
Chapter 6
p-Wave Superconductivity and d-Vector
Representation

Jean-Pascal Brison

Abstract Since the mid-80s, new classes of superconductors have been discovered
in which the origin of superconductivity cannot be attributed to the electron–ion
interactions at the heart of conventional superconductivity. Most of these uncon-
ventional superconductors are strongly correlated electron systems, and identifying
(or even more difficult, predicting) the precise superconducting state has been, and
sometimes remains, an actual challenge. However, in most cases, it has been demon-
strated that in these materials the spin state of the Cooper pairs is a singlet state,
often associated with a ‘d-wave’ or ‘s + /−’ orbital state. For a few systems, a spin-
triplet state is strongly suspected, like in superfluid 3He; this leads to a much more
complex superconducting order parameter. This was long supposed to be the case for
the d-electron system Sr2RuO4, and is very likely realized in some uranium-based
( f -electron) ‘heavy fermions’ like UPt3 (with multiple superconducting phases) or
UGe2 (with coexisting ferromagnetic order). Beyond the interest for these materials,
p-wave superconductivity is presently quite fashionable for its topological properties
and the prediction that it could host Majorana-like low energy excitations, seen as
a route towards robust (topologically protected) qubits. The aim of these notes is to
make students and experimentalists more familiar with the d-vector representation
used to describe p-wave (spin triplet) superconductivity. The interest of this formal-
ismwill be illustrated on some systems where p-wave superconductivity is the prime
suspect.

6.1 Introduction

The purpose of these notes is only to cover some aspects of spin-triplet supercon-
ductors, not so commonly covered in the excellent textbooks available on super-
conductivity, in general, and unconventional superconductors, in particular. Among
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those, let us choose to quote only two: the seminal Reviews of Modern Physics
paper “A theoretical description of the new phases of liquid 3He” by A. J. Leggett
[1], which gives both very advanced and detailed insights on the theory of the p-
wave order parameter of superfluid 3He, and pedagogical and enlightening treatment
of the microscopic Bardeen–Cooper–Schrieffer (BCS) theory of anisotropic super-
conductors and the other, which covers the very important symmetry aspects of
unconventional superconductors in crystalline materials, is the book ‘Introduction to
unconventional superconductivity’ by V. P. Mineev and K. V. Samokhin [2].

In the following, we concentrate on some basic aspects of the description of spin-
triplet superconductors, which are often bewildering, at least to experimentalists.

6.2 Odd-Parity Pairing: BCS Wave Function and Order
Parameter

Most known superconductors are ‘spin-singlet’ superconductors, meaning that the
relativewave function of theCooper pairs |�(r1 − r2)〉, in the real or in the reciprocal
space, can be written as a product of an orbital wave function and a spin (singlet)
wave function

|�(r1 − r2)〉 = φ(r1 − r2)| ↑↓ − ↓↑〉 ,

|�(k)〉 = ϕ(k)| ↑↓ − ↓↑〉 .
(6.1)

Antisymmetrization of the total pair wave function imposes, for such a singlet state,
that the orbital wave function verifies φ(r1 − r2) = φ(r2 − r1) or ϕ(k) = ϕ(−k)

(even-parity state). However, it is also possible to build Cooper pairs in a triplet spin
state (see Fig. 6.1). If all electronic interactions including the pairing interactions
conserve spin, one could pair separately up- and down-spins, and the total super-
conducting wave function with a triplet spin state would be the (antisymmetrized)
product of both. However, if any non-spin conserving term exists, like the spin–orbit
interaction, this is no longer possible. One can just say that Cooper pairs will be
formed with a wave function of the form

|�〉 = φ11(r1 − r2)| ↑↑〉 + φ22(r1 − r2)| ↓↓〉 + φ12(r1 − r2)| ↑↓ + ↓↑〉 , (6.2)

or in the reciprocal space

|�〉 = ϕ11(k)| ↑↑〉 + ϕ22(k)| ↓↓〉 + ϕ12(k)| ↑↓ + ↓↑〉 . (6.3)

Antisymmetrization of the total pair wave function imposes this time that the orbital
wave function φ(r1 − r2) = −φ(r2 − r1) or ϕ(k) = −ϕ(−k) (odd-parity state).
Note that microscopically, one would write the ground state superconducting wave
function for the whole Fermi sea as
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Fig. 6.1 Singlet a versus triplet b Cooper pairs: they are built with quasiparticles of opposite wave
vectors in both cases, but differ by their spin state

|�〉 =
∏

all k

(uk↑↑ + vk↑↑c+
k↑c

+
−k↑)(uk↓↓ + vk↓↓c+

k↓c
+
−k↓)(uk↑↓ + vk↑↓c+

k↑c
+
−k↓)|0 >

=
∏

all k,α,β

(uk,αβ + vk,αβc
+
kαc

+
−kβ)|0 >

(6.4)
with uk,αβ = u−k,αβ ; vk,αβ = −v−k,αβ ,

and ϕαβ(k) = 〈c−kβckα〉 = u∗
kαβvkαβ = −ϕαβ(−k) the order parameter [1] .

The last condition on the parity of uk and vk for the same spin indices ensures
that the orbital part is odd (for the exchange of k and −k), selecting only triplet
spin components. Coming back to the order parameter, in the reciprocal space, it
should be given by three complex odd functions of k: ϕ11, ϕ22 and ϕ12 = ϕ21. The
most natural would be to view the order parameter as a 2 × 2 symmetrical matrix
ϕαβ , where α and β are spin indices (1 =↑, 2 =↓). This is possible, and is used in
many calculations. However, it is not very convenient if one needs to change the
quantization axis or if (as it commonly happens) the quantization axis changes over
the Fermi surface. There are only three independent complex functions of k, so it
would be nice to represent the order parameter by a vector.

6.3 Vectors and Cayley–Klein Representation

6.3.1 Position of the Problem

However, this would be meaningful only if this vector transforms properly under
rotation of the spin quantization axis. And one would also expect its magnitude to
be proportional to the density of condensed Cooper pairs, and its direction to have
a meaning relative to the spin orientation. This last point is clearly not so direct, as
the vector will necessarily be complex. In order to understand more clearly what is
necessary, let us first explore what doesn’t work.We could build simply such a vector
representation through:

V = ϕ11ex + ϕ22ey + ϕ12ez . (6.5)
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But it would not do the job: the module would be fine, but the direction of V and so
its transformation under rotations of the axis would be meaningless, for example, for
the same quantization axis a pure | ↑↑〉 or | ↓↓〉 state would lead to perpendicular
vectors. Or equivalently, taking an opposite direction of the quantization axis would
yield perpendicular vector representations. This is clearly not what is expected from
a vector behaviour. The problem stems from the fact that one needs to make a link
between the spin state [SU(2)] and three-dimensional vectors. The good news is
that this problem has been solved long ago in classical mechanics, with the Cayley–
Klein representation, which aimed at simplifying the calculation of rotation effects;
in real space, a matrix rotation is a 3 × 3 matrix; however, it is fully characterized
by only three angles (the Euler angles for example); so, in principle, a 2 × 2 matrix,
with four parameters, should be more than enough. The Cayley–Klein representation
associates a three-dimensional vector (a) to a 2 × 2 matrix through…Pauli matrices

a → a·σ ,

σ = σ1ex + σ2ey + σ3ez ,

σ1 = σx =
(
0 1
1 0

)
σ2 = σy =

(
0 −i
i 0

)
σ3 = σz =

(
1 0
0 −1

)
,

σi =
(

δ3i δ1i − iδ2i
δ1i + iδ2i −δ3i

)
a·σ = aiσi =

(
a3 a1 − ia2

a1 + ia2 −a3

)
,

(6.6)

where δi j is the Kronecker symbol.

6.3.2 Useful Formula for Pauli Matrices

As a reminder, for these (Hermitian) Pauli matrices

σ 2
i = 1 ; [σi , σ j ] = 2i εi jkσk ; {σi , σ j } = 2 δi j1 ,

σiσ j = iεi jkσk + δi j1 ,

tr(σi ) = 0; det(σi ) = −1; eigenvalues = ±1 ,

(6.7)

where εi jk is the Levi-Civita symbol.
From that, a little algebra leads to very useful formulae (a andb are real or complex

3D vectors)

(a·σ )σk = (aiσi )σk = aiε
ik j iσ j + aiδik1 = −iεki j aiσ j + ak1 .

So
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(a·σ )σ = a1 − ia ∧ σ ; σ (a·σ ) = a1 + ia ∧ σ ;
tr((a·σ )σ ) = 2 a ;
(a·σ )(b·σ ) = (a·b)1 + i(a ∧ b) · σ .

(6.8)

Finally, if a is real, or if at least one can write a = a · â, with a, a complex number,
and â, a real unit vector, then additional useful relations exist

• the eigenvalues of a · σ are ±a;
• the projectors on each eigenspace can be written as 1

2

(
1 ± â·σ );

• for any analytic function
f (a·σ ) = f (a)

2

(
1 + â·σ )+ f (−a)

2

(
1 − â·σ ) and

• in particular, if � is a real vector, also written as � = 
 �̂, 
, a real number, and
�̂, a real unit vector

exp (i�·σ ) = exp (i
) + exp (−i
)

2
1 + i

exp (i
) − exp (−i
)

2i
�̂·σ ,

exp (i�·σ ) = cos
1 + i sin
 �̂·σ .
(6.9)

6.3.3 Rotation of a 3D Vector: Cayley–Klein Relation

From these relations, it is straightforward to see (proof at the end of the chapter) that
ifR is a 3D rotation characterized by an angle 
 around the axis �̂, for any vector a

R(a)·σ = exp (−i/2�·σ ) (a · σ ) exp (i/2�·σ ) ,

R(a)·σ = R� (a · σ )R−� ,
(6.10)

whereR� = exp
(−i

2 �·σ ) is the rotation matrix around � for a spin 1/2. So one can
work with 2D (complex) matrices to calculate the effect of a 3D rotationR on a real
vector a.

In fact, this ismore general in the sense that it is also truewhen applied on complex
vectors (rotating around a real vector � ). Indeed, the effect of a 3D rotation of angle

 around the axis �̂ on a real vector a can be easily expressed through the relations
(see Fig. 6.2)

a = (a · �̂)�̂ + a − (a · �̂)�̂ ,

R(a) = (a · �̂)�̂ + cos

(
a − (a · �̂)�̂

)
+ sin
(�̂ ∧ a) . (6.11)
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Fig. 6.2 Decomposition of a
vector for the calculation of
its rotation by an angle 


around �̂

And (6.11) can be used to define what is the rotation of a complex vector around a
real vector �̂. With such a definition, the Cayley–Klein relation (6.10) also works
when a is a complex 3D vector (see ‘proof’ in Sect. 6.11).

Exercise 6.1 Show that with the definition of the rotation (6.11) of a complex vector
(around a ‘real vector �’), the scalar product and the cross product are conserved
under rotation:

R(d) · R(u) = d·u ,

R(u) ∧ R(d) = R(u ∧ d) .
(6.12)

Solution in Sect. 6.11.

6.4 d-Vector Representation

Coming back to the problem of finding a vector representation of the order parameter,
if we could cast the 2 × 2 matrix order parameter (ϕ) in the form (a·σ ), there are
good chances that the vector (a) would do the job. Working in the reciprocal space
(k = kFn̂), where kF is the radius of the Fermi surface, we start from

|�(n̂)〉 =
∑

α,β

ϕαβ(n̂)|αβ〉

= �↑(n̂)| ↑↑〉 + �↓(n̂)| ↓↓〉 + �0(n̂)(| ↑↓〉 + | ↓↑〉) ,

(6.13)

(ϕ) =
(

ϕαα ϕβα

ϕαβ ϕββ

)
with ϕαβ = ϕβα or (ϕ) =

(
�↑ �0

�0 �↓

)
. (6.14)
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Comparison with expression (6.6) for a·σ doesn’t fit, notably as regards the non-
diagonal symmetric terms.This is due to theσ2 component ofa·σ . It canbe eliminated
if one calculates

i(a·σ ) · σ2= i

(
a3 a1 − ia2

a1 + ia2 −a3

)(
0 −i
i 0

)
. (6.15)

This allows for a straightforward identification of a vector representation of the
order parameter, noted as d, of components

ϕαβ = (i(d · σ ) · σ2)αβ ⇐⇒ (ϕ) = i(d · σ ) · σ2 . (6.16)

Note that, traditionally, d is normalized to 1 (in a sense to be precised later),
like a wave function, whereas the order parameter amplitude reflects the ‘superfluid
density’ and is proportional to the gap in the simplest cases. The equations above do
not reflect this subtlety that will be precised later on (see Sect. 6.6.1). Therefore, to
be ‘in line’ with the convention of most papers on the subject, we will introduce a
(k-independent) proportionality factor ψ

ϕ11= �↑= ψ(−dx + idy)

ϕ22= �↓= ψ(dx + idy)

ϕ12 = ϕ21= �0= ψ(dz)

⎫
⎪⎬

⎪⎭
⇔

⎧
⎪⎨

⎪⎩

ψdx= 1
2 (−�↑+�↓)= 1

2 (−ϕ11 + ϕ22)

ψdy= − i
2 ( �↑+�↓)= − i

2 ( ϕ11 + ϕ22)

ψdz= �0 = 1
2 ( ϕ12 + ϕ21)

. (6.17)

And convenient expressions for calculations deduced from (6.16) and (6.8) read:

|�〉 =
∑

α,β

ϕαβ |αβ〉 = iψ
3∑

αβ,i=1

di (σiσ2)αβ |αβ〉 ,

|�〉 = iψ
∑

αβ

〈β|(d · σ)σ2|α〉|αβ〉 , (6.18)

ψ(d · σ ) = −i(ϕ).σ2 =⇒ d = −i

2ψ
tr ((ϕ)(σ2σ )) = − i

2ψ

∑

αβ

(σ2σ )α,β ϕα,β ,

d = 1

2ψ
[−�↑(n̂)(k̂x + ik̂y) + �↓(n̂)(k̂x − ik̂y) + 2�0k̂z] . (6.19)
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6.5 Behaviour under Rotations

6.5.1 Rotation in Spin Space

For d to be a true vector, it should behave appropriately under rotation. d is rep-
resenting an order parameter which has both orbital and spin degrees of freedom,
but the specificity of odd-parity pairing, leading to the necessity of such a vector
representation, is coming from the spin degree of freedom. With the relationship
to the Cayley–Klein representation, one should expect that this choice leads to a
relationship between rotation in spin space and rotation of d. In fact, the effect of
rotations can be calculated both directly and with the generator of rotations. Let’s do
both methods.

For the direct evaluation, the important point is that the rotation acts simultane-
ously on both spins. Starting from the expression (6.18) to evaluate the effect of the
rotation on the spin part of the order parameter, we get

R�|�〉 = iψ
∑

αβ

〈β|(d · σ)σ2|α〉R1,� ⊗ R2,�|αβ〉

= iψ
∑

αβγ δ

〈δ|R�|β〉〈β|(d · σ)σ2|α〉〈γ |R�|α〉|γ δ〉

= iψ
∑

αγ δ

〈δ|R�(d · σ)σ2|α〉〈γ |σ 2
2 · R�|α〉|γ δ〉 .

We have

〈γ |σ 2
2 · R�|α〉 =

∑

η

〈γ |σ2|η〉〈η| cos(
/2)σ2 − i sin(
/2)σ2�̂.σ |α〉

=
∑

η

(−〈η|σ2|γ 〉)〈α| − cos(
/2)σ2 − i sin(
/2)σ2�̂.σ |η〉

= 〈α|σ2R−�σ2|γ 〉 ,

as σ2 is antisymmetric and σ2(�̂.σ ) is symmetric. So

R�|�〉 = iψ
∑

αγ δ

〈δ|R�(d · σ)σ2|α〉〈α|σ2R−�σ2|γ 〉|γ δ〉

= iψ
∑

γ δ

〈δ|R�(d · σ)R−�σ2|γ 〉|γ δ〉

= iψ
∑

γ δ

〈δ| (R(d)·σ ) σ2|γ 〉|γ δ〉 .

Using (6.10)
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R�|�〉 = |� (R(d))〉 .

So indeed, the effect of a change of the spin quantization axis on the order parameter
can be evaluated directly by the corresponding rotation of the (complex) d-vector
in 3D. And the calculation above makes a direct connection between the Cayley–
Klein transformation and the rather involved definition of the d-vector.

It is also useful (and simple) to evaluate the effect of a rotation using the generator
of rotations in spin space: this generator is simply − i

�
n̂·S, where the total spin

S = S1 ⊗ 1 + 1 ⊗ S2 .
The effect of any operatorO = O1 ⊗ 1 + 1 ⊗ O2 acting in the spin space can be

calculated as (remembering that (d·σ )σ2 is a symmetric matrix and σ2 an antisym-
metric matrix)

O|�〉 = iψ
∑

αβ

〈β|(d · σ)σ2|α〉O|αβ〉

= iψ
∑

αβγ

〈β|(d · σ)σ2|α〉 (〈γ |O|α〉|γβ〉 + 〈γ |O|β〉|αγ 〉)

= iψ
∑

αβ

〈β|O(d · σ)σ2|α〉 (|αβ〉 + |βα〉) or

= iψ
∑

αβ

(〈β|O(d · σ)σ2|α〉 + 〈α|O(d · σ)σ2|β〉) |αβ〉 .

(6.20)

Applying (6.20) to the action of generator of rotations in spin space, namely,− i
�
n̂·S,

we get

So

− i

�
n̂.S|�〉 = |�(n̂ ∧ d)〉 . (6.21)

So that applying a rotation in spin space amounts to the same rotation of the d-vector
[see (6.11)] for an elemental rotation of d:R�,S|�〉 = |� (R�(d))〉 (see [3]).

6.5.2 Rotation in Real Space

For rotations in real space (on the orbital degrees of freedom), we should calculate
the effect of − i

�
n̂.L , with L = r∧ (�

i ∇r
)
. Writing D(k) = [d(k)·σ ]σ2, we get
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− i

�
L|�〉 = − (r ∧ ∇r)

∫
dk e−ik·rψ

∑

αβ

〈β|D(k)|α〉|αβ〉

= ψ
∑

αβ

∫
dk i(r ∧ k)e−ik.r〈β|D(k)|α〉|αβ〉

= ψ
∑

αβ

∫
dk 〈β|D(k)|α〉(k ∧ ∇k)e

−ik.r|αβ〉

= −ψ
∑

αβ,i

∫
dk

∂

∂ki
(〈β|D(k)|α〉k) ∧ k̂i e

−ik.r|αβ〉

= −ψ
∑

αβ

∫
dk e−ik.r〈β|(k ∧ ∇)D(k)|α〉|αβ〉 ,

so

− i

�
n̂.L|�〉 = |�(−in̂·Lkd(k))〉, with Lk = k ∧ 1

i
∇k . (6.22)

This last expression shows that a rotation in real space acts, as it should, on the order
parameter according to its orbital state: p-wave, f -wave, … for a triplet supercon-
ductor, transposed as usual in the reciprocal space.

6.5.3 Change of Quantization Axis: Application to ESP
States

In order to get more familiar with rotations of the d-vector, let us start with an
exercise:

Exercise 1 Consider the very first example of Sect. 6.3.1 to observe the fate of the
d-vector under a change of orientation of the quantization axis on a simple | ↑↑〉
state. Solution in Sect. 6.11.

Beyond this ‘trivial’ example, understanding the behaviour under rotation of the
d-vector is particularly useful to get a more precise idea about some specific spin
states. For example, we can easily understand that any state |�〉 = �0| ↑↓ + ↓↑〉
can be considered as an ‘equal spin pairing’ (ESP) state, with equal weight on | ↑↑〉
and | ↓↓〉 spin components. Indeed, its d-vector is simply

d = 1

ψ

⎛

⎝
0
0

�0

⎞

⎠ .

Let us rotate the quantization axis by −π/2 around an axis 
̂ in the x-y-plane with
an angle ϕ from the x-axis. To get the coordinates of d in the new frame, we should
rotate it by π/2 around 
̂ [remember (6.11)]
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�̂ =
⎛

⎝
cosϕ

sin ϕ

0

⎞

⎠ ,

R�(d) = sin(π/2) �̂ ∧ d = 1

ψ

⎛

⎝
sin ϕ�0

− cosϕ�0

0

⎞

⎠ ,

�↑ = ψ(−dx + idy) = −ieiϕ�0 ; �↓ = ψ(dx + idy) = −ie−iϕ�0 ,

which is indeed an ESP state with only ↑↑ and ↓↓ spin components. It is a good
exercise to check that, reciprocally, any ESP state with equal weight for the up- and
down-spin components can also be written as a pure Sz = 0 state for some choice of
the quantization axis.

Exercise 6.2 Show that any ESP state with equal weight for the up- and down-spin
component can also be written as a pure |Sz = 0〉 state. Solution in Sect. 6.11.

6.6 Some Uses of the d-Vector Representation

6.6.1 Amplitude of the d-Vector

As promised, let us say a few words on the question of normalization of the d-vector.
For s-wave superconductors, in the simplest cases, we know that the order parameter
can be taken as proportional to the gap. Of course, this is wrong in the general
case, e.g. gapless superconductivity exists (induced by a critical amount of magnetic
impurities for example). But the idea is that |ψ |2 somehow represents the superfluid
density. For a spin-triplet superconductor, we can define this quantity as

〈�|�〉 =
∮

d


4π

∑

α,β

ϕ∗
βαϕαβ =

∮
d


4π
tr(ϕ∗(n̂)ϕ(n̂))

= |ψ |2
∮

d


4π
tr(σ2(d∗ · σ)(d · σ)σ2) = 2|ψ |2

∮
d


4π
|d(n̂)|2 .

Note that the definition above is coherent with the fact that from the very beginning,
we did not normalize (by 1√

2
) the | ↑↑ + ↓↓〉 component of |ψ〉 in (6.3). |d(n̂)|2 can

be interpreted as the angular-dependent superconducting (or superfluid) density, and
by convention, one takes ∮

d


4π
|d(n̂)|2 = 1 . (6.23)

So on calculating averaged quantities 〈�|O|�〉/〈�|�〉, one should remember that
〈�|�〉 = 2|ψ |2.
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6.6.2 Spin Direction

Up to now, we discussed the properties of the d-vector under rotation but we did not
unveil the signification of its direction. As announced, it cannot be straightforward,
as in the general case, d is a complex vector. But it should be related to the spin. So
let us calculate S|ψ〉, in the same way we performed the calculation of the effects of
rotations in spin space, using the generator [Sect. 6.5.1, (6.21)]

from which we deduce immediately that

d · S|�〉 = 0 . (6.24)

This means that if d is real (up to a phase factor), it is perpendicular to the direction
of the Cooper pairs spin (quantization axis). More explicitly the average spin at a
given wave vector k of the Fermi surface can be calculated as

(6.25)

6.6.3 Non-unitary States

The above equation is important. Indeed, if d(k) ∧ d∗(k) is non-zero, the state is
called a ‘non-unitary state’ and it has some more involved properties. Moreover,
in general, the fact that d(k) ∧ d∗(k) is non-zero means that locally, on the Fermi
surface, the Cooper pairs spin is non-zero. But it does not mean that globally, the
superconductor is spin-polarized. Conversely, if the superconductor is globally spin-
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polarized, it is necessarily in a non-unitary state, where d∗ is not proportional to d,
see Sect. 6.9 on ferromagnetic superconductors.

This notion of ‘non-unitary’ state is usually bewildering, and it is useful to make
some simple calculations in order to get more used to it. For example, we can check
what are the conditions under which an ESP state can also be non-unitary. An ESP
state has only �↑ and �↓ components, so that its d-vector will be of the form

d = ψ

⎛

⎝
1
2 (−�↑ + �↓)

− i
2 ( �↑ + �↓)

0

⎞

⎠ . (6.26)

Then

d ∧ d∗ = (dxd
∗
y − dyd

∗
x )ez

= i|ψ |2
4

[(−�↑ + �↓)(�↑∗ + �↓∗) + (�↑ + �↓)(−�↑∗ + �↓∗)]ez

= −i|ψ |2
2

[|�↑|2 − |�↓|2]ez .

From (6.23), we get that |ψ |2
2 (|�↑|2 + |�↓|2) = 1 . So

i�d ∧ d∗ = �
[|�↑|2 − |�↓|2]
|�↑|2 + |�↓|2 ez . (6.27)

The conclusion is simple: an ESP state is non-unitary only if the amplitude of the
�↑ and �↓ components is different on some part of the Fermi surface.

6.6.4 Orbital Moment

In the same way, from (6.22), we calculate that the average orbital moment per
Cooper pair is [1]

〈�|L|�〉
〈�|�〉 =

∮
d


4π

�

2i

∑

α,β,γ,δ

〈γ |σ2(d∗ · σ)|δ〉 〈β|(k ∧ ∇k)(d(k) · σ)σ2|α〉〈γ δ|αβ〉

=
∮

d


4π

�

2i
tr
(
(d∗ · σ)(k ∧ ∇k)(d(k) · σ)

)
,

〈L(k)〉 = �

i

∮
d


4π

∑

i

d∗
i (k ∧ ∇k)di (k) . (6.28)
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Note that if d is real, 〈L〉 is zero (if not, it would be imaginary!). This appears in
(6.28) from

∮
d


4π

∑

i

d∗
i (k ∧ ∇k)di (k) =

∮
d


8π

∑

i, j

(k ∧ e j )
∂

∂k j
d2i (k)

= −
∮

d


8π

∑

i, j

(e j ∧ e j )d
2
i (k) = 0 .

A last remark on this point: superconductors for which 〈L〉 is non-zero are nowadays
called ‘chiral superconductors’ and quite looked-after for their potential topological
properties [4]. Note, however, that if only triplet superconductors can have a non-
zero 〈S〉, this is not the case for 〈L〉: both spin-singlet and spin-triplet can be chiral.
Naturally, in case of spin-singlet, the superconductor needs to be unconventional (not
s-wave), and intrinsically complex, so that 〈L〉 can be non-zero. This is the case, for
example, of d-wave superconductors of type “d + id” or (kx ± iky)kz…

6.6.5 Excitation Energy of Quasiparticles

Wewill not derive the energy spectrum frommicroscopic theory, just report the results
(see [2] for example): for triplet superconductors in a unitary state, the expression
of the energy of elementary excitations is very similar to that of singlet anisotropic
superconductors,with thek dependence of the energygap controlled by the amplitude
of d(k)

Ek =
√

ξ 2
k + �2

(|d(k)|2) . (6.29)

However, for non-unitary states, two branches appear in the spectrum, depending
on the spin orientation of the excitations with respect to 〈S〉: it is as if they are
‘Zeeman split’ by 〈S〉. So the energy gap is expressed in such a case as

Ek =
√

ξ 2
k + �2

(|d(k)|2 ± |d(k) ∧ d∗(k)|) . (6.30)

Hence, this is another true difference with respect to singlet superconductors.
We can also see how both (6.29) and (6.30) read when using not the d-vector

notation, but expression like (6.17) for the order parameter. In the unitary case, the
gap �(k) would be expressed as

�(k) =
√
1

2

(|�↑(k)|2 + |�↓(k)|2)+ |�0(k)|2 .

And in the case of non-unitary states, if we take the ‘simple’ example of ESP states,
using expression (6.27) for d ∧ d∗ we derive easily that
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�(k) =
√

�2
(|d(k)|2 ± |d(k) ∧ d∗(k)|)

= |�↑(k)| or |�↓(k)| .

(6.31)

This last expression shows concretely why ‘non-unitary states’ are a distinctive fea-
ture of spin-triplet superconductors. It can be also anticipated that this expressionwill
be particularly useful for ferromagnetic superconductors, where band polarization
can lead to a large difference between |�↑(k)| and |�↓(k)| (see Sect. 6.9). Expres-
sion (6.30) gives a general formula for the two gap values of a non-unitary state, even
if it is not an ESP state: as will be seen later, UPt3 in its B-phase could produce such
a case (see Sect. 6.8.2.3).

6.7 The Spin–Orbit Issue

Before discussing some emblematic examples of p-wave superconductors, let us say
a fewwords concerning the question of spin–orbit coupling. Indeed, when discussed
for real materials (except for superfluid 3He), it covers two different aspects which
should be distinguished to avoid confusion. The first is the usual spin–orbit coupling
at the atomic scale, discussed already in the normal phase as it prevents the spin
S to be a good quantum number. In a solid, symmetries can help to overcome this
problem:

• If the system has an inversion centre and time-reversal symmetry, quasiparticles
with a given wave vector k are necessarily degenerate. This allows to define a
‘pseudo-spin 1/2’ and to build Cooper pairs with this pseudo-spin state: replacing
‘spin’ by ‘pseudo-spin’ is all that is required to keep everything else unchanged.

• If the system has an inversion centre, but not necessarily time-reversal symmetry,
then, at least, one can distinguish between odd-parity and even-parity states.

• If there is no inversion centre, but time-reversal symmetry, one can still build
Cooper pairs; however, there is no such distinction any more between even- or
odd-parity states. Abusively, one can say that singlet and triplet pairings are mixed
together. Experimentally, large upper critical fields outpassing the paramagnetic
limit are commonly found for such systems.

6.7.1 Spin–Orbit and the Superconducting Order Parameter

However, there is also another issue for ‘triplet’ superconductors with spin–orbit
interaction: we are now speaking of spin–orbit coupling between the spin and orbital
parts of the Cooper pairs, as done in the case of superfluid 3He: the problem is that
the ‘atomic-scale’ spin–orbit coupling can be very large (see, for example, what
happens in the 3He nuclei!), whereas the coupling between the total orbital moment
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of the Cooper pair (an object of a coherence length scale) and the total spin of the
Cooper pairs can be much weaker. And in real solid, it is very difficult to either
calculate (predict) or to measure this spin–orbit interaction. This question is very
important because it determines the symmetry group which has to be considered for
the classification of the different superconducting states. If spin–orbit is weak, the
relative orientation of spin and orbit should be decoupled: so, for example, one can
imagine that the spin could reorient ‘freely’ under the action of an external field.
If spin–orbit is strong, the orbital state (the gap nodes for example) expected to
be pinned on the crystal lattice will prevent such a reorientation of the spin state.
Therefore

• If the spin–orbit interaction is weak, the symmetry group considered for the clas-
sification of the possible superconducting states will be G ⊗U (1) ⊗ T ⊗ RS ,
whereRS are the (3D) rotations in spin space, G is the crystal point group, U (1)
the gauge symmetry (always broken in the superconducting state) and T the time-
reversal symmetry. Due to RS , d should reorient under field to minimize the
Zeeman energy.

• If the spin–orbit interaction is strong, the symmetry group considered for the clas-
sification of the possible superconducting states will be G ⊗U (1) ⊗ T , meaning
that the d-vector is expected to be ‘pinned’ on the lattice. In such a case, addi-
tional spin anisotropy may appear in the superconducting state, possibly detected,
for example, by an anisotropy of the Knight-shift reduction below TSC , or by an
anisotropic paramagnetic limitation.

For most of the candidate p-wave superconductors, determining what is the best
of the two limits for the description of the system remains an open issue (see, for
example, the discussion on UPt3 in Sects. 6.8.2.2 and 6.8.2.3).

6.7.2 Anisotropy of the Susceptibility for the Strong
Spin–Orbit Case

Experimentally, an important question when analysing the behaviour of a potential
triplet superconductor is the Pauli depairing effect and its anisotropy on the upper crit-
ical field, or equivalently, the anisotropy of the change of the Knight shift below TSC ,
both of which depending on the Cooper pairs spin susceptibility. Supposing that we
are in the strong spin–orbit limit, the question is to derive from the possible order
parameters, in which directions there will be no change of the electronic spin sus-
ceptibility between normal and superconducting phases, and in which directions, if
any, there will be at least a partial suppression of this spin susceptibility.

As amatter of fact, it is important to realize that even spin-triplet superconductors,
whatever the spin–orbit regime, can present a reduction of the susceptibility for all
orientations of the magnetic field. We will see below (Sect. 6.8.1) that superfluid 3He
realize, in its B-phase, an A1u state for which d ∝ k. This means that, on each point
of the Fermi surface, the order parameter is described by a pure |Sz = 0〉 state if the
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quantization z-axis is taken along k. Such a |Sz = 0〉 state is equivalent to the spin-
singlet case as regards susceptibility, leading to a vanishing susceptibility. In fact, it
can be shown that for such an A1u state, on average, the susceptibility is reduced to
two-third of the normal state susceptibility at T = 0, as if for a given field direction,
one-third of the spins were in the |Sz = 0〉 state [1].

At the opposite, for an ESP state, where Cooper pairs are formed only with spins
of the same direction, we expect no change of the susceptibility for fields along the
quantization axis. However, this does not tell us what to expect in the perpendicular
directions.

Maybe the easiest way to understand if the spin susceptibility is reduced or not for
a given field direction, and whatever the order parameter, is to rewrite the d-vector
with the new quantization axis in this field direction, and check in this representation,
whether or not the z-component of the d-vector (corresponding to the amplitude of
the |Sz = 0〉 state for that direction) is zero. Changing the quantization axis, and
rewriting the d-vector for this new quantization axis, amounts to rotate the reference
frame, or rotate in the opposite direction the d-vector in spin space (see Sect. 6.5.1). It
is easy to see [see (6.11) for the rotation of the d-vector] that the z-component of the
d-vector, when changing the quantization axis for the x- or y-axis, is, respectively,
−dx or dy . What it means is that, in the case of strong spin–orbit coupling, where
the d-vector cannot reorient depending on the field (H) direction:

• The |Sz = 0〉 component of the order parameter, where z is the field direction, is
proportional to the d-vector projection along the field direction [which generalizes
(6.24), which had a physical meaning only for real d-vectors]: if (d·H) is non-zero,
there will be at least a partial suppression of the spin susceptibility and so, Pauli
depairing for the upper critical field, for fields applied in this direction.

• Whatever the d-vector, there is always at least one direction, where there will be
Pauli depairing (otherwise, d should be the null vector).

Coming back to the question of ESP states, if the phase between the �↑ and �↓ is
constant on the Fermi surface and it is a unitary state, on top of the quantization axis,
there is another direction (hence a whole plane) for which there is no change of the
spin susceptibility (and no Pauli depairing) and a perpendicular direction for which
the spin susceptibility is completely suppressed (see Sect. 6.11.5). For example, if d
is of the form (6.26)

d = ψ

⎛

⎝
1
2 (−�↑ + �↓)

− i
2 ( �↑ + �↓)

0

⎞

⎠ ,

with �↑ = �↓, then there is no Pauli depairing for fields in the x-z-plane and full
Pauli depairing (as in the singlet case) for field along the y-axis. If the ESP state is
non-unitary (|�↑| �= |�↓| on some part of the Fermi surface), then for sure, there is
at least partial Pauli depairing in the two directions perpendicular to the quantization
axis and still no Pauli depairing for fields along the quantization axis.
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6.8 d-vector Representation of Some Known (or Suspected)
p-Wave Superconductors

6.8.1 Phases of Superfluid 3He

3He has been the very first case for p-wave superconductivity (superfluidity, to be
precise!), and it is, beyond contest, a true paradigm for this state ofmatter. The reasons
are that, despite its very low superfluid transition temperature (≈ 1mKon themelting
curve), the spin state and most of the superfluid properties could be identified and
studied with tremendous precision thanks to nuclear magnetic resonance (NMR): in
superfluid 3He, the Cooper pairs spin is the nuclear spin of the 3He atoms, which are
directly probed by NMR. Moreover, the system is rotationally invariant, so with the
simplest (spherical) possible Fermi surface, andwith spherical harmonics as basis for
the irreducible representations of the superconducting order parameter. In k-space,
for a p-wave state, they read

Y11(k̂) = −
√
3

2
(k̂x + ik̂y) ; Y1−1(k̂) =

√
3

2
(k̂x − ik̂y) ; Y10(k̂) = −√

3k̂z .

(6.32)
It can be explicitly checked that [see (6.22)]

k̂z · Lk Y1m = k̂z · (k ∧ 1

i
∇k Y1m) = m Y1m . (6.33)

Another reason forwhich superfluid 3He is a paradigmof p-wave superconductors
is that it presents a rich phase diagram (shown in Fig. 6.31), with three well-identified
phases: two (called A and B) in the temperature–pressure plane, and an additional
(A1) phase undermagnetic fields, which are key references. Amain topic these days is
that of the topological properties of some superconductors, which has been addressed
in great detail some tens of years ago for superfluid 3He [5]. Let us examine them
quickly.

6.8.1.1 B-Phase

The B-phase of superfluid 3He is simply characterized by

d(k) = k̂ ; or explicitely
|�(k̂)〉 = ψ

(
(−k̂x + ik̂y)| ↑↑〉 + (k̂x + ik̂y)| ↓↓〉 + k̂z(| ↑↓〉 + | ↓↑〉)

)
.

(6.34)

1Adapted from ‘Heliums egenskaper vid låga temperaturer’, P. Berglund, Kosmos 1988, s. 63
(Courtesy of the Swedish Physical Society).
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Fig. 6.3 Phase diagram, in the temperature–pressure–magnetic field space, of the superfluid phases
of 3He. Three different phases, called B, A and A1, corresponding to different symmetries and d-
vectors have been identified. The gap structure is also shown, represented by the distance between
the inner sphere (the Fermi surface) and the exploded view of the outer surface. There is a uniform
gap in the B-phase, and a nodal gap (with two nodes at the poles) in the A-phase. The A1 phase,
which appears only under magnetic field, is non-unitary and the gap is like that of the A-phase on
the majority spin Fermi sheet, and zero on the other (only half the Fermi surface is paired)

As d∗(k) = d(k), this state is unitary and has both 〈S〉 = 0 and 〈L〉 = 0. Moreover,
|d(k)| = 1, so that the gap is uniform on the Fermi surface, even though the average
of d(k) is zero.

In the simplest models, this B-phase should be the state of lowest free energy,
notably due to the fact that the gap is fully open over the whole Fermi surface.
However, this state has a reduced spin susceptibility deep in the superfluid state (see
the discussion in Sect. 6.7.2). As the pairing mechanism involves spin fluctuations,
this may be unfavourable compared to other states, notably ESP states, where such a
reduction of the susceptibility is absent (this is the so-called ‘feedback’ mechanism).
Therefore, as seen in Fig. 6.3, another phase, the A-phase, is stable notably along
the melting line and becomes the dominant phase under field. As will be seen below,
this A-phase is indeed an ESP state and it has a nodal gap structure.
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6.8.1.2 A-Phase

The A-phase of superfluid 3He is simply characterized by

d(k) =
√
3

2
(k̂y + ik̂z, 0, 0) ,

|�(k̂)〉 = −ψ

√
3

2
(k̂y + ik̂z)(| ↑↑〉 − | ↓↓〉) .

(6.35)

So, in the A-phase, the excitation gap vanishes for ky = kz = 0 ; as shown in Fig. 6.3,
it has two nodes on the poles of the Fermi surface.Moreover, this ESP state is unitary,
as 〈S〉 = 0 (since d∗(k) ∧ d(k) = 0). But 〈L〉 is non-zero. In fact, the orbital state
is selected (by dipolar coupling), so that d and 〈L〉 are either parallel or antiparallel.
Following (6.28)

(6.36)

The physics of this phase is very rich, notably when considering the weak coupling
between the orbital and spin moments due to spin–orbit interaction, the existence of
spin currents, the chirality of the excitations close to the nodes… Again, the review
by A. J. Leggett [1] is a seminal paper.

6.8.1.3 A1 Phase

The A1 phase appears under field with only one spin direction paired: it has the
same orbital moment but in addition also a finite average spin. If we keep the same
convention for the normalization of |�(k̂)〉 and d(k), despite the fact that only half
the Fermi surface is paired, we get

|�(k̂)〉 = −ψ
√
3(k̂y + ik̂z)| ↑↑〉 ,

d(k) =
√
3

2
((k̂y + ik̂z),−i(k̂y + ik̂z), 0) . (6.37)

For this A1 phase
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〈S〉 = i�
∮

d


4π
(dxd

∗
y − dyd

∗
x )ez

= 2 �

∮
d


4π
|ky + i kz|2ez/2

∮
d


4π
(k2y + k2z )

= � ez ,

〈L〉 = � ez .

(6.38)

Its stability arises from the fact that when the Fermi surface is polarized, the density
of states increases with kF, and from the fact that, in 3He, the spin–orbit interaction
is very weak. So, the up-spin and down-spin Fermi surfaces are almost completely
decoupled and the largest Fermi surface may have a larger transition temperature
than the other. Hence, the stability range of this A1 phase grows under field (see
Fig. 6.3).

As we shall see, the situation should be completely different in uranium-based
ferromagnetic superconductors, where such a phase is very unlikely due to the cou-
pling between the different Fermi sheets induced by spin–orbit interaction: like for
most multigap superconductors, in such a case, there is a unique transition temper-
ature, even if the different gaps may have different sizes. A possible very singular
exception will be discussed in Sect. 6.10. Coming back to 3He, the A1 phase is the
paradigm of a non-unitary state, with a finite value of 〈S〉, a vanishing gap on one
Fermi surface, and a nodal gap (axial gap) identical to that of the A-phase on the
other Fermi surface.

6.8.1.4 Planar and Polar Phases

Some other states may also be favoured in 3He, due to peculiar constraints [lower
dimensions, aerogel (disordered) background, …]. These are in any case useful ref-
erence states for the more complicated cases of superconductors in crystal lattices.
Notably, there is the planar phase and the polar phase, which are derived from the
B-phase. The planar phase is defined by

d(k) =
√
3

2
(k̂x , k̂y, 0) ,

|�(k̂)〉 = ψ

√
3

2

(
(−k̂x + ik̂y)| ↑↑〉 + (k̂x + ik̂y)| ↓↓〉

)
.

(6.39)

Conversely, the polar phase is defined by

d(k) = √
3(0, 0, k̂z) ,

|�(k̂)〉 = ψ
√
3k̂z(| ↑↓〉 + | ↓↑〉) .

(6.40)
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These two states have also 〈S〉 = 0 and 〈L〉 = 0; however, the planar state has point
nodes along the z-axis whereas the polar state has a line of nodes on the equator.
Both are also unitary, ESP states (see Sect. 6.5.3).

6.8.2 UPt3 and Sr2RuO4

UPt3 is a ‘heavy fermion’ metal, meaning that it is an inter-metallic system with
very strong electronic correlation effects, leading to a strong renormalization of the
effective mass of the electronic quasiparticles. It has been the first heavy fermion
where these effective masses have been directly measured (up to 160 times the free
electron mass) on the different Fermi sheets, by quantum oscillations, and it has also
been the first superconducting system (after superfluid 3He) where phase transitions
between different superconducting phases have been observed (see [6] for a review
and Fig. 6.4).

6.8.2.1 Phases of UPt3

The reasons leading to these phase transitions and the nature of the various supercon-
ducting phases have been the subject of many different proposals. There is a global
consensus that superconductivity in UPt3 should be triplet (odd parity). Neverthe-
less, many questions remain without a definite answer. A first (still open) question,
for example, is whether or not the spin component is free to rotate in the hexagonal
crystal lattice of UPt3. This will determine the response of UPt3 under the application
of an external field when it is superconducting. The orbital part (the k-dependence)
of the superconducting order parameter is constrained by the broken symmetries in
the superconducting state inducing, for example, nodes of the order parameter and so
of the gap in some particular directions: if spin–orbit coupling is strong enough, then
the d-vector is expected to be pinned in some crystal direction; if spin–orbit coupling
is weak, as in superfluid 3He, the d-vector should be free to rotate and the response
to a magnetic field should have the same anisotropy as in the normal phase. Because
pairing is mainly driven by the 5 f electrons, spin–orbit coupling is expected to be
strong also for the Cooper pair wave function, and pinning of the d-vector is likely.
However, this hypothesis has no definite experimental support (see Sect. 6.8.2.3).

6.8.2.2 E2u Representation

Among the models assuming such a strong spin–orbit coupling pinning the d-
vector in a fixed crystallographic direction, the so-called E2u representation has
been strongly developed. It is an ‘f -wave’ order parameter, which can have various
symmetries (six basis functions are necessary to describe the most general order
parameter). Among these, the most successful [7] proposes a d-vector with some
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Fig. 6.4 Phase diagram, in the temperature–magnetic field space, of the superconducting phases of
UPt3. Three different phases called A, B andC corresponding to different symmetries and d-vectors
have been identified. The gap structure is also shown for the different phases, like for superfluid
3He in Fig. 6.3, as proposed for the ‘E2u model’. This E2u model is coherent with results from
thermal transport and upper critical field measurements, but not with NMR measurements of the
Knight shift (see Sect. 6.8.2.3)

accidental restrictions (like the fact that the d-vector would only have components
along the hexagonal c-axis); with these restrictions, it matches numerous experimen-
tal probes.

d(k) = (ϕA(T )2kxkykz + ϕC(T )kz(k
2
x − k2y)

)
ez . (6.41)

In the A-phase, ϕC(T ) = 0, in the C-phase, ϕA(T ) = 0, and in the B-phase, at
low temperature and low field, ϕA(T ) = ±i ϕC(T ) : d(k) = ϕ(T )kz(kx ± iky)2ez .
For this model, all phases are unitary, but the B-phase is chiral, with a non-zero 〈L〉.
Muon experiments or recently polar Kerr effect [8] could have detected such a chiral
component.

With its pinned d-vector, in the A- andC-phases, the spin component is zero along
the c-axis (d ‖ ez), and for any field direction in the basal plane, the order parameter
behaves as an ESP state (see Sect. 6.5.3). So the Pauli spin susceptibility should be
suppressed (like for a singlet superconductor), whereas it will be unchanged in the
basal plane. This feature, which guided the choice of this E2u representation, can
explain the famous ‘crossing’ of the upper critical fields (Hc2) of UPt3[9] along the
basal plane (no Pauli limitation of Hc2) and the c-axis (Pauli limitation of Hc2).
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6.8.2.3 E1u Representation

However, NMR experiments seem to be in contradiction with this interpretation of
the crossing of the upper critical fields of UPt3. Indeed Knight-shift measurements,
which are the closest to a measure of the spin susceptibility in the superconducting
state, found no change in the superconducting state for fields applied along the a
or b directions in the C-phase, but also no change for field along the c-axis except
at very low field deep inside the B-phase [11]. Therefore, other models have been
proposed for UPt3, which are much closer to the situation of superfluid 3He, with a
weak spin–orbit coupling allowing for a field reorientation of the d-vector as long
as the field is ‘strong enough’. Knight-shift measurements can tell nothing on the
gap nodes, but combining angle-dependent thermal conductivity measurements [10]
with the NMR result, a E1u scenario has been proposed, predicting a non-chiral state
[d(k) ∝ (5k̂2c − 1)(k̂aeb + k̂bec) in the B-phase]. This scenario can also more easily
give account of some other features of the phase diagram (like the existence of a
tetracritical point in all field directions): see Fig. 6.5. For the different phases, in this
model, the d-vector would be as shown in Table 6.1.

So, as can be seen from Table 6.1, at low fields the d-vector does not depend on
the field orientation [check the A-phase and B-phase-(low H ) lines of the table]. In
the B-phase, for H ‖ c, there is a field-induced reorientation of the d-vector: at low
field, with d ∝ (k̂a eb + k̂b ec), the d-vector is not perpendicular to the c-axis (except
on the line k̂b = 0) so there is a finite |Sz = 0〉 component of the spin along the
field. This would be imposed by the orbital part of the wave function and spin–orbit
interaction or coupling to the small antiferromagnetic moments acting as a symmetry
breaking field. But for fields above 0.22T, with d ∝ (k̂a eb + k̂b ea), the d-vector is
real and always perpendicular to the c-axis, so we know that it is equivalent to an
ESP state in that direction. Hence, the field-induced rotation of the d-vector. In
the high-field C-phase, where the Pauli limitation could be at play, we note that in
Table 6.1 the d-vector is always perpendicular to the field direction, so that again, it
is an ESP state explaining the observed absence of change of the Knight shift (but in
contradiction with the Hc2 anisotropy). Note also that all these features are preserved
if in the B-phase, the d-vector is a complex combination of eb and ec, or eb and ea:
(k̂a eb ± ik̂b ec); (k̂a eb ± ik̂b ea).

Then, the B-phase would be chiral (as in the E2u model), but also non-unitary
(d(k) ∧ d∗(k) �= 0, see Sect. 6.6.3). Sowas the original proposal in [11]. It is an inter-
esting example of a non-unitary state with no global spin polarization, e.g. with d ∝
(5k̂2c − 1)(k̂a eb + ik̂b ea), we derive from (6.25) and (6.31) that 〈S(k)〉 ∝ (5k̂2c −
1)2k̂a k̂bec and �↑(k) ∝ |(5k̂2c − 1)(k̂a + k̂b)|, �↓(k) ∝ |(5k̂2c − 1)(k̂a − k̂b)|. So
indeed, averaging over the Fermi surface leads to no net spin and equal averaged
gap amplitudes for up-spins and down-spins, even though they are different for most
k of the Fermi surface.
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Fig. 6.5 Phase diagram in the temperature–magnetic field space of the superconducting phases
of UPt3 : the same phases as in Fig. 6.4 are represented, but different gap structures are proposed,
according to the E1u symmetry (the Fermi surface is reduced to a point in this representation).
The magnetic field H is parallel to the lattice vector b. Reproduced from [10] with permission
(Copyright 2012, American Physical Society)

6.8.2.4 p-Wave Superconductivity in Sr2RuO4

This system has also early been proposed as a candidate for p-wave superconduc-
tivity. In fact, due to the accessible range for the studies (TSC is slightly larger than
1K), and the absence of radioactive elements, as well as the popularity of oxides, it
is certainly the most studied ‘p-wave’ superconductor ever (for a review, see [12]).
The most ‘fashionable’ order parameter is very similar to the superfluid 3He A-phase

d(k) ∝ (kx ± i ky)ez . (6.42)
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Table 6.1 The d-vector for the various phases and magnetic field orientations in the E1u model of
UPt3, as proposed in [10, 11]. The distinction ‘low field’ or ‘high field’ is meaningful only in the
B-phase for H ‖ c, and is suggested by NMR measurements which show a decrease of the Knight
shift in the whole B- and A-phases for H ‖ b, and for H ‖ c in the B-phase only, and for fields
lower than 0.22T. Above this value, the d-vector would rotate and the change of the Knight shift
disappears (see [11])

Phase H ‖ a H ‖ b H ‖ c

A (5k̂2c − 1)(k̂a eb) (5k̂2c − 1)(k̂a eb) (5k̂2c − 1)(k̂a eb)

C (5k̂2c − 1)(k̂b ec) (5k̂2c − 1)(k̂b ec) (5k̂2c − 1)(k̂b ea)

B (low H ) (5k̂2c − 1)(k̂a eb + k̂b ec) (5k̂2c − 1)(k̂a eb + k̂b ec) (5k̂2c − 1)(k̂a eb + k̂b ec)

B (high H ) (5k̂2c − 1)(k̂a eb + k̂b ec) (5k̂2c − 1)(k̂a eb + k̂b ec) (5k̂2c − 1)(k̂a eb + k̂b ea)

It is a unitary chiral statewith 〈L〉 = ±� ez and point nodes along the c-axis.However,
due to its quasi-2D Fermi surface, there is no k vector on the Fermi surface at the
node position. There are many contradictory experiments on this system and several
have claimed to have detected or refuted the time-reversal symmetry breaking in this
compound (this is also true for the B-phase of UPt3). So today, there is still no firm
conclusion on whether or not (6.42) is the correct gap symmetry for Sr2RuO4, and
even on whether or not it is really a p-wave superconductor. Indeed, the most recent
NMR studies corrected previous results and demonstrate now that the Knight shift
does decrease in the superconducting phase when the field is applied in the basal
plane, ruling out one of the strongest support for an order parameter of the above
form [13, 14].

6.9 Ferromagnetic Superconductors

Since 2000, three systems with a true homogeneous coexistence of ferromagnetic
order and superconductivity have been discovered; all of them are uranium based.
The first, UGe2 [15], is only superconducting under pressure, the other two, URhGe
[16] andUCoGe [17], are superconducting at ambient pressure. In the three cases, the
same 5 f electrons from the uranium ions are responsible for the ferromagnetic and
the superconducting orders, and the Curie temperature (TCurie) is always larger than
the superconducting transition temperature (TSC ). Intuitively, these two orders seem
antagonistic, as it is known that superconductivity is suppressed by large fields.
However, it is important to be more precise in order to understand why and how
ferromagnetism and superconductivity might coexist.

The first point to have in mind is the two kinds of magnetic fields associated
with ferromagnetic order: there is an internal magnetic field Bint also called the
‘dipolar field’, arising from the spontaneous magnetization in the sample (B ≈ M,
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Table 6.2 Orders of magnitude of some important parameters, including an estimate of the inter-
nal (dipolar) magnetic field Bint (coming from the spontaneous magnetization) and the effective
exchange field Bexc, in the three known uranium-based ferromagnetic superconductors. For UGe2,
which is superconducting only under pressure, we have indicated the Curie temperature and the
ordered moment μord at the pressure of 1.2 GPa, where TSC is maximum. For Bexc we only give a
lower bound deduced from the value of the Curie temperature

UGe2 (1.2 GPa) URhGe UCoGe

TCurie 35 K 9.5 K 2.5 K

TSC 0.8 K 0.25 K 0.5 K

μord ≈ 1 μB 0.4 μB 0.05 μB

Bint ≈ M 0.2 T 0.09 T 0.1 T

Bexc > kB
μB

TCurie 50 T 13 T 4.5 T

if one neglects demagnetization effects) and there is the exchange field Bexc which
is a very short range effective magnetic field, acting only on the electron spins, and
arising from the Coulomb interaction and the exclusion principle. This exchange
field appears in a mean-field treatment of the spin–spin exchange interaction term.
These two fields have very different orders of magnitude. The first is rather small in
these systems, owing to the weak ordered moment (see Table 6.2); indeed, the three
compounds, when they are not in the itinerant limit, remain close to it, so that this
internal field is in any case much smaller than the (large) orbital upper critical field.
However, the exchange field, whose scale is fixed by kBTCurie/µB, is much larger
than the Pauli paramagnetic limit (of the order of 2kBTSC/µB). Table 6.2 reports the
values of these fields for the different compounds; a recent review has been published
in [18].

6.9.1 ESP States

In these uranium-based ferromagnetic superconductors, superconductivity sets in
below TCurie, so that Cooper pairs are formed from a spin-polarized Fermi surface.
Intuitively, one can guess that if the polarization is large enough (typically, if the
difference in the Fermi wave vectors is larger than the inverse coherence length), this
leaves little choice but to formCooper pairs ‘independently’ on the Fermi sheets with
different spin orientations (see Fig. 6.6). In other words, the strong exchange field
present in the uranium-based ferromagnetic superconductors seems only consistent
with an odd-parity (triplet) superconducting order parameter. Moreover, in case of
large polarization of the bands (compared to �), one expects only ESP states to be
favoured. Choosing the quantization axis along the easy axis

|�〉 = �↑| ↑↑〉 + �↓| ↓↓〉 . (6.43)
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Fig. 6.6 Scheme of the
spin-dependent density of
states in a ferromagnetic
metal. If superconductivity
develops on spin-polarized
Fermi surfaces, due to the
difference of wave vectors at
the Fermi level, mainly
up-up and down-down
Cooper pairs can be formed
(short arrows). This leads to
an ESP state with different
weights for the majority and
minority spins, so to a
non-unitary ESP state

In such a case, the d-vector would have the general form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx = 1

2ψ
(−�↑ + �↓)

dy = −i

2ψ
(�↑ + �↓)

dz = 0

. (6.44)

Then 〈S〉 at a given k is

〈S〉 = i �(d ∧ d∗)

= − �

4ψ

(
(−�↑ + �↓)(�↑∗ + �↓∗) + �↑ + �↓)(−�↑∗ + �↓∗)

)
ez

= �

(|�↑|2 − |�↓|2)
(|�↑|2 + |�↓|2)ez .

(6.45)
This has been already seen when discussing ESP states [see (6.27)]. It is a very
natural result; for an ESP state, there is a finite spin (and non-unitary state) if and
only if the weights of the | ↑↑〉 and | ↓↓〉 components are unbalanced. Conversely,
for a ferromagnetic superconductor with at least partial band polarization, one does
expect to have such a non-unitary state, which should be an ESP for a ‘strong enough’
exchange field. It could also be chiral, but it should be at least non-unitary. Before
that, let us seewhat are the possible order parameter fromgroup theory considerations
for orthorhombic systems [19].
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6.9.2 Symmetries

Only two one-dimensional representations are left, called A and B, due to the low
orthorhombic symmetry. In the paramagnetic state, the first one (A) looks very much
like the B-phase of superfluid 3He

dA(k) ∝ ux k̂xex + uyk̂yey + uzk̂zez , (6.46)

where ux , uy , uz are real functions of k with full orthorhombic symmetry. So in the
paramagnetic state, we start from

⎧
⎪⎪⎨

⎪⎪⎩

�
↑
A = −ux k̂x + iuyk̂y

�
↓
A = +ux k̂x + iuyk̂y

�0
A = uzk̂z

. (6.47)

In the ferromagnetic state, the amplitude (and possibly the phase) of the �
↑
A and

�
↓
A components can differ. So the order parameter should read

⎧
⎪⎪⎨

⎪⎪⎩

�
↑
A = η↑(−ux k̂x + iuyk̂y) = −η↑

x k̂x + iη↑
y k̂y

�
↓
A = η↓(+ux k̂x + iuyk̂y) = η↓

x k̂x + iη↓
y k̂y

�0
A = η0uzk̂z = η0

z k̂z

(6.48)

with no phase difference between the complex amplitudes η↑, η↓, η0. In terms of
d-vectors

d = 1

2ψ
[−�↑(n̂)(ex + iey) + �↓(n̂)(ex − iey)] + �0ez

= 1

2ψ
[(η↑

x k̂x − iη↑
y k̂y)(ex + iey) + (η↓

x k̂x + iη↓
y k̂y)(ex − iey)] + η0

z k̂zez

= 1

2ψ

{[(
η↑
x + η↓

x

)
k̂x − i

(
η↑
y − η↓

y

)
k̂y
]
ex

+
[(

η↑
y + η↓

y

)
k̂y + i

(
η↑
x − η↓

x

)
k̂x
]
ey + 2η0

z k̂zez
}

.

(6.49)
Similarly for the B-phase, the order parameter reads

⎧
⎪⎪⎨

⎪⎪⎩

�
↑
B = ζ ↑

z k̂z

�
↓
B = ζ ↓

z k̂z

�0
B = ζ 0

x k̂x + iζ 0
y k̂y

(6.50)
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d = 1

2ψ
[−�↑(n̂)(ex + iey) + �↓(n̂)(ex − iey)] + �0ez

= 1

2ψ
[(−ζ ↑

z k̂z)(ex + iey) + (ζ ↓
z k̂z)(ex − iey)] + (ζ 0

x k̂x + iζ 0
y k̂y)ez

= 1

2ψ

{(
ζ ↓
z − ζ ↑

z

)
k̂zex − i

(
ζ ↑
z + ζ ↓

z

)
k̂zey + 2

(
ζ 0
x k̂x + iζ 0

y k̂y
)
ez
}

.

(6.51)

In the general case, neither the A- nor the B-phase have symmetry-enforced nodes.
However, if an ESP state is enforced by strong band splitting, meaning that the �0

component vanishes in (6.48) and (6.50), then

• the order parameter of the A-phase vanishes for kx = ky = 0 : the A-phase has
poles on the z-axis and

• the order parameter of the B-phase vanishes for kz = 0 : the B-phase has a line of
nodes on the equator.

This is correct, but maybe more important insights on these ferromagnetic supercon-
ductors can be learned, notably on the relationship between up and down components,
from a more general microscopic model [19]. The equations look unfriendly at first
sight, but at the end, a nice physical picture emerges.

6.9.3 Microscopic Model

For these ferromagnetic superconductors, all models start from the same pairing
interaction, supposed to arise from the magnetic interactions: this was already pro-
posed in the de Gennes book on superconductivity ([20] page 104)! So they start
from a Hamiltonian

Hint = −1

2
μ2
B I

2
∫

d3rd3r′Si (r)χi j (r − r′)Sj (r′) , (6.52)

where I is an exchange constant andχi j themediummagnetic susceptibility (matrix).
The models differ notably on the expression for this susceptibility. However, starting
from such an Hamiltonian, the derived gap equations necessarily couple the different
components of the order parameter. In the case of ferromagnetic superconductors,
a peculiarity found in all systems is that the susceptibility has a marked uniaxial
anisotropy (Ising type), so that if z is the easy magnetization axis, χzz will be a
dominant term in the susceptibility matrix.

In the following, we will just present and comment the linearized gap equations
(in the weak-coupling limit) to show where the approximations come into play and
what are the physical consequences. To understand the derivation of these equations,
please refer to [19]. The gap equations (at TSC ) read
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�↑(k) = −T
∑

n

∑

k′
[V ↑↑G↑G↑�↑(k′)

+ V ↑↓G↓G↓�↓(k′) + V ↑0(G↓G↑ + G↑G↓)�0(k′)]
�↓(k) = −T

∑

n

∑

k′
[V ↓↑G↑G↑�↑(k′)

+ V ↓↓G↓G↓�↓(k′) + V ↓0(G↓G↑ + G↑G↓)�0(k′)]
�0(k) = −T

∑

n

∑

k′
[V 0↑G↑G↑�↑(k′)

+ V 0↓G↓G↓�↓(k′) + V 00(G↓G↑ + G↑G↓)�0(k′)]

,

(6.53)
where the different interaction terms V αβ are expressed from the susceptibility by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

V ↑↑ = −μ2
B I

2χu
zz ; V ↓↓ = −μ2

B I
2χu

zz

V ↑↓ = −μ2
B I

2(χu
xx − χu

yy − 2iχu
xy) ; V ↓↑ = −μ2

B I
2(χu

xx − χu
yy + 2iχu

xy)

V ↑0 = −μ2
B I

2(χu
xz − iχu

yz + 2iχu
xy) ; V ↓0 = −μ2

B I
2(−χu

xz − iχu
yz + 2iχu

xy)

V 00 = −μ2
B I

2
χu
xx + χu

yy − χu
zz

2

.

(6.54)
In the above equations,

V αβ = V αβ(k,k′) and χu
i j = χu

i j (k,k′) = 1
2

(
χi j (k − k′) − χi j (k + k′)

)
.

Strong band polarization (like that due to an ‘exchange field’) much larger than
TSC means that we can cancel all terms with Green functions arising from bands of
opposite spins (G↓G↑-type terms). However, (6.53) shows that this is not enough
to ensure an ESP state with �0(k) = 0. Indeed, the different components are all
coupled together as a multigap system and a non-zero �0(k) can be induced by the
�↑, �↓ components

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

�↑(k) = −T
∑

n

∑

k′
[V ↑↑G↑G↑�↑(k′) + V ↑↓G↓G↓�↓(k′)]

�↓(k) = −T
∑

n

∑

k′
[V ↓↑G↑G↑�↑(k′) + V ↓↓G↓G↓�↓(k′)]

�0(k) = −T
∑

n

∑

k′
[V ↑0G↑G↑�↑(k′) + V ↓0G↓G↓�↓(k′)]

. (6.55)

To go further, we need to make approximations based on the characteristics of the
susceptibility. All non-diagonal terms of χi j are zero at k = 0, but, in principle, can
be finite at finite k. In a Landau framework, they would arise from gradient terms
of the form ∂Mi

∂x j
, so from spin–orbit coupling. If the spin–orbit coupling is weak

enough, we can further neglect these terms, then V ↑0 and V ↓0 are suppressed and
we do get an ESP state: �0(k) = 0. However, in uranium-based systems, spin–orbit
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coupling is usually considered as ‘strong’ and most models suppose that the d-vector
has a fixed direction, imposed by the orbital part of the order parameter and… spin–
orbit coupling. Therefore, considering these systems as pure ESP states is probably
only an approximation: spin–orbit coupling most likely induces a (small?) �0 finite
component, even with strong band polarization! But this is not the only surprise
which emerges from these microscopic equations. Even if we suppose that �0 = 0,
another counter-intuitive result emerges. The equations in the ‘ESP approximation’
are written as

⎧
⎪⎪⎨

⎪⎪⎩

�↑(k) = −T
∑

n

∑

k′
[V ↑↑G↑G↑�↑(k′) + V ↑↓G↓G↓�↓(k′)]

�↓(k) = −T
∑

n

∑

k′
[V ↓↑G↑G↑�↑(k′) + V ↓↓G↓G↓�↓(k′)]

(6.56)

with {
V ↑↑ = V ↓↓ = −μ2

B I
2χu

zz

V ↑↓ = V ↓↑ = −μ2
B I

2(χu
xx − χu

yy)
. (6.57)

It corresponds to the equations of a two-band superconductor, with intra-band cou-
pling controlled by the longitudinal susceptibility χu

zz and inter-band coupling con-
trolled by transverse susceptibilities.

For such ESP states, the possible order parameters of ferromagnetic supercon-
ductors are the above-mentioned A or B states, with d-vector

dA = 1

2ψ

{[(
η↑
x + η↓

x

)
k̂x − i

(
η↑
y − η↓

y

)
k̂y
]
ex

+
[(

η↑
y + η↓

y

)
k̂y + i

(
η↑
x − η↓

x

)
k̂x
]
ey
}

,

dB = 1

2ψ

{(
η↓
z − η↑

z

)
k̂zex − i

(
η↑
z + η↓

z

)
k̂zey
}

.

(6.58)

At the same level of approximation, equations for ηx , ηy are decoupled. So, for
both the A and B states, the equation for the largest TSC is that of a two-band
superconductor (where ε is a characteristic energy)

TSC = ε exp

(
−1

g

)
,

g = g↑
1 + g↓

1

2
+

√√√√
(
g↑
1 − g↓

1

)2

4
+ g↑

2 g
↓
2 .

(6.59)
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Here, g↑,↓
1 ∝ V ↑↑,↓↓ ∝ χzz , g

↑,↓
2 ∝ V ↑↓,↓↑ ∝ (χxx − χyy). Equation (6.59) shows

that, as for any two-band superconductor, TSC should increase if the inter-band cou-
pling is increased. In this case, TSC should increase if the difference between the
transverse susceptibilities increases. This is surprising for two reasons.

The first is that it was believed, since the pioneering work of D. Fay and J. Appel
[21], that Ising anisotropy was most favourable for ferromagnetic superconductors
because transverse fluctuationswould be pair-breaking as theywould force scattering
from one Fermi sheet to the opposite polarization Fermi sheet. However, this paper
was written before the discovery of superconducting MgB2 and the following boost
of work on multigap superconductivity: we understand now that these transverse
fluctuations do also induce exchange of Cooper pairs from one Fermi sheet to the
other, which is favourable to superconductivity. And so the prediction is that 2D
anisotropy (rather than uniaxial anisotropy) is the most favourable for ferromagnetic
superconductors (maximizing both χzz and χxx − χyy).

The second reason is that, experimentally, all the systems where ferromagnetic
superconductivity has been discovered did show a strong uniaxial anisotropy, con-
firming the prediction from [21]. But making statistics on few elements is always
dangerous. We also found that reducing this uniaxial anisotropy in URhGe, using
stress along the b-axis which increases the χbb susceptibility without changing χcc

(for stress below 0.6GPa), does increase TSC in URhGe: a factor 2 between 0 and
1GPa [22]. Ising anisotropy is probably not the most favourable, and larger TSC
ferromagnetic superconductors might be awaiting to be discovered.

Coming back to the consequences of (6.58) in terms of order parameter, with
decoupling of the equations for ηx and ηy , the order parameter should have a line of
node, (kx or ky or kz = 0), a finite 〈S〉 of order (at given k)

〈S(k)〉 = �

(
δ

η

)(
k2i

〈k2i 〉
)
ez ,

δ = η
↑
i − η

↓
i

2
; η = η

↑
i + η

↓
i

2
.

(6.60)

But it is not chiral (〈L〉 = 0). The A state could be chiral if ηx and ηy remain coupled
(in this model, if χxy �= 0), with

〈L〉 = �
(δyηx + δxηy)〈k2x + k2y〉

(η2
x + δ2x )〈k2x 〉 + (η2

y + δ2y)〈k2y〉
ez . (6.61)

Note that in principle too, if such is the case, d is probably not an ESP state any
more, meaning that the �0 component should be non-negligible and all expressions
should be much more complex.
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6.10 UTe2

The last discovered p-wave superconductor is again an uranium-based system, also
orthorhombic, and again close to a ferromagnetic instability but not ferromagnetic:
UTe2. This time, the TSC is even more accessible: between 1.4 and 1.6K from bulk
measurements depending on the samples [23, 24]! Moreover, it presents similar
astonishing field-reinforced superconductivity [23, 25, 26], with an absolute record
(for such a low-TSC system) of an upper critical field higher than 60T [26]! An
interesting point concerning the possible d-vector for such a paramagnetic system
is the observation, on all samples, of a finite residual term of about half the normal
state value of the specific heat C/T . The origin of this term is still unsettled, but an
interesting proposal was that it would arise from a state similar to the A1 state of
superfluid 3He (see Sect. 6.8.1.3).

Naturally, this can only happen if spin–orbit coupling is weak enough (otherwise,
it would not be possible to form Cooper pairs on one Fermi surface and not on the
other), and in this case, indeed, group theory classification leads to the possibility of
such states (see Table 1 in [27])

d(k) = (1, i, 0)ϕ(k) . (6.62)

Moreover, because this is for a weak spin–orbit case, any rotation of the d-vector is
a possible order parameter. According to (6.17), this means that the order parameter
would be simply�(k) = �↑ϕ(k), with no other component. In the case of UTe2, the
largest susceptibility axis is the a-axis, so the quantization axis should be along a.
In such a case, the Fermi surface with down-spin would remain unpaired, explaining
the residual specific heat term.

Another consequence of such an order parameter is that it is non-unitary, with a
finite spin for the Cooper pairs (along the a-axis). For the total system, this spin of the
Cooper pairswould be compensated by that of the unpaired electrons (from the down-
spin Fermi surface). This might lead to a total null magnetization. Nevertheless, in
such a case, there is no reason that the state with such a d-vector would be stabilized,
as half the condensation energy is lost compared to any other state, where pairing
occurs on Fermi sheets of each spin direction. For such a state to be favoured, one
needs some advantage of having this spin polarization in the superconducting state,
so, for example, a formof coupling between the spinCooper pairs and the normal state
magnetization [27]. Then, this would also induce, like for superfluid 3He in the A1

state [28], a finite magnetization when entering the superconducting phase; globally,
it is as if the system would become ferromagnetic on entering the superconducting
state, with a (weak?) magnetization increasing linearly with temperature below TSC
[27]. Up to now, this has not been detected, and it remains to be settled if this (rather
improbable) hypothesis is valid or not.

In any case, this last system beautifully confirms that p-wave superconductors
are an incredible playground, where almost every new system brings its own share
of surprise and stimulating challenges.
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6.11 Proofs and Exercise Solutions

6.11.1 Proof of the Cayley–Klein Relation

Proof

R�(a·σ )R−�

=
(
cos
/21 − i sin
/2 �̂·σ

)
(a·σ )

(
cos
/21 + i sin
/2 �̂·σ

)

=
(
cos
/21 − i sin
/2 �̂·σ

) [
cos
/2 (a·σ )

+i sin
/2
(
(a · �̂)1 + i(a ∧ �̂)·σ

)]

= cos2 
/2 (a·σ ) + i cos
/2 sin
/2 (a · �̂)1

− cos
/2 sin
/2 (a ∧ �̂) · σ

− i cos
/2 sin
/2
(
a · �̂1 − i(a ∧ �̂)·σ

)

+ sin2 
/2
(
(a · �̂)(�̂·σ ) + i2

(
�̂ ∧ (a ∧ �̂)

)
·σ
)

= (a · �̂)(�̂·σ ) + cos2 
/2
(
a − (a · �̂)�̂

)
·σ + sin
(a ∧ �̂)·σ

− sin2 
/2
(
�̂ ∧ (a ∧ �̂)

)
·σ

= (a · �̂)(�̂·σ ) + cos

(
a − (a · �̂)�̂

)
·σ + sin
(a ∧ �̂)·σ

= R�(a)·σ .

6.11.2 Conservation of the Scalar Product under Rotation
with the Definition (6.11)

Solution 6.1 Let us note that we can write, for any (complex) vectors u, a,b, c,d,

…
u = (u · �̂)� +

(
u − (u · �̂)�

)
= ud‖ + ud⊥

R(u) = ud‖ + R(ud⊥) = ud‖ + cos
ud⊥ + sin
(�̂ ∧ u)

a ∧ (b ∧ c) = εi jkεklma jblcm = (a·c)b − (a·b)c

(a ∧ b) ∧ c = (a·c)b − (c·b)a .

R(d) · R(u) = d‖·ud‖ + R(d⊥) · R(u⊥) so
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R(d) · R(u)

= (d · �̂)(u · �̂)

+ cos2 

[
d·u − (d · �̂)(u · �̂) −������

(u · �̂)(d · �̂) +������
(d · �̂)(u · �̂)

]

+ sin2 

[
�̂ · (d ∧ (�̂ ∧ u))

]

+ sin
 cos

[
�����
d · (�̂ ∧ u) +�����

u · (�̂ ∧ d)
]

= (d · �̂)(u · �̂)

+ cos2 

[
d·u − (d · �̂)(u · �̂)

]

+ sin2 

[
d·u − (d · �̂(u · �̂)

]

R(d) · R(u) = d·u.

6.11.3 Conservation of the Cross Product under Rotation
with the Definition (6.11)

Wewant to check ifR(u ∧ d) = R(u) ∧ R(d). To evaluateR(u ∧ d), let us decom-
pose u ∧ d in parallel and perpendicular parts to � (called (ud)‖ and (ud)⊥)

u ∧ d = ������((ud)‖ ∧ d‖) + ((ud)⊥ ∧ d⊥)︸ ︷︷ ︸
(ud)‖

+ ((ud)‖ ∧ d⊥) − (d‖ ∧ (ud)⊥)︸ ︷︷ ︸
(ud)⊥

= [(u ∧ d) · �̂]�̂︸ ︷︷ ︸
(ud)‖

+
[
(u · �̂)�̂ ∧ d⊥

]
−
[
(d · �̂)�̂ ∧ u⊥

]

︸ ︷︷ ︸
(ud)⊥

R(u ∧ d) = (ud)‖ + R ((ud)⊥)

R((ud)⊥)

= cos
 (ud)⊥ + sin
 �̂ ∧ (ud)⊥

= (u · �̂)�̂ ∧
[
cos
d + sin
 �̂ ∧ d

]
− (d · �̂)�̂ ∧

[
cos
u + sin
 �̂ ∧ u

]

= (u · �̂)�̂ ∧ R(d) − (d · �̂)�̂ ∧ R(u)

= (R(u) · �̂)�̂ ∧ R(d) − (R(d) · �̂)�̂ ∧ R(u)

= �̂ ∧
[
�̂ ∧ (R(d) ∧ R(u))

]

R(u ∧ d) = R(u) ∧ R(d) + (ud)‖ − (R(u) ∧ R(d))‖
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(R(u) ∧ R(d))‖
= R(u)⊥ ∧ R(d)⊥

=
(
cos
u⊥ + sin
(�̂ ∧ u⊥)

)
∧
(
cos
d⊥ + sin
(�̂ ∧ d⊥)

)

= cos2 
(u⊥ ∧ d⊥)

+ sin2 
(�̂ ∧ u⊥) ∧ (�̂ ∧ d⊥)

+ sin
 cos

(
u⊥ ∧ (�̂ ∧ d⊥) − d⊥ ∧ (�̂ ∧ u⊥)

)

= cos2 
 (ud)‖

+ sin2 

(
(�̂ ∧ u⊥)·d⊥

)
�̂

+ sin
 cos

(
�����
(u⊥·d⊥) �̂ −�����

(d⊥·u⊥) �̂
)

= cos2 
 (ud)‖ + sin2 

(
(u ∧ d) · �̂

)
�̂ = (ud)‖

So indeed, R(u ∧ d) = R(u) ∧ R(d).

6.11.4 Rotation of the d-Vector of a Simple “Up-Up” State

Solution 6.2 For such a state, from (6.17), we get that

d = 1

ψ

⎛

⎝
− 1

2�↑
− i

2�↑
0

⎞

⎠ .

Changing the orientation of the (z) quantization axis amounts to a rotation of 6.17
by π around ex . From (6.11), we get

R(d) = dx ex − (d − dx ex )

= −d ,

which is indeed what we would expect!

6.11.5 Equivalence of ESP Unitary States and Pure |Sz = 0〉
States

Solution 6.3 Such an ESP state would have only �↑ and �↓ components, equal
within a phase factor. Let us write �↓ = e−2iϕ�↑. The d-vector of such a state will
be [see (6.17)]
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d = 1

ψ

⎛

⎝
�↑
2

(
e−2iϕ − 1

)

− i�↑
2

(
1 + e−2iϕ

)

0

⎞

⎠ = 1

ψ

⎛

⎝
−ie−iϕ�↑ sin ϕ

−ie−iϕ�↑ cosϕ

0

⎞

⎠ .

If we rotate this state by π/2 around a vector �̂ =
⎛

⎝
cos θ

sin θ

0

⎞

⎠ in the (x, y)-plane, we

obtain from (6.11)

R
(d) = (d · �̂)�̂ + (�̂ ∧ d)

= 1

ψ

⎛

⎝
sin(θ + ϕ)e−iϕ�↑ cos θ

sin(θ + ϕ)e−iϕ�↑ sin θ

−ie−iϕ�↑ cos(θ + ϕ)

⎞

⎠ .

So indeed, if we choose θ = −ϕ, we recover a pure |Sz = 0〉 state. Note that it is the
phase between the�↑ and�↓ components of the order parameter, which determines
the precise direction of the required π/2 rotation.
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