this chapter, we developed and studied the use of
cooperative diversity for mitigating the challenge of interference in the RA for the
CRN. We show that, by addressing the interference challenge using cooperative
diversity, the resourcefulness and overall productivity of the CRN can be made to
be much better. This is very significant for practical CRN realisation.

8.4 Recent Works on Cooperative Diversity for End-2-End
Communication in Cognitive Radio Networks

In recent times, there have been attempts to introduce cooperation diversity into
the RA problems and solutions in the CRN. Some good examples of recent works
that have developed models that describe useful cooperation between SUs, so as to
realise better resource utilisation for the CRN are found in [3, 16–19]. In [3] and
[16], some relays that employ the decode-and-forward method are selected to help
the SUs in the CRN. In order to make the resulting optimisation problem solvable,
the allocation of the subchannels that are available to the SUs is first carried out.
The subchannel allocation to the USs was based on the channel gains of each SU,
and the possible interference that it will cause to PUs. After the subchannels have
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been allocated to the SUs, an appropriate transmission power is then assigned to
each subchannel.

In the model developed in [17], similar to the models investigated in [3] and
[16], the decode-and-forward cooperative method is employed to help the SUs
in transmitting their data. The cooperative diversity incorporated helped in the
improvement of the throughput of the CRN. The RA optimisation problem that was
developed was shown to be non-convex. However, the RA problem was solved by
employing the methods of dualisation and decomposition. The RA problem was
decomposed into two parts, namely relay assignment and power allocation, and
solved using the dualisation approach.

In the work in [18], the authors used a primary decomposition method to solve
the RA problem that was developed for cooperative CRN. The RA problem was
formulated as a power allocation problem and solved by splitting the convoluted
problem into individual power allocation problems. In the work in [19], the authors
jointly maximised the sum rate of all the SUs and the PUs, as the SUs cooperatively
carry out their data transmission. The model first carried out subchannel allocation
to the SUs before assigning transmission power to the SUs and the PUs in an
iterative manner. This helped to achieve results that are very close to the optimal
values that can be achieved.

The works mentioned above are some of the most recent works that have
incorporated some kind of cooperative diversity in their design of the CRN to help
achieve some form of objective, which all gears toward improving the productivity
realised by the network. An important observation is that the cooperative diversity
introduced in most works on the CRN are not designed to address the problem of
interference to PUs. In other words, the interference challenge is still there, despite
the attempts to employ cooperative diversity to help improve network performance
in the CRN. Thus, the aspect of addressing interference using cooperative diversity
in the CRN is still a significant research gap that is open for a lot more.

In this chapter, the cooperative diversity design that is introduced seeks to address
and mitigate the limiting effects of the problem of PU interference in the CRN. The
cooperation model first takes care of the interference problem before resources are
allocated to the SUs. Therefore, through cooperation, the negative effects of the
interference to the PUs are ameliorated, making it possible to realise significant
improvements in the resource utilisation for the heterogeneous cooperative CRN.

8.5 A System Model for Cooperative-Based Resource
Optimisation in Cognitive Radio Network

This section develops and describes a generic system model to study the application
of cooperative diversity to help mitigate the effects of interference in the CRN.
A generic heterogeneous CRN model has been developed and analysed in a
previous chapter of this book. That model is extended in this chapter to incorporate
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cooperative diversity in the RA problem formulation and solution for the CRN. The
resulting CRN design is referred to as heterogeneous cooperative CRN.

The system model of the new heterogeneous cooperative CRN is made up
of K heterogeneous SUs and L similar PUs. All the SUs and the PUs fall
within the coverage area of the secondary user base station (SUBS). The total
number of heterogeneous OFDMA subchannels available for the SUs is N . The
K heterogeneous SUs have different demands and priorities. The SUs are classified
as K1 SUs and (K − K1). The K1 SUs have a minimum rate requirement while the
(K −K1) SUs are the best effort service users. The demands of the SUs in category
one are attended to first since they have a minimum rate requirement. The category
one SUs are therefore the high priority SUs. The SUs in category two are simply the
best effort users. The SUs in category two therefore only share whatever resources
are left after the category one SUs have been attended to, using a fair proportional
rate constraint. A slow fading model is used to model the environmental conditions
of all the subchannels.

Importantly, as the CRN communicates, the heterogeneous cooperative CRN
that is developed must decide if it is to use direct communication or cooperative
communication, depending on the immediate network condition. What influences
the decision on whether direct or cooperative communication is employed is the
interference to the PUs. Direct communication will be employed if the potential
interference to the PUs is minimal on a particular link. However, if by employing
direct communication on a link, a high amount of interference to PUs is observed
which would potentially limit the entire CRN productivity, then, the direct link is
ignored and the cooperative communication is employed on that link. A description
of the system model for heterogeneous cooperative CRN is shown in Fig. 8.1.

The particular cooperative diversity method that is being employed to mitigate
the effects of interference in the RA solution for the CRN is the incremental,
single-relay selection cooperative diversity method. The incremental part of the
cooperative diversity method implies that cooperation is only employed when it
is necessary. The single relay-selection part of the cooperative diversity method
implies that a single ‘best’ relay is selected to help achieve the cooperation. This
particular method of cooperative diversity is employed because it is more feasible
and it results in a minimal network overhead. Any SU that demands to cooperate in
order to achieve data transmission to the SU at the destination terminal (D) is called
the source SU (SSU).

It is necessary to reiterate the condition for which cooperative communication
is employed. The important condition that triggers cooperative communication is
that direct communication between the SSU and D is not feasible because of high
interference channel gain to the PUs. As a result of the possible high interference,
the allocating algorithm would not have allocated any subchannel to the SSU, or,
at best, it would have allocated a very small number of subchannels to the SSU to
transmit at a very low data rate. This is the particular problem that the cooperative
diversity method being incorporated into the CRN attempts to address.

During cooperation, therefore, the SSU identifies and contacts a cooperating SU
(CSU) that has good channel conditions (both from the SSU to the CSU, as well
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as from the CSU to the D SU) and poor interference channel gain to the PUs. The
new cooperating channel is then employed to carry out data transmission, thereby
circumventing the possibility of interference to the PUs. Thus, the limiting effects of
poor channel conditions are well mitigated using cooperative diversity. In the next
section, we describe the method for identifying and choosing the best relay (that is,
the CSU) from among the other SUs in the CRN.

8.6 The Relay-Selection Process in Cooperative Diversity for
Cognitive Radio Networks

The system model of the heterogeneous cooperative CRN described in Fig. 8.1 uses
the SUBS as its communicating hub while operating a centralised control system
arrangement. We assume that the SUBS communicates with the SUs perfectly. Each
SU estimates and communicates its channel condition and its PU interference gain
to the SUBS. There are no restrictions on which SU can be appointed as the CSU
for another SU, but rather, each SU has an equal chance of being appointed. The
decision on whether or not a SU requires a cooperator, and on which cooperator

SSU CSU

PU

Cooperative Link 1

D

PU – Primary User
D – Destination terminal
SSU – Source Secondary User
CSU – Cooperative Secondary User 

Fig. 8.1 A description of the system model for heterogeneous cooperative CRN
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is most appropriate or best for a particular SU, is made by the SUBS. The SUBS
also makes contact with the best SU that is selected, and assigns it as the CSU. The
assumption is that, at the time of cooperation, the SU that is designated as the CSU
is free and not transmitting its own data. The information on whether a particular
SU is transmitting its own data or not, alongside the possible level of interference to
the PU and the estimated channel condition are jointly transmitted to the SUBS via
the control channel by each SU.

The SUBS makes the decision on which SU is to be selected as the CSU and
informs the SU that it has been selected to be the CSU. The SUBSmakes its decision
by considering the SU with the best channel condition and the least interference
gain to the PU. Once the selected SU accepts its nomination, its choice as the CSU
is immediately sent to the SSU by the SUBS. All the other SUs are not contacted,
and as such, they simply continue with their normal transmission (or, if they were
not at all busy, they just maintain their idle state for that period). The SSU sends its
data to the CSU, which is then forwarded to the D SU on the subchannels that have
been assigned for them. Each time frame for data transmission is divided into two
time slots. The SSU sends its data to the CSU in the first time slot while the CSU
sends its data to the D SU in the second time slot.

To determine the joint channel condition of the SSU and the CSU, we let Hs
k,n be

the channel gain between the SU k and the SSU, which is the SU that is selected to
be the CSU, on subchannel n. We letHr

k,n be the channel gain between this CSU and
the D SU on the nth subchannel. In the first slot, the SSU sends its data to the kth
SU (the CSU) on subchannel n with transmission power P s

k,n. In the second slot, the
kth relay (CSU) sends its data to the D SU on subchannel n using the transmission
power P r

k,n. Then, we calculate the data rate on each transmission slot as [3]:

cs
k,n = log

(
1 + P s

k,n|Hs
k,n|2

σ 2
r + ∑L

l=1 J l
k,n

)
,

cr
k,n = log

(
1 + P r

k,n|Hr
k,n|2

σ 2 + ∑L
l=1 J l

n

) (8.1)

where σ 2
r and σ 2 are the variance of the noise at the kth relay (CSU) and the D SU,

respectively.
In the same vein, we denote J l

k,n as the interference to the kth relay (CSU) by the

lth PU on subchannel n. We denote J l
n as the interference to the D SU by PU l on

subchannel n. The receivers of the CSU and D SUmeasure these interference values
which takes them as noise. We note that the effective data rate when cooperative
communication is employed, ck,n,C is usually not higher than the value of the
minimum of the data rates in the two hops. Therefore,

ck,n,C = min (cs
k,n, c

r
k,n). (8.2)

In the instances when there is no need for cooperative communication, the
SSU communicates directly with the D SU using the subchannels that have been
allocated to them. In that case, the data rate is ck,n,D . The actual value of the
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data rate c on a subchannel that uses either cooperative or direct communication
depends on the type of modulation that is used on that subchannel. We consider
that the network employs four types of modulation schemes, namely the binary
phase shift keying (BPSK), 4-quadrature amplitude modulation (QAM), 16-QAM
and 64-QAM. The respective data rates for the four modulation schemes being
considered are c = 1, 2, 4 and 6 bits per OFDMA symbol. Given that a particular
value of the bit error rate (BER) ρ is to be realised, the BPSK modulation requires
a minimum transmission power of P(c, ρ) = Nφ[c × erf c−1(2ρ)]2 (where c = 1).
Similarly, for the M-ary QAM, the minimum transmission power that is required is

given as P(c, ρ) = 2(2c−1)Nφ

3 [erf c−1(
cρ

√
2c

2(
√
2c−1)

)]2 (c = 2, 4 or 6 for the 4-QAM,

16-QAM and 64-QAM, respectively) where erf c(x) = ( 1√
2π

)
∫ ∞
x

e
−t2
2 dt is the

complementary error function, π = (22/7), and Nφ is the noise power spectral
density. The value of Nφ is taken to be the same value for all the subchannels.

To maintain a particular ρ value, an increase in the number of bits on a
subchannel will result in a non-linear increase in the amount of transmission power
required to communicate on that subchannel. We obtain the minimum transmission
power Pk,n(ck,n, ρ) needed to transmit ck,n bits on subchannel n for SU k by
dividing the power P(ck,n, ρ) of the SU k on subchannel n by the channel gain
Hc

k,n between the SUBS and the SU k on subchannel n. This power is given as:

Pk,n(ck,n, ρ) = P(ck,n, ρ)

Hc
k,n

. (8.3)

8.7 Problem Formulation of Resource Allocation in
Heterogeneous Cooperative Cognitive Radio Network

In analysing the RA for the heterogeneous cooperative CRN being studied, we
denote Rk as the minimum data rate of the SU k in category one of the secondary
network, and γk as the normalised proportional fairness factor for each SU in
category two of the secondary network. The data rate Ri indicates the achievable
data rate for the element i. We denote�n = 	K

k=1Pk,n as the maximum power on the
nth subchannel, where Pk,n is the transmission power of the SU k on the subchannel
n (Pk,n,C represents the power employed for cooperation communication, while
Pk,n,D represents the power employed for direct communication). We represent the
interference power gain matrix between the PU and the SUBS as Hp ∈ RL×N .
Then, the vector H

p
l,n stands for the subchannel interference power gain between

the PU l and the SUBS on subchannel n (Hp
l,n,C represents the gain matrix for

cooperation communication, while H
p
l,n,D represents the gain matrix for direct

communication).
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We denote εl as the maximum amount of interference that the PU l can permit
from all the SUs that are transmitting their data. We denote Pmax as the maximum
transmission power of the SUBS. We denote Xk,n,D as a binary (0, 1) variable used
to restrict each subchannel to either employ direct communication or cooperative
communication. This binary variable ensures that each subchannel uses either direct
or cooperative communication, but not both. The formulation of the RA problem for
the heterogeneous cooperative CRN is now given as:

z = max

N∑
n=1

( K1∑
k=1

[
Xk,n,Dck,n,D + (1 − Xk,n,D)ck,n,C

]

+
K∑

k=K1+1

[
Xk,n,Dck,n,D + (1 − Xk,n,D)ck,n,C

] );

× ck,n,D, ck,n,C ∈ {0, 1, 2, 4, 6} (8.4)

subject to

N∑
n=1

(ck,n,D + ck,n,C) ≥ Rk; k = 1, 2, · · · ,K1 (8.5)

Rk

K∑
i=K1+1

Ri

= γk; k = K1 + 1,K1 + 2, · · · ,K (8.6)

N∑
n=1

( K∑
k=1

[
Xk,n,DPk,n,D + (1 − Xk,n,D)Pk,n,C

] ) ≤ Pmax (8.7)

N∑
n=1

�nH
p
l,n,D ≤ εl; l = 1, 2, · · · , L (8.8)

N∑
n=1

�nH
p
l,n,C ≤ εl; l = 1, 2, · · · , L (8.9)

ck,n,D = 0 if ck′,n,D �= 0, ck,n,C = 0 if ck′,n,C �= 0,

∀k′ �= k; k = 1, 2, · · · ,K (8.10)
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Xk,n,D ∈ {0, 1}, Xk,n,D = 1 if ck,n,D �= 0

Xk,n,D = 0 otherwise. (8.11)

Equation (8.4) captures the objective function for the RA problem. In this
case, the objective function is indicative of the sum throughput or total data rate
that is realised by all the SUs in the network using both direct and cooperative
communication. The constraint in Eq. (8.5) is the minimum data rate constraint.
This constraint ensures that the minimum data rate demand for each SU in category
one is met. The Equation in (8.6) is the constraint which ensures that the service
of the category two SUs is at best effort. We used a proportional fairness factor
to share the remaining resources among the category two SUs. The constraint in
Eq. (8.7) ensures that the total transmission power of all the SUs, both at direct and
cooperative transmission, do not exceed the maximum transmission power of the
SUBS. The constraint in Eq. (8.8) is to ensure that the amount of interference that
reaches each PU when the SUs are using direct communication do not exceed the
set interference threshold value. Just like the constraint in Eq. (8.8), the constraint
in Eq. (8.9) ensures that the set interference limit is not exceeded during cooperative
communication. The constraint in Eq. (8.10) is the mutually exclusive constraint.
The constraint ensures that only one SU is assigned to each subchannel. Therefore,
once we have allocated subchannel n to the SU k′ �= k, the data rate for subchannel
n must be 0 for any other user k.

The constraint in Eq. (8.6) can be changed to:

Rk = γk ×
K∑

i=K1+1

Ri,

where
K∑

i=K1+1
Ri is the addition of all the data rates for all the category two SUs. If

we represent γk ×
K∑

i=K1+1
Ri by γ̃k , Eq. (8.6) is better written as:

RK1+1 : RK1+2 : . . . : RK = γ̃K1+1 : γ̃K1+2 : . . . : γ̃K . (8.12)

8.8 Optimal Solution for the Resource Allocation Problem in
Heterogeneous Cooperative Cognitive Radio Networks

Very clearly, we see that the RA problem formulation for the heterogeneous
cooperative CRN given in Eqs. (8.4–8.11) is not a linear programming problem.
A simple way to ascertain this is to note the non-linearity of the power constraint in
Eq. (8.7). However, such RA problems can still be solved, as already well discussed
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in a previous chapter of this book. One of the tools of optimisation that was
described in that previous chapter, that is, the tool of studying the structure of
the RA problem, is employed in this chapter to optimally solve the RA problem
for heterogeneous cooperative CRN. Particularly, the method of reformulation is
employed to change the RA problem into an integer linear programming (ILP)
problem. The reformulated problem is easy to solve using an appropriate classical
optimisation technique. The reformulation process is quite similar to the one carried
out in a previous chapter of this book.

We set xI to be the bit allocation vector for all the subchannels that are allocated
to all the category one SUs (both for the direct and the cooperative communication,
such that xI = (xI,D + xI,C)). We set xII to be the bit allocation vector for all
subchannels that are allocated to all the category two SUs (both for the direct and
cooperative communication, such that xII = (xII,D + xII,C)). The parameters xI

and xII are expressed as:

xI = [(x1
I,N )T (x2

I,N )T · · · (xN
I,N )T ]T ∈ {0, 1}NK1C×1 (8.13)

xII = [(x1
II,N )T (x2

II,N )T · · · (xN
II,N )T ]T ∈ {0, 1}N(K−K1)C×1 (8.14)

where xn
I,N = [xT

I,1,n xT
I,2,n · · · xT

I,K,n]T ∈ {0, 1}KC×1 indicates that
the subchannel n has been allocated to a SU in category one with xI,k,n =
[xk,n,1 xk,n,2 · · · xk,n,M ]T ∈ {0, 1}C×1; n = 1, · · · , N; k = 1, · · · ,K; M

is an indication of the number of modulation schemes that are being used (in this
case, M = 4). This implies that xI,k,n = [xk,n,1 xk,n,2 xk,n,3 xk,n,4 ]T . The
value of xII is arrived at in a similar manner. Then, the value x = xI + xII

is the value of the combined bit allocation vector. The mutually exclusive
constraint ensures that xn

I,N and xn
II,N take the shape of any of the vectors

{[0 0 · · · 0]T , [1 0 · · · 0]T , [0 1 · · · 0]T , · · · , [0 0 · · · 1]T }. This implies that
just one of the components in xn

I,N is 1 and all others are 0s (also true for xn
II,N ).

When xk,n,c is 1, it shows that the subchannel n has been allocated to SU k to
transmit c bits per symbol. When xn

I,N (or xn
II,N ) has an all 0s component, it means

that the subchannel n has not been allocated to any SU at all.
We define the modulation order vectors bI and bII for the two categories of SUs

as follows:

bI = [(b1I,N )T (b2I,N )T · · · (bN
I,N )T ]T ∈ Z

NK1C×1 (8.15)

bII = [(b1II,N )T (b2II,N )T · · · (bN
II,N )T ]T ∈ Z

N(K−K1)C×1 (8.16)

where bn
I,N = [bT

I,1,n bT
I,2,n · · · bT

I,K,n]T ∈ Z
K1C×1 and bI,k,n = [bk,n,1 bk,n,2

· · · bk,n,C ]T ∈ Z
C×1. The value of bII is obtained in a similar fashion. Since

we only considered four modulation schemes (that is, the BPSK, 4-QAM, 16-QAM
and 64-QAM), b1,k,n = [1 2 3 4]T (this is also applicable to bn

II,N ).
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We define the data rate matrices Bi ∈ Z
K1×NK1C and Bj ∈ Z

(K−K1)×N(K−K1)C

for the two SU categories as follows:

Bi =

⎡
⎢⎢⎢⎣

b1 b1 · · · b1

b2 b2 · · · b2
...

...
. . .

...

bK1 bK1 · · · bK1

⎤
⎥⎥⎥⎦ , Bi ∈ Z

K1×NK1C (8.17)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b1 = [bT 0T
C · · · 0T

C] ∈ Z
1×K1C

b2 = [0T
C bT · · · 0T

C] ∈ Z
1×K1C

...
...

. . .
...

bK1 = [0T
C 0T

C · · · bT ] ∈ Z
1×K1C

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Bj =

⎡
⎢⎢⎢⎣

bK1+1 bK1+1 · · · bK1+1

bK1+2 bK1+2 · · · bK1+2
...

...
. . .

...

bK bK · · · bK

⎤
⎥⎥⎥⎦ , Bj ∈ Z

(K−K1)×N(K−K1)C (8.18)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bK1+1 = [bT 0T
C · · · 0T

C] ∈ Z
1×(K−K1)C

bK1+2 = [0T
C bT · · · 0T

C] ∈ Z
1×(K−K1)C

...
...

. . .
...

bK = [0T
C 0T

C · · · bT ] ∈ Z
1×(K−K1)C.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

From the above representations, it is now easy to write Eq. (8.4), which gives the
total data rate that the network can achieve, as maxx[(bI )T xI + (bII )T xII ].

Now, we define Rk � [R1 R2 · · · RK1 ]T ∈ R
K1×1 and γ̃ k �

[γ̃K1+1 γ̃K1+2 · · · γ̃K ]T ∈ R
(K−K1)×1. Then, the constraint of Eq. (8.5), which

gives the minimum data rate for the SUs in category one, becomes BixI ≥ Rk .
Also, the constraint in Eq. (8.6), which gives the best effort data rates for the SUs in
category two, becomes BjxII = γ̃ k .

We then define a power transmission vector p such that:

p = [(p1
N)T (p2

N)T · · · (pN
N)T ]T ∈ R

NKC×1 (8.19)

where pn
N = [pT

1,n pT
2,n · · · pT

K,n]T ∈ R
KC×1 and pk,n = [pk,n,1 pk,n,2 · · ·

pk,n,C]T ∈ R
C×1; pk,n,c is the amount of power needed to transmit c bits of

data for user k on subchannel n. The power constraint in Eq. (8.7) now becomes
pT x ≤ Pmax. Since the total transmission power is the sum of the transmission
powers for both direct and cooperation communication, p = pD + pC , where pD

and pC are the respective transmission power vectors for the direct and cooperation
communications. The power constraint is now given as (pD + pC)T x ≤ Pmax.
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The interference power constraints in Eqs. (8.8) and (8.9) have to be written
in terms of the bit allocation vector x. To achieve this, we define a matrix A ∈
{0, 1}N×NKC as follows:

A =

⎡
⎢⎢⎢⎣
1T
KC 0T

KC · · · 0T
KC

0T
KC 1T

KC · · · 0T
KC

...
...

. . .
...

0T
KC 0T

KC · · · 1T
KC

⎤
⎥⎥⎥⎦ , A ∈ {0, 1}N×NKC (8.20)

1KC =

⎡
⎢⎢⎢⎣
1
1
...

1

⎤
⎥⎥⎥⎦ ∈ {1}KC×1, 0KC =

⎡
⎢⎢⎢⎣
0
0
...

0

⎤
⎥⎥⎥⎦ ∈ {0}KC×1.

If p � x is the Schur–Hadamard (or entry-wise) product of p and x, then
A(p � x) will be that N × 1 vector in which case the nth element indicates the
total power used by the nth subchannel for carrying out its data transmission. We
define εl � [ε1 ε2 . . . εL]T ∈ R

L×1. The constraint in Eq. (8.8), which indicates
the interference power constraint for the direct communication, becomes:

[Hp

l,n,D
(A(PD � x))] ≤ εl . (8.21)

In the same vein, the constraint in Eq. (8.9), which indicates the interference
power constraint for the cooperative cooperation, becomes:

[Hp

l,n,C
(A(PC � x))] ≤ εl . (8.22)

After putting all the above descriptions together, the RA problem for the hetero-
geneous cooperative CRN provided in Eqs. (8.4)–(8.11) can now be represented in
the reformulated ILP form as follows:

z∗ = max
x

[(bI )T xI + (bII )T xII ] (8.23)

subject to

BixI ≥ Rk; k = 1, 2, · · · ,K1 (8.24)

BjxII = γ̃ k; k = K1 + 1,K1 + 2, · · · ,K (8.25)

(pD + pC)T x ≤ Pmax (8.26)

[Hp

l,n,D
(A(pD � x))] ≤ εl (8.27)
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[Hp

l,n,C
(A(pC � x))] ≤ εl (8.28)

0N ≤ Ax ≤ 1N (8.29)

xI , xII , x ∈ {0, 1}. (8.30)

The reformulation RA problem for the heterogeneous cooperative CRN given
above is now a combinatorial ILP problem. Such problems can be solved using the
tool of classical optimisation. The Branch-and-Bound (BnB) method for solving ILP
problems or any similarly good classical optimisation tool can be easily employed to
obtain optimal (or close-to-optimal) solutions, especially when the CRN is designed
as a small network. However, although such tools or methods could yield optimal
solutions, the computational complexity may be significantly high, especially when
the CRN is designed as a large network. It is imperative to investigate approaches
that can still yield near-optimal solutions, but at a much more reduced time frame
and computational demands. In this chapter, we examine the use of a heuristic for
achieving such results.

8.9 Heuristic Solution for the Resource Allocation Problem
in Heterogeneous Cooperative Cognitive Radio Networks

The benefits of heuristics for solving RA problems in the CRN have been well
discussed in a previous chapter of this book. We now employ a fast, iterative-
based heuristic to help solve the RA problem for heterogeneous cooperative CRN.
While heuristics generally provide suboptimal solutions, such solutions can help
in establishing the optimality-complexity trade-off, especially for large networks.
Since heuristic solutions are mostly problem-specific, the particular heuristic that
is developed in chapter is geared towards solving the reformulated ILP problem
for heterogeneous cooperative CRN. There are two important steps involved in the
heuristic, namely

• subchannel allocation and
• iterative bit and power allocation.

8.9.1 Subchannel Allocation

For the heuristic to carry out the best allocation of the subchannels to the different
SU categories, it integer-relaxes the constraint x ∈ [0, 1]. This constraint now
becomes:

0 ≤ x ≤ 1. (8.31)
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What this implies is that the variable x is now permitted to be any value from 0
to 1 and is not limited to being either 0 or 1. We keep the remaining aspects of the
problem formulation as they were. We then solve the new integer-relaxed problem.
We obtain the values of x at the first iteration of the solution. From that solution,
all the subchannels must have been assigned to the SUs that are available in the
network. As a result, the data rate of SU k on the subchannel n becomes (bT

k,nxk,n).
From the initial solution obtained after relaxation of the integer constraint, it may

happen that a particular SU m �= k has a higher data rate (bT
m,nxm,n) on subchannel

n than the data rate that SU k has on subchannel n. The most appropriate decision
would then be to give subchannel n to SU m rather than to SU k. Thus, before the
subchannel n is assigned to the SU k, it must have been ascertained that (bT

k,nxk,n) ≥
(bT

m,nxm,n) ∀m �= k.
By following the guidelines for subchannel allocation given above, it becomes

possible to allocate each subchannel to the SU with the possibility of achieving
the best data rate on that subchannel. It must be noted that, after allocating all
the subchannels to the various SUs following the guidelines at the first iteration,
x reduces in dimension from the original value of x ∈ [0, 1]KNC×1 to a lower value
of x ∈ [0, 1]NC×1.

8.9.2 Iterative Bit and Power Allocation

After allocating the subchannels to the SUs that are available in the network, what
is left is to assign bits (through the modulation schemes) and transmission power
to the subchannels. An iteration-based algorithm is used to achieve this. The first
part of the algorithm is to allocate a conservative number of bits to each SU. The
algorithm then checks the amount of power that has been used to transmit those
bits, and confirms that no constraints were violated. Next, the algorithm ascertains
if there is some excess power remaining. If this is true, it increases the number of
bits that it assigns to the SUs in a gradual manner, where possible. Thereafter, it
again reviews the amount of power that is remaining and repeats the entire iterative
process if there is some power that is left. This entire process continues until it
becomes impossible to further improve the bit allocation of the SUs.

Let us assume that y is the number of iterations involved in the entire process of
allocating and reallocating the bits. It therefore means that, at the yth iteration step,
the following optimisation problem has to be solved:

max
xy

[(by
I )

T x
y
I + (b

y
II )

T x
y
II ] (8.32)

subject to

Bix
y

I
≥ [Rk − f (y−1)]+; k = 1, 2, · · · ,K1 (8.33)
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Bjx
y

II
= [γ̃ k − g(y−1)]+; k = K1 + 1,K1 + 2, · · · ,K (8.34)

(p(y−1))T xy ≤ Pmax − ‖u(y−1)‖1 (8.35)

Hp[A(p(y−1) � xy)] ≤ εl − Hpu
(y−1) (8.36)

0N ≤ Axy ≤ 1N (8.37)

0KNC ≤ xy ≤ 1KNC (8.38)

where f (y−1) and g(y−1) are the respective number of bits that are allocated to the
SUs in category one and category two at the yth iteration, and u(y−1) is the amount
of power that is assigned to the SUs at the yth iteration.

We wish to further explain how the iteration process takes place. You may
remember from the previous section that the allocation of bits to the subchannel
n which is assigned to a SU in category one, that is, bI,n = [bT

1,n · · · bT
K1,n

]T is a
vector of size K1C × 1, with possible values of 1, 2, 4 and 6 in its entry. For each
of representation, let us assume that there are four SUs in each category of the SUs.
If we assume that, from the previous subsection, in the course of the subchannel
allocation process, the first subchannel was assigned to the second SU, which is a
SU in category, then, bI,1 = [0 0 0 0, 1 2 4 6, 0 0 0 0, 0 0 0 0] for the category one
SUs. If it was the third subchannel that was assigned to the first SU, which is a SU
in category two, then bII,3 = [1 2 4 6, 0 0 0 0, 0 0 0 0, 0 0 0 0] and so on.

After completing the aspect of the algorithm explained above, the algorithm
identifies the elements of bI and bII that turns out to be zeros in the course of
the subchannel allocation, then rename the vectors bI and bII as b1

I
and b1

II
,

respectively. As a result, the actual optimisation problem that is solved at the first
iteration (that is, when y = 1) is summarised as:

max
x1

[
(b1I )

T
x1

I + (b1II )
T
x1

II

]
(8.39)

subject to

Bix
1
I ≥ Rk; k = 1, 2, · · · ,K1 (8.40)

Bjx1
II = γ̃ k; k = K1 + 1,K1 + 2, · · · ,K (8.41)

pT x1 ≤ Pmax (8.42)

[
H

p

l,n,D
(A

(
pD � x1

)]
≤ εl (8.43)

[
H

p

l,n,C
(A

(
pC � x1

)]
≤ εl (8.44)
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0N ≤ Ax1 ≤ 1N (8.45)

0KNC,1 ≤ x1 ≤ 1KNC,1. (8.46)

The values of f (0), g(0) and u(0) are all 0s at the first iteration, therefore, they do
not reflect in the formulation above. The values of the rates Bix

1
I
and Bjx1

II
, and

the transmission power pT x1 that are obtained during the first iterative process now
become the respective values f 1, g1 and u(1) for the second iterative process. The
vector x1 is employed, alongside the power vector p, to assign the first modulation
scheme (this also implies the number of bits) for each SU on each subchannel.

The explanation earlier provided suggests that the first subchannel has been
assigned to the second SU. This means that all the entries of x1

I are 0s but for the
elements in x1

2,1. The algorithm calculates the total power that is assigned to the first

subchannel as (pT
2,1x

1
2,1). As a generic point, the total power allocated to the SU k on

the subchannel n is given as (pT
k,nx

1
k,n). We obtain the modulation scheme η (having

bits cη) that should be assigned to the SU so as not to exceed the transmission power
pT

k,nx
1
k,n as:

η = argmax
η

{
η ∈ [0, 1, 2, 3, 4] : pk,n,η ≤ pT

k,nx
1
k,n

}
. (8.47)

For the purpose of clarity, what the value of η means is that it gives an idea of
the highest possible modulation scheme that may be assigned to the subchannel n

that will make it employ a transmission power that does not exceed the maximum
power already allocated to that subchannel by the allocating algorithm. Of course,
we already have a good idea on the data sizes and corresponding powers of different
modulation schemes, since these values are usually finite and can be determined
beforehand. As such, pk,n,η will take a set of finite power levels. By determining
the bits that corresponds to the value of pk,n,η, the algorithm calculates the total
power that is used up to that point, the value of which will still be less than Pmax.

Since the total power that is used up is still less than Pmax, the total interference
leaked to the PUs will still not be up to ε. Therefore, the likelihood of having some
residual power that may still be used by the network is quite high. The excess power
means that it will be possible to carry out additional iterations to help increase the
number of bits that has already been allocated to the subchannels. Thus, it becomes
feasible to run the second iteration (y = 2). Again, we note from the subchannel
allocation process that the first subchannel has been allocated to the second SU,
which is a category one SU, to transmit 2 bits (4-QAM modulation). Then, bI,2,1 is
modified as b2I,2,1 = [0 0 (4 − 2) (6 − 2)]T = [0 0 2 4]T . The power p2,1,2 must
have been used in the course of transmitting 2 bits on this subchannel.

If the algorithm realises that there is excess power available for use, it upgrades
the allocation to maybe a 16-QAM (to transmit 2 more bits) or a 64-QAM
(to transmit 4 more bits). For this action to be successful, an additional power
of (p2,1,3 − p2,1,2) (for the 16-QAM) or (p2,1,4 − p2,1,2) (for the 64-QAM)
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is required. Therefore, the new power vector at the second iteration p1
2,1 =

[p2,1,1 p2,1,2 (p2,1,3 − p2,1,2) (p2,1,4 − p2,1,2)]T . With this, the values of the
vector p1 are realised. Assume that u1n represents the power that was assigned to
the subchannel n in the first iteration. Then, u1 � [u11 · · · u1N ]T . This means

that Pmax −
N∑

n=1
u1n, or equivalently, Pmax − ‖u1‖1, is now the residual power that

is available for the second iteration step. By the end of the second iteration, the
amount of power that has been assigned to the subchannel n is the addition of the
power assigned at the first iteration and the power assigned at the second iteration.
This total power is given as:

v2n = u1n + (p1
k,n)

T x2
k,n.

The newly calculated power is employed by the algorithm in deciding the new or
upgraded modulation scheme η for the subchannel n.

η = argmax
η

{
η ∈ [0, 1, 2, 3, 4] : pk,n,η ≤ v2n

}
. (8.48)

Following the same explanation, we note that the total interference leaked to
the PUs due to the power assigned in the first iteration step is given as Hpu1.
Therefore, the new permissible interference value must be less than (εl −Hpu1) for
the second iteration. We also note that, at this second iteration, f 1

k already represents
the data rate assigned to SU k in category one during the first iteration and g1

k already
represents the data rate assigned to SU k in category two during the first iteration.
Thus, f 1 and g1 are defined as f 1 � [f 1

1 · · · f k
1 ]T and g1 � [g1

1 · · · gk
1]T ,

respectively.
Putting all the information together, we see that the data rate required for the SUs

in category one at the second iteration would be (Rk −f 1), while the available data
rate for the SUs in category two at the second iteration would be (γ̃ k −g1). The two
constraints that describe the data rate requirements now becomeBix

2
I ≥ [Rk−f 1]+

for the SUs in category one and Bjx
2
II = [γ̃ k − g1]+ for the SUs in category two.

The algorithm continues to repeat the entire iteration process. The iteration
comes to a stop only when it no longer realise any significant improvement on the
total achievable data rate for each SU in the system. This is indicative of the fact
that a new iteration cannot improve the throughput of the system any further. The
stopping criterion used to stop the iteration is as follows:

[(
b

y
I

)T
x

y
I + (

b
y
II

)T
x

y
II

]
−

[(
b

y−1
I

)T

x
y−1
I +

(
b

y−1
II

)T

x
y−1
II

]
= ς, (8.49)

with ς being a predetermined small value that indicates that no significant improve-
ment in the solution can be further realised.
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Table 8.1 Pseudo-code for
the proposed iterative-based
heuristic (Part 1)

Pseudo-code for the subchannel allocation

1 solve for x using Eqs. (8.23)–(8.29) and (8.31)

2 set subchannel index n = 0

3 repeat

4 n ← n + 1

5 if (bT
k,nxk,n) ≥ (bT

m,nxm,n)∀m �= k

6 nth subchannel is allocated to user k

7 end if

8 until n < N + 1

Table 8.2 Pseudo-code for the proposed iterative-based heuristic (Part 2)

Pseudo-code for the bit and power allocation (i.e. at y = 1, 2, 3, . . .)

9 set n = 0, y = 0,u(0) = 0N,p(0) = p

10 repeat

11 y ← y + 1

12 set f y = 0K,gy = 0K, vy = 0N

13 solve the problem (8.32)–(8.38)

14 repeat

15 N ← n + 1

16 v
y
n = u

y−1
n + (p

y−1
k,n )T x

y
k,n

17 if η = argmaxη

{
η ∈ [0, 1, 2, 3, 4] : pk,n,η ≤ v

y
n

}
then

18 use modulation scheme η (i.e. with cη bits) on nth subchannel

19 set u
y
k,n = pk,n,l; f

y
k = f

y
k + cη; g

y
k = g

y
k + cη

20 set py
k,n,m = pk,n,m − pk,n,l , ∀m > l

21 set by+1
k,n,m = bk,n,l − cη, ∀m > l

22 set by+1
k,n,m = 0, ∀m ≤ l

23 end if

24 until n < N + 1

25 until no further improvement on total data rate (Eq. (8.49))

26 the vectors f y+1 and gy+1 contain the bits allocated for each

subchannel in category one and two respectively

27 the vector uy+1 contains the power allocated for each subchannel

At iteration yth, the vectors f (y+1) and g(y+1) now carry the respective number
of bits that has been assigned to each subchannel for the SUs in category one and
category two. The vector u(y+1) contains the power assigned to each subchannel.
The pseudo-code in Table 8.1 summarises the part of the heuristic algorithm that
achieves the subchannel allocation while the Table 8.2 summarises the part of the
heuristic algorithm that carries out the iterative bit and power allocation.
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8.10 Useful Results from the Resource Allocation for
Heterogeneous Cooperative Cognitive Radio Networks

To demonstrate the importance of the RA problem formulations and solution models
for heterogeneous cooperative CRN developed in this chapter, some results are
presented and discussed. The MATLAB software is used for simulating the model.
The YALMIP solver is used to carry out the optimisation. The following parameters
are used for the simulations: the total number of SUs in the system is 8, divided
into category one SUs K1 = 2, category two SUs (K − K1) = 2 and the SUs from
which the possible cooperator (CSU) is selected = 4, total number of OFDMA
subchannels N = 64, the total number of PUs L = 4. The category one SUs
have a minimum data rate requirement of 64 bits each. The SUs in category two
use a normalised proportional rate constant γk , which adds to unity, to fairly share
the left-over resources among them. A BER value of ρ = 0.01 is used for all the
SUs. We chose the parameters for the simulation so that we could compare the new
results with the results presented in a previous chapter, which were also similar to
comparative results in the literature, such as in the results in [11] and [20].

In Figs. 8.2 and 8.3, we show the plot of the average data rates (in bits) for the
different categories of SUs against the maximum interference power to the PUs
for both direct and cooperative communications. In the case presented in Fig. 8.2,
the maximum transmission power of the SUBS is at 20 dBm, while in the case
presented in Fig. 8.3, the maximum transmission power of the SUBS is at 40 dBm.
The simulation results are validated in that the results of the direct communication
favourably compare with the results obtained in the works of [11, 12, 20, 21].

From the results presented in Figs. 8.2 and 8.3, one may observe that for the
RA problem to have solutions that are feasible and practicable, the minimum rate
requirement of the SUs in category one must always be met. The results also show
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Fig. 8.2 The plot of the average data rate against the interference limit of the PUs for different
SU categories. Both direct and cooperative communications are considered. The maximum SUBS
power is set at 20 dBm
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Fig. 8.3 The plot of the average data rate against the interference limit of the PUs for different
SU categories. Both direct and cooperative communications are considered. The maximum SUBS
power is set at 40 dBm

that, if the value of the limit of PU interference is increased, an improvement in
the average data rates for the SUs in both categories is realised. However, the
improvement is more pronounced for the SUs in category two than the SUs in
category one. The reason is that it is easier for the allocating algorithm to gradually
improve the performance of the SUs in category two once there is a slight increase
in resources than it is to gradually improve the performance of the SUs in category
one at a slight increase in resources. We also observe that, for all categories of SUs,
the average data rate is better at a higher SUBS power (40 dBm) than at a lower
SUBS power (20 dBm).

The most important observation about the results presented in Figs. 8.2 and 8.3
is the significant improvement in the performance of the network when cooperative
communication is employed in comparison with employing only the direct com-
munication. We notice that the SUs in both categories achieved a higher average
data rate with cooperative communication. This is as a result of the improvement in
the interference gain to PUs when cooperative communication is employed. With
cooperative communication, the subchannels could transmit at a higher rate than
they would have transmitted by direct communication.

We also note that in Fig. 8.2, the average data rate for the cooperative com-
munication eventually converges to nearly that of the direct communication. This
same effect would have occurred in Fig. 8.3 if we continue to increase the level
of permissible interference to the PUs. A similar pattern is observed in Figs. 8.7
and 8.9, confirming this assertion. It therefore implies that as we increase the level
of permissible interference to the PUs, the need for and/or effect of cooperation
diminishes. Simply put, it would be more productive to use direct communication
than to use cooperative communication if the PUs are well robust enough to
counter the effect of the interference caused by the SUs. This is true since
cooperative communication do require a lot more signalling overhead than direct
communication.
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Fig. 8.4 The plot of the total data rate against the interference limit of the PUs for different SU
categories. Both direct and cooperative communications are considered. The maximum SUBS
power is set at 20 dBm
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Fig. 8.5 The plot of the total data rate against the interference limit of the PUs for different SU
categories. Both direct and cooperative communications are considered. The maximum SUBS
power is set at 40 dBm

We plot and compare the results of the total data rate (bits) for each category
of SUs against the maximum interference power to the PUs in Figs. 8.4 and 8.5.
In the plots, both direct and cooperative communications are considered. Similar
to the plots in Figs. 8.2 and 8.3, the maximum power of the SUBS is at 20 dBm
and 40 dBm for the respective plots. Again, since the results in Figs. 8.4 and 8.5
follow the patterns of the results in Figs. 8.2 and 8.3, the prior explanations provided
for Figs. 8.2 and 8.3 are all applicable to Figs. 8.4 and 8.5. Essentially, the total
data rate during cooperative communication outperforms the total data rate during
direct communication. The same reasoning and deductions that were made on
the network performance for cooperative communication as compared with direct
communication are also valid for Figs. 8.4 and 8.5.
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Fig. 8.6 The plot of the average data rate against an increasing SUBS power for the different
SU categories. Both direct and cooperative communications are considered. The maximum
interference limit of the PUs is set at 25 dBm
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Fig. 8.7 The plot of the average data rate against an increasing SUBS power for the different
SU categories. Both direct and cooperative communications are considered. The maximum
interference limit of the PUs is set at 45 dBm

The plots in Figs. 8.6 and 8.7 show the results of the average data rate per-
formance as the SUBS power is gradually increased. The results compare the
performance of both direct and cooperative communications for the two categories
of SUs. The maximum permissible interference limit of the PUs is at 25 dBm in
Fig. 8.6, while in Fig. 8.7, the maximum permissible interference limit of the PUs is
increased to 45 dBm. In the plots, only the results for the feasible regions of the RA
problem are presented.

From the results presented in Figs. 8.6 and 8.7, we note that, for the problem to
have feasible solutions, the minimum rate requirement of the SUs in category one
has to be met at all times. Therefore, for the parameters used in the simulation, if
the SUBS power is less than 12 dBm, the RA problem becomes infeasible. Another
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important observation is that, as we gradually increase the SUBS power, there is
an improvement in the average data rate, especially for the SUs in category two.
As explained previously, th reason is that since it is easier to satisfy the SUs in
category two than the SUs in category one, every slight increase in resources will
likely favour the category two SUs. We then note that, after a while, the data rate
values peak and stabilise. Even if the SUBS power is increased, the performance
does not improve any further.This is because the other constraints play their part,
making it impossible for the data rate to continuously increase with every possible
increase in the SUBS power.

The plots in Figs. 8.6 and 8.7 further exemplify the significant improvements that
cooperative communication provides over direct communication. We note that the
improvements are obvious, both when the permissible interference limit of the PUs
is at 25 dBm (Fig. 8.6) and when it is at 45 dBm (Fig. 8.7). We also observe that, in
Fig. 8.7, the improvements as a result of cooperation only begin to be noticeable at
a SUBS power of about 26 dBm. What this implies is that the network prefers to
use direct communication when the SUBS has limited power in order to maximise
the use of its transmission power, and to reduce signalling overhead. As the SUBS
power increases though, the network prefers to use cooperative communication
which results in a better performance for the network.

It is also noteworthy that in Fig. 8.7 (a similar pattern is observed in Fig. 8.9), the
value of the average data rate (and the total data rate, as shown in Fig. 8.9) during
cooperative communication eventually saturates despite the continuous increase of
the maximum transmission power of the SUBS. The improvements in the average
and total data rates are not indefinite because the other constraints also affect the
network, eventually limiting the possible improvement in performance that the
network can realise.

The plots in Figs. 8.8 and 8.9 are the results for the total data rate plotted against
an increasing power at the SUBS. The plots compare the results for both direct and
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Fig. 8.8 The plot of the total data rate against an increasing SUBS power for the different
SU categories. Both direct and cooperative communications are considered. The maximum
interference limit of the PUs is set at 25 dBm
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Fig. 8.9 The plot of the total data rate against an increasing SUBS power for the different
SU categories. Both direct and cooperative communications are considered. The maximum
interference limit of the PUs is set at 45 dBm
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Fig. 8.10 Comparing the performance of the ILP solution to the heuristic solution. The compari-
son is based on the total data rates. The permissible interference limit of the PUs is set at 25 dBm

cooperative communications for all the SU categories. In Fig. 8.8, the permissible
interference limit for the PUs is set at 25 dBm, while in Fig. 8.9, the permissible
interference limit for the PUs is set at 45 dBm. The explanations given for Figs. 8.6
and 8.7 are equally applicable to Figs. 8.8 and 8.9. Essentially, the performance of
the total data rates during cooperative communication is better than during direct
communication. The reasons are the same as given for the results in Figs. 8.6
and 8.7.

The plots in Figs. 8.10 and 8.11 are comparative results obtained for the ILP
solution (using the BnB approach) and the heuristic solution (using the iterative
algorithm) for the heterogeneous cooperative CRN discussed in this chapter. The
results compare the optimality and the computational complexities of the solutions.
For the ILP solution, the computational complexities are obtained from the number
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Fig. 8.11 Comparing the performance of the ILP solution to the heuristic solution. The compari-
son is based on the computational complexity for different number of subchannels

of arithmetic operations needed to arrive at the solution [21]. For the heuristic
solution, the total complexity is obtained by summing the complexities of the two
parts of the algorithm (that is, the subchannel allocation and the iterative bit and
power allocation). The results in Figs. 8.10 and 8.11 indicate that the performance
of the heuristic, in terms of the total data rates, is fairly close to the performance
of the ILP technique. However, the complexity demand for the heuristic solution is
much less than for the ILP solution, especially as the CRN becomes larger.

A good inference for network designers can be drawn from the results in
Figs. 8.10 and 8.11. The inference is that, for practical CRN implementation, once
a good idea on the optimal results has been established, it is advisable to develop
heuristic solutions that are sufficiently close to the optimal solutions to help solve
the RA problems. This will ensure that the solutions provided are feasible, timeous
and computationally less demanding, especially for large CRN considerations.

8.11 Summary of the Chapter

This chapter has established the importance of developing RA problem formulations
and solution models that can achieve outstanding performances, despite the stringent
interference constraints imposed on the CRN. In the chapter, the concept of cooper-
ative diversity was employed to help mitigate the limiting effects of interference to
the PUs of the CRN. This resulted in significant improvements in the RA solutions
for the heterogeneous cooperative CRN. Thus, appropriate cooperative diversity
methods can be incorporated to modern CRN designs in order to mitigate the effects
of interference and to achieve optimal results. For practical, realistic CRN designs,
heuristics and other computationally less demanding optimisation tools may be used
to solve the RA problems for heterogeneous cooperative CRN at a much reduced
time duration and complexity. The performance improvements in the RA solutions
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for the CRN when cooperation is incorporated are quite remarkable, as the results
presented in this chapter clearly show.
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Chapter 9
Interference Management and Control in
Cognitive Radio Networks Using
Stochastic Geometry

9.1 Interference Management Through Stochastic Geometry

In most modern wireless communication networks, the problem of interference
is one of the greatest challenges that must be overcome when allocating network
resources. Interference has the tendency of degrading the performance of any
wireless communication network if not properly controlled. Especially in the CRN,
the problem of interference is even more exacerbated since the SUs have to transmit
on the scarce spectrum resources belonging to the PUs. In the CRN, the SUs aim to
satisfy their spectrum demands, while still ensuring that their transmissions do not
generate excessive interference in the primary networks [1]. When interference is
not properly managed and controlled in the CRN, the essence of the CRN is defeated
since channel usage can neither be effective nor efficient. Interference management
and control therefore remain an important aspect of the CRN and must be properly
characterised to ensure an efficient resource allocation process. Recently, the tool
of stochastic geometry (SG) is being employed as an important tool for achieving
interference management and control in modern CRN.

To help understand the concept of SG as a tool for interference management, the
CRN can be considered as a collection of transmitting and receiving nodes, located
within a certain domain with different priority levels (generally classified into
primary and secondary priority levels). In the CRN, multiple primary and secondary
transmitter–receiver pairs transmit on the scarce spectrum resources, therefore, the
intended signal at any receiver can be interfered with by the transmissions of other
transmitting nodes. It is important to note that, in such a network, the pattern of
users’ distributions is an important element of the system and must be properly
considered when investigating the signal-to-interference plus noise ratio (SINR) or
signal-to-inference ratio (SIR) in an interference-limited network, at any primary or
secondary receiver with the aim of reducing interference in the network.

In order to capture these patterns of users’ distributions, the adoption of the
hexagonal grid model was earlier considered in wireless communications. Such a
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model has been proven to be unsuitable, especially when the actual distributions of
users in practical networks and other unique properties of networks are taken into
consideration. On the other hand, SG is known to provide a useful way of obtaining
these macroscopic properties of wireless communication networks through the use
of point processes—the element often considered as the most important aspects of
SG. The SG is a branch of mathematical research that provides an opportunity to
study the random phenomena of nodes within any dimensional area. Through the
tool of SG, the spatial distributions of users/nodes can be properly realised and
accurately evaluated.

The adoption of SG now continues to receive attention in the CRN. With this
tool, the distributions of PUs and SUs in a typical CRN can be captured in order
to model interference within such networks. Interference modelling is important
towards ensuring that the transmissions of PUs are not disrupted as a result of the
channel access opportunities given to the SUs. When modelling the distributions of
users in the CRN, two properties of the CRN are significant to the performance of
the network. These properties are as follows:

• The dependent distribution property: This is the property that shows that the
distributions of PUs and SUs are closely dependent.

• The priority property: This is the property that represents the pre-emptive priority
of PUs over SUs.

These important characteristics are now being considered when modelling interfer-
ence in CRN using SG.

One of the benefits of SG, when adopted in the CRN, is its capability to
provide solutions that are not only accurate but are also scalable, especially
when multiple nodes are considered as in the large-scale CRN. Although most
authors often adopt various simplification techniques in order to obtain tractable
analyses for some metrics of interests, SG can provide accurate analyses when
these simplifications are carefully achieved. Its ability to provide tractable and
accurate solutions has been demonstrated and verified by many existing works in
various wireless communications networks. Its applications in the CRN can enhance
interference management and control, thereby ensuring an efficient and effective
resource allocation process among various users. As a result, the SG approach has
gained more interest over the conventional grid model in recent years.

9.2 Advantages of Stochastic Geometry over the
Conventional Hexagonal Grid Model

When the distributions of users are represented following the hexagonal grid model,
the locations of transmitters are generally considered to be at the centre of hexagonal
lattices where the channels are regularly spaced such that there is no intra-channel
interference. Although such a technique can reduce interference when used, its
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limitations mean that the grid-based models are not very suitable to cope with the
dynamics required for xG networks, such as the CRN. The advantages of SG-based
techniques over the grid-based models are summarised as follows:

• Accuracy: When characterising interference in any wireless network, accuracy
is the most important requirement of any interference model. An interference
model that overestimates interference will deny SUs opportunities to access
the spectrum resources even when there are spectrum opportunities, while an
interference model that underestimates interference in the network will degrade
the performance of the network. The grid-based models have been demonstrated
to be inaccurate, owing to the patterns of users’ distributions, as well as
its unrealistic assumptions [2]. Hence, grid-based models are unsuitable for
CRN applications. In contrast, the SG-based technique provides tightly bound
solutions when used and its accuracy has been demonstrated in many works, for
example, the works in [3–5]. These SG-based solutions have been shown to be
reasonably accurate when compared with real-life data [2, 4, 6].

• Tractability: Tractability is another important requirement of any interference
model. Analyses obtained through the hexagonal grid models are not tractable
and, in fact, they require complex Monte Carlo simulations [7]. Other research
studies have considered the use of the Wyner model due to its tractability. Such
models are, however, impractical while the results are generally inaccurate [4].
On the other hand, SG tools are able to provide analyses that are tractable.
With such an approach, closed-form, as well as tightly bound and approximate
expressions can be obtained for various metrics of interests.

• Scalability: As a result of the idealised nature of the grid-based modelling
approach when representing the distributions of users, its solutions are not
scalable, especially when multiples users are involved. Grid-based models are
not capable of improving the channel usage efficiency because of the inability to
characterise the locations of users in more realistic terms. Interestingly, SG tools
are known for their ability to realistically model users’ locations using stochastic
point processes. With these point processes, scalable solutions can be obtained.
Hence, coverage, rate and mobile users’ experience in networks with SG-based
models are quite different than in networks with traditional grid-based models.

9.3 Users’ Distributions Modelling in Cognitive Radio
Networks

As previously mentioned, the limitations of the grid-based models are mainly due
to their oversimplification of users’ distributions over d-dimensional space. On
the other hand, SG-based models through the point processes allow the statistical
properties of a random collection of nodes to be properly described and derived
within the d-dimensional space. These point processes are generally defined as a
finite random collection of points within a measured space and are significant when
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characterising users’ spatial locations in CRN. A point process with a constant
intensity of points within the Euclidean space Rd is known to be homogeneous
and non-homogeneous if otherwise. Similarly, point processes are often described
as stationary, simple and isotropic. A stationary point process is usually considered
to be invariant by translation, while a point process is simple (that is, N({x}) ≤
1,∀x ∈ Rd) if no two points exist in the same location. Finally, a point process that
is invariant to motion is isotropic.

In order to properly represent the relationships between the distributions of PUs
and SUs, various point processes can be used to model users’ locations while pro-
ducing tractable and accurate analyses. These point processes have been extensively
discussed in the literature, while their suitability has also been established. The
common ones when modelling interference in the CRN are the Poisson point process
(PPP), the hardcore process (such as theMatern hardcore point process (MHCP), the
Poisson hole process (PHP)) and the Poisson cluster process (PCP). The binomial
point process (BPP) is another point process but has not been well considered for
the CRN. These point processes are discussed next for more insights.

9.3.1 Poisson Point Process

Often described as the most important point process, the PPP is the most used and
tractable point process among all presently known point processes [8]. It is therefore
unsurprising that most of the existing works have focussed on its adoption when
modelling interference in the CRN. A PPP can be homogeneous, non-homogeneous,
stationary, simple or isotropic. Considering a stationary PPP � of intensity μ, the
number of points n within a bounded set B ⊂ R2 is a Poisson distribution with
mean μ|B| and can be expressed as:

P [�(B) = n] = (μ|B|)n
n! exp−μ|B| . (9.1)

Note that for all disjoint set Bi ⊂ R2(∀i = 1, 2, . . . , k), (�(Bi), . . . , �(Bk) are
independent. This implies that all users are assumed to be identically and indepen-
dently distributed within the region under consideration when users’ distributions
are modelled using PPP. For instance, when the distributions of PUs and SUs are
modelled using two independent homogeneous PPP, users’ distributions are said to
be independent, and hence, two or more users can be arbitrarily close to each other
than possible in practical systems. The realisation of users’ distributions under the
PPP assumption is presented in Fig. 9.1.

Modelling users’ spatial distributions in the CRN using independent homoge-
neous PPP is not only analytically tractable but it is also known to be capable of
producing remarkable analytical solutions for important metrics such as coverage
and outage probability, medium access probability, spectral efficiency, etc. Despite
this, a quick observation of Fig. 9.1 shows that the PUs and SUs’ distributions in
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Fig. 9.1 The realisation of users’ distributions under the PPP assumption

real life may not actually follow two independent PPPs since the SUs are expected
to ensure a minimum distance to active PUs, so as to avoid interfering with the PUs’
transmissions. In fact, practical deployments of PUs do not follow PPP because of
the fact that a minimum repulsion is often observed among the PUs (for example, in
TV transmitters) in practical systems. As a result, the need to investigate better point
processes becomes a necessity. Nevertheless, the application of PPPs continues to
receive wide adoption because of its tractability. Authors such as [9] sometimes
adopt the concept of void probability in order to capture the expected repulsions
among active transmitting nodes.

9.3.2 Binomial Point Process

Although homogeneous PPP is analytically convenient and often produces tractable
analyses, its usage may not be appropriate in networks with a known number of
users where a fixed and finite number of interfering nodes are distributed randomly
within the area of interest. Also, users with locations closer to the centre of the
network may experience more interference than users that are closer to the boundary
of the network [10]. In order to find a more useful point process when modelling
interference in fixed and finite networks, the BPP can be considered. Its application
has been limited since the probability density function for interference when BPP is
considered is unknown [10].



176 9 Interference Management and Control in Cognitive Radio Networks Using. . .

The realisation of BPP is similar to the realisation of PPP presented in Fig. 9.1
except for the known number of points in BPP. Considering a scenario where
the distribution of users within a bounded region B follows BPP �BPP , such a
distribution is a superposition of n independent and uniformly distributed points in
B. The probability that the number of nodes within C, ∀C ⊂ B is m can be obtained
as:

P(�BPP (C) = m) =
(

n

m

)(|C|
|B|

)m(
1 − |C|

|B|
)n−m

. (9.2)

9.3.3 Hardcore Point Processes

Under the PPP and BPP, the distributions of PUs and SUs were assumed to be
identical and independent. Such an assumption neglects the minimum repulsions
required among PUs and SUs. Consider a CRN where PUs are deployed in such a
way that there is a minimum repulsion of radius D within any two PUs. This region
of radius D belonging to any typical PU is known as the exclusion region of such a
PU within which no SU can be active. This technique of exclusion regions is capable
of reducing interference among PUs, as well as interference from active SUs at the
primary network.

When exclusion regions are introduced in the primary networks, the distributions
of PUs are better depicted as MHCP [10]. This is because of the capability of MCHP
to capture the required repulsions among PUs. The distribution of users in the CRN
when MHCP is adopted in the primary network is presented in Fig. 9.2. This is
achieved through a dependent thinning of Fig. 9.1 to obtain the required repulsions
among users in the network. Despite its capability to model users’ distributions
closer to practical networks, there is no known probability generating functional
(PGFL) for MHCP [8, 10]. Hence, only the approximate form of its function can be
obtained [8].

Despite the non-availability of its PGFL, the MHCP assumption is a very useful
approach towards interference management and control in the CRN. With such an
approach, the intra-network interference in the primary network is significantly
reduced while the interference generated through the activities of the SUs at the
active PUs is reduced due to the minimum distance between any active PU and
the nearest active SU under such an assumption. Similarly, the hardcore processes
such as PHP and MHCP can be used in the secondary networks. When used, active
SUs are also separated by a minimum repulsion such that a typical SU is only
allowed to transmit if its location is not within the locations of all the active PUs
and the currently active SUs. The adoption of hardcore point processes is, however,
limited in the CRN because of the difficulty in obtaining closed-form expressions
for various metrics when used.
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Fig. 9.2 Realisation of hardcore point process for CRN

There are two popular methods for the detection of the exclusion region (which
is also known as the protection region). These methods are distance-based and
threshold-based detection mechanisms.

9.3.3.1 Distance-Based Exclusion Regions

In the distance-based exclusion regions, the PUs’ protection zones are determined
by the SUs through estimation of the distance between a typical secondary
transmitter (ST) and the test primary receiver (PR) under the receiver-centric
model or the distance between a typical ST and serving primary transmitter (PT)
under the transmitter-centric model. Under the transmitter-centric model, SUs can
estimate the distance through the PT signal power received at the typical ST. In the
receiver-centric model, the distance between the tagged PR and the typical ST is
determined through beacons that are generated by active receivers and transmitted
via a dedicated channel.

Considering the CRN presented Fig. 9.3, if a test PT with a transmission power
Pp is located at a distance rp,o from its paired PR, the nearest PT asides the test
PT will be located at a distance rp,i > rp,o from the tagged PR in a receiver-centric
model when assuming that a receiver is connected to the nearest transmitter. In order
to ensure that the interference at the tagged PR is within the acceptable limit, the
nearest ST with transmission power Ps will be located at the distance rs given as
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Fig. 9.3 The distance-based exclusion region

rs > rp,o

(
Ps

Pp

)( 1
η
)

, provided that both networks have the same path loss exponent η

[8].

9.3.3.2 Threshold-Based Exclusion Regions

Unlike in the distance-based exclusion region where any ST determines the PUs’
exclusion regions through distance, STs rely on their sensed threshold to determine
the exclusion regions under the threshold-based exclusion region. This concept was
used for opportunistic spectrum access in CRNs [11]. In this approach, a typical
ST is located within the exclusion region of a PU if the power received at the SU
is greater than the predefined threshold for primary transmissions. This approach
can also be adopted in any secondary network in which case a typical ST’s location
will be considered to be within the exclusion region of another SU if the power
received is greater than the predefined threshold for secondary transmissions. The
predefined thresholds for both primary and secondary transmissions have to be
carefully estimated for interference control in the network. Similar to a distance-
based approach, a threshold-based approach can be either transmitter-centric or
receiver-centric, depending on whether the signal received is from the PT or PR.
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9.3.4 Poisson Cluster Process

The last point process discussed in this chapter is the PCP. Sometimes, the locations
of users can follow a clustering pattern, for instance, when the presence of SUs is
restricted to a certain part of the network. In such a network, users’ distributions
are better captured using PCP. Cluster-based point processes are difficult to analyse
and may lead to analyses that are non-tractable. Other examples of cluster-based
point processes are the Thomas cluster process and the Matern cluster process. For a
clearer understanding of the process, the realisation of the PCP is shown in Fig. 9.4.

9.4 Analysis of the Signal-to-Interference Plus Noise Ratio

The SINR and SIR are very powerful tools when modelling interference in any
wireless network. In a network where the effect of noise is non-significant, the
analysis for SIR is generally obtained with noise signal power neglected. Note
that under the receiver-centric network, each PT is considered to be located within
the region centred on its respective corresponding PR. Similarly, each ST is
located within the region centred on its paired secondary receiver (SR). Under the
transmitter-centric scenario, transmitters are located at the centre of their respective
region with each receiver uniformly located within these regions.
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Consider a typical PR Yo located at the origin of a disk. The SINR at such a PR
in the two- or three-dimensional Euclidean space can be expressed as:

SINRYo = Sp

W + Ipp + Isp

, (9.3)

where Sp is the desired signal power from the tagged PT Xo, W is the noise signal
power, Ipp is the interference received from all PTs except the tagged PT and Isp

is the interference received from STs. Similarly, consider a typical SR yo located at
the centre of a disk with its paired ST xo located within such a disk. The SINR at
such an SR is also obtained as:

SINRyo = Ss

W + Iss + Ips

, (9.4)

where Ss is the desired signal power from the tagged ST xo, Iss is the interference
received from all STs except the tagged ST and Ips is the interference received from
PTs. The desired signal power Sp is given as:

Sp = PphXpp ||Xpp||−η, (9.5)

where Pp is the transmit power of the tagged PT, hXpp is the random channel
gain that captures the outcome of fading and shadowing between any primary
transmitter–receiver pair, ||Xpp|| is the Euclidean distance between any tagged
primary transmitter–receiver pair and η is the path loss exponent. In the secondary
network, the desired signal power Ss is given as:

Ss = Pshxss ||xss ||−η, (9.6)

where Ps is the transmission power of the ST, hxss is the random channel
gain that captures the outcome of fading and shadowing between any secondary
transmitter–receiver pair and ||xss || is the Euclidean distance between any tagged
secondary transmitter–receiver pair. The expressions in Eqs. (9.3)–(9.6) are central
to interference modelling in the CRN.

9.4.1 Interference Modelling in the Primary Network

The purpose of interference management and control in CRN is to ensure coverage
in the primary network while meeting the channel access requirements of the SUs.
In order to achieve this, analyses are often obtained for several performance metrics
based on the analyses of the SINR presented in Eqs. (9.3) and (9.4). The most used
metrics are the probability of successful transmission (which is analytically the same
as coverage probability), outage probability, spectral efficiency, medium access
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probability, etc. The analyses for the first two metrics are closely related and follow
similar techniques. Without introducing any unnecessary complexity, a transmission
between any test transmitter–receiver pair can be said to be successful if the SINR
received at the test receiver is greater than the predefined SINR threshold θ . The
outage probability is the complement of the probability of successful transmission
and is equivalent to the cumulative distribution function of the SINR [12].

At any tagged PR Yo, the probability that the packet sent by its paired PT is
successfully received is given as:

Psuc(Yo) = P(SINRYo > θp), (9.7)

where θp is the predefined SINR threshold for primary transmissions. From
Eqs. (9.3) and (9.5), it is clear that:

Psuc(Yo) = P

(
PphXpp ||Xpp||−η

W + Ipp + Isp

> θp

)
,

= P

{
hXpp >

θp(W + Ipp + Isp)

Pp||Xpp||−η

}
,

= P

{
hXpp >

(
θp||Xpp||η

Pp

W + θp||Xpp||η
Pp

Ipp + θp||Xpp||η
Pp

Isp

)}
.

(9.8)

Because of the necessity of tractable analysis and exact distribution for the SINR,
a common assumption is that Rayleigh fading is experienced between the test PR
and its corresponding serving PT [8]. With the assumption of Rayleigh fading, the
channel power gain hXpp ∼ exp (1). Without loss of generality, the Euclidean
distance between the test primary transmitter–receiver pair is generally considered
to be constant, that is, rp = ||Xpp||. From this, we have:

Psuc(Yo) = E

{
exp

(−θp||Xpp||η
Pp

W − θp||Xpp||η
Pp

Ipp − θp||Xpp||η
Pp

Isp

)}
.

(9.9)
Note that the Laplace Transform (LT) of z is given as Lz(s) = E[exp (−sz)]. From
this definition, it is clear that Eq. (9.9) can be obtained at s = θp ||Xpp ||η

Pp
as:

Psuc(Yo) = exp(−sW)LIpp (s)LIsp (s), (9.10)

whereLIpp andLIsp are the LTs of Ipp and Isp, respectively. Obtaining the solutions
for the LTs can be difficult and usually depends on the distribution assumed to
realise the locations of users in the network. Few cases are considered to provide
some insights.
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Case 1 Consider a typical CRN where the PTs are distributed following a homoge-
neous PPP �p of intensity μp and the STs are distributed following an independent
PPP �s of intensity μs . The derivation for Ipp can be obtained as interference from
all active PTs except the tagged PT and is given as:

Ipp =
∑

Xi∈�p\Xo

PphXpp ||Xpp||−η. (9.11)

Its LT in Eq. (9.10) is then given as:

LIpp (s) = E

[
exp

(
− s

∑
Xi∈�p\Xo

PphXpp ||Xpp||−η

)]
,

= E

[ ∏
Xi∈�p\Xo

exp(−sPphXpp ||Xpp||−η)

]
. (9.12)

From the PGFL of PPP, we know that:

E

[ ∏
Xi∈�p\Xo

f (x)

]
= exp

(
− μp

∫
R2

(1 − f (x))dx

)
. (9.13)

Hence,

LIpp (s) = exp

(
− μp

∫
R2

(1 − exp(−sPphXpp ||Xpp||−η))dX

)
. (9.14)

With the assumption of Rayleigh fading, hXpp ∼ exp (1). As a result:

LIpp (s) = exp

(
− μp

∫
R2

(1 − exp(−sPp||Xpp||−η))dX

)
,

= exp

(
− μp

∫
R2

1 − exp
( −sPp

||Xpp||η
)
dX

)
,

LIpp (s) = exp

(
− μp

∫
R2

1

1 + ||Xpp ||η
sPp

dX

)
. (9.15)

Following some algebraic manipulations, Eq. (9.15) is converted from the Cartesian
coordinate to the polar coordinate form so as to obtain a closed-form expression for
LIpp . At τ = 2

η
,

LIpp (s) = exp

[
− πμp

(sPp)τ

sinc(τ )

]
, (9.16)
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LIpp (s) = L(μp, Pp, s). (9.17)

Similarly, the expression for LIsp is obtained following Isp = ∑
xi∈�s

Pshxsp

||xsp||−η. From [13]:

LIsp = exp

(
− 2πμa

s

∫ ∞

D

r

1 + rη

sPs

)
, (9.18)

LIsp (s) = L(μa
s , Ps, s,D). (9.19)

The exact analysis forLIsp is difficult to obtain and the one provided in Eq. (9.18)
is only an approximate expression for it [12]. Note that the exclusion region of
radius D is implemented around each PR. Hence, Isp is dominated by interference
from STs outside the exclusion region centred on the test PR [12]. The intensity
μa

s is obtained following an independent thinning of the SUs outside the exclusion
regions with probability exp(μpπD2) using the void probability technique. It is
worth noting that when only the STs outside the exclusion regions of the PTs are
considered, the distribution of the active STs is no longer a PPP but a PHP. The
analysis in Eq. (9.18) has, however, been shown to be a good approximation of Isp

[13]. The upper bound for the LIsp can be expressed as:

Lupper
Isp

(s) � L(μs, Ps, s,D). (9.20)

Case 2 Consider a typical CRN where the PTs are distributed following a HPPP
�a

p of intensity μa
p = μp exp(−μpπD2), while the active STs are distributed

following a PHP �
php
p of intensity–μphp

s . Similarly, each serving PT is assumed
to be located within the exclusion region of radius D centred on its paired PR, while
each secondary transmitter–receiver pair is separated by a distance rs following the
bipolar network model (details for obtaining the parameter D through the bipolar
network model are provided in [12]). The definition of LIpp can be given as:

LIpp (s) � L(μa
p, Pp, s), (9.21)

while the definition for LIsp can be approximated as:

LIsp (s) � L(μ
php
s , Ps, s), (9.22)

where μ
php
s = μs exp(−μpπD2).

As previously stated, the analysis for PHP is non-tractable and its PGFL is
unknown hence the need for the approximation presented in Eq. (9.22) [12, 14]. In
[15], the authors showed that the approximation obtained in [12] and [14] was not
the most accurate representation of the PHP and its PGFL. The authors in [15] then
presented a more approximate solution with tight bounds, even though the solutions
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were still non-tractable. The PHP technique reported in [15] was adopted in the CRN
in [16]. Interested readers are referred to these works for more details. From [15],
Isp = ∑

xi∈�s∩bc(Yo,D) Pshxsp ||xsp||−η, where bc(Yo,D) represents a disk of radius
D centred on the PR Yo. Conditioned on distance ||v||, the LIsp can be expressed
as:

LIsp (s) � L(μs, Ps, s, ||v||,D)

= exp

(
− πμs

(sPs)
τ

sinc(τ )

)
exp

(∫ ||v||+D

||v||−D

2πμ(r)

1 + rη

sPs

rdr

)
, (9.23)

where μ(r) = μs

π
cos−1

(
r2+||v||2−D2

2||v||r
)

.

9.4.2 Interference Modelling in the Secondary Network

Interference modelling in the secondary network is similar to the methods presented
for the primary network. At any tagged SR yo, the probability that the packet sent
by its paired ST is successfully received is given as:

Psuc(yo) = P(SINRyo > θs), (9.24)

where θs is the predefined threshold SINR for secondary transmissions. From
Eq. (9.4) and (9.6), we know that:

Psuc(yo) = P

(
Pshxss ||xss ||−η

W + Iss + Ips

> θs

)
,

= P

{
hxss >

(
θs ||xss ||η

Ps

W + θs ||xss ||η
Ps

Iss + θs ||xss ||η
Ps

Ips

)}
.

(9.25)

With the assumption of Rayleigh fading, the channel power gain hxss ∼ exp(1).
Similarly, the Euclidean distance between the test secondary transmitter–receiver
pair is also considered to be constant, that is, rs = ||xss ||. From this:

Psuc(yo) = E

{
exp

(−θs ||xss ||η
Ps

W − θs ||xss ||η
Ps

Iss − θs ||xss ||η
Ps

Ips

)}
. (9.26)

Taking s = θs ||xss ||η
Ps

, the expression in Eq. (9.26) is simplified as:

Psuc(yo) = exp(−sW)LIss (s)LIps (s). (9.27)
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Case 1 Consider a typical CRNwhere the PTs’ distribution follows a homogeneous
PPP �p of intensity μp and the STs’ distribution follows an independent PPP �s of
intensity μs . The derivation for Iss can be obtained as interference from all active
STs except the tagged ST and depends on a few assumptions in the secondary
network. The LT of Iss = ∑

xi∈�s\xo
Pshxss ||xss ||−η can be upper-bounded at [12]:

Lupper
Iss

(s) = L(μs, Ps,D). (9.28)

The approximate expression for the LIss can be obtained by considering the STs
that are located outside the PUs’ exclusion regions. This is given as:

LIss (s) = L(μa
s , Ps, s). (9.29)

Finally, the expression for the LT of Ips can also be obtained following:

Ips =
∑

Xi∈�p

PphXps ||Xps ||−η,

and can be approximated as:

LIps (s) � L(μp, Pp, s, D̄). (9.30)

Note that these analyses are based on the receiver-centric scenario where any
exclusion region of radius D is centred on each PR, indicating that any test ST
within the network is thus located at a distance of at least D from the nearest PR.
Since the distance between any primary transmitter–receiver is assumed to be rp,
while the distance between any secondary transmitter–receiver is rs , then, it is clear
to observe that the minimum distance between the nearest PT and the test ST is
D − rp. It becomes immediately clear that the nearest PT is at least a distance
D̄ = D − rp − rs from the test SR. It is also important to mention that when the
analyses are obtained based on the transmitter-centric scenario where the exclusion
regions are rather centred on each PT, D̄ is slightly modified. In such a case, the
location of the nearest PT is at least a distance D̄ = D − rs from the test SR.

Case 2 When the PTs are distributed following a homogeneous PPP�a
p of intensity

μa
p = μp exp(−μpπD2) and the STs are distributed following a PHP �

php
s of

intensityμ
php
s , the exact form of the interference from the STs at a test SR is difficult

to obtain because of the location-dependent thinning of �s to �
php
s . As a result of

this, only its approximate can be obtained. The approximate form of LIss is given
as:

LIss (s) = L(μ
php
s , Ps, s). (9.31)
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Similarly, the interference received at the test SR as a result of the activities of
the PTs is dominated by interference from location D̄, since the closest PT is at least
a distance D̄ from the tagged SR. The LT of Ips under this scenario can be bounded
at:

LIps (s) = L(μp, Pp, s, ||v||, D̄). (9.32)

There are other cases such as modelling the distributions of the PUs and the SUs
following hardcore point processes. Such models ensure that the network considers
both inter-network and intra-network dependence among the PUs and the SUs.
The analyses for such models are presented in [16], while the details of PCP are
discussed in [12].

The analyses presented thus far focussed on the underlay CRN model where the
SUs are permitted to transmit within the same channels with the PUs. Hence, both
intra-network and inter-network interference were considered in the modelling. In
the overlay CRN model, the analyses can be simplified depending on the interest
of the author. For instance, some authors considered inter-network interference to
be negligible in the overlay CRN model. With such an assumption, the analyses
become even more simplified.

9.5 Summary of the Chapter

The tool of SG is a very useful tool for interference management and control in
any wireless network and its adoption for the CRN continues to receive serious
attention. This is because the tool of SG has the ability to capture the locations of
users in more practical terms, unlike the grid-based model. Despite the existence of
various challenges when modelling interference using SG, new results are showing
that tractable and accurate solutions can be obtained when channel parameters
are carefully selected. It is believed that SG-based interference models can be
significant towards effective and efficient resource allocation process in the CRN.
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Chapter 10
Deep Learning Opportunities for
Resource Management in Cognitive
Radio Networks

10.1 Introducing Machine and Deep Learning into Cognitive
Radio Networks

Modern cognitive radio networks (CRN) is challenging traditional wireless
networking paradigms by introducing learning and reasoning concepts, which
are firmly stemmed into artificial intelligence (AI), in order to foster spectrum
(resource) management [1]. This new space has allowed a plethora of potential
applications such as cognitive wireless backbones and cognitive machine-to-
machine devices to spatially and/or temporally reuse the wireless spectrum.
Consequently, the CRN has been advocated as one of the most prominent
technologies for contemporary spectrum management in modern wireless
communications [2].

As already established, the CRN uses the notion of dynamic spectrum access
(DSA), through opportunistic radio resource allocation (RA), to describe how to
manage and optimise the utilisation of the limited spectrum resources in meeting
the demands of unlicensed devices [3]. Overarching results in RA for the CRN have
been published and have demonstrated higher sum-rate, as well as interesting trade-
off in terms of delay-energy and throughput. However, with the acceleration towards
beyond fifth-generation (5G) networks, where the internet-of-things (IoT) will be
the primary deployment strategy, the delay-energy and throughput trade-off are no
longer the only performance objectives to be achieved [4].

Furthermore, as mobile and wireless communication networks undergo a change
in landscape, the signs are already discernible that spectrum scarcity will no
longer be the only bottleneck to the advancement of wireless technology. With
the emergence of compelling applications such as the IoT and its variants, such
as the cognitive IoT (CIoT) and the cognitive internet of people, process, data
and things (CIoPPD&T) [5], the spectrum scarcity problem will be paralleled with
and increasing need for computational resources. These compelling applications
will revolutionise wireless network operations by imposing many new challenges,
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including advanced channel modelling, low-latency requirement in large-scale
hyper-dense connectivity, and much more.

As a result, the optimisation of wireless networks using AI strategies has become
topical among researchers and more wireless networking solutions are being
proposed to address these challenges. The success of deep learning (DL) in various
fields, particularly in computational science, has recently stimulated increasing
interest in applying it to address those challenges of modern communications. The
DL, also known as deep neural learning, is a subset of machine learning (ML). Both
DL and ML are AI functions with the goal of building systems that use intelligence
to solve complex tasks [6].

Applications of DL in mobile and wireless networking come in two different
forms; the architectural design and the algorithmic design. The architectural design
breaks the classical model-based block design rule of wireless communications into
one end-to-end communication system, while the algorithmic design manifests in
a series of typical evolutionary techniques conceived for 5G networks and beyond.
These evolutionary algorithms used in designing autonomous systems capable of
solving complex problems are a goal that has been dreamed for decades and also
the goal of the entire AI research community.

Evolutionary algorithms, more precisely deep architecture (that is, DL and deep
reinforcement learning (DRL)) are bridging the digital and the physical divide
by leveraging IoT and cyber-physical systems and striving towards ever more
automation. However, when designing systems to make autonomous decisions
in dynamic and distributed CRN, one requires quite exceptional computational
resources to deal with the resulting volume of data that needs to be gathered and
analysed [7]. This requires thorough and in-depth investigations into the essentials
and intricacies of spectrum resource management and computational superiority.
Thus, the combination of CRN, mobile edge computing, advanced predictive and
prescriptive analytics, and AI have become of so much importance in achieving
dynamic RA in modern wireless networks. This is certainly the most prominent
reason for classifying the CRN among the top IoT evolutional technologies in recent
times [8].

As modern technologies evolve, investigating the principles underlying the
design and implementation of robust and pervasive networked computing systems
has become the specific goal of most future mobile and wireless networks [9]. As a
result of this new communication ecosystem landscape, current and future research
on mobile and wireless communications has become an inter-disciplinary field. This
field is shaped by different but interacting dimensions, and links the technological
perspective closely to the social, economic and cognitive sciences.

Furthermore, what drives most current research activities in this resulting inter-
disciplinary field is how to build reliable local algorithms based on local knowledge
that can derive globally-emergent system characteristics such as reliability, avail-
ability, efficient resource utilisation, quality assurance, etc. The overall objective of
this chapter is to discuss how the application of AI techniques through model-based
DL can help in constructing predictive models that are able to explain the behaviour
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of future resource characteristics using the underlying physical process of mobile
and wireless network dynamics, particularly for CRN applications.

In all, the techniques discussed in this chapter can be thought of as a hierarchy
of concepts, that is, using simple concepts to build more complex concepts by
structurally putting simple concepts in a hierarchical form, making up what is
referred to as the deep architecture. Deep architecture are systems composed of
multiple levels of non-linear operations, such as neural networks (NN), with many
hidden layers [10]. The deep structure of concepts arranged in a hierarchical form
can be thought of as the reason for referring to the field as DL.

10.2 Understanding Machine Learning and Deep Learning

Several ML techniques have progressed outstandingly since the proposition of the
TuringMachine by Alan Turing. To date, ML is the most common AI technique used
for processing Big Data using self-adaptive algorithms that get better analysis and
patterns with experience or with new added data [11]. While ML algorithms build
their analysis with data in a linear way, DL has become more influential because
of its use of a hierarchical level of artificial neural networks (ANNs) to carry out
its processes. The hierarchical function of DL systems enables machines to process
input data comprised of features having a non-linear approach to deliver results in
the form of predictions, as illustrated in Fig. 10.1.

Each ANN in Fig. 10.1 consists of layers of simple computational nodes that
work together to munch through data and deliver an output. The input data, which
encompass a lot of things such as numbers, words, images, etc. are fed into the ML
algorithms which use statistics to compute their results. The first layer of the ANN

Fig. 10.1 Comparison between deep learning and machine learning
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processes a raw data input and passes it on to the next layer as output. The next layer
processes the previous layer’s information by including additional information such
as the weights and biases. This process continues across all levels of the ANN until
the best output is determined. The main difference between ML and DL is that ML
separates feature selection and extraction from classification, while DL performs
both feature extraction and classification in a single neural network (NN) using
end-to-end learning.

10.3 Incorporating Deep Learning in Wireless Networks

Traditional wireless transmission relies on accurate mathematical models of the
wireless channels to design channel estimation algorithms or channel feedback
schemes. However, DL usually does not rely on such mathematical models for its
tasks, and is particularly beneficial in model-deficit and algorithmic-deficit prob-
lems. Model and algorithmic deficiency entail the absence of and/or insufficiency in
accurate and well-established mathematical models and algorithms needed to help
solve a particular problem [12].

In DL, logical formulas written in temporal logic can be used for training the
weights of a feed-forward-feedback network using the structure shown at the bottom
of Fig. 10.1. A linear transformation projects the input data into a space (which acts
as an intermediate layer) where it becomes linearly separable. This intermediate
layer is referred to as a hidden layer and the premise of DL is that there are
substantial benefits to using many hidden layers. The number of hidden layers is
influenced by how complicated the input distribution is. The more complicated
the input distribution, the more the number of hidden layers required. Thus, a
hierarchical function of a feed-forward-feedback NN depends on the size of the
problem to be solved. This also influences the computational capacity the network
will require to model it.

As traditional wireless transmission tends to design each module of the commu-
nication system separately using mathematical derivations, DL usually train all the
parameters of the deep neural network (DNN) as a whole. For example, in order to
have perfect channel knowledge to provide enough insights for the understanding of
the system, channel estimation has to be included in the expressions of the training
algorithm. In this way, the achievable rate can be obtained by accounting for the
bandwidth and the time- and frequency-spacing used by the network.

10.4 Training a Deep Learning Model

The DL models use NNs to learn a mapping function from inputs to outputs and
accuracy is achieved by updating the weights of the NN in response to the errors that
the model makes during training. Updates are then made by adjusting the weights
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in order to continually reduce the errors until an acceptable model is achieved. This
process is the most challenging part of using DL algorithms and is also the most
time consuming. An NN can be defined using the function f : RN → RL, where
N is the size of input vector x and L is the size of the output vector f (x) such that,
in matrix notation, f (x) is defined as [13];

f (x) = �(W(x) + b), (10.1)

where �(x) = 1
1+e−x is the activation function, W denotes the weight matrix, b

represents the bias variable without which the given layer will not produce an output
that differs from zero in the next layer. The activation function can be viewed as a
logistic regression classifier where the input is first transformed using a learnt non-
linear transformation �, as shown in Eq. (10.1) [14]. Typical choices of activation
functions include the hyperbolic tangent f (x) = tanh(x) = ex−e−x

ex+e−x , the rectified

linear unit (ReLU) f (x) = f (x), or the Boltzmann softmax f (x) = e−x∑K
j=1 e−x

.

For most applications in wireless communications, the parametric ReLU, that is,
max(·, 0) is used as the hidden layer activation function to learn the appropriate
value of the first argument, as shown in Fig. 10.2.

In the example application (Fig. 10.2), the activation function of the output layer
is usually the Boltzmann Softmax in most wireless communications applications.
The Softmax function is typically used to classify outputs into multiple categories,
such as different transmission powers arranged in ascending order. In order to train

Fig. 10.2 A normal feed-forward multi-layer perceptron
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a multi-layer perceptron (MLP), the set of parameters to learn is the setw = {W, b},
while the forward propagation is defined as follows:

h1 = �(w1 ∗ x);
h2 = �(w2 ∗ h1);
h3 = �(w3 ∗ h2);
y = �(w4 ∗ h3),

(10.2)

where h1 denotes the index of the output of the first hidden layer, w1 represents the
weight index of the weights of the first hidden layer, (· ∗ ·) denotes a convolution
operation, and y is the output. Obtaining the gradients ∂L/∂w can be achieved
through a backward propagation algorithm, which is a special case of the chain-
rule of derivation given as follows:

L(w) = w1 − α
∂L(w)

∂w1
w2 − α

∂L(w)

∂w2
w3 − α

∂L(w)

∂w3
w4 − α

∂L(w)

∂w4
, (10.3)

where the term α is the step size or the learning rate. The loss function L(w) is the
measure of the difference between the output y and the actual ground y∗. Therefore,
the training objective is based on obtaining the best weights w that minimises the L
function. The parameters of the model are learned using stochastic gradient descent
(SGD) with mini-batches, such that the gradient of the L function is computed over
the weight of the last hidden layer, and the weights are updated as follows:

w4 = w4 − α
∂L(w)

∂w4
, (10.4)

which repeats until the gradient descent eventually results to a set w that minimises
L. Using this computational technique, DL has provided remarkable capabilities
and advancements in many areas such as pattern recognition, image processing,
natural language processing, etc.

10.5 Application of Deep Learning in SpectrumManagement

The application of DL strategies in wireless communications require features with
specific characteristics in order for them to function properly. In as much as the
DL strategies are predominantly data driven, in wireless networking problems, the
data-driven approaches do not replace but rather complement traditional design
techniques. Thus, the need for signal processing techniques, such as mathematical
programming and nature-inspired techniques, whose objective is to prepare proper
input dataset, compatible with ML algorithm requirements, will always be there.
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Even though there is an explosive proliferation of DL applications in wire-
less communications, by contrast, the application of DL strategies in spectrum
management is not straight-forward, except for spectrum sensing. Although DL
strategies enable for the creation of machines that have high accuracy in specific
tasks, they are still limited in making certain decisions. They are relatively weak in
problems beyond classification and dimensionality reduction, and this has limited
their applicability in the wireless network economics involved in spectrum access.

Spectrum sensing algorithms for the orthogonal frequency division multiplexing
(OFDM) signal based on DL and covariance matrix graphs were presented in [15],
where the outstanding capability of DL in image processing was exploited and
OFDM signals were analysed using the structural characteristics of the covariance
matrix. A stacked auto-encoder (SAE) was also applied on time domain signals
in spectrum sensing, with the input dataset consisting of time domain signals.
With conventional OFDM suffering from issues of noise uncertainty, time delay
and carrier frequency offsets, the framework developed was to help address those
specific challenges of the OFDM-based networks.

Further, a blind spectrum sensing method based on DL was studied in [16] to
help improve spectrum sensing in low signal-to-noise ratio (SNR) situations where
prior information of the licensed user was not available. In that application, three
kinds of NNs were used together; convolutional NNs, long short-term memory
(LSTM) NNs and fully connected NNs. This resulted in improved performance
compared to the traditional energy detector, especially in low SNR regimes. The
effect of different LSTMmemory layers was also analysed and an exploration of the
improved performance by the DL-based detector was carried out. The motivation for
using several LSTM layers was to establish a more efficient model of the probability
distribution of the observed sequence of hidden Markov models, extract the timing
features of the signals, and to distinguish the signal and noise from the timing
regularity of the input data.

A spectrum occupancy reconstruction technique for missing spectrum data impu-
tation in collaborative spectrum sensing was studied in [17], where the objective was
to reconstruct an incomplete spectrum sensing data matrix. Represented as a plenary
grid on a Markov random field (MRF), the problem was formulated as a magnetic
excitation state recovery problem, and the SGD method was applied to solve the
matrix factorisation. The learned statistics interfaced onto sparse approximation
on the physical layer using techniques such as the mean squared error (MSE)
provided proof that the sparse approximation performs better than singular value
decomposition techniques. The above-mentioned works are some of the recent
works that have introduced DL into spectrum management in the CRN.

10.6 Deep Reinforcement Learning

Since spectrum access is a goal-directed phenomenon and DL algorithms cannot
solve them alone, deep reinforcement learning (DRL) techniques are usually
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exploited to extract rich features from the CRN environment, and to enable/achieve
the required level of intelligence. The key idea of DRL is to use deep neural
networks (DNNs) to represent Q-networks, and to train this Q-network to predict
future reward.

10.6.1 Training the Deep Reinforcement Learning Model

A DRL model is trained using a Q-learning algorithm whose task is to interact with
both the environment and the model. For this reason, the algorithm that runs in a
DRL model is known as the DRL agent [18]. The agent may arrive at different
environmental scenarios known as states s ∈ S by performing actions a ∈ A,
where S andA are the state and action spaces, respectively. Actions lead to rewards
r ∈ R which could be positive or negative. Each state st within the environment is a
consequence of a previous action at , which in turn results in the next state st+1.

Storing all the information, however, becomes infeasible and this is resolved by
assuming that the sequence of states follow a Markov property. This means that
each state depends solely on the previous state and the transition from that state
to the current state. This intuition is the one behind Markov decision processes
(MDPs) and for the purpose of decision-making in different transmission modes,
channel transition probabilities are described using MDPs. If the expected reward
at each action at time step t is known, this would essentially be like a cheat sheet
for the agent, since the agent would know exactly which action to take to eventually
obtain the maximum reward [19]. This total reward is also called the Q-value and is
formalised as follows:

Q(s, a) = r(s, a) + β max
a∈AQ(st+1, a), (10.5)

where the term 0 < β < 1 is the discount factor that controls the contribution of
future rewards, such that adjusting the value of β either diminishes or increases the
contribution of future rewards. An example of a DRL formulation using a DNN is
shown in Fig. 10.3.

In Fig. 10.3, the elements of the state set are the channel gains gt and the current
reward Rt . A top-level Q-value function learns a policy over the defined goals and
prescribes actions to satisfy the given goals. This structure allows for a flexible
specification of goals and provides an efficient space for exploration in complicated
environments such as the CRN.

The Q-value obtained from being at the state s and performing an action a is
the immediate reward r(s, a) plus the highest Q-value possible from the next state
st+1. Since Eq. (10.5) is a recursive equation, assumptions on all Q-values are made
in the beginning and with experience, the equation converges to the optimal policy.
The update equation is implemented as follows:
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Fig. 10.3 Illustration of service classification using a DNN

Q(st , at ) ← Q(st , at ) + α

[
Rt+1 + β max

a∈AQ(st+1, a) − Q(st , at )

]
, (10.6)

where 0 < α < 1 is the learning rate, which determines to what extent newly
acquired information overrides the old one. The estimated Q-function for a single
state-action pair is subsequently updated by following a gradient descent step to
minimise the loss. This results in the update as follows:

Qt+1(s, a) = Qt(s, a) − α
∂L(s, a)

∂Qt(s, a)
, (10.7)

where α > 0 is the learning rate. After gradient evaluation and emerging terms,
Eq. (10.7) becomes

Qt+1(s, a) = (1 − α)Qt(s, a) + α

[
1T c(s, a) + β min

a∈AQt(s, a)

]
, (10.8)

where β > 0 is the discount factor. Equation (10.8) defines a minimisation of the
cost function c(·), as exemplified by the mina∈A in the last term. However, an
equivalent maximisation problem is defined as follows:

Qt+1(s, a) = (1 − α)Qt(s, a) + α

[
1T r(s, a) + β max

a∈AQt(s, a)

]
, (10.9)

where the a is the object of choice in the strategy interaction process, such that a SU
that has chosen a receives an instantaneous pay-off G(a, v) = c(s, a) = r(s, a),
where v is the choice action for a neighbouring SU, and G is the game matrix.
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10.6.2 Application of Deep Reinforcement Learning in
Spectrum Management

In spectrum management, DRL offers a multitude of approaches from strategic
interaction processes to the multi-armed bandit (MAB) schemes. Strategic inter-
action processes are game theoretic techniques, commonly used in economics, for
modelling interactions between two or more players in situations involving a set of
rules and outcomes [20]. The MAB scheme is a huge problem space with many
dimensions along which the models can be made more expressive and closer to
reality. The MAB scheme is a multi-agent reinforcement learning scheme from
probability theory that falls into the broad category of stochastic scheduling [21].

In the MAB scheme, a fixed limited set of resources must be allocated between
competing (alternative) choices in a way that maximises their expected gain. The
objective of the MAB problem is to search for an allocation of channels for all users
that maximises the expected sum throughput. The problem is usually formulated as
a combinatorial MAB, in which each arm corresponds to a matching of the users to
channels. However, if the properties related to each choice are only partially known
at the time of allocation, and may become better understood as time passes, the
transition probabilities are described using partially observable MDPs (POMDPs).

The strategy interaction process combines graph theory and game theory into
the reinforcement learning formulation, similar to the one proposed in [18], where
a DRL strategy was used to maximise the system utility in terms of improving
system throughput and optimising energy efficiency in cognitive relay networks.
An apprenticeship DRL scheme for energy-efficient cross-layer routing was studied
in [22], where dynamic adjustment rating was employed to compress the huge
action space to guarantee energy efficiency. Dynamic adjustment rating was used to
efficiently regulate the transmission power using a multi-level transition mechanism.
This technique confirmed that dynamic adjustment rating achieves higher energy
efficiency, reduced latencies and achieved better packet delivery ratios.

An online learning policy for distributed CRN that takes into account the channel
availability criteria, together with the quality metric related to inter-cell interference,
was designed as a multi-user Markov MAB problem in [23]. In the work, the
SUs selfishly collect a priori unknown rewards by selecting a channel without
any information exchange between them. Using a relentless QoS upper-bound
confidence, the SUs were able to select the best channel to transmit. In [24], a blind
spectrum selection problem for SUs with poor sensing abilities was studied based
on a MAB framework for medium access in decentralised CRN. Since the channel
statistics were unknown a priori, taking hand-off delays as a cost, the problem was
formulated using POMDPs.

A stochastic multiplayer MAB problem was studied in [25] where several players
pull arms simultaneously and collisions occur if one of them is pulled by several
players at the same stage. A decentralised algorithm that contradicts the existing
lower bound for that problem was found to achieve the same performance as
the centralised one. This was made possible by hacking the standard model and
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constructing a communication protocol between players that deliberately enforces
collisions, allowing them to share their information at a negligible cost. This
motivated the introduction of a more appropriate dynamic setting without sensing,
where similar communication protocols were no longer possible.

Despite the great promises of MAB schemes, the striking drawback of these
schemes is that the number of arms grow super-exponentially as the permutation
between channels and SUs. In this case, a matching-learning algorithm with
polynomial storage and polynomial computation per decision period for this
problem is required. To circumvent this issue, DRL algorithms that develop a
real-time adaptive policy for computational RA of multiple users was proposed
by Google DeepMind [26]. This was a pioneering contribution in DRL which
successfully combined convolutional neural networks (CNNs) and Q-learning to
train reinforcement learning agents with just a few inputs. The newly-formed deep
Q-networks (DQNs) are hierarchical structures that are capable of storing policies
that previously resulted in better rewards, and are thus perfect for networks that
require long-term planning and decision-making processes such as the CRN.

10.7 Hierarchical Deep Architectures for Cognitive Radio
Networks Applications

Hierarchical structures combine DL and reinforcement learning into a hierarchy
of functions with the objective of attaining the knowledge to be used in learning
hierarchical decomposition of spatial environments. In the context of deep archi-
tecture, DQNs and double deep Q-networks (DDQNs) are a step ahead of all AI
strategies in terms of achieving better decision-making. Their capability to store
information for future replay makes them suitable for long-term planning. Their
architecture is known as the actor-critic architecture since the learning is always
on-policy, meaning that the critic must learn about and critique whatever policy
is followed by the actor [27]. In their policy structure, the actor is used to select
actions, while the critic, which criticises the actions made by the actor, gives the
estimated value function.

10.7.1 General Model of a Hierarchical Deep Architecture

Since the actor-critic terminology is a high-level concept, a more specific ter-
minology borrowed from control systems is being used instead. With this, the
actor is referred to as the controller while the critic is called the meta-controller.
A low-level abstraction of a hierarchical deep architecture that uses a two-stage
hierarchy consisting of two temporal abstractions, the controller and meta-controller
is illustrated in Fig. 10.4.
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Fig. 10.4 A hierarchical deep architecture consisting of a two-stage hierarchy, the controller and
the meta-controller

Fig. 10.5 A high-level abstraction of a hierarchical deep model employing a model-based
reinforcement learning formulation

Separate instructions are used in both the controller and the meta-controller. The
meta-controller looks at the raw states st ∈ S, where S represents the set of all
possible states. It then produces a policy θ over goals by estimating the action-
value function Q2(st , gt ; θ2) to maximise the future rewards. The meta-controller
executes plans to sequence the operations of the system, which corresponds to
asynchronous sensor data interrupts in real time, and issues actuator commands to a
real-time controller module. In intelligent control, the meta-controller receives the
state st and chooses a goal gt ∈ G, whereG denotes the set of possible current goals.
Furthermore, the software structure of the actuator translates the set of possible
current goals into actions, as seen later in Fig. 10.5.

The controller takes in the current state st and the current goal gt . It then selects
an action at ∈ A, where A is the set of all possible actions. Further, it produces
a policy over actions by estimating the action-value function Q1(st , at ; θ1, gt ) to
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solve the predicted goal by maximising the expected future reward. If the goal
is reached, the controller provides a positive reward and decides when to end an
episode. This means that the goal can remain in place for the next few time steps
t , either until it is achieved or a terminal state is reached. It does this by taking
in states st . The decision module is responsible for evaluating whether a goal has
been reached or not, and provides an appropriate reward rt (g) to the controller. The
agent receives sensory observations and produces actions at . The meta-controller
then chooses a new goal g and the entire process is repeated [28].

10.7.2 Application of Hierarchical Deep Reinforcement
Learning in Cognitive Radio Networks and Edge
Computing

With the advent of edge computing, the integration of the CRNwith edge computing
comes with the requirement to simultaneously handle spectrum management and
processing requirements. This integration has also been met with the relentless push
to make network operations more intelligent in order to fully unleash the potentials
of wireless Big Data, which entailed pushing the frontiers of AI to the network
edge. In order to present the CRN without any loss of generality, a CRN where
SUs communicate via a base station (BS) over a time-varying fading channel in the
presence of PUs is assumed.

The DRL agent, which resides within each device, subsumes the resource
management for the entire CRN and is assumed to have knowledge of the coding
scheme employed. Given a set of signals, we seek a framework that leads to
the best representation for the transition function from the current state to the
reward to the next state. In a time-varying channel context for CRN under strict
sparsity constraints, the prerequisite for learning the wireless channel is its sparsity
representation. The combination of data analytics with ML techniques promises to
be a possible pathway towards achieving both QoS and energy efficiency objectives,
and is an essential step towards managing the high level of heterogeneity that comes
with beyond 5G networks. By obtaining tentative operating points for network
equipment, drive towards learning and operating over different levels of temporal
abstraction is a key to solving some of the CRN challenges. A detailed DLmodelling
approach which characterises the underlying process as a hierarchical architecture
is illustrated in Fig. 10.5.

Figure 10.5 shows a high-level orchestration of a hierarchical deep architecture
that integrates hierarchical functions of data analytics, reinforcement learning
and model-based reinforcement learning. This model-based, data-driven, trans-
fer learning-based approach follows the same approach described in Fig. 10.4.
Assuming that the Poisson point process is sufficiently accurate to account for the
distribution of cellular BSs, the focus is then shifted from the impact of the spatial
distribution of cellular BSs to the power consumption model of a single BS. In
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this case, the whole RA problem can be divided into two stages; the opportunistic
spectrum access which can be solved using traditional optimisation methods, and
opportunistic computing which can be solved using DL techniques.

In the opportunistic computing stage, the BS processor can be viewed as a
hybrid switching system whose task is to search and find its optimal operating
state using control actions that are derived to drive a DL model. Here, a single
edge processing node (BS) is shown where opportunistic spectrum access and
opportunistic computing take place. The transitions between the BS operating
modes are either triggered by events or by the passage of time. For example, if the
transmission queue is empty, the processor is idle and saves power. However, when
events arrive, the processor is switched to active mode with little time overhead. If
the processor stays idle beyond some threshold duration, it is placed in the sleep
mode for a specified period.

The hierarchical structure so far described is able to handle complex discrete
stochastic decision processes with stochastic transitions in spectrum management
for the CRN. In [13] the DL model of choice was a stacked auto-encoder (SAE).
However, the choice of the DL model to use is application-dependent. The works
that have attempted to integrate edge computing with the CRN, such as in [29], are
still very few and far between, making it a very promising open research area.

10.7.3 Application of Hierarchical Deep Reinforcement
Learning in Cognitive Radio Networks Energy
Management

The combination of signal processing techniques with Big Data streams is one of
the key features in 5G mobile networks. Furthermore, combining deep architecture,
signal processing with Big Data increases the intelligence and reliability of decision-
making and, consequently, unleashes the full potential of beyond 5G technologies
such as the CRN and the IoT. This is similar to human societies, where there is a
collective intelligence that belongs to everybody (in this case, device intelligence),
and individual intelligence that belongs to the cloud (in this case, cloud intelligence).
In order to implement this kind of intelligence, we need to state that each network
device has a specific intelligence. In this way, every network device can access the
cloud intelligence by connecting to it.

Constrained energy management solutions are made possible by making deep
architecture compatible for future wireless communication networks which dis-
tribute the intelligence throughout the whole network. Since the intelligence does
not reside in one place, but instead, it is distributed across network devices, it
is interesting to observe that this approach resembles the way in which human
knowledge is developed. The distributed RA technique is illustrated in Fig. 10.6.

Figure 10.6 highlights the use of a deep architecture that combines opportunistic
spectrum access with opportunistic computation. Here, the allocation of computa-
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Fig. 10.6 An illustration of the implementation of deep learning in multi-user spectrum manage-
ment for CRN applications

tional resources uses a DRL agent in mobile edge-computing networks that operates
to support low-latency and energy-efficient communications. Using this technique,
energy-efficient operation of cognitive radio devices and network infrastructure can
be addressed together with the delay violation probability. In such an application,
the predictor has to be designed based on traffic models that are as realistic as
possible. However, since network traffic prediction is a complex non-linear system
and it cannot fully reflect the variety of regulations by using a single model with
higher prediction precision, the user behaviour is used to describe artificial traffic
generators using chaotic maps.

Chaotic maps employ Poisson distribution and exponential distribution in the
CRN. The artificial traffic generator feeds into a recurrent generalised Q-learning
algorithm, which inherits the data and predicts the future behaviour of CRN traffic.
As can be seen in Fig. 10.6, there are three modules required for this architecture.

1. Distributed Dynamic Spectrum Access: Data acquisition has recently become
a critical issue and is currently a major bottleneck in RA for the CRN. As the
IoT continues to steer operations and ML becomes widely used in wireless
networking, designers are constantly confronted with the need for enough data
to drive IoT applications. The radio environment in the CRN context consists of
the wireless channel, the transmission buffer capacity, and the radio signal level
at various points in the physical space as a function of time and frequency. The
cognitive radio device collects this information and uses it as the state s ∈ S
of the CRN. The strength of accurate characterisation of the underlying process,
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followed by the application of ML processes such as data mining, is the foun-
dation of the overall decision-making objective. A data-driven proxy modelling
approach and statistical learning for obtaining spectrum occupancy, like the one
reported in [17], is a good starting point for the data acquisition process. In line
with the developments in Big Data processing techniques, technologies to collect
them from numerous distributed sources have also enhanced significantly. From
distributed dynamic spectrum access systems such as sensor networks featured
by software defined radio standard software, recurrent generalised Q-learning
are used to extract useful information for analysing network behaviours that are
relevant for spectrum management purposes.

2. Deep Multi-User Reinforcement Learning: The agent is defined as the algo-
rithm running within the infrastructure, that is, a DRL algorithm running in the
user device or the BS is called a DRL agent. The agent explores new behaviour
that could help it to solve tasks posed by the environment. This process is
problem-specific, but in order to satisfy curiosity, only the processes of data pre-
processing and classification are discussed.

• Data Pre-processing: Data pre-processing is a data mining technique that
transforms raw data into an understandable or usable format. All data need
to be pre-processed before it can be sent to a model. The data pro-processing
in this context is done through importing libraries using a technique called
experience replay. Experience replay is a DQN technique where historical
data stored in memory buffers of distributed systems for future replay is
sampled for training the system [30]. However, the sampling of the data from
the memory D for correct replay is the one that poses a number of specific
resource management related challenges. This is because the reliability of data
streams plays a key role in how much history can be stored in the memory
buffers. It is for this reason that the pre-processing and classification are
combined to form the DL block to perform deep multi-user reinforcement
learning in Fig. 10.6.

• Classification: Classification is a supervised learning approach in which the
algorithm learns from the input data and then uses the learned information to
classify new observations. Through service class classification and analysis,
services are classified into subsets of similar resources and performance
requirements. Common classifiers that are also used in DL include logistic
regression, naive Bayes, nearest neighbour and support vector machines, to
name a few. In this application, and based on the pre-processed data, the
objective of the classification task is to divide tasks into classes with similar
resource requirements and performance characteristics in order to allocate
available resources efficiently. The choice of classifier affects the goal of RA
strategy, but there are versatile techniques such as the auto-encoder (AE) that
can perform well for this application. In this case, the input to the AE can be a
replay that has the decision based on the QoS requirements and the achievable
QoS. The output of this task contains the actions at ∈ A that need to be
executed and computed via a policy network {θ}, as seen in Fig. 10.3.
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3. Algorithm Design Principles: The design principles involve the final decision
that needs to be executed by the algorithm, and this is usually the RA step that
is a little difficult to achieve in a dynamic environment. At each time step, the
DQN follows algorithm design principles that are defined by a cost function
J (θ ′|θ), policy π(s, a), and reward R(γ ) = log2(1 + γ ), which the software
defined radio will update after every episode (γ represents the SINR). At each
instant, the software defined radio uses Open-Flow to access information about
the queue lengths, and depending on the policy of its administrative domain, this
information is passed onto the server to launch computational equipment. Based
on the queue lengths and the incoming traffic load, R(γ ) is maximised while the
cost J (θ ′|θ) is minimised. Then, the global solution created from this state of
affairs can be stored in memory for future replay. In terms of the combination
of opportunistic access and opportunistic computation, the decision-making will
have to consider the cost, policy, and rewards which will be updated by the
software defined radio from time to time.

So far, this technique has been applied to robotic control [31]. More sophisticated
algorithms that utilise DQNs for constrained energy management in CRN can be
developed using deep hierarchical DRL with prioritised experience replay. Future
communication systems, which will be software defined radio-based and controlled
by ML algorithms, can potentially benefit by managing communications system
resources by monitoring performance functions with common dependent variables
that result in conflicting goals using this technique. Since the uncertainty in the
performance of thousands of different possible combinations of radio parameters
makes the trade-off between exploration and exploitation in reinforcement learning
much more challenging, this technique should make it possible for the system to
spend as little time as possible on exploring actions, and whenever it explores an
action, it should perform at acceptable levels, most of the time.

10.8 Summary of the Chapter

This chapter has explored and investigated a few application examples of deep
architecture in solving RA problems in the CRN. The DL strategies discussed
have found applications and achieved great results in the field of spectrum sensing,
where the objective is a separation of one hypothesis from another. However, due
to the involvement of different contextual hierarchies, DL algorithms still have
limitations in achieving the best improvements in problems involving spectrum
access, where the environmental states, consisting of the wireless channel, users, and
the transmission buffer queues in both the user and the BS, need to be considered
simultaneously. As discussed in the chapter, some apparent shortcomings in DL
approaches are being addressed by the DRL approaches, with several key areas of
application still requiring further investigations.
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Chapter 11
The Role of Cognitive Radio Networks in
Fifth-Generation Communication and
Beyond

11.1 Next-Generation Wireless Communication Technologies

The newly-evolving wireless communication technologies, of which the cognitive
radio networks (CRN) is a part, are generally classified as next-generation (xG)
wireless communication technologies. The fifth-generation (5G) network is one
prominent example of these new xG technologies. Beyond 5G, there are several
other emerging xG technologies such as the internet-of-things (IoT) networks,
the next-generation wireless sensor networks (xWSN), the device-to-device
(D2D) communication networks (such as machine-2-machine communications and
vehicle-2-vehicle communications) and many others. Most of these xG technologies
are already reaching advance stages in their development and eventual deployment
[1].

As the xG communication technologies develop and evolve, they face certain
generic wireless communication challenges which they must strive to overcome.
Some of these challenges are in the aspects of spectrum availability to drive the
xG promises and possibilities [2], their ability to achieve or meet the high quality-
of-service (QoS) requirements for most xG technologies [3], network reliability and
robustness against network failures [4] and some others. There are ongoing works to
address most of these challenges. Several telecommunication tools, such as the tools
of optimisation, queueing theory and network restoration, are being investigated and
employed to address the various daunting challenges of xG wireless communication
technologies.

As more and more xG technologies evolve, an interesting aspect of these
technologies is that they will influence one another in many significant ways.
Certainly, the CRN, being one of the xG technologies already reaching advance
stages in its development, will have significant impact and influence on other xG
wireless communication networks. Some of the important roles that the CRN is
playing and will continue to play as it interacts with other xG technologies are
discussed in this chapter.
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11.2 The Role of Cognitive Radio Networks in
Fifth-Generation Communication

The 5G communication is now being projected as the new standard of com-
munication for emerging xG wireless communication networks. This standard of
communication called 5G has important improvements over most other currently-
applied standards of communication such as the third-generation (3G) standard,
the long-term evolution (LTE) and LTE-Advanced standards, the WiMax standard,
among others. The important improvements of 5G, and its many promises, have
been shown to be significant enough to describe 5G as a generational shift in
communication.

At the initial stages in the development of 5G, the definition and description on
some of the minutest details of the 5G network were conflicting and sometimes
compromising. However, as more and more research works on the subject are being
carried out, and debates and deliberations are continuing, there has been a lot more
progress in the harmonisation of thoughts, purpose, expectations and designs for
the 5G networks. As advanced research works on 5G continues, experimental or
trial deployments of 5G are now being concluded and full deployment of 5G is now
taking place. Already, a large part of major cities in most technologically-advanced
countries of the world currently use the 5G network.

The promises and expectations of 5G network are quite impressive. The 5G
network is expected to achieve communication speeds of about 1 gigabyte per
second and latency of less than 1ms. Furthermore, 5G networks are expected
to provide communication to cover almost all parts of the world and must have
extremely high reliability. These promises and expectations are indeed worthy of
making 5G to be considered and described as a generational shift in wireless
communication [5]. Because of these massive promises of 5G, once it is fully
operational, many 5G-based applications will emerge that will have very high social
and economic value and far-reaching impact on all aspects of our lives [6]. More so,
the 5G network will be one of the very important tools to help drive the realisation
of the much-talked-about and highly anticipated hyper-connected world [7].

To help fulfil and realise its promises and expectations, without doubt, 5G
networks will most likely require large bandwidths and, by inference, huge spectrum
frequency bands for their operations. Unfortunately, as already mentioned over
and over in almost all the Chapters of this book, the spectrum is a limited, non-
ubiquitousness and highly-competitive communication resource and it is already
currently scarce. The scarcity in spectrum availability is one of the potential
limitations to the productivity of the 5G networks [8]. The CRN is being employed
in 5G networks to assist in this regard.

The most significant role that the CRN plays in advancing the course of 5G
networks is in relation to the spectrum. Very clearly, by employing CRN in 5G,
the limitations in spectrum availability for 5G applications can be significantly
overcome [9, 10]. More so, the CRN will help in providing cognitive capabilities
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for the 5G networks which will further help in achieving 5G goals, especially in the
areas of latency, speed and network reliability.

11.3 The Role of Cognitive Radio Networks in
Internet-of-Things Networking

The IoT has gained attention in recent times as the new paradigm of internet
connectivity. As more and more xG communication technologies emerge, the IoT
is also attracting and gaining equal attention and focus as some of these other
xG communication and connectivity technologies [11]. In simple terms, the IoT
is the new internet reality for the immediate and the near future. The IoT makes
it possible to simultaneously and seamlessly interconnect many objects or ‘things’.
The ‘things’ that are interconnected in the IoT could be gadgets, machines, devices,
buildings, structures, etc. These ‘things’ are connected through the internet to
provide and achieve effective and efficient autonomous services, with little or no
participation or intervention of human beings [12].

Fundamentally, the IoT is an offshoot of the internet [13]. To help differentiate
the regular internet from the new IoT, the important difference is the fact that the
term ‘things’ in the IoT has a wider and a more holistic meaning. In traditional
internet considerations, the devices that are connected and used for the inter-
networking are almost always computers. However, in the IoT, the ‘things’ do
not necessarily have to be computers. The ‘things’ in the IoT are all matters
with which it is possible to make connection, and/or such matters between which
the exchange of information and communication can be carried out. Again, the
‘things’ in the IoT can be any uniquely identifiable fixed or mobile communicating
object that is capable of collecting data, relaying information to other objects,
collaboratively processing relayed information, and taking autonomous actions
based on the information acquired or processed [8].

The interconnectivity that is achieved by the ‘things’ or objects in the IoT,
alongside the inculcation of an high-speed software for timely data collection,
processing and result analysis, empowers the IoT to render important and intelligent
services to humans in all works of life. The services that are provided using the IoT
are carried out in manners that are unachievable by the regular internet services and
service providers [14]. Among others, the IoT provides top-of-the-range services in
the areas of communication, connectivity, providing direction, reporting, operations,
providing warnings and carrying out timely interceptions. These services are usually
seamless, and require the barest amount of human participation [15].

As the IoT develops, it is becoming increasingly clear that it will depend on and
work with several other xG technologies, particularly the xWSN, the 5G networks
and the CRN. The CRN will help in the development of smart devices for the IoT,
in providing the much needed spectrum resource to drive the IoT operations and in
optimising resource usage for the IoT. The cognitive capabilities provided through
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the CRN will be instrumental in driving autonomous, real-time and highly sensitive
activities of the IoT.

11.4 The Role of Cognitive Radio Networks in Advanced
Wireless Sensor Networks

For many decades now, the use of sensing devices for a wide range of applications
such as in health monitoring systems, in military operations, in home automations
and in environmental monitoring systems is a well-established fact. In many of
the use cases, the sensing devices are deployed with the capability of wireless
connectivity. This is to enable an inter-networking and coordination of the activities
of all the sensing devices located around the same geographical area. The operations
of such interconnected sensing devices can therefore be expanded far and wide,
even into remote locations. The wireless sensor networks (WSN), which is the inter-
networking of wireless sensing devices, have been widely accepted because of the
benefits of flexibility reliability, scalability and ease of deployment [16]. More so,
the sensing devices in the WSN can easily exchange communication in a tether-less
and ad hoc manner to help share their sensed data with neighbouring devices or
nodes or to relay the results of sensing activities to a particular destination (or sink)
device or node.

As the WSN evolve, advanced or next-generation wireless sensor networks
(xWSN) are being developed to render new applications for addressing several
new and complex communication challenges [17]. The new applications of the
xWSN transcend the traditional use of the WSN. The commonest application of
the regular WSN has been for sensing and tracking ambient conditions, especially
the temperature, pressure, water and seismic levels of specific entities. Usually, the
data collected by the sensing devices in the regular CRN are used for forecasting
and/or monitoring some environmental conditions or natural disasters. The sensing
devices in traditional WSN applications are also embedded into public structures
such as buildings, bridges, roads and towers to help monitor them and to quickly
discover any potential weaknesses or faults in time. While the WSN have been
widely applied, the xWSN have even wider application and are now being deployed
in almost all fields of human endeavour. For instance, in the field of health care,
xWSN are now being used for monitoring the different vital signs of mobile
patients, and are helping with early emergency responses for sudden, undetected or
unplanned experiences.

The growing application of xWSN in virtually all areas of human endeavour will
bring about a multiplication in the number of sensor nodes that will be placed in
almost all locations to help collect data. It is most likely that the number of sensors
that would be required globally for data collections would be very huge. Generally,
the sensor devices or nodes used in the WSN and the xWSN do have certain
limitations or constraints that may impair or impede their performance. Some of
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the limitations of most of the sensor nodes for the WSN and the xWSN are that they
have limited energy capacities, low processing capabilities and short transmission
ranges. These limitations of the sensors and sensor nodes in theWSN and the xWSN
must be well addressed and overcome so as to help expand the functionality and
operability of the WSN and the xWSN [18].

As new models of the xWSN are being developed and deployed, it is very
important to employ improved sensors and sensor nodes that are energy-saving
and highly proficient, and that have wide range of applications and functionality.
The CRN is an important technology that can be incorporated into xWSN to help
improve its operations. By incorporating the CRN into the xWSN a number of the
optimisation approaches and solutions from the resource allocation paradigms of
the CRN would be useful in developing and deploying viable and very robust xWSN
models.

11.5 The Role of Cognitive Radio Networks in Smart Cities

A Smart City is formed by the combination of several smart environments, each
managed by its own system, but with the ability to operate and/or communicate
with other systems. One good example of such a system is smart homes. In
a smart home, the various characteristics in the home are being monitored and
relevant apparatus can be controlled remotely. If there are more than one smart
home in an area, it is possible to network or interconnect the smart devices
within a particular home with other smart home systems. This can then be used
to achieve improved security and/or to form a smart neighbourhood watch system
[19]. The inter-networking of the different systems can be achieved by employing
xG communication technologies such as the 5G, IoT or CRN infrastructure.

It is quite exciting to know that Smart City systems are currently being
established and advanced in different parts and environments of the world. Potential
new smart system applications are being identified, alongside the infrastructure
needs for supporting these future services [20, 21]. To make smart cities work,
it is necessary to develop scalable device frameworks for the implementation of
smart cities. These frameworks should be able to support a huge number of devices
having high volumes of data to be communicated across many systems. Such
communications within those frameworks must also be reliable and seamless. This
is because, the ecosystem of smart cities can only be realised if there are systems
of network infrastructure that can support the interconnection of billions (or maybe
trillions or more!) of devices to provide seamless communication services. More
so, these systems of network infrastructure must be good at transmitting data across
the network at very great speeds with exceptionally low latencies to cater for some
devices that require to execute real-time communications.
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The major new and/or emerging technologies that will form the framework or
base to support smart cities are the xG technologies such as the 5G networks,
xWSN, IoT networks and certainly, the CRN. These xG technologies will play
important roles in the design and implementation of smart cities, and in achieving
an highly-interconnected world. The CRN, being a part of the xG technologies, will
be instrumental in driving the realisation of smart cities. What is clear is that the
new and quickly evolving aspects of smart homes, smart or e-security, smart or e-
banking, smart or e-farming, smart or e-transport, e-health, etc. will all be involved
in the realisation of smart cities. As these new aspects of modern innovative human-
technology experiences are being designed and developed, they will rely heavily
on the successful application and implementation of the CRN and many other xG
wireless communication technologies to help drive their realisation.

11.6 The Role of Cognitive Radio Networks in 6G, 4IR and
Other Emerging Technologies

Apart from the 5G networks, the IoT networks and the xWSN, there are several
other xG technologies that are emerging, are being studied and are being deployed to
drive near-future wireless communications. As it stands, there are now ongoing con-
versations on the six-generation of communication (6G). The 6G communication
technology will operate in the terahertz (THz) band, and will be completely driven
by high-level artificial intelligence operations. In 6G, there will be the proliferation
of autonomous vehicles and carriers (such as the unmanned aerial vehicles), the
use of optical wireless communication, quantum communication, wireless energy
transfer and much more [22].

Furthermore, there is a continuous growth in industry 4.0 or the fourth industrial
revolution (4IR). The 4IR is the ongoing automation-based manufacturing, indus-
trial, infrastructure and/or production ideal for modern times [23]. Just as we have
had various revolutionary leaps in the past in the aspect of industrialisation, the
4IR is the digital revolution leap of industrialisation for the current and immediate
future. Big data, cloud computing, artificial intelligence, robotics and some others
are interesting concepts being employed to drive 4IR.

Even further, nanotechnology applications are on the rise in medicine and health,
agriculture, security and several other walks on human life. New technologies are
being developed for banking, commerce, local and international trades, macroe-
conomics and so on. The developments in big data, cloud computing, artificial
intelligence, robotics and others are being employed to drive new possibilities and
to break new frontiers in the area of medicine and health, transportation, agriculture,
housing, water supply, security, disaster management and much more.

In all of these, the CRN will continue to find relevance and application. This
is because, most of these technologies and innovations will always depend on
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and employ the cognitive capabilities of the CRN, the spectrum and resource
optimisation of the CRN and/or the simple and scalable structure of the CRN in
achieving their goals. This makes the CRN to be a very useful technology in the
pursuit and drive for modern and future wireless communication promises and
possibilities.

11.7 Essentials for Practicable Application of Cognitive
Radio Networks in Next-Generation Communications

As the CRN emerges, it must adapt for it to remain relevant and productive. If the
CRN is to maintain its relevance, applicability and usefulness in helping to drive
emerging xG communication technologies towards achieving their goals, there are
some important points that must be put into consideration. The essential points to
help maintain the usefulness and applicability of the CRN are discussed.

• The CRNmust be seen as a separate technology. While there are indeed a host
of other xG wireless communication technologies being advanced, the CRNmust
be seen as unique in its own way and different from any of the other emerging
technologies. Of course, there are connecting links and well-defined common
denominators, but yet, the CRN must not be confused or interchanged with any
of the other emerging xG wireless networks.

• None of the new and/or emerging technologies can work in isolation. Thus,
the CRN must be viewed from the perspective of being a part of a whole, and not
as a solo or stand-alone technology for accomplishing all the xG communication
demands. From this viewpoint, practical and experimental designs of the CRN
are considered alongside other emerging technological designs.

• There are already some ongoing developmental designs that incorporate the
CRN with one or more of the other emerging technologies. For instance, the
CRN is being designed with the WSN in the new technology being referred to
as the cognitive radio sensor networks (CRSN). In the hybrid technology of the
CRSN, the advantages of the CRN is infused into the WSN to provide better
overall sensor networking and operability. Several other hybrid designs of xG
wireless communication networks are emerging and will continue to emerge.
This is an highly exciting development and must be welcomed with open hands.

• Not all the questions on the CRN or any of the other developing xG
technologies have been fully or completely answered. Hence, advances in and
further research on the CRN and other xG technologies will most likely lead to
newer results, better perspectives, improved workability and a more appealing
overall outlook. This must be anticipated. As more and more questions are
being asked, a lot more probing will be carried out and improvements in design,
experimentation and ultimate implementation will be observed and eventually
realised.
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11.8 Summary of the Chapter

In summary, this Chapter has discussed the relevance and impact of the CRN to
other emerging wireless communication technologies for the immediate and the near
future. Truly, almost all the new and emerging technologies will be influenced in one
way or another by the CRN. Since none of these technologies can work in isolation,
a lot more work must be done to properly define how these technologies must be
designed to collaborate, compensate, complement and consolidate one another for
greater results and higher productivity.
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Chapter 12
Future Opportunities for Cognitive Radio
Networks

12.1 Problems Yet Unsolved in Cognitive Radio Networks

The most recent and/or ongoing developments in the cognitive radio networks
(CRN), especially in the aspects of resource (spectrum and others) utilisation for
improved productivity, have been discussed in this book. It is clear from the models
and analyses of the CRN, as already discussed, that the CRN is indeed a very
viable technology for achieving next-generation (xG) communication demands and
goals [1, 2]. Therefore, ongoing research efforts and endeavours geared towards
improving the CRN are by no means a waste of time/resources or an unproductive
venture. Actually, a lot more work on the CRN still need to be carried out.

While more and more research works on the CRN are being carried out to help
solve the various problems that have been identified and associated with the CRN
(such as the problems with limited resources, interference, etc.), we note that there
are yet a number of challenging problems still berating the CRN [3]. We note
therefore that despite the best efforts of this book to identify and discuss all possible
recent and/or ongoing efforts towards solving the problems of modern CRN, there
are still a number of open-ended problems and challenges that require further
probing and continuous investigations. Some of these problems are mentioned and
discussed in this chapter.

In discussing the open-ended resource-related problems of the CRN, we identify
specific problems that are associated with the use of the various tools and techniques
being employed in solving the numerous RA problems for modern CRN (the tools
and techniques have been discussed in the previous chapters of this book). Other
generic problems that may limit the full realisation of the CRN are also identified
and discussed.
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12.2 Problems Associated with Optimisation in Cognitive
Radio Networks

This book has discussed RA solutions through optimisation in a very comprehensive
manner. Several key aspects of optimisation, as applicable to resource usage
(spectrum and others), have been highlighted and new RA directions and results
have been discussed. However, the topics and areas on RA optimisation for the
CRN, as discussed in this book, are by no means exhaustive. There are still
problematic aspects and research gaps on RA optimisation for the CRN that require
further probing, attention and solutions [4]. We discuss some problematic aspects of
the RA optimisation models and solutions for the CRN.

1. Problem Development
One major challenge with the RA optimisation for the CRN is that, in a
very broad sense, there seems to be a kind of disjointedness in RA problem
development, and in the solution modelling and approaches being employed by
the various researchers to address their RA problem developed for the CRN. In
most cases, even when the RA problems to be investigated seem to be similar,
the objective functions used by the various authors are usually different, the
constraints may also differ, and the decision variables to be employed are almost
certainly different as well. As a result, it becomes very difficult to find a form of
coordination or focal point in the ideas being used to define and describe the RA
problems for the CRN. Since the problem formulations are diverse dissimilar,
it becomes very difficult to properly order the ideas put forth for investigating
solutions for the RA problems in the CRN or to provide any particular standards
for solving them.

2. Problem Oversimplification
Another major challenge with the RA problem formulations and solutions in the
CRN is the challenge of oversimplifying the problems. Many authors, in a bid
to make the RA problems solvable, do neglect some important aspects or factors
of the CRN. As a result of such oversimplification, most RA problems for the
CRN are either unrealistic or impracticable in real-life scenarios. For instance,
the aspect of heterogeneity in the CRN has been ignored by many early works in
the CRN. More recent works on RA modelling and solutions for the CRN, such
as the ones discussed in this books, now incorporate heterogeneity and other
more practical CRN situations, to make the RA problems and solutions more
useful. However, a lot more can still be done in this regard.

3. Problem Generalisation
It is very true that there is still a big challenge with being able to capture, establish
and explain all the concepts and details of the CRN in one single model. Because
of the different architectural designs and broad classifications for the CRN (see
Chap. 2), it is usually very difficult, if not impossible, to successfully develop
RA models that can single-handedly accommodate all of the imports and aspects
of the CRN. As it currently stands, authors develop smaller sizeable models
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to address specific aspects of interest, while making reasonable and practical
assumptions on other details of the CRN. This is like the most reasonable and
viable approach to developing and analysing useful research models on the CRN.
However, models that can fit a wide range of CRN assumptions, parameters,
applications, performance details, etc., such as the models discussed in various
chapters of this book, are greatly encouraged and must be pursued.

4. Problem Standardisation
Another great challenge with RA problems and solutions in the CRN is the issue
of standardisation. Currently, because the CRN is still very much a work-in-
progress, there are no well-defined standards or standardisation procedures that
are being used for the CRN. There are some good attempts, some still ongoing, to
address this issue, though. For instance, the work in [5] is a summary of the work
carried out by the IEEE 802.22 working group, specifically set up to describe a
standard for wireless regional area networks (WRAN) that would make use of
the TV white spaces (TVWS) in a manner that they do not interfere with other
communication networks. While there are works still going on in this regard,
the current reality is that the CRN do not yet have specific standards that have
been fully established and well accepted with which they are to be designed and
operated.

5. Optimisation Complexity
The final RA optimisation-related problem of the CRN, as identified in this
chapter, is that the field of optimisation itself, which is the main tool being
employed to help solve RA-related problems in the CRN, is a highly diverse and
very dynamic problem-solving tool with multiple dimensions of interpretation
and application for obtaining solutions to problems. Because of its diversity
and depth, arriving at a single, well-established, generalised or one-fits-all
optimisation solution method or approach for addressing all RA problems in the
CRN will always be a big challenge.

12.3 Problems Associated with Queueing Theory in
Cognitive Radio Networks

The tool of queueing theory or systems (models and analysis) has been developed
and employed for addressing several key aspects of RA in the CRN, as already
discussed in a previous chapter of this book. However, despite the best efforts and
works dedicated to developing appropriate queueing models for the CRN, there
are numerous open problems that have been and/or are being identified for further
discussions and considerations [6]. Some of these problems are discussed.

1. Problem Complexity
One major problem with employing queueing systems to solving RA problems in
the CRN is the realisation that most queueing models developed for the CRN are
complex and difficult to analyse. Indeed, practical and/or realistic CRN models
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are usually very complex because of the interactions and interdependencies of
multifarious factors that combine to form the CRN. Often, these multifarious
factors do result in complicated queueing models that are very challenging
to analyse and possibly implement. More so, if these multifarious factors are
considered concurrently, the resulting RA problems in the CRN may become too
complex and possibly intractable in its analysis and implementation.

2. Model Oversimplification
One of the greatest challenges with the application of queueing theory for solving
RA problems in the CRN is the problem of oversimplification. Because of the
huge complexities of the RA problems in the CRN, sometimes, in fact, many
times, it is only reasonable to simplify such problems to have the best chance
of getting them solved. However, it needs to be stated that the works that have
contributed the most in helping to solve queueing-related RA problems in the
CRN are those with the most generalised models and assumptions. The reason
is that such generalised models, when compared to the simplified ones, are, to a
higher degree, closer to real-life CRN situations and they do have a wider range
of applications and usefulness. A good aspect of research works on queueing-
related RA for the CRN, therefore, is to seek to extend and expand models in
their scope and generality, in order to achieve better results for the CRN.

3. Correlation between the States
In queueing analysis, most works have modelled the channel occupancy of
primary users (PUs) by the ON–OFF process. A channel is ON when it is busy
or occupied or unavailable for the secondary network. A channel is OFF when it
is free or unoccupied or available for the secondary network. In such ON–OFF
applications, there is usually no correlation between the ON and the OFF periods.
However, for a more realistic modelling, the PU activities must be modelled such
that there is some correlation between consecutive ON times and/or between the
ON and the OFF times. It will be of great advantage if new investigations are
geared towards the study of the effects of such alternative PU activity models on
the queueing systems for solving RA-related problems in the CRN.

4. Hybrid Modelling
Although the hybrid architecture of the CRN can be very challenging to analyse
and implement, they provide greater capacity for the secondary network, as
compared to either the underlay or overlay architectural designs of the CRN.
However, there is a serious under-representation in the application of queueing
models for the hybrid architecture in various studies on queueing models for
RA in the CRN. The vast majority of the works have focused on applying
queueing models to either the underlay or the overlay architectural representation
of the CRN. The reason for this is that the queue modelling and analysis for
the hybrid CRN representation is usually more complex than for the other CRN
representations. However, the benefits such as the improvement in capacity gains
for the hybrid architecture necessitates that more investigations on queueing
models for the hybrid CRN be carried out. Some good examples of recent works
in this regard are the works in [7, 8].
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5. Spectrum Hand-off
Queueing systems have been sparsely considered in the RA for the CRN,
especially in the aspect of spectrum hand-off. The reason for this is that most
works on the CRN do assume direct communication links, for example, between
the SUs and the SUBS, or between a pair of SUs. As a result of such assumptions,
singular queues (sometimes with possibly multiple servers corresponding to
multiple channels) are usually employed in analysing the model. However, if
the more correct assumption that the communication links have more than one
intermediary (relay or cooperative) nodes between the source and destination
secondary network devices (such as was considered and studied in [9]), the
queueing system becomes more complex to analyse as each secondary network
device would have its own queue. Thus, a more appropriate queueing model
would be required to analyse the network. This is still an open topic for further
research, as it may be particularly appropriate in developing ad hoc CRN
systems.

12.4 Problems Associated with the Use of Stochastic
Geometry in Cognitive Radio Networks

The adoption of the tool of stochastic geometry (SG) when modelling interference
in wireless communications networks continues to attract a lot of attention due to its
ability to characterise the spatial locations of users in more realistic terms. So far,
it has been applied in many wireless networks such as the heterogeneous cellular
networks, the CRN, the IoT networks, device-to-device networks, etc. However,
there are some problems associated with the use of SG for interference management
and control in the CRN. Some of these problems are discussed.

1. Problems with the Poisson Point Processes
Although the Poisson point processes (PPPs) have received wide adoption among
the point processes because of their tractability, careful observation of the CRN
shows that independent PPPs may not properly capture the actual distributions of
PUs and SUs. As a result, other point processes such as hardcore point processes
are now being considered for the CRN. Nonetheless, SG is a very powerful tool
capable of providing accurate interference models for any wireless network.

2. Problems with Hardcore Point Processes
Hardcore point processes provide an opportunity to properly characterise inter-
ference in the CRN. However, the non-availability of the probability generating
functional (PGFL) for hardcore point processes means their analyses are often
approximated using the PGFL of PPP. With this, it is almost difficult to obtain
tractable analyses when hardcore point processes are adopted without some
assumptions and simplifications. This is one of the reasons why hardcore point
processes have received less attention despite its suitability in the CRN.
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3. Problems with Interference Oversimplification
While proper interference management and control are central to an efficient
and effective resource allocation process in the CRN, the analyses for several
important performance metrics such as the signal-to-interference plus noise ratio
(SINR), the probability of coverage, the probability of outage, the spectral effi-
ciency, etc. are normally obtained based on the aggregate interference received
at any test user within the considered network. In large-scale networks, the
analysis for the probability distribution function (PDF) of aggregate interference
is not known. Hence, the aggregate interference is generally modelled using the
Laplace transform (LT) of its PDF or the equivalent characteristic function (CF)
or the moment generating functions (MGF) [10]. However, the LT, CF and MGF
are not sufficient to obtain exact performance metrics and the need to resort to
various assumptions and simplifications have been adopted in the literature.

12.5 Problems Associated with the Use of Machine and Deep
Learning in Cognitive Radio Networks

The introduction of the concepts of machine and deep learning into the CRN has
shown promising signs in the aspects of resource management, improvement in
cognitive capabilities, advancement in primary-secondary networks’ coexistence
and much more. However, there are still daunting challenges with the use of machine
and deep learning in achieving more for the CRN. Some of the most generic
problems associated with the application of machine and deep learning in the CRN
are briefly discussed.

1. Lack of Global Generalisation
One of the major challenges with the use of machine and deep learning,
especially for spectrum and resource optimisation in the CRN, is the problem
of lack of globally recognised and/or accepted models, methods and means for
deep and machine learning. Being a new and active research area, there are still
ongoing discussions on standardisation and generalisation for machine and deep
learning. This currently affects its adaptation and application to modern CRN.
However, we anticipate that as more clarity and consensus are demonstrated, the
tool of machine and deep learning will find a lot more relevance as it will resonate
more with modern CRN designs and applications.

2. Anticipating Different Problem Cases
An important concern with the use of machine and deep learning in the CRN
is how well they can anticipate and prepare for new and/or evolving problems.
Being an emerging technology itself, the CRN is still a work-in-progress. Hence,
deep and machine learning algorithms that will be most relevant to the CRN will
be those that have the ability to imagine and anticipate different possible problem
cases, prepare for them, solve them, learn from them and so on.
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3. Long-term Planning
Deep and machine learning models and algorithms that will be most appropriate
for the CRN must have the ability to provide solutions that have both present and
future near-future value and relevance. This can only be achieved through long-
term planning and preparation. Therefore, deep and machine learning solutions
for the CRN must be able to solve immediate problems, while anticipating future
possibilities. In other words, they must plan long-term.

12.6 Other General Problems Still Associated with the
Cognitive Radio Networks

There are some other general challenges with the CRN that may not be specifically
related to any of the techniques or tools being employed for the CRN, but are still
worth mentioning and discussing. We highlight some of those generic problems in
this section.

1. Problems associated with Network Interference
Till date, the problem of interference remains, arguably, the biggest challenge
with the implementation and application of the CRN. While there are indeed
ongoing research works that seek to properly characterise and address the
problem of interference in the CRN and/or to mitigate its effects, such as the
recent works in [4, 9, 11], a lot more work is still required to be done in this
regard.

2. Problems associated with Network Security
A serious problem with the CRN and most other emerging xG communication
technologies is the problem of network security [12]. The employment of large
number of devices in practical CRN designs will make the network very prone
to the danger of being easily compromised. How to keep the CRN secure,
despite possible malfunctions of the user equipment and/or malicious internal
and external attacks on the network, is still an area that requires a lot more
probing.

3. Problems associated with the Cost of Implementation or Service Provision-
ing
As more and more prototypes of the CRN are being rolled out, the aspect
of the economics of the technology has to be considered [12]. Stakeholders,
telecommunication companies, investors, etc. would be interested in knowing the
costs of implementing the CRN, the cost of providing services using the CRN, the
marketability of the CRN, the return on investment for the CRN, etc. Providing
adequate answers to these questions will indicate how viable the CRN is or will
be.
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4. Problems associated with Network Policies
One of the problems associated with xG communication technologies is the
problem of network policy [13]. The CRN will have to adjust to the diverse
network policies being put in place and/or employed in various countries on
the dynamic spectrum allocation and usage, maximum transmission powers,
resource management and control, protocols and practices for network designs,
network standards, etc. These network policies may aid or hinder the application
and implementation of the CRN if they are not well handled.

5. Problems associated with Network Failures
Another major challenge with RA in the CRN and most other emerging xG
communication networks is the problem of network failures [14]. The CRN
and other xG networks have promises of extremely high reliability, hence their
application in very sensitive communication projects and prototypes, such as
in vehicle-to-vehicle communications. For the CRN to be realisable, therefore,
it must be built to be very robust against network failures. To achieve this,
appropriate network restoration models and solutions must be investigated and
employed in the CRN for practical, real-life applications.

6. General Problems associated with the Implementation of New Network
Technologies
All new telecommunication technologies usually have tethering implementation
issues, and the CRN is no exemption [15]. Tethering problems are, in most cases,
resolved as best practises and guiding principles are employed and followed in
the implementation process of new technologies. The CRN will encounter some
of these problems at the initial stages of implementation but will soon adjust and
overcome those challenges.

12.7 Recommendations and Research Directions for Further
Developments in Cognitive Radio Networks

The problems associated with the CRN, as identified and highlighted, can only
be addressed through more targeted research works on the various aspects of the
CRN. An important contribution of this book is to make useful recommendations
that can help guide and strengthen further research works being carried out by
different researchers and interest groups working on modern CRN designs and
implementations. While some of the recommendations are quite generic for the
CRN, a good number of the recommendations are geared towards improving further
the overall performance of the CRN and making it more robust for applications
beyond 5G. Thus, the recommendations are directed towards improving the results
realised by the implementation of the various tools and techniques (such as
optimisation, queueing theory, cooperative diversity, stochastic geometry and deep
learning) being employed for modern CRN, as already discussed in this book.
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12.7.1 Recommendations for Further Improvement in
Optimisation and Queueing Modelling

The following recommendations are made to help improve the use of the tools of
optimisation and queueing theory in their application to RA and other aspects of the
CRN.

1. Assumptions
While it is plausible that most works on the CRN will have to use simplifying
assumptions in order to make their CRN problems tractable and/or manageable, it
is recommended that such assumptions, especially for optimisation and queueing
theory, must be generalised. Furthermore, there must be efforts to reduce such
assumptions to the barest minimum for more comprehensive and fruitful CRN
realisations.

2. Standardisation
Generally, it will be of great advantage if well-defined standards are developed
and employed for accurate and across-board CRN modelling. This is more
important. It is therefore recommended that CRN standards be quickly agreed
upon and established by all stakeholders for reasonable continuity in the process,
and for tractability in the progress on the work on the CRN.

3. Discrete-Time Queueing Models
In most of the queueing models that have been developed and employed to
solve the RA problems in the CRN, the network characterisation has been
mostly assumed to be in continuous-time. As a result, continuous-time Markov
chains have been used to analyse and solve the RA problems. However, the
more realistic and/or more practical consideration of the queueing-related RA
problems in the CRN would be to assume that the CRN characterisation
is in discrete-time. The implication of such assumption is that discrete-time
Markov chains will be needed to characterise the RA models, and to analyse
them. One good example of such characterisation and analysis of RA solutions
using discrete-time Markov chains is found in the work in [7]. Representing
the resulting queueing-based RA problems for the CRN in discrete-time will
probably be more demanding but investigating and solving them as such, because
they provide better results, is highly recommended.

12.7.2 Recommendations for Improving Cooperation-Based
Solutions

Several new tools and techniques are being employed in modern CRN to address
its limitations and improve overall productivity for the CRN. The concept of
cooperative diversity and relaying to help mitigate the negative effects of strin-
gent permissible interference temperatures in the RA solutions for the CRN was



228 12 Future Opportunities for Cognitive Radio Networks

introduced and studied in a previous chapter. Usually, such cooperative models
that are developed and employed for the CRN make the assumption that the users
that are selected as cooperators or relays have no data of their own to transmit.
While this is very possible, it may not be true at all times. Therefore, it should
be possible to develop and analyse models that permit the cooperators that have
selected to simultaneously transmit both their own data and the data of the other
secondary network device that requires their help, in order to realise even better
results for the CRN. Other tools and techniques that have been discussed have areas
of improvements that can still be further investigated to help achieve more for the
CRN.

12.7.3 Recommendations for Improving Interference
Management Through the Use of Stochastic Geometry

The problem of interference has been shown to be one of the most crippling
limitations to the realisation of the potentials of the CRN. To help manage and
mitigate the activities of interference in the CRN, the use of the tool of SG has
been established in a previous chapter, where several models were investigated and
analysed. To further improve the use of the tool of SG in managing and mitigating
interference in the CRN, a number of recommendations are provided.

1. Need for more Stochastic Geometry-based Models
Despite the importance of the CRN, interference management and control in the
CRN have received less attention compared to other wireless networks such
as the heterogeneous cellular networks and Poisson wireless networks. The
uniqueness of the CRN, however, means that the interference models developed
for cellular networks may not be completely adopted in the CRN. For instance,
the CRN allows SUs to access the channels belonging to PUs as long as their
transmissions do not cause excessive interference in the primary network, while
active SUs are expected to vacate the spectrum band before the arrival of any PU.
This notion of priority does not exist in cellular networks where both users are
licensed to use the channel [10]. Another important characteristic of the CRN is
the dependent distributions among PUs and SUs. In order to avoid interference
at the PUs, the technique of exclusion regions is important when modelling
interference in the CRN. With the application of the tool of SG, the distribution
of the SUs usually depends on the distribution of the PUs. Thus, the independent
PPPs often assumed in cellular networks are not best suited for the CRN. Hence,
more appropriate SG-based models that best capture the intricacies of the CRN
are still being required.

2. Spatio-temporal Analysis
In most models, a typical SU will continue to wait until an appropriate channel
becomes available for its usage, while an interrupted SU can only resume or
repeat its transmissions only when a channel becomes available. Similarly, PUs
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may also experience retransmission as a result of the interference generated
from nearby SUs. Hence, it becomes important to investigate the effect of
transmission delay on users’ experience in the CRN. A common assumption
in the literature is that the buffers of all the primary transmitters (PTs) and
the secondary transmitters (STs) are always full. Such an assumption fails to
consider the relationships between the spatial and temporal distributions of users
in the CRN [16]. An important future research area is in developing models and
obtaining analytical results that capture both the spatial and temporal dependence
among the PUs and the SUs when modelling interference in the network.

3. Mobility among Users
In many modern real-life systems, the majority of users are mobile and do
expect uninterrupted wireless connection and service on their mobile devices.
This means that the common adoption of stationary point processes may not
be sufficient to capture the possible mobility in the network. However, mobility
can complicate the analyses for various performance metrics. To date, mobility
remains an open research area when characterising interference in wireless
communication networks, and particularly in the CRN.

4. Cognitive Channel Sensing
Channel sensing is significant to interference management and control in any
wireless network. As already established, channel availability is determined by
SUs through channel sensing. However, SUs are expected to be low energy
devices and may use most of their energy during the sensing phase, especially in
the densely populated networks, with little energy remaining for its transmission
phase. More appropriate channel sensing techniques that ensure the SUs use less
energy during the sensing phase while reserving their energy for the transmission
phase are useful and still very much needed.

5. Capturing more practical Network Parameters
Most of the SG-based interference models consider only a single PU channel in
order to avoid complicated analysis. Also, power control—an important require-
ment of SUs when transmitting in the underlay CRNmodel—is largely neglected
in the system model. The need to capture more realistic CRN parameters such as
multiple PUs, multiple SUs, power control, etc. is important and still need to be
further explored.

6. Exact Analysis for Interference Parameters
When the assumption of independent distribution is relaxed in the CRN, obtain-
ing exact closed-form analysis for various metrics is difficult. Hence, obtaining
tractable closed-form expressions without underestimating the intensity of users
in the network is also another important area to consider. Another interesting
area is the relaxation of the bipolar network model assumption. In such a case,
the distance between any transmitter–receiver pair would no longer be a constant
value, making it more practical. Such incorporations need to be further studied
for the CRN.

7. Probability Generation Functional for Hardcore Point Processes
One interesting area that is still in need of further research is in obtaining the
PGFL for hardcore point processes such as PHP, MHCP, etc. This will provide
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more understanding on hardcore point process applications in the CRN, and will
enhance tractable analysis when these point processes are used for studying and
mitigating interference in the CRN.

12.7.4 Recommendations for Improving Machine and Deep
Learning Applications and Implementations

In the pursuit of more advanced AI-inspired strategies, applications and implemen-
tations for the CRN, it can be observed that there are potential problems that still
require the proper attention and development of techniques of deep architecture for
the CRN. Based on the comprehensive discussions on deep and machine learning for
the CRN provided in a previous chapter, it is clear that there are key open challenges
and future research directions for the application of deep and machine learning in
the CRN. Some recommendations to help improve the development and use of deep
architecture for the CRN are provided.

1. More Research Works on Machine and Deep Learning
The chapter on deep learning has provided some AI-inspired learning archi-
tecture for exciting CRN applications. The discussions make us believe that
advances in deep reinforcement learning that are yet to appear can help revolu-
tionise the autonomous control of future mobile networks, improve mobile device
energy consumption and to ensure network sustainability. The application and
implementation of AI solutions for the CRN is therefore an exciting research area
that require further probing. With the right research works, the most appropriate
deep learning architecture for CRN applications will be designed, developed and
implemented.

2. Disruption-tolerant Networking
The fifth-generation (5G) of wireless communication and the IoT computer
networking and connectivity are recent and highly promising developments in
communication and computer networking [12]. With both technologies being key
players towards achieving a smart and interconnected world, one important lim-
itation towards achieving that promise, apart from the limitation of insufficient
network resources, is the possibility of network disruptions. In order to address
the challenge of network disruptions, disruption-tolerant networking solution
models that would guarantee data delivery even when traffic is interrupted are
required.

Disruption-tolerant architecture do not need a continuous path to deliver data
between end points and are a necessity for all kinds of terrestrial communica-
tions. Given that information/data transmission requires undisturbed media for
it to propagate, performing this task is still categorised under model-deficit and
algorithmic-deficit problems. Therefore, outlining how social network analysis
and social properties can be exploited to design disruption-tolerant networking
solutions is a promising direction.
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To improve disruption tolerance in modern networks such as the CRN, the
use of distributed collaboration among devices in the form of particle interaction
and subjective logic can be applied and how each device becomes involved
in collaboration with other devices can be evaluated. In this way, the device
collaboration can then be converted into a clustering problem in which bipartite
graphs can be used to obtain cliques and their evolution (that is, the change in
the wireless network topology). Reinforcement learning strategies can then be
applied to realise learning-based cognition techniques, subject to deficiencies
such as the collection of sufficient data quality and statistical inference of
network status.

It is important to note that, contrary to traditional wireless communications,
in the CRN, disruption-tolerant networking is not that straightforward. Due to
errors in spectrum sensing data, which cannot only cost SUs better resources
but can also cause undue interference to PUs, the implementation of disruption-
tolerant networking strategies are difficult in the CRN. In order to prevent wrong
statistical inference, which can lead to wrong spectrum occupancy conclusions, it
would be necessary to first derive alternate statistical and computational methods
to minimise these errors. We particularly apply social network analysis and
exploit social properties by merging individual spectrum sensing results with the
dynamics that impact collaborative spectrum sensing. If spectrum sensing data is
to be useful for decision-making in RA for the CRN, its time granularity must be
of good quality. All of these are good research areas in the application of deep
architecture for modern CRN implementation.

3. Effective Communication at Federated Scale
Vulnerabilities to network adversaries is still a pervasive problem in the CRN
with malicious users targeting false alarm errors. Successful false alarms are of
particular interest to malicious users since it creates spectrum holes that they can
exploit [17]. Protecting the performance of the CRN against vulnerabilities to
adversaries without sacrificing network performance is still an open problem in
the CRN cryptography.

In terms of deep architecture for the CRN, the availability of generative
adversarial networks (GAN) somehow eases this challenge of vulnerability to
network adversaries. The GAN is a framework that trains generative models
using the adversarial process. It consists of a generator and a discriminator
and can produce data that follow a certain distribution [18]. The discriminator
attempts to differentiate between real and fake data generated by the generator.
The generator tries to generate plausible data in order to fool the discriminator
into making mistakes, which introduces a min–max two-player game between
the two. As a result of the min–max two-player game, the generator ends up gen-
erating data with the same distribution as the real data. This consequently makes
deep learning algorithms vulnerable to adversarial attacks. Thus, constructing
deep models that are robust to adversarial examples is imperative, but remains
challenging.
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4. Multi-domain Knowledge Interpretation and Integration in Autonomous
Applications
As the CRN and its allied technologies, such as the 5G and the IoT, continue to
steer xG operations and are becoming industry-ripe for AI-driven solutions, with
their promise of lowering costs and boosting efficiencies through automation,
there is a fundamental question that is still being ignored. The question is about
the values/morals learning problem in machine morality, which is a problem that
will be encountered in most autonomous applications, such as in autonomous
vehicles. Beyond base connectivity and throughput, the definition of reward tends
to include a lot of things such as the quality of service, quality of experience,
security, reliability, etc. However, in terms of machine morality, the definition of
the reward has to depart from this list by addressing the following questions:

• What is the objective function of future mobile and wireless networking?
• How should the reward that must be maximised in real-life networking

problems be defined?

The intellectual field dedicated to these questions is called moral philosophy.
In moral philosophy, the central questions are:

• What ought to be done?
• How should we live?
• Which actions are right and which ones are wrong?

The generic answer to these questions, quite frankly, is that it depends on
the values. Therefore, as more and more advanced AI are being created, the
status quo tends to depart from the realm of Atari games, where “reward” is
cleanly defined in terms of points necessary to win a game and exist more in
the real world. It should also depart from the currently explored classification
problems to specify explicitly to a computer what a cat looks like. For example,
autonomous vehicles have to make decisions with somewhat more complex
definitions of the reward. Currently, the reward is still tied to getting safely to
the destination, but if the vehicle is forced to decide between staying the course
and hitting five pedestrians or swerving and hitting one, should it swerve?What if
the one pedestrian is an innocent child, or a gunman on the loose? How does that
change the decision, and why? Suddenly we have a much more complex problem
when we try to define the objective function, and the answers are not as simple.
Similarly, in the domain of machine morality, it might be difficult to specify
exactly how to evaluate the rightness or wrongness of one action over another.
However, it is possible for a machine to learn these values in some way, and this
is called the values learning problem, and it may be one of the most important
technical problems humans will need to solve before autonomous applications of
deep learning in xG networks can be fully commissioned.
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12.7.5 Other General Recommendations and Research
Directions

A few other useful recommendations for further works on the CRN are provided.

1. Introduction to 6G-based CRN
Beyond 5G, sixth-generation (6G) technology is poised to be the incoming
generation of telecommunication. In 6G, communications will be on the terahertz
frequency band, and will most likely be AI-based [19]. The CRN must begin
to gear up towards finding relevance in 6G communication. As such, more
research works that incorporate deep learning architecture and application in
the CRN, and that explore other 6G-based concepts as they unfold, are highly
recommended.

2. Practical Application and Implementation of CRN to 4IR
The fourth industrial revolution (4IR) or industry 4.0 is taking centre stage as
the newest revolution of industrialisation. Industry 4.0 is the digitalisation of the
industrial/production/manufacturing space. The 4IR will thrive on automation,
and will depend on advanced technological concepts of Big data, robotics, cloud
computing, AI, among others [20]. Without doubt, the CRN will be an important
technology to help drive 4IR, and some works that develop and describe their
relationship and interactions are already available. However, more research
works, especially on practical application and implementation of the CRN to
4IR, are still required.

3. Commercialisation of CRN
As the CRN evolves, alongside other emerging technologies, one important
aspect that will require continued research is how to commercialise and/or
to improve the commercialisation of the CRN and its allied technologies. A
technology is only as usable and productive as it is marketable and profitable.
Investors and stakeholders will be willing to continue to contribute to the
development of the CRN as longs as the return on investment makes it worth the
while. Therefore, the marketability and profitability of CRN applications must be
given its proper place in the research space for the CRN to maintain its relevance
as a driving force for xG communications.

12.8 Concluding Remarks

This book has presented the CRN as one of the most promising paradigms of xG
communication networks. The CRN is therefore attracting attention and gaining
more and more recognition in the Telecommunication space. Its most amazing
promise is that of alleviating the resource (particularly, the spectrum) scarcity
problem, and most of the recent works, as discussed in the book, are geared towards
developing new solutions for resource optimisation in the CRN. The CRN solutions
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discussed in this book detail new and improved ways by which the CRN may be
able to optimally employ its scarce and limited resources to meet the demands of its
numerous and diverse users, thereby helping the CRN achieve it much-acclaimed
promises.

The ideas discussed in the book, as well as the findings presented, all come
together to present a cogent, concise and well-coordinated response to some of
the open-ended problems on the CRN, particularly with regard to optimal resource
utilisation and improved productivity for the heterogeneous CRN. In conclusion, we
project that, if the tempo on recent/ongoing developments in the CRN is sustained,
the CRN is set to take centre stage in the wireless communication space as the
ideal prototype for achieving most of the emerging xG wireless communication and
networking possibilities.
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Glossary

Affordability The quality of a product, service, device, etc. being able to be
afforded because it is inexpensive and/or reasonably priced.

Capability It describes what can be done, achieved or accomplished, for example,
through a technology or device.

Capacity The maximum achievable output of a technology or technological
design, for instance, the cognitive radio network.

Data pre-processing A data mining technique that transforms raw data into an
understandable or usable format.

Deep architectures Systems composed of multitude levels of non-linear opera-
tions, such as neural networks (NN) with many hidden layers.

Deep learning A subset of machine learning (ML). Deep learning is an artificial
intelligence (AI) function with the goal of building systems that use intelligence
to solve complex tasks.

Mobility The ability of a communication device to be able to communicate even
while in motion.

Optimality The best or most effective result(s) obtainable, based on current or
prevalent conditions (constraints) under which a technology such as the cognitive
radio network operates. For example, in context, optimality of the cognitive radio
network is achieved when the best performance (measured from the performance
metrics such as the average data rates, throughput, outage probability, etc.) is
realised, given the prevailing network conditions (that is, the available resources
and the various constraints being considered).

Portability The quality of a component or device being handy and easy to carry
about.

Productivity The measure of the efficiency or total output (yield) of a communi-
cation network or technology, such as the cognitive radio network.

Resourcefulness The ability of a technology such as the cognitive radio network,
or a communication device, to find quick and smart ways to overcome its various
limitations.
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238 Glossary

Throughput The total amount of data per unit time (total data rate) that is
successfully transmitted by a communication network or technology, and is
usually measured in bits per second (bps).

Ubiquity The quality of something being available everywhere and in abundant
supply.
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