
Chapter 4
X-ray Dichroisms in Spherical Tensor
and Green’s Function Formalism

Hebatalla Elnaggar, Pieter Glatzel, Marius Retegan, Christian Brouder,
and Amélie Juhin

Abstract In this book chapter, our goal is to provide experimentalists and theo-
reticians with an accessible approach to the measurement or calculation of X-ray
dichroisms in X-ray absorption spectroscopy (XAS). We start by presenting the key
ideas of different calculation methods such as density functional theory (DFT) and
ligand-field multiplet (LFM) theory and discuss the pros and cons for each approach.
The second part of the chapter is dedicated to the expansion of the XAS cross section
using spherical tensors for electric dipole and quadrupole transitions. This expansion
enables to identify a set of linearly independent spectra that represent the smallest
number of measurements (or calculations) to be performed on a sample, in order
to extract all spectroscopic information. Examples of the different dichroic effects
which can be expected depending on the type of transitions and on the symmetry of
the system are then given.

4.1 Introduction

4.1.1 The X-ray Absorption Cross Section

The X-ray absorption cross section is obtained by dividing the transition rate by the
flux of photons and summing over all possible final states. It is given in (4.1) where
�ω is the photon energy, and α the fine structure constant. I (EI ) and F(EF ) are the
initial and final state wave functions (energies), and T is the transition operator,
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σω = 4π2α�ω
∑

F

〈I |T †|F〉〈F |T |I 〉δ(EI + �ω − EF ) . (4.1)

The transition operator describes the interaction of photons with the system. In the
case of an electromagnetic plane wave, the transition operator writes
T ∝ eik·r

[
�ε · ∇ − g

2s k × ε
]
where ε is the polarization vector of the incident

photon, and k is the incident wave vector, g the gyromagnetic ratio (g ≈ 2 for the
electron), and s the electron spin [1]. The exponential in the transition operator can
be expanded as a Taylor series

eik·r ≈ 1 + ik · r − (k · r)2

2! + ... (4.2)

The first term in the expansion approximates the interaction of the light with
the atom as an electric dipole (〈F |T |I 〉 = �〈F |ε · ∇|I 〉 = −m(EF−EI )

�
〈F |ε · r|I 〉).

The second term gives rise to the electric quadrupole interaction
(−i m(EF−EI )

�
〈F |ε · rk · r|I 〉) and to the (negligible) magnetic dipole one

(- 12 〈F |(ε × k) · (L + gs)|I 〉) [1], the third term is the octupole transition
(m(EF−EI )

6� 〈F |(ε · r)(k · r)2|I 〉) [2], and so on. In this chapter, we focus on electric
dipole and quadrupole transitions.

The summation over final states in (4.1) implies that one has first to calculate
the ground state, all possible final states, and then compute the transition matrix
elements between the ground state and the final states. This is not always the most
efficient way to numerically calculate XAS. Instead, Green’s function can be used
to replace the summation over final states by a propagator of the transition opera-
tor. Hence

∑
F |F〉〈F |δ(EI + �ω − EF ) → −1

2π i (G
+ − G−) with G±(EI + �ω) =

1
�ω−HF+EI± 1

2 i�
, where HF is the final state Hamiltonian. The “Fermi Golden Rule”

can be expressed as in (4.3). Most modern codes calculating core level spectra use
this expression

σω = −4πα�ωIm
[〈I |T †G+(EI + �ω)T |I 〉] . (4.3)

Let us now discuss electric dipole transitions according to the first term of the
expansion in (4.2). For electric dipole transitions we have T = ε · r . One can see
from the expression of the transition operator that the cross section will depend on
the orientation of the polarization vector (ε) with respect to the absorbing system (r).
The X-ray absorption spectrum measured on any sample is in fact the sum of several
linearly independent spectra as will be discussed further in this chapter. They can be
disentangled by macroscopically orienting the sample, e.g., by using a single crystal
or orienting the magnetic moments. Consequently, one may wonder:

– How many independent spectra exist for a given system?
– What information do they give us about the absorbing system?
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4.1.2 Definition of Dichroisms

X-ray dichroism can be defined as the difference in theX-ray absorption cross section
measured for two orthogonal polarization states of the incident light. There exist dif-
ferent types of dichroism. Dichroism measurements can be classified according to
the type of polarization used for the measurements into linear and circular. Linear
dichroism (LD) is the difference measured with linearly polarized light, where in
most cases the polarization vector is set parallel and perpendicular to an orienta-
tion axis, while circular dichroism (CD) is the difference measured with circularly
polarized light (left handed and right handed).

Not all systems exhibit dichroism effects when the polarization of the light is
changed. Certain symmetry conditions regarding the interaction operator between
light and matter have to be satisfied for dichroism effects to occur, which brings us to
the second classification of dichroism types. Two symmetry operations are essential
for this classification:

– Time-reversal symmetry,
– Space inversion (also called parity).

Natural dichroism (ND) refers to dichroism effects that occur in non-magnetic
systems where time-reversal symmetry is conserved (i.e., the system is even under
time-reversal operation). Using linearly polarized light, one can measure X-ray nat-
ural linear dichroism (XNLD). On the other hand, using circularly polarized light,
one can measure X-ray natural circular dichroism (XNCD) only for systems that
do not have a centre of inversion (i.e., the system is of odd parity).

Magnetic dichroism (MD) relates to dichroism effects measured in magnetic
(ferro, ferri, or antiferromagnetic) systems where time-reversal symmetry is broken
either by spontaneous magnetic ordering in the sample or by the application of an
external magnetic field. X-ray magnetic linear dichroism (XMLD) is parity-even
and time-reversal even and non-reciprocal linear dichroism (NRLD) is parity-odd
and time-reversal odd. Using circularly polarized light, X-ray magnetic circular
dichroism (XMCD) and X-ray magneto-optical dichroism (XMχD) effects can be
measured. The former is parity-even and time-reversal odd while the later is parity-
odd and time-reversal odd.

In magnetic materials, which will be discussed in this chapter, several cases are
possible:

– In the case of centrosymmetric crystals with ferro- or ferrimagnetic properties,
one can measure XMCD.

– In the case of centrosymmetric crystals with antiferromagnetic properties, XMLD
can be measured.

– In the case of magnetized, non-centrosymmetric crystals, XMχD and NRLD can
be measured.

XMCD and XMLD measurements give, respectively, access to the average value
of 〈M〉 and 〈M2〉 of the local magnetization for the absorber. On the other hand,
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XMχDandNRLD signals are related tomoments that aremore complex, the anapole
orbital moment and other higher order moments.

4.1.3 The Many-Body Problem in Spectra Calculations

The calculation of an absorption spectrum is a formidable task: it requires the cal-
culation of the ground state of the system, the excited states of the system, and the
interaction of the system with the electromagnetic field (X-ray beam). This means
that the theoretical approach required to calculate XAS has to be suitable for cal-
culating the electronic structure in addition to properly considering the interaction
with the electromagnetic field. Approximations have often to be made to calculate
the absorption (or the scattering Kramers–Heisenberg) cross section and the spec-
troscopist therefore has to choose which theoretical approach is the most suitable for
the problem at hand.

In principle, the ground and excited states can be determined by solving the
Dirac equation which accounts for all relativistic effects and includes all possible
interactions in the Hamiltonian. This full treatment provides a relativistic, many-
body, extended description of the electronic states. Unfortunately, in practice, it is
not possible to perform such a calculation as it is computationally very consuming.
In most cases one solves instead the Schrödinger equation and introduces relativistic
effects as perturbations (e.g., the spin-orbit interaction). Furthermore, one can make
use of the Born–Oppenheimer approximation to separate the electronic properties
of the system from the dynamics of the nuclei. In order to describe the electronic
part of the wave function, various theoretical approaches can be used such as (i) the
single-particle extended picture (DFT-based approaches), (ii) the many-body atomic
picture (multiplet theory), and (iii) the many-body extended picture (beyond DFT
methods).

4.1.3.1 The Single-Particle Extended Picture of Electronic States

DFT-based methods can be used to describe the electronic states using a single-
particle extended picture. Although DFT methods should formally only apply to
ground state calculations, they are often used for the calculation of excited states
probed in core level spectroscopies. DFT methods simplify the ground state wave
function of N electrons by replacing themwith a fictitious, non-interacting system of
independent electrons, that have the same electronic density as the real system. The
correct charge density minimizes the total energy of the system. The Schrödinger
equation is transformed into a system of equations (called the “Kohn–Sham equa-
tions”) with an effective Hamiltonian and wave functions, which are functions
of only one space variable. This implies that DFT is essentially a single-particle
approach, although some many-particle (many-body) interactions are contained in
the exchange and correlation term of the electronic effective potential. The exact
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analytical expression of this term is not known. This means that DFT can only be
applied in an approximate form for example using the local density approximation
(LDA) or the generalized gradient approximation (GGA)].

One can determine the ground state wave function by solving the Kohn–Sham
equations which are constructed from the single-particle wave functions. The ground
state wave function is therefore formed by a single Slater determinant. This is an
important point because it limits the ability to treat a many-body response of the
system described through a linear combination of Slater determinants. To illustrate
this let us take an example with two electrons. Coupling s = 1/2 to s = 1/2 yields
S = 1 or 0. This corresponds to four |S, Ms〉 wave functions: |S = 1, Ms = 1〉 ,
|S = 1, Ms = −1〉 |S = 1, Ms = 0〉 , and |S = 0, Ms = 0〉 . These functions need
to meet the property of being anti-symmetric under particle exchange and it can
be shown that only |S = 1, Ms = 1〉 , |S = 1, Ms = −1〉 can each be expressed as
a single Slater determinant. However, the |S = 1, Ms = 0〉 and |S = 0, Ms = 0〉
states can only be expressed as the combination of two Slater determinants and thus
cannot be calculated in DFT.

One can group the various DFT-based methods according to their characteristics:

– Cluster or periodic: The Kohn–Sham equations can be solved either for a cluster
centred around the absorbing atom (direct or real space methods) or starting from
a unit cell of the crystal (or a multiple unit cell, which is called supercell) in order
to take advantage of the 3D periodicity (reciprocal space methods).

– Self-consistency or not: The Kohn–Sham equations can be solved without or
(preferably) with self-consistency, i.e., using an iterative cycle where two suc-
cessive steps are mixed until a convergence criterion is reached to determine the
charge density.

– Type of basis functions used to expand the orbital solutions of the Kohn–
Sham equations: either localized functions [linear combination of atomic orbitals
(LCAO), linearmuffin-tin orbitals (LMTO)], or delocalized functions [planewaves
(PW), full-potential linearized augmented plane waves (FLAPW)].

– Approximation made on the shape of the electronic potential: For example in
LMTOormultiple scattering theory, the potential is approximated to be spherically
symmetric in the atoms, and constant between them (muffin-tin). In full-potential
methods [FLAPW, or projector augmented wave (PAW)-pseudopotentials], no
approximation is made, which is generally preferable, even though it makes the
calculations more consuming.

4.1.3.2 The Many-Body Atomic Picture of Electronic States

A Simple Introduction to the Many-Body Atomic Picture

Let us consider as an example a Cr3+ ion in an octahedral (Oh) environment. Here
the solid is reduced to an atom embedded in a mean field known as the crystal field
(CF) that mimics the effect of the inter-atomic interactions. The atomic electronic
configuration is 1s22s22p63s23p63d3. The degeneracy of the Cr 3d levels is lifted
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due to the CF and the 3d orbitals are split into two groups: the eg orbitals pointing
towards the ligands and the t2g orbitals pointing between the ligands. The number of
possible electronic states is given by the number of allowed arrangements of three
electrons into ten spin orbitals, i.e., C3

10 = 120 microstates. The energy separation
between these states arises due to the combined effect of: (i) CF splitting, (ii) elec-
tronic repulsions, and (iii) spin-orbit coupling, i.e., the multiplet effects. Electrons
occupying closed shells do not actually contribute to the energy splitting of the elec-
tronic levels; there is only one way to completely fill a shell giving a single average
energy of the configuration.

All these multiplet states can be further grouped in so-called term symbols (or
spectroscopic terms) according to their energy, spin andorbitalmoments. The relative
energy positions of these spectroscopic terms for a 3dn transition metal ion in Oh CF
(and neglecting 3d spin-orbit coupling) were calculated by Tanabe and Sugano and
are available in several references (e.g., [3, 4]). Similar diagrams are available in [5]
for symmetries lower than Oh , such as trigonal or tetragonal. The relative energies
of the electronic states depend on the CF parameters as well as the Racah parameters
that relate to the electronic repulsions. The determination of the spectroscopic terms
becomes very complex when the spin-orbit coupling and Zeeman terms are included
in the Hamiltonian and/or if lower symmetries are considered. LFM theory takes
these effects into account and has been realized in several computer codes.

Key Ideas of Ligand-Field Multiplet Theory

Atomic multiplet theory, crystal field multiplet theory, and LFM theory (sometimes
collectively referred to as the multiplet theory) are based on concepts that were
developed in atomic physics and make use of group theory. One has to solve the
Schrödinger equation for the ion with its N electrons in a given configuration

Ĥ |g〉 = E |g〉 , (4.4)

where Ĥ is the Hamiltonian of the system for the chosen configuration, E and |g〉 are
the eigenvalue and eigenstate, respectively. The different eigenstates are functions
of N electrons, hence they are called many-body (or multi-electronic) states. The
Hamiltonian is expressed as

Ĥ = T̂ + V̂ + V̂ee + ĤSO + ĤCF , (4.5)

where T̂ is the kinetic energy of the electrons, V̂ theCoulombattraction between elec-
trons and the nucleus, V̂ee the electron–electron Coulomb interaction, ĤSO the spin-
orbit coupling interaction, and ĤCF the CF Hamiltonian, which takes into account
the local environment of the absorbing atom.

These interactions will now be expressed in second quantization formalism. In
this notation, any operator can be expressed in terms of creation (c†τ ) and annihilation
(cτ ) operators. The operator c†τ creates a state characterized by the quantum numbers
τ (for example, if we choose to express the states as spin-orbitals, τ will be the set
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of quantum numbers n, l,m, σ that give the principal quantum number, the orbital
momentum, the projected orbital momentum, and the projected spin momentum that
uniquely identify this state) when it acts on the vacuum state |0〉. The operator cτ

is the annihilation operator of the state τ . In this formalism, the (spherical) atomic
interactions write

T̂ =
∑

τ1,τ2

〈τ1| p̂
2

2m
|τ2〉c†τ1cτ2 , (4.6)

V̂ =
∑

τ1,τ2

〈τ1| − Ze2

r̂
|τ2〉c†τ1cτ2 , (4.7)

V̂ee = 1

2

∑

τ1,τ2,τ3,τ4

〈τ1τ2| e2

|r̂ − r̂ ′| |τ3τ4〉c
†
τ2
c†τ1cτ3cτ4 , (4.8)

V̂SO =
∑

τ1,τ2

〈τ1|ξ l̂.ŝ|τ2〉c†τ1cτ2 . (4.9)

Here p̂ is the linear momentum operator, m is the electron mass, e is the electron
charge, r̂ is the position operator, l̂ and ŝ are the orbital and spin momenta operators,
and ξ is an atom dependent constant that is a function of the gradient of the atomic
potential (ξ ∝ 1

r
dV
dr ). The kinetic energy of the electrons and the Coulomb interaction

of the electrons with the nucleus are fixed for a given atomic configuration and they
contribute only to the average energy of the configuration; hence T̂ and V̂ do not
contribute to the multiplet splitting, and will not be further discussed. As a matter
of fact, they are typically not evaluated in standard multiplet calculation programs.
However, we are left with the task of simplifying the terms V̂SO and V̂ee. Let us start
with V̂SO and assume that z is the quantization axis.

Influence of Spin-Orbit Coupling Interaction

The spin-orbit interaction is given as follows:

V̂SO =
∑

τ1,τ2

〈τ1|ξ(lx sx + lysy + lzsz)|τ2〉c†τ1cτ2

=
∑

τ1,τ2

〈τ1|ξ lzsz|τ2〉c†τ1cτ2 (4.10)

+
∑

τ1,τ2

〈τ1|ξ(lx sx + lysy)|τ2〉c†τ1cτ2 .

We shall use a set of atomic spin-orbitals as basis functions,
ψi = Rni ,li (r)Yli ,mi (θ, φ)σi whereYli ,mi (θ, φ) is the spherical harmonic, and Rni ,li (r)
is the radial part. Given that the potential in ξ has a spherical form one can separate
the radial and angular parts of the Hamiltonian. The angular part of the first term
gives
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∑

(l1,m1),(l2,m2)

〈Yl1,m1σ1|lzsz|Yl2,m2σ2〉c†l1,m1,σ1
cl2,m2,σ2

= 1

2

l∑

m=−l

m(c†l,m,↑cl,m,↑ − c†l,m,↓cl,m,↓) . (4.11)

The second term gives

∑

(l1,m1),(l2,m2)

〈Yl1,m1σ1|(lx sx + lysy)|Yl2,m2σ2〉c†l1,m1,σ1
cl2,m2,σ2

=
∑

(l1,m1),(l2,m2)

〈Yl1,m1σ1|1
2
(l+s− + l−s+)|Yl2,m2σ2〉c†l1,m1,σ1

cl2,m2,σ2 (4.12)

= 1

2

l−1∑

m=−l

√
(l − m)(l + m + 1)(c†l,m+1,↓cl,m,↑ + c†l,m,↑cl,m+1,↓) .

Hence the angular part of the spin-orbit Hamiltonian finally writes

ĤSO = 1

2

l∑

m=−l

m(c†l,m,↑cl,m,↑ − c†l,m,↓cl,m,↓)

+1

2

l−1∑

m=−l

√
(l − m)(l + m + 1)(c†l,m+1,↓cl,m,↑ + c†l,m,↑cl,m+1,↓) . (4.13)

It is clear from (4.13) that the spin-orbit interaction mixes states with different
projected orbital and spin momenta.

The Electron–Electron Coulomb Interaction

Now we undertake the simplification of the electron–electron Coulomb interaction.
This is more involved than the simplification of the spin-orbit coupling Hamiltonian.
Cowan nicely explains the details of the derivation in his book [6]. We will rely on a
combination of the derivations by Cowan [6] and Haverkort [7] in this section. This
is not a thorough derivation; it is only meant to qualitatively explain the origin of
multiplet splittings.

The first step to simplify this Hamiltonian is to perform a multipole expansion of

the term 1
r̂−r̂ ′ = ∑∞

k=0

∑k
m=−k Y

∗
k,m(θ ′, φ′) 4π

2k+1
rk〈
rk+1
>

Yk,m(θ, φ), where rk< and rk> are,
respectively, the lesser and greater of the distances r and r ′. Now we are in a position
to separate the radial and angular terms of the expression and separate the angular
variables of each electron. Using the atomic spin-orbital basis to express the matrix
elements of the angular part of the Hamiltonian one finds that
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∑

τ1,τ2,τ3,τ4

〈Yl1,m1(θ, φ)σ1Yl2,m2(θ
′, φ′)σ2|

∞∑

k=0

k∑

m=−k

Y ∗
k,m(θ ′, φ′)Yk,m(θ, φ)|

Yl3,m3(θ, φ)σ3Yl4,m4(θ
′, φ′)σ4〉

=
∞∑

k=0

k∑

m=−k

∑

τ1,τ2,τ3,τ4

〈Yl1,m1(θ, φ)σ1|Yk,m(θ, φ)|Yl3,m3(θ, φ)σ3〉

〈Yl2,m2(θ
′, φ′)σ2|Y ∗

k,m(θ ′, φ′)|Yl4,m4(θ
′, φ′)σ4〉 .

(4.14)

We have in (4.14) integrals involving three spherical harmonics which are given
by the Gaunt coefficients. This can be used to restrict the values of the summa-
tion over k and m. The Gaunt coefficients are different from zero in the first inte-
gral only for m = m1 − m3. Similarly, the second integral is different from zero for
m = m4 − m2. Hence, in combination, one concludes that the total Mz is conserved
(m1 + m2 = m3 + m4) for the integrals. Furthermore, the values of k are restricted
to values of k ≤ min(|l1 + l4|, |l2 + l3|). This simplifies the angular part.

Let us now investigate the radial part. The general expression for a scattering
event involving four different shells is expressed in (4.15)

∑

τ1,τ2,τ3,τ4

〈Rn1,l1(r)Rn2,l2(r
′)|

min(|l1+l4|,|l2+l3|)∑

k=0

rk<
rk+1
>

|Rn3,l3(r)Rn4,l4(r
′)〉 . (4.15)

In the case of Coulomb interaction in a single shell, n1 = n2 = n3 = n4 and
l1 = l2 = l3 = l4 and hence one obtains the expression

F (k) =
2l∑

k=0

〈Rn,l(r)Rn,l(r
′)| rk<
rk+1
>

|Rn,l(r)Rn,l(r
′)〉 . (4.16)

For a 3dn configuration, 2l = 4 yielding values of k = 0, 2, 4 and one has to evaluate
three Slater integrals F (k) for such a configuration. For an excited state with a core
hole, like the excited state of a L absorption edge with a configuration 2p53dn+1,
it is necessary to take into consideration the Coulomb interaction between the 2p
and the 3d shells. There are two possible cases for these scattering events (see also
Chap. 2):

1. Direct interaction with n1 = n3 and n2 = n4. This means that each electron scat-
ters in its shell. The matrix elements read

F (k) =
min(|2l1,2l2|)∑

k=0

〈Rn1,l1(r)Rn2,l2(r
′)| rk<
rk+1
>

|Rn1,l1(r)Rn2,l2(r
′)〉 . (4.17)

2. Exchange interaction with n1 = n4 and n2 = n3. This means that electrons
exchange shells. The matrix elements read

http://dx.doi.org/10.1007/978-3-030-64623-3_2
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G(k) =
min(|2l1,2l2|)∑

k=0

〈Rn1,l1(r)Rn2,l2(r
′)| rk<
rk+1
>

|Rn2,l2(r)Rn1,l1(r
′)〉 . (4.18)

The F (k) and G(k) are called Slater integrals. The magnitude of the multiplet split-
ting depends on the magnitude of the Slater integrals. For an atomic calculation
(corresponding to the case of a free ion in spherical symmetry) radial integrals are
calculated self-consistently using a Hartree–Fock model, with values typically of the
order of a few eV (not more than tens of eV). In the point group symmetry, where
the absorber is considered with its environment, these values are reduced empirically
in order to take into account the effect of the chemical bond which delocalizes the
electrons. This reduction factor is an adjustable parameter (typically, 60–80% for a
iono-covalent bond, 100% being the ionic limit case of a free ion).

The Crystal Field Hamiltonian

Let us now extend our theoretical framework to include the effect of the CF potential
on the absorbing ion. This is done by considering the N nearest neighbours as point
charges (Zie) at positions Ri. The electrostatic potential due to these point charges
at position r, VCF (r), is expressed as

VCF (r) =
N∑

i=1

Zie2

|r − Ri| . (4.19)

A multipole expansion of the potential can be used to expand (4.19), leading to the
expression

VCF (r, θ, φ) = e2
∞∑

k=0

rk
k∑

m=−k

Ck,m(θ, φ)Qk,m , (4.20)

with Qk,m ≡ [
4π

2k+1

]1/2 ∑N
i=1 Zi (

1
Ri

)k+1Y ∗
k,m(θi , φi ). Yk,m is the spherical harmonic,

Ck,m is the renormalized spherical harmonic, and ∗ is the complex conjugate. Note
here that one assumes that the radial extent of the 3d orbitals is smaller than the
distance between the absorbing ion and its first neighbours (i.e., r � Ri ). The CF
Hamiltonian can be developed using the single-particle basis (atomic spin-orbitals
as discussed before for the Coulomb interaction). Separating the radial and angular
parts leads to

ĤCF =
∑

τ1,τ2

∑

k,m

Ak,m〈Y�1,m1σ1|Ck,m |Y�2,m2σ2〉c†τ1cτ2 . (4.21)

Here, the Ak,m combine all the radial parts of (4.20). They are related to the usual
CF parameters (10Dq, Ds, Dt , …) which are usually not known precisely. The CF
parameters (or Ak,m ) are either fitted parameters or taken from experiments (optical
absorption, electron paramagnetic resonance, …). It is important to warn the reader
against the temptation to fit the calculation with an unreasonable number of CF
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parameters: with adjustable parameters, one runs the risk of producing some spectra
in good agreement with experiments not for a theoretically justifiable reason but
rather due to some lucky cancellation between inappropriate choices of the param-
eters and inaccurate theoretical approximations employed in solving the model. It
is therefore important that one uses some sensible limits for these parameters and
critically examines the values used in the model.

Equation 4.21 is a useful expression because the matrix elements are integrals
again over three spherical harmonics and are given by the Gaunt coefficients. Fur-
thermore, the series can be truncated according to the triangular condition. For 3d
orbitals (like in the case of an Fe ion), �1 = �2 = 2 so the maximum value of m
possible is m = 4 with k ≤ 4. The actual form of the matrix elements depends on
the symmetry of the CF potential.

We will present the example of an octahedral (Oh) cluster to illustrate the proce-
dure of calculating theCFmatrix elements. In the case of anOh cluster, six neighbours
are positioned at equal distances from the central ion as shown in Fig. 4.1. We will
first calculate the multipole terms possible for this configuration according to (4.20).
This can be easily evaluated and many softwares are available such as the “multi-
poles” Python package [8]. One finds that the multipole expansion of the octahedral
potential reduces to the following terms with the coefficients listed below C0,0 → 6,

C4,0 →
√

49
4 , C4,4 →

√
35
8 , C4,−4 →

√
35
8 .

Now we can evaluate the matrix elements of (4.21) using the Gaunt coefficients.
One finds the following matrix for Oh crystal field

∑

k,m

〈Y2,m1 |Ck,m |Y2,m2〉 ∝

⎡

⎢⎢⎢⎢⎣

1 0 0 0 5
0 −4 0 0 0
0 0 6 0 0
0 0 0 −4 0
5 0 0 0 1

⎤

⎥⎥⎥⎥⎦
. (4.22)

Diagonalizing this matrix gives the following eigenvalues E = 6,−4,−4, 6,−4 for
the eigenvectors ⎡

⎢⎢⎢⎢⎣

1√
2
0
0
0
1√
2

⎤

⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎣

− 1√
2

0
0
0
1√
2

⎤

⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎣

0
1
0
0
0

⎤

⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎣

0
0
1
0
0

⎤

⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎣

0
0
0
1
0

⎤

⎥⎥⎥⎥⎦
. (4.23)

This illustrates the splitting of the 3d one electron orbitals in an Oh crystal field as
shown in Fig. 4.1. The energy difference between the t2g and eg orbitals is referred
to as 10Dq and its magnitude depends on the radial part Ak,m . The five degenerate
orbitals split into two types of orbital:

1. Three orbitals of energies −4Dq referred to as the t2g orbitals and which are
1√
2
(Y2,−2 − Y2,2), Y2,1, and Y2,−1.
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Fig. 4.1 Splitting of the five
degenerate 3d orbitals (left)
into t2g and eg orbitals in an
octahedral crystal field
(right)

2. Two orbitals of energies 6Dq referred to as the eg orbitals and which are
1√
2
(Y2,−2 + Y2,2), and Y2,0.

The same procedure can be used to determine the eigenstates and energies of the
3d (or any other) orbitals embedded in a certain symmetry.

4.1.3.3 The Many-Body Extended Picture of Electronic States

The most recently developed approaches aim at extending both DFT and LFM theo-
ries to provide a comprehensive description of many-body interactions. An example
for a rather manageable improvement to DFT is to add a static Hubbard parameterU
to account for on-site electronic repulsion. In addition, there are other approaches that
go well beyond DFT. They can be grouped into two main types: the quantum chem-
istry approaches (mainly, wave function-based methods) and the Green’s function
methods.

Quantum chemistry approaches (DFT-CI, multi-configurational self consistent
field [configuration interaction (CI)], coupled cluster, quantum Monte Carlo) are
many-body extended approaches. In DFT-CI, for example, a combination of Slater
determinants is used to describe the wave function of the system. The number of
configurations that can be considered is limited by computing power and one has to
decide which configurations to include. These approaches can only be applied for
small clusters and molecules due to computational demand. Green’s functions based
methods, such as GW and dynamical mean-field theory (DMFT) provide an alterna-
tive approach to calculate the electronic structure of strongly correlated materials. In
a GW method, a screened Coulomb interaction (W ) is calculated following a DFT
calculation of the charge density. A nonlocal energy dependent self-energy operator
is required. Furthermore, DMFT can be utilized to map the full lattice problem onto
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a single site quantum impurity problem, using a local screened Coulomb interac-
tion (U ). In both GW and DMFT approaches, correlations (many-body effects) are
significantly better described than in standard DFT.

4.1.3.4 Which Approach Works Best for Core Level Spectroscopy
Calculations?

Unfortunately this is a very complex question: it depends on the chemical system
(ionic, covalent, strongly correlated, …), the edge (K -, L-edges, …) and the type
of spectroscopy (absorption, photoemission, …). Consequently, in the following we
try to provide some guiding considerations.

A good starting criterion for the choice of the method of calculation is the local-
ization of the final state wave function. When electrons are excited into highly delo-
calized orbitals, they interact much less with other electrons meaning that the intra-
atomic interactions are expected to be small. In this case single-particle approaches
often give satisfactory results as the multi-electronic effects are small. This may be
the case for the K edge of 3d elements and the L2,3 edges of heavy elements (e.g.,
rare earths, 5d transition metals), as well as the K edges of ligands (such as C, N, O,
S).

On the other hand, when electrons are excited into localized orbitals, they will
strongly interact with each other and the core hole. In this case, the multi-electronic
effects become significant, and description considering only the absorber atom may
be more successful such as LFM theory. This is typically the case for L2,3 edges of
3d elements and M4,5 edges of 4 f elements.

In intermediate cases where both intra- and inter-atomic effects are relevant, like
theK pre-edge of 3d elements, single-particle and many-body approaches may work
or fail. Itmay also happen that different energy ranges of a spectrumare best described
by different theoretical approaches. This is often the case when a weak pre-edge
feature is observed before the strong main edge. The pre-edges often arise from
excitations into localized orbitals while the main edge has a more delocalized char-
acter. Whether the final state is localized or not may be derived from the shape of
the absorption edge. When the edge is dominated by a step function, the final state
can be assumed to be delocalized. If it exhibits distinct peaks that decrease sharply,
this may be due (but not necessarily) to a localized final state.

4.1.4 Codes for Ligand-Field Multiplet Calculations

Regarding the practical aspects of calculating core level spectra, one faces yet another
level of complexity as the plethora of theoretical methods mentioned above are
implemented in a comparably large number of computational packages. Instead of
trying to provide an overview of all the available computational tools, we will focus
on introducing Quanty, one of the currently available software packages that can
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be used to perform ligand-field multiplet calculations, and Crispy a graphical user
interface that uses Quanty as a computational engine.

Quanty [9–12] is developed by Maurits Haverkort and his collaborators at the
Institute of Theoretical Physics at Heidelberg University. It is a computational library
that can be used to write quantum mechanical programs in the second quantization
formalism. While the library can be used to describe a wide range of problems,
it is specifically aimed at calculating different spectroscopies, including core level
spectroscopy. Briefly, the user starts by constructing the Hamiltonian for the system
of interest, diagonalize it, selects several eigenstates, and then calculates the spectrum
corresponding to these eigenstates. In Quanty the Hamiltonian is expressed in a basis
of oneparticlemodes,which canbeboth fermionic andbosonic. The fermionicmodes
are usually spin-orbitals. In semi-empirical multiplet calculations, the interactions
between the spin-orbitals are parametrized using values calculated for isolated atoms,
which are afterwards scaled to account for the effect of the surrounding atoms.
Alternatively, the parameters can be calculated directly by using for example DFT-
based methods [9]. After the diagonalization of the Hamiltonian and the selection
of the lowest eigenstates, using, for example, Boltzmann statistics, Quanty can be
used to calculate the spectrum. As mentioned previously, this is done using a Green’s
function approach, thereby avoiding the sum-over-states calculation, which can lead
to an important reduction in computational time.

The core of the library is written using the C/C++ programming language for
maximum efficiency. The users do not interact directly with this part of the code,
but rather with the Lua-based layer that wraps it. To run calculations the users are
required to write small programs using the functions defined in Quanty. Doing this
in a scripting language such as Lua has the advantage of providing an ideal environ-
ment for experimentation, circumventing the limitations of compiled programming
languages such as C or C++. While this is indeed very helpful, it is not uncommon
for such programs to reach more than a few tens of lines of code, which in itself
can be intimidating for the majority of new users. Also, as it is the case for many
scientific libraries, because of the flexibility given to the users when writing these
programs, it is impossible to check for all the things that might be incorrect. This
leads to errors that are difficult to trace even for experienced users.

To help users to more easily perform Quanty calculations, one of us (M. Rete-
gan) has developed a friendly user interface that exposes the library’s capabilities
for a large part of core level spectroscopies. Crispy [13] was developed using the
Python programming language and relies on additional packages from the Python
ecosystem. The main window of the application is shown in Fig. 4.2. Using Crispy,
the users can quickly adjust the parameters of the calculation, run it, and plot the
resulting spectrumwithout the need ofwriting any programs. The approach hasmany
advantages for novice users, but even experienced ones can use Crispy to generate
a starting program that will become the basis of their calculation. Crispy is a free
and open-source program that can be installed on any operating system that has an
up-to-date Python distribution. For Windows® and macOS® the program comes in
easy to install packages that can be downloaded from the official website, http://
www.esrf.eu/computing/scientific/crispy.

http://www.esrf.eu/computing/scientific/crispy
http://www.esrf.eu/computing/scientific/crispy
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Fig. 4.2 Crispy’s main window showing a calculated XAS L2,3 spectrum for a Co2+ ion in octa-
hedral symmetry

4.2 Spherical Tensor Expansion of the XAS Cross Section

A spherical tensor is a set of components that transform into each others under
arbitrary rotations. Another way to state this is to say that the components of a
spherical tensor generate a vector space which is invariant under rotation. A spherical
tensor is irreducible if this vector space cannot be written as the sum of two invariant
(non-zero) subspaces. For an irreducible tensor of rank j , the dimension of the
corresponding vector space is 2 j + 1. For example, spherical harmonics Yl,m are the
spherical tensor components of a spherical tensor of rank l. Note that while a 3 × 3
matrix is an irreducible Cartesian tensor, it is a reducible spherical tensor which is the
sum of j = 0, j = 1, and j = 2 irreducible spherical tensors. It is evident that such
an expansion would provide us with deeper insights by identifying groups of spectra
that obey certain symmetry transformation rules which one could easily relate back
to the system symmetry [14].

Spherical tensor analysis has been used with great success for the X-ray photo-
electron of localized magnetic systems [15–19] and in XAS [14, 20–22], including
XNLD [23]. The underlying idea is to determine a finite set of fundamental spectra
in terms of which all possible experimental spectra can be expressed. More precisely,
the XAS spectrum obtained for a given polarization vector (ε) and wave vector (k)
of the incident beam is written as a sum of terms which are fundamental spectra [21,
22] (depending only on the sample properties) multiplied by an angular coefficient
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depending only on the experimental conditions (k, ε). Such a geometric and fully
decoupled expression is useful: (i) to disentangle the properties of the sample from
those of the measurement; (ii) to determine specific experimental arrangements aim-
ing at the observation of specific sample properties; (iii) to provide the most conve-
nient starting point to investigate the reduction of the number of fundamental spectra
due to crystal symmetries.

4.2.1 The Case of Electric Dipole Transitions

The first step is to build rank one spherical tensors from the vectors appearing in the
transition operator. The polarization vector ε = [εx , εy, εz] can be written as a spher-
ical tensor ε1 with components ε1−1 = εx−iεy√

2
, ε11 = − εx+iεy√

2
, and ε10 = εz . Similarly,

the position spherical tensor, r1, can be constructed. In the following we shall use
the following notation for the coupling of spherical tensors Pa and Qb of ranks a
and b into a spherical tensor of rank c

{Pa ⊗ Qb}cγ =
a∑

α=−a

b∑

α=−b

(aαbβ|cγ )Pa
α Q

b
β, (4.24)

with (aαbβ|cγ ) being the Clebsch–Gordan coefficients. Therefore,

Pa · Qa =
a∑

α=−a

(−1)αPa
−αQ

a
α = (−1)a

√
2a + 1{Pa ⊗ Qa}0. (4.25)

One has now to compute the scalar product of both tensors which is given by (4.25).
The dipole transition operator can be written as in (4.26) taking into consideration
that r is real while ε is in general complex

T = −√
3{ε1 ⊗ r1}0

T † = −√
3{ε1∗ ⊗ r1}0 .

(4.26)

We can recouple the cross section such that polarization tensors are coupled to each
other and position tensors are coupled to each other. This means that the expression
will have a part that depends only on the experimental geometry (polarization vector)
and a part that depends only on the sample properties. This recoupling can be done
using the identity

{P g ⊗ Qg}0 · {Rd ⊗ Sd}0 =
∑

a

(−1)a
{Pg ⊗ Rd}a · {Qg ⊗ Sd}a√

(2g + 1) (2d + 1)
. (4.27)
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Here a is constrained to |g − d| ≤ a ≤ g + d. Hence, for the dipole transition,
g = d = 1 and 0 ≤ a ≤ 2. The recoupled XAS cross section is finally expressed
as follows:

σω = −4πα�ωIm

[
2∑

a=0

(−1)a{ε1∗ ⊗ ε1}a · {〈I |r1G+r1|I 〉}a
]

. (4.28)

Quanty can calculate the energy dependent tensors R(a) = {〈I |r1G+r1|I 〉}a that
depend only on the properties of the sample. We will refer to these elements as the
fundamental spectra. Note that these fundamental spectra are sometimes referred to
as σ (a). This could be confused with the total cross section σω so we shall not use
this notation here. The experimental geometry tensor is Ea = {ε1∗ ⊗ ε1}a .

4.2.1.1 Term a = 0

The first term can be found by substituting a = 0 in (4.28). This is the zero rank of
the tensor, given in (4.29).

σ(0, 0) = 4πα�ω × Im

[
1

3

(
〈I |rC∗

1,0G
+rC1,0|I 〉 + 〈I |rC∗

1,−1G
+rC1,−1|I 〉

+〈I |rC∗
1,1G

+rC1,1|I 〉
)]

. (4.29)

Here C�m = C�
m =

√
4π

2�+1Y
m
� . The term σ(0, 0) is independent of the incident polar-

ization vector and as such is rotation invariant. It gives the isotropic contribution of
the XAS cross section.

4.2.1.2 Term a = 1

The terma = 1 consists of three components, namely,σ(1, 0),σ(1, 1), andσ(1,−1):

σ(1, 0) = −4πα�ω × Im

[
1

2

(
iε∗

x εy − iεxε
∗
y

)

×
(
〈I |rC∗

1,1G
+rC1,1|I 〉 − 〈I |rC∗

1,−1G
+rC1,−1|I 〉

)]
, (4.30)



100 H. Elnaggar et al.

σ(1, 1) = −4πα�ω × Im

[ −1

2
√
2

(
ε∗
x εz − εxε

∗
z + iεyε

∗
z − iε∗

yεz

)
(4.31)

(
〈I |rC∗

1,0G
+rC1,1|I 〉 + 〈I |rC∗

1,−1G
+rC1,0|I 〉

)]
, (4.32)

σ(1,−1) = −4πα�ω × Im

[
1

2
√
2

(
ε∗
x εz − εxε

∗
z + iε∗

yεz − iεyε
∗
z

)

×
(
〈I |rC∗

1,0G
+rC1,−1|I 〉 + 〈I |rC∗

1,1G
+rC1,0|I 〉

)]
. (4.33)

One notices from (4.30), (4.32) and (4.33) that the spectra of a = 1 are not active if
any of these two cases are satisfied:

1. If linearly polarized light is used for the measurement.
2. If all off-diagonal elements are zero and the diagonal elements are equal.

Another conclusion that can be drawn from the recoupling is the necessity to perform
XAS measurements using both linearly and circularly polarized light to probe these
fundamental spectra.

4.2.1.3 Term a = 2

The term a = 2 consists of five components, namely, σ(2, 0), σ(2, 1), σ(2,−1),
σ(2, 2), and σ(2,−2). These are given below as follows:

σ(2, 0) = −4πα�ω × Im

[
1

6

(
2|εz|2 − |εx |2 − |εy|2

)(
2〈I |rC∗

1,0G
+rC1,0|I 〉

−〈I |rC∗
1,−1G

+rC1,−1|I 〉 − 〈I |rC∗
1,1G

+rC1,1|I 〉
)]

, (4.34)

σ(2, 1) = −4πα�ω × Im

[
1

2
√
2

(
εxε

∗
z + ε∗

x εz − iεyε
∗
z − iε∗

yεz

)

×
(
〈I |rC∗

1,−1G
+rC1,0|I 〉 − 〈I |rC∗

1,0G
+rC1,1|I 〉

)]
, (4.35)

σ(2,−1) = −4πα�ω × Im

[
1

2
√
2

(
εxε

∗
z + ε∗

x εz + iε∗
yεz + iεyε

∗
z

)

×
(
〈I |rC∗

1,0G
+rC1,−1|I 〉 − 〈I |rC∗

1,1G
+rC1,0|I 〉

)]
, (4.36)
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σ(2, 2) = −4πα�ω × Im

[−1

2

(
(εx − iεy)(ε

∗
x − iε∗

y )
)

×
(
〈I |rC∗

1,−1G
+rC1,1|I 〉

)]
, (4.37)

σ(2,−2) = −4πα�ω × Im

[−1

2

(
(εx + iεy)(ε

∗
x + iε∗

y )
)

×
(
〈I |rC∗

1,1G
+rC1,−1|I 〉

)]
. (4.38)

It can be noted from (4.34), (4.35), (4.36), (4.37), and (4.38) that the a = 2 spectra
are active for linearly polarized light and hence these spectra are responsible for the
angular dependence observed with linear light. On the contrary, no difference can be
observed between right and left circularly polarized light. Another feature of these
terms is that they are not active if the following two conditions are satisfied:

1. The diagonal matrix elements are equal.
2. The off-diagonal matrix elements are zero.

4.2.1.4 General Dipole Expression

The general dipole expression is given in (4.39). From this equation, the dipole
XAS cross-section for an arbitrary polarization (ε) can be constructed from the nine
fundamental spectra derived above.

σ Dipole
ω (ε) = −4πα�ω × Im

[
1

3
R(0, 0) + 1

2

(
iε∗

x εy − iεxε
∗
y

)
R(1, 0)

− 1

2
√
2

(
ε∗
x εz − εxε

∗
z + iεyε

∗
z − iε∗

yεz
)
R(1, 1)

+ 1

2
√
2

(
ε∗
x εz − εxε

∗
z + iε∗

yεz − iεyε
∗
z

)
R(1,−1)

+1

6

(
2|εz|2 − |εx |2 − |εy|2

)
R(2, 0)

+ 1

2
√
2

(
εxε

∗
z + ε∗

x εz − iεyε
∗
z − iε∗

yεz
)
R(2, 1)

+ 1

2
√
2

(
εxε

∗
z + ε∗

x εz + iε∗
yεz + iεyε

∗
z

)
R(2,−1)

−1

2

(
(εx − iεy)(ε

∗
x − iε∗

y )
)
R(2, 2)

−1

2

(
(εx + iεy)(ε

∗
x + iε∗

y )
)
R(2,−2)

]
, (4.39)
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where the R are the fundamental spectra and are defined as

R(0, 0) = 〈I |rC∗
1,0G

+rC1,0|I 〉 + 〈I |rC∗
1,−1G

+rC1
1,−1|I 〉

+〈I |rC1∗
1,1G

+rC1,1|I 〉 , (4.40)

R(1, 0) = 〈I |rC∗
1,1G

+rC1,1|I 〉 − 〈I |rC∗
1,−1G

+rC1,−1|I 〉 , (4.41)

R(1, 1) = 〈I |rC∗
1,0G

+rC1,1|I 〉 + 〈I |rC∗
1,−1G

+rC1,0|I 〉 , (4.42)

R(1,−1) = 〈I |rC∗
1,0G

+rC1,−1|I 〉 + 〈I |rC∗
1,1G

+rC1,0|I 〉 , (4.43)

R(2, 0) = 2〈I |rC∗
1,0G

+rC1,0|I 〉 − 〈I |rC∗
1,−1G

+rC1,−1|I 〉
−〈I |rC∗

1,1G
+rC1,1|I 〉 , (4.44)

R(2, 1) = 〈I |rC∗
1,−1G

+rC1,0|I 〉 − 〈I |rC∗
1,0G

+rC1,1|I 〉 , (4.45)

R(2,−1) = 〈I |rC∗
1,0G

+rC1,−1|I 〉 − 〈I |rC∗
1,1G

+rC1,0|I 〉 , (4.46)

R(2, 2) = 〈I |rC∗
1,−1G

+rC1,1|I 〉 , (4.47)

R(2,−2) = 〈I |rC∗
1,1G

+rC1,−1|I 〉 . (4.48)

4.2.1.5 Case Study of a d9 ion

Octahedral Crystal Field

Equation (4.39) can be simplified when the symmetry of the absorbing system is
taken into account. As a demonstration, we shall study a d9 ion in octahedral (Oh)
symmetry. Figure 4.3 (top) shows the matrix elements for such a system. These
matrix elements are the direct output of Quanty and will be referred to as the con-
ductivity tensor. One finds that all the off-diagonal matrix elements are equal to zero
and all the diagonal matrix elements are equal. This leaves only the R(0, 0) term of
(4.39) not equal to zero. Hence one can conclude that the cross section of a dipole
transition is isotropic in an Oh system.

Tetragonal Crystal Field

Let us now consider a tetragonal distortion such that the octahedron is compressed
along the z-axis. The ground state in this case has a hole in the dz2 orbital (neglecting
spin-orbit coupling) and the z-axis is now different from the x- and y-axes. The
conductivity tensor for such a system is shown in Fig. 4.3 (bottom). As could be
intuitively expected, the middle panel corresponding to C1

0G
+C1

0 is different from
the other two diagonal elements. This implies that the following terms come into
play (see Fig. 4.4):

• R(0, 0) which gives the isotropic cross section.
• R(2, 0)which has a polarization dependence of the form 1

6

(
2|εz|2 − |εx |2 − |εy|2

)
.

It is interesting in this case to investigate what types of dichroism effect could be
observed. Consider rotating the incident linear polarization vector in the x − y-plane.
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Fig. 4.3 Conductivity tensor calculated for a d9 ion in an octahedral crystal field (top) and in a
tetragonal crystal field (bottom). Calculations are donewith a crystal field parameter 10Dq = 1.1 eV
and with Ds = −0.2 eV in tetragonal symmetry. Re and Im are the real and imaginary parts of the
tensor
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Fig. 4.4 Fundamental spectra R(0, 0) and R(2, 0) for a dipole transition for a d9 ion in a tetragonal
crystal field (10Dq = 1.1 eV and Ds = −0.2 eV)

In this case ε = [cos(θ), sin(θ), 0] where θ is the rotation angle defined from the
x-axis. The expression of the polarization dependence for the term R(2, 0) reveals
that no angular dependence is to be expected in this case. The system is effectively
Oh in the x − y-plane and one would expect no angular dependence as discussed in
the previous example. This XAS cross section for this rotation is shown in Fig. 4.5a.
On the contrary, rotating the polarization vector in the x − z (ε = [cos(θ), 0, sin(θ)])
or y − z (ε = [0, cos(θ), sin(θ)]) planes should yield an angular dependence as the
polarization vector probes the distortion, which is indeed observed as shown in
Fig. 4.5b and c. The dependence of the XAS cross-section on the direction of the

Fig. 4.5 Angular dependence of the L2,3 XAS of a 3d9 ion in a tetragonal crystal field. Calculations
are done by rotating the polarization vector in the x − y-plane [panel (a)], x − z-plane [panel (b)],
and y − z-plane [panel (c)] as illustrated in the top panel
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linearly polarized light is an effect referred to as linear dichroism as discussed pre-
viously.

Octahedral Crystal Field with an Exchange Field ‖ z

Another interesting system to investigate is a magnetic 3d9 ion where the crystal
field is Oh with an exchange field aligned along the z-axis. Hence, the z-axis is
inequivalent to the x- and y-axes due to the exchange field. The conductivity tensor
of such a system is shown in Fig. 4.6. The exchange field is aligned along a high
symmetry direction in this example which preserves the C4 rotation symmetry of
the system and consequently preserves the symmetry of the conductivity tensor. All
off-diagonal elements are zero. Note that the off-diagonal elements are zero because
we chose to calculate the tensor using the symmetry adapted transition operators.
Three fundamental spectra come into play and are plotted in Fig. 4.7:

• R(0, 0) which gives the isotropic cross section,
• R(1, 0) which has a polarization dependence of the form 1

2

(
iε∗

x εy − iεxε∗
y

)
,

• R(2, 0)whichhas apolarizationdependenceof the form 1
6

(
2|εz|2 − |εx |2 − |εy|2

)
.

Nearly no angular dependence can be observed by rotating the incident linear
polarization vector in the x − y-, x − z-, and y − z-planes (see Fig. 4.8a, b, and c).
This is consistent with the fact that the fundamental spectrum R(2, 0) responsible
for the angular dependence is nearly zero [R(2, 0) is about two orders of magnitude
smaller than the other two fundamental spectra in this system]. The difference in the
absorption cross section of linear polarized light in a magnetic system is an effect
referred to as XMLD [24]. The magnitude of the XMLD effect for this system can
be seen in Fig. 4.9. Note that the magnitude of the XMLD effect in Fe3O4 is ∼1%
of the XAS signal, which could be reliably measured on existing beamlines [25].

A strong dichroism is observed when circularly polarized light is used as in the
case for Fig. 4.10a.Here the incident polarization vector is either left or right polarized
about the z-axis leading to a difference in the absorption. This is an effect referred to
as X-ray magnetic circular dichroism (XMCD) [26]. It can be seen from the expres-
sion of the polarization part of the cross-section that if the incident wave vector is
aligned perpendicular to the exchange field, for example, for ε = [0,− i√

2
, 1√

2
], and

ε = [0,− i√
2
,− 1√

2
], no XMCD effect is observed. This is shown in Fig. 4.10b and c.

This dichroism can be used to quantify the ground state spin and orbital moments of
the system as given by the sum rules [27].

Octahedral Crystal Field with an Exchange Field ‖ [210]

As a last example, we consider a system in C1 symmetry. Consider aligning the
exchange field along a low symmetry direction, e.g., [210]. The exchange field now
completely breaks the symmetry of the system and the conductivity tensor has off-
diagonal elements (bottom of Fig. 4.6). Contrary to the previous case (where the
exchange field was aligned to the z-axis), it is now not possible to find a rotated
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Fig. 4.6 Conductivity tensor calculated for a d9 ion in an octahedral crystal field (10Dq = 1.1 eV)
with an exchange field (B = 0.05 eV) along the z-axis (top) and along the [210] direction (bottom).
The calculations are performed using a real spherical harmonics basis set
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Fig. 4.7 Fundamental spectra R(0, 0), R(1, 0), and R(2, 0) for a dipole transition for a d9 ion in
an octahedral crystal field (10Dq = 1.1 eV) with an exchange field (B = 0.05 eV) aligned along
the z-axis of the cluster

Fig. 4.8 Angular behaviour of the L2,3 XAS of a 3d9 ion in an octahedral crystal field (10Dq =
1.1 eV) with the exchange field (Bz = 0.05 eV) aligned along the z-axis. The calculations are done
by rotating the polarization vector in the a x − y-plane, b x − z-plane and c y − z-plane as depicted
in the top panel

basis set that diagonalizes the conductivity tensor for all excited states (i.e., the basis
set becomes energy dependent). It remains possible to diagonalize the conductivity
tensor for a given excited state. It is important to realize that when the exchange field
is aligned along a low symmetry direction, off-diagonal elements become important
and more dichroic effects come into play according to (4.39) and (4.48).

4.2.2 The Case of Electric Quadrupole Transitions

For electric quadrupole transitions, we will follow the same procedure as the one
used for electric dipole. The transition operator is now (up to a factor of i/2) T =
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Fig. 4.9 X-raymagnetic linear dichroismof a 3d9 ion in anoctahedral crystal field (10Dq = 1.1 eV)
with the exchange field (Bz = 0.05 eV) aligned along the z-axis. The dichroism is computed by
subtracting the XAS: a with ε ‖ x from that with ε ‖ y, b with ε ‖ x from that with ε ‖ z and c with
ε ‖ y from that with ε ‖ z

Fig. 4.10 X-ray magnetic circular dichroism of a 3d9 ion in an octahedral surrounding with the
exchange field (Bz) aligned along the z-axis. The dichroism is computed by subtracting the XAS
signal calculated with right circularly polarized light from that with left polarized light. a The
incident wave vector is aligned parallel to the z-axis. b The incident wave vector is aligned parallel
to the y-axis. c The incident wave vector is aligned parallel to the x-axis

(ε · r)(k.r). It can be seen from the expression of the transition operator that the cross
section will depend on the orientation of the polarization vector (ε) and of the wave
vector (k) with respect to the absorbing system. Two recoupling steps are required in
this case. First, the transition operator can be rewritten into a combination of scalar
products of two tensors: one tensor that depends only on ε and k coupled together,
and one tensor that depends only on the absorber r. This recoupled transition operator
is expressed as follows:
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T̂ =
2∑

b=0

(−1)b{ε1 ⊗ k1}b.{r1 ⊗ r1}b ,

T̂ † =
2∑

c=0

(−1)c{ε1∗ ⊗ k1}c.{r1 ⊗ r1}c .

(4.49)

The next step is to recouple the two transition amplitudes of the absorption cross
section. This gives the expression

σω = π2α�ω × Im

[ 4∑

a=0

2∑

b=0

2∑

c=0

(−1)a(−1)b(−1)c{{ε∗1 ⊗ k1}c ⊗ {ε1 ⊗ k1}b}a

×{〈I |{r1 ⊗ r1}cG+{r1 ⊗ r1}b|I 〉}a
]

. (4.50)

Before attempting to write out the recoupled absorption cross section in (4.50), it
is useful to simplify the expression of the transition operator first. This in turn will
simplify the expression of the absorption cross section. The transition operator is a
rank two tensor according to (4.49) with b = 0, 1, 2. We shall write out the three b
terms:

• Term b = 0

(−1)0{ε1 ⊗ k1}0.{r1 ⊗ r1}0 =
(
− 1√

3
ε10k

1
0 + 1√

3
ε11k

1−1 + 1√
3
ε1−1k

1
1

)

×
(
− 1√

3
r10r

1
0 + 1√

3
r11r

1−1 + 1√
3
r1−1r

1
1

)
.(4.51)

The first part of the expression can be rewritten as 1√
3

(−εzkz − εxkx − εyky
)
. This

is equal to zero because the polarization vector is orthogonal to the wave vector.
This means that the term b = 0 is zero.

• Term b = 1
This term consists of three components according to

(−1)1{ε1 ⊗ k1}1.{r1 ⊗ r1}1 = − i√
2

i√
2

(ε × k) · (r × r) . (4.52)

The second part of the expression is equal to zero because it is a cross product of
the same vector. This means that the term b = 1 is also zero.

• Term b = 2
This term consists of five components. These five components can be simpli-
fied applying the orthogonality between ε and k. In addition the r tensor can
be expressed in terms of spherical harmonics of l = 2 according to the relation
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{r1 ⊗ r1}2m = r2m =
√

8π
15 Y2,m(r) =

√
8π
15 r

2Y2,m(θ, φ). One obtains the following
five components after simplification

{ε1 ⊗ k1}20{r1 ⊗ r1}20 =
(√

3

2
εzkz

)
(
r20

)
, (4.53)

{ε1 ⊗ k1}21{r1 ⊗ r1}2−1 =
(

−kz(εx + iεy) + (kx + iky)εz
2

) (
r2−1

)
, (4.54)

{ε1 ⊗ k1}2−1{r1 ⊗ r1}21 =
(
kz(εx − iεy) + (kx − iky)εz

2

) (
r21

)
, (4.55)

{ε1 ⊗ k1}22{r1 ⊗ r1}2−2 =
(

(kx + iky)(εx + iεy)

2

) (
r2−2

)
, (4.56)

{ε1 ⊗ k1}2−2{r1 ⊗ r1}22 =
(

(kx − iky)(εx − iεy)

2

) (
r22

)
. (4.57)

The same arguments apply for the c = 0, 1, 2 terms of the recoupled T̂ † operator
ending up with the values b = 2 and c = 2 for the XAS cross section. The recoupled
cross section writes

σω = π2α�ωk2 × Im

[ 4∑

a=0

(−1)a{{ε∗1 ⊗ k1}2 ⊗ {ε1 ⊗ k1}2}a

×{〈I |{r1 ⊗ r1}2G+{r1 ⊗ r1}2|I 〉}a
]

. (4.58)

Now one can develop (4.58) in further details for a = 0, 1, 2, 3, 4. We shall only
report the final expression here.

4.2.3 Term a = 0

Let us substitutea = 0 in (4.58). This is the zero rankof the tensor,σ(0, 0), describing
an isotropic spectrum

σ(0, 0) = π2α�ωk2 × Im

[
1

10

(
〈I |r2C∗

2,0G
+r2C2,0|I 〉 + 〈I |r2C∗

2,−1G
+r2C2,−1|I 〉

+〈I |r2C∗
2,1G

+r2C2,1|I 〉 + 〈I |r2C∗
2,−2G

+r2C2,−2|I 〉
+〈I |r2C∗

2,2G
+r2C2,2|I 〉

)]
. (4.59)
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4.2.4 Term a = 1

The term a = 1 consists of three components, namely, σ(1, 0), σ(1, 1) and σ(1,−1)

σ (1, 0) = π2α�ωk2 × Im

[
i

20

(
(2k2x + 2k2y + k2z )εxε

∗
y − (2k2x + 2k2y + k2z )ε

∗
x εy

+kykzεxε
∗
z − kykzε

∗
x εz + kxkzεzε

∗
y − kxkzεyε

∗
z

)

×
(
〈I |r2C∗

2,1G
+r2C2,1|I 〉 − 〈I |r2C∗

2,−1G
+r2C2,−1|I 〉

+2〈I |r2C∗
2,2G

+r2C2,2|I 〉 − 2〈I |r2C∗
2,−2G

+r2C2,−2|I 〉
)]

, (4.60)

σ(1, 1) = π2α�ωk2 × Im

[
1

40

(
(2k2x + k2y + 2k2z − ikx ky)ε

∗
x εz

−(2k2x + k2y + 2k2z − ikx ky)εxε
∗
z − i(k2x + 2k2y + 2k2z + ikx ky)ε

∗
yεz

+i(k2x + 2k2y + 2k2z + ikx ky)εyε
∗
z + (ky + ikx )kzε

∗
x εy − i(kx − iky)kzεxε

∗
y

)

×
(√

6〈I |r2C∗
2,−1G

+r2C2,0|I 〉 + √
6〈I |r2C∗

2,0G
+r2C2,1|I 〉

+2〈I |r2C∗
2,−2G

+r2C2,−1|I 〉 + 2〈I |r2C∗
2,1G

+r2C2,2|I 〉
)]

, (4.61)

σ(1,−1) = π2α�ωk2 × Im

[−1

40

(
(2k2x + k2y + 2k2z + ikx ky)ε

∗
x εz

−(2k2x + k2y + 2k2z + ikx ky)εxε
∗
z + i(k2x + 2k2y + 2k2z − ikx ky)ε

∗
yεz

−i(k2x + 2k2y + 2k2z − ikx ky)εyε
∗
z + kz(ky − ikx )ε

∗
x εy + ikz(kx + iky)εxε

∗
y

)

×
(√

6〈I |r2C∗
2,1G

+rC2,0|I 〉 + √
6〈I |r2C∗

2,0G
+r2C2,−1|I 〉

+2〈I |r2C∗
2,2G

+r2C2,1|I 〉 + 2〈I |r2C∗
2,−1G

+r2C2,−2|I 〉
)]

. (4.62)

A quick check of (4.60), (4.61) and (4.62) reveals that the term a = 1 is zero for
linear light. This implies that these fundamental spectra can only be probed with
circular or elliptically polarized light. It is also clear that if the conductivity tensor
has no off-diagonal terms, and satisfies

〈I |r2C∗
2,1G

+r2C2,1|I 〉 = 〈I |r2C∗
2,−1G

+r2C2,−1|I 〉 ,

〈I |r2C∗
2,2G

+r2C2,2|I 〉 = 〈I |r2C∗
2,−2G

+r2C2,−2|I 〉 ,

then the term a = 1 is again zero.
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4.2.5 Term a = 2

The term a = 2 consists of five components, namely, σ(2, 0), σ(2, 1), σ(2,−1),
σ(2, 2), and σ(2,−2)

σ (2, 0) = π2α�ωk2 × Im

[
1

84

(
(4k2xεx − 2kxkyεy + kxkzεz + 6k2yεx − 3k2z εx )ε

∗
x

+(6k2xεy − 2kxkyεx + 4k2yεy + kykzεz − 3k2z εy)ε
∗
y

+(−3k2xεz + kxkzεx − 3k2yεz + kykzεy − 8k2z εz)ε
∗
z

)

×
(
2〈I |r2C∗

2,2G
+r2C2,2|I 〉 + 2〈I |r2C∗

2,−2G
+r2C2,−2|I 〉

−2〈I |r2C∗
2,0G

+r2C2,0|I 〉 − 〈I |r2C∗
2,1G

+r2C2,1|I 〉
−〈I |r2C∗

2,−1G
+r2C2,−1|I 〉

)]
, (4.63)

σ(2, 1) = π2α�ωk2 × Im

[ −1

168

([
(4kxεx − 6ikyεx + ikxεy − kyεy)kz

+(2k2x + ikx ky + 3k2y + 2k2z )εz
]
ε∗
x − i

[
(−kxεx − ikyεx + 6ikxεy + 4kyεy)kz

+(3k2x − ikx ky + 2(k2y + k2z ))εz
]
ε∗
y + [

2k2z (εx − iεy) + k2y(3εx − 2iεy)

+k2x (2εx − 3iεy) − 4ikykzεz + kx (ikyεx − kyεy + 4kzεz)
]
ε∗
z

)

×
(√

6〈I |r2C∗
2,0G

+r2C2,1|I 〉 − √
6〈I |r2C∗

2,−1G
+r2C2,0|I 〉

+6〈I |r2C∗
2,1G

+r2C2,2|I 〉 − 6〈I |r2C∗
2,−2G

+r2C2,−1|I 〉
)]

, (4.64)

σ(2,−1) = π2α�ωk2 × Im

[
1

168

([
6ikykzεx − kykzεy + 2k2xεz + 3k2yεz + 2k2z εz

−ikx (4ikzεx + kzεy + kyεz)
]
ε∗
x + i

[ − kx kz(εx + 6iεy) + kykz(iεx + 4εy)

+3k2xεz + ikx kyεz + 2(k2y + kz2)εz
]
ε∗
y + [

2k2z (εx + iεy) + k2y(3εx + 2iεy)

+k2x (2εx + 3iεy) + 4ikykzεz + kx (−ikyεx − kyεy + 4kzεz)
]
ε∗
z

)

×
(√

6〈I |r2C∗
2,0G

+r2C2,−1|I 〉 − √
6〈I |r2C∗

2,1G
+r2C2,0|I 〉

+6〈I |r2C∗
2,−1G

+r2C2,−2|I 〉 − 6〈I |r2C∗
2,2G

+r2C2,1|I 〉
)]

, (4.65)
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σ(2, 2) = π2α�ωk2 × Im

[
1

4
√
21

(
− 2(kx − iky)(ε

∗
x − iε∗

y )(kxεx + kyεy − 2kzεz)

−3(εz(kx − iky) + kz(εx − iεy))(ε
∗
z (kx − iky) + kzε

∗
x − ikzε

∗
y )

−2(kx − iky)(εx − iεy)(kxε
∗
x + kyε

∗
y − 2kzε

∗
z )

)

×
(√

2

7
〈I |r2C∗

2,0G
+r2C2,2|I 〉 +

√
3

7
〈I |r2C∗

2,−1G
+r2C2,1|I 〉

+
√
2

7
〈I |r2C∗

2,−2G
+r2C2,0|I 〉

)]
, (4.66)

σ(2,−2) = π2α�ωk2 × Im

[
1

4
√
21

(
− 2(kx + iky)(ε

∗
x + iε∗

y )(kxεx + kyεy − 2kzεz)

−3(εz(kx + iky) + kz(εx + iεy))(ε
∗
z (kx + iky) + kzε

∗
x + ikzε

∗
y )

−2(kx + iky)(εx + iεy)(kxε
∗
x + kyε

∗
y − 2kzε

∗
z )

)

×
(√

2

7
〈I |r2C∗

2,0G
+r2C2,−2|I 〉 +

√
3

7
〈I |r2C∗

2,1G
+r2C2,−1|I 〉

+
√
2

7
〈I |r2C∗

2,2G
+r2C2,0|I 〉

)]
. (4.67)

4.2.6 Term a = 3

The term a = 3 consists of seven components, namely, σ(3, 0), σ(3, 1), σ(3,−1),
σ(3, 2), σ(3,−2), σ(3, 3), and σ(3,−3)

σ (3, 0) = π2α�ωk2 × Im

[
i

20

(
(k2x + k2y − 2k2z )εxε

∗
y − (k2x + k2y − 2k2z )εyε

∗
x

+2kxkzεyε
∗
z − 2kxkzεzε

∗
y + 2kykzεzε

∗
x − 2kykzεxε

∗
z

)

×
(
2〈I |r2C∗

2,−1G
+r2C2,−1|I 〉 − 2〈I |r2C∗

2,1G
+r2C2,1|I 〉

+〈I |r2C∗
2,2G

+r2C2,2|I 〉 − 〈I |r2C∗
2,−2G

+r2C2,−2|I 〉
)]

, (4.68)
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σ(3, 1) = π2α�ωk2 × Im

[
1

40
√
6

(
i(3k2x − 2ikx ky + k2y − 4k2z )εzε

∗
y

+8kz(ky + ikx )εxε
∗
y − (k2x + 2ikx ky + 3k2y − 4k2z )ε

∗
x εz − 8kz(ky + ikx )εyε

∗
x

+ε∗
z
[
k2x (εx − 3iεy) + 2ikx ky(εx + iεy) + k2y(3εx − iεy) − 4k2z (εx − iεy)

])

×
(
2〈I |r2C∗

2,0G
+r2C2,1|I 〉 + 2〈I |r2C∗

2,−1G
+r2C2,0|I 〉

−√
6〈I |r2C∗

2,1G
+r2C2,2|I 〉 − √

6〈I |r2C∗
2,−2G

+r2C2,−1|I 〉
)]

, (4.69)

σ(3,−1) = π2α�ωk2 × �
[

1

40
√
6

(
i(3k2x + 2ikx ky + k2y − 4k2z )ε

∗
yεz

+8ikz(kx + iky)εxε
∗
y + (k2x − 2ikx ky + 3k2y − 4k2z )ε

∗
x εz + 8kz(ky − ikx )ε

∗
x εy

+ε∗
z

[
k2x (−(εx + 3iεy)) + 2kxky(εy + iεx ) − k2y(3εx + iεy) + 4k2z (εx + iεy)

])

×
(
2〈I |r2C∗

2,0G
+r2C2,−1|I 〉 + 2〈I |r2C∗

2,1G
+r2C2,0|I 〉

−√
6〈I |r2C∗

2,−1G
+r2C2,−2|I 〉 − √

6〈I |r2C∗
2,2G

+r2C2,1|I 〉
)]

, (4.70)

σ(3, 2) = π2α�ωk2 × Im

[
1

4
√
6

(
ky + ikx

)(
ε∗
x (kxεy − ikyεy + 2ikzεz)

+ε∗
y (−kxεx + ikyεx + 2kzεz) − 2ikzε

∗
z (εx − iεy)

)

×
(
〈I |r2C∗

2,0G
+r2C2,2|I 〉 − 〈I |r2C∗

2,−2G
+r2C2,0|I 〉

)]
, (4.71)

σ(3,−2) = π2α�ωk2 × Im

[
1

4
√
6

(
iky + kx

)(
ε∗
x (ikxεy − kyεy + 2kzεz)

+ε∗
y (−ikxεx + kyεx + 2ikzεz) − 2kzε

∗
z (εx + iεy)

)

×
(
〈I |r2C∗

2,2G
+r2C2,0|I 〉 − 〈I |r2C∗

2,0G
+r2C2,−2|I 〉

)]
, (4.72)

σ(3, 3) = π2α�ωk2 × Im

[
1

8

(
(kx − iky)

2
)(

− ε∗
z (εx − iεy) + εz(ε

∗
x − iε∗

y )
)

×
(

− 〈I |r2C∗
2,−1G

+r2C2,2|I 〉 − 〈I |r2C∗
2,−2G

+r2C2,1|I 〉
)]

, (4.73)
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σ(3,−3) = π2α�ωk2 × Im
[
1

8

(
(kx + iky)

2
)(

− ε∗
z (εx + iεy) + εz(ε

∗
x + iε∗

y )
)

×
(
〈I |r2C∗

2,1G
+r2C2,−2|I 〉 + 〈I |r2C∗

2,2G
+r2C2,−1|I 〉

)]
. (4.74)

4.2.7 Term a = 4

The term a = 4 consists of nine components, namely, σ(4, 0), σ(4, 1), σ(4,−1),
σ(4, 2), σ(4,−2), σ(4, 3), σ(4,−3), σ(4, 4), and σ(4,−4)

σ (4, 0) = π2α�ωk2 × Im

[
1

140

(
[3k2xεx + k2yεx − 4k2z εx + 2kxkyεy − 8kxkzεz]ε∗

x

+[k2xεy + 3k2yεy − 4k2z εy + 2kxkyεx − 8kykzεz]ε∗
y

−4ε∗
z [εz(k2x + k2y − 2k2z ) + 2kz(kxεx + kyεy)]

)

×
(
6〈I |r2C∗

2,0G
+r2C2,0|I 〉 − 4〈I |r2C∗

2,1G
+r2C2,1|I 〉

−4〈I |r2C∗
2,−1G

+r2C2,−1|I 〉 + 〈I |r2C∗
2,2G

+r2C2,2|I 〉
+〈I |r2C∗

2,−2G
+r2C2,−2|I 〉

)]
, (4.75)

σ(4, 1) = π2α�ωk2 × Im

[
1

56

(
ε∗
x
[
3k2xεz − 2ikx (kyεz + 3ikzεx + kzεy) + εz(k

2
y − 4k2z )

+2kykz(εy − iεx )
] − iε∗

y
[
εz(k

2
x + 2ikx ky + 3k2y − 4k2z )

+2kz(kxεx + ikxεy + ikyεx + 3kyεy)
] + ε∗

z
[
k2x (3εx − iεy)

+2kx ky(εy − iεx ) − 8kx kzεz + k2y(εx − 3iεy) + 8ikykzεz − 4k2z (εx − iεy)
])

×
(√

6〈I |r2C∗
2,0G

+r2C2,1|I 〉 − √
6〈I |r2C∗

2,−1G
+r2C2,0|I 〉

〈I |r2C∗
2,−2G

+r2C2,−1|I 〉 − 〈I |r2C∗
2,1G

+r2C2,2|I 〉
)]

, (4.76)
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σ(4,−1) = π2α�ωk2 × Im

[−1

56

(
ε∗
x

[
εz(3k

2
x + 2ikx ky + k2y − 4k2z )

+2kz(3kxεx + ikxεy + ikyεx + kyεy)
] + ε∗

y

[
iεz(k

2
x − 2ikx ky + 3k2y − 4k2z )

+2kz(ikxεx + kxεy + kyεx + 3ikyεy)
] + ε∗

z

[
k2x (3εx + iεy)

+2kxky(εy + iεx ) − 8kxkzεz + k2y(εx + 3iεy) − 8ikykzεz − 4k2z (εx + iεy)
])

×
(√

6〈I |r2C∗
2,0G

+r2C2,−1|I 〉 − √
6〈I |r2C∗

2,1G
+r2C2,0|I 〉

〈I |r2C∗
2,2G

+r2C2,1|I 〉 − 〈I |r2C∗
2,−1G

+r2C2,−2|I 〉
)]

, (4.77)

σ(4, 2) = π2α�ωk2 × Im

[
1

56

(
− (kx − iky)(ε

∗
x − iε∗

y )(kxεx + kyεy − 2kzεz)

+2[εz(kx − iky) + kz(εx − iεy)][ε∗
z (kx − iky) + kzε

∗
x − ikzε

∗
y ]

−(kx − iky)(εx − iεy)(kxε
∗
x + kyε

∗
y − 2kzε

∗
z )

)

×
(√

6〈I |r2C∗
2,0G

+r2C2,2|I 〉 + √
6〈I |r2C∗

2,−2G
+r2C2,0|I 〉

−4〈I |r2C∗
2,−1G

+r2C2,1|I 〉
)]

, (4.78)

σ(4,−2) = π2α�ωk2 × Im

[
1

56

(
− (kx + iky)(ε

∗
x + iε∗

y )(kxεx + kyεy − 2kzεz)

+2[εz(kx + iky) + kz(εx + iεy)][ε∗
z (kx + iky) + kzε

∗
x + ikzε

∗
y ]

−(kx + iky)(εx + iεy)(kxε
∗
x + kyε

∗
y − 2kzε

∗
z )

)

×
(√

6〈I |r2C∗
2,0G

+r2C2,−2|I 〉 + √
6〈I |r2C∗

2,2G
+r2C2,0|I 〉

−4〈I |r2C∗
2,1G

+r2C2,−1|I 〉
)]

, (4.79)

σ(4, 3) = π2α�ωk2 × Im

[−1

8

(
kx − iky

)(
(ε∗

x − iε∗
y )

(
εz(kx − iky)

+2kz(εx − iεy)
) + ε∗

z (kx − iky)(εx − iεy)
)

×
(
〈I |r2C∗

2,−2G
+r2C2,1|I 〉 − 〈I |r2C∗

2,−1G
+r2C2,2|I 〉

)]
, (4.80)
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σ(4,−3) = π2α�ωk2 × Im

[
1

8

(
kx + iky

)(
(ε∗

x + iε∗
y )(εz(kx + iky)

+2kz(εx + iεy)) + ε∗
z (kx + iky)(εx + iεy)

)

×
(
〈I |r2C∗

2,2G
+r2C2,−1|I 〉 − 〈I |r2C∗

2,1G
+r2C2,−2|I 〉

)]
, (4.81)

σ(4, 4) = π2α�ωk2 × Im

[
1

4

(
(kx − iky)

2(εx − iεy)(ε
∗
x − iε∗

y )
)

×
(
〈I |r2C∗

2,−2G
+r2C2,2|I 〉

)]
, (4.82)

σ(4,−4) = π2α�ωk2 × Im
[1
4

(
(kx + iky)

2(εx + iεy)(ε
∗
x + iε∗

y )
)

×
(
〈I |r2C∗

2,2G
+r2C2,−2|I 〉

)]
. (4.83)

In the most general case, the quadrupole XAS signal can be described using 25
fundamental spectra as given in (4.59)–(4.83). Although the expression seems at
first sight complicated, major simplifications and intuitive conclusions can be made
when one considers the symmetry of the absorbing system. We shall illustrate this
in the following section.

4.2.7.1 Case Study of a d9 Ion

As an example, we will study again a d9 ion in different local symmetries.

Spherical Symmetry

We shall start with an isolated d9 ion (i.e., spherical symmetry). The conductivity
tensor of such an ion is shown in Fig. 4.11. The tensor consists of 25 elements that
form the 25 fundamental spectra through appropriate linear combinations. Only the
five diagonal elements are non-zero in this case and are all equal. This means that the
only possibly active fundamental spectra are of the typeσ(a, 0)witha = 0, 1, 2, 3, 4.
However, because all the diagonal elements are equal, only the fundamental spec-
trum σ(0, 0) is non-zero. This fundamental spectrum has no angular dependence,
hence this system is isotropic. It is not a surprising result that for a spherical system,
no angular dependence would be observed.
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Fig. 4.11 Conductivity tensor calculated for a d9 ion in spherical symmetry. Re and Im are the real
and imaginary parts of the tensor

Octahedral Crystal Field

We shall examine next a d9 ion in Oh symmetry. The conductivity tensor of this ion
is shown in Fig. 4.12. Several differences can be directly seen in comparison with
the previous case:

• The elements with the transition operator T = C2−2 are mixed with those of
T = C2

2 .• The diagonal elements are not equal.

Let us consider the first point. This mixing leads to the same form of eigenvectors
than for obtained for the 3d orbitals (Y2,m) for an Oh crystal field [see (4.23)]. Indeed,
this is exactly the same problem. In order to obtain only diagonal elements, one can
apply the following rotation (4.84):
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Fig. 4.12 Conductivity tensor of a d9 ion in an octahedral crystal field (10Dq = 1.1 eV). Re and
Im are the real and imaginary parts of the tensor

Rot =

⎡

⎢⎢⎢⎢⎢⎣

1√
2

0 0 0 1√
2

0 0 1 0 0
0 i√

2
0 i√

2
0

0 1√
2
0 − 1√

2
1

i√
2

0 0 0 − i√
2

⎤

⎥⎥⎥⎥⎥⎦
. (4.84)

The rotated conductivity tensor is shown in Fig. 4.13. Only diagonal elements
exist now. These are separated into two types: three (t2g) that are equal with transition
operators, C2

xy,C
2
yz and C2

xz , and two (eg) that are equal with transition operators,
C2

z2 and C
2
x2−y2 .
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Fig. 4.13 Conductivity tensor for a d9 ion in an octahedral crystal field (10Dq = 1.1 eV) calculated
using the symmetry adapted basis set

Five fundamental spectra come into play, namely, σ(0, 0), σ(2, 0), σ(4, 0),
σ(4, 4), and σ(4,−4) as shown in Fig. 4.14. The Oh symmetry implies that R(2, 0) is
always equal to zero as confirmedby the calculation. In addition, R(4, 4) = R(4,−4)
and are proportional to R(4, 0) as can be seen from (4.75), (4.82), and (4.83). There-
fore, as can be expected fromgroup theory, only two fundamental spectra are required
to fully describe the system.

Let us investigate the angular dependence of a quadrupole transition in an Oh

crystal field considering two scattering geometries. In the first geometry, the wave
vector (k) is aligned parallel to the [100] direction and the polarization (ε) is rotated
in the z − y-plane as illustrated in the right panel of Fig. 4.16. Despite the presence of
non-isotropic fundamental spectra [σ(4, 0), σ(4, 4), and σ(4,−4)], the XAS cross-
section is constant in these settings as shown in Fig. 4.16a. In the second geometry we
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Fig. 4.14 Fundamental spectra for a quadrupole transition in a 3d9 ion in an octahedral crystal
field. Re and Im are the real and imaginary parts of the spectra

have k ‖ [ 1√
2

1√
2
0] and ε is rotated about the [ 1√

2
1√
2
0] axis as depicted in Fig. 4.16b.

The XAS cross section shows a clear twofold angular dependence in these settings.
It is interesting to discuss the difference between both scattering geometries and

the reason behind the absence of angular dependence in the first case. In Fig. 4.15,
we plot the angular dependence of the light tensor [E(4, 0), E(4, 4), and E(4,−4)]
for both cases. The contribution of the term E(4, 0) is 90◦ out-of-phase with respect
to the terms E(4, 4) and E(4,−4) for the first scattering geometry [see panel (a)
of Fig. 4.15]. The Oh symmetry implies that the ratio between the R(4, 0) and the
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Fig. 4.15 Angular dependence of E(4, 0), E(4, 4), and E(4,−4) terms. a The wave vector (k)
is aligned with [100]. The angular dependence is computed by rotating the polarization (ε) about
[100] with θ = 0o for ε ‖ [001]. b k is aligned with [ 1√

2
1√
2
0]. The angular dependence is computed

by rotating ε about [ 1√
2

1√
2
0] with θ = 0o for ε ‖ [001]

R(4,±4) terms leads to a constant XAS cross section. On the other hand, as depicted
in Fig. 4.15b, all terms are in phase which leads to an angular dependent XAS.

An important distinction between the dipole and quadrupole transitions can be
concluded from these examples. While a dipole transition in an Oh system exhibits
no angular dependence, the quadrupole transition can show angular dependences
when the scattering geometry is appropriately chosen. This difference holds because
a quadrupole transition has higher multipole contributions that give rise to angular
dependences not observable for dipole transitions.

Tetragonal Crystal Field

The effect of reducing the crystal field symmetry to tetragonal by applying a com-
pressive distortion along the z-axis can be directly seen in the angular dependence of
the quadrupole transition. In contrast to the case of Oh crystal field (see Fig. 4.16a),
now rotating ε about the [100] axis shows angular dependence because the z- and
y-axes are not equivalent (see Fig. 4.17a). However, as could be expected, rotating ε

about the [001] axis shows no angular dependence (see Fig. 4.17b). In this projection,
the system is effective of Oh symmetry.
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Fig. 4.16 Angular dependence of XAS for a quadrupole transition in a 3d9 Oh ion with 10Dq =
1.1 eV. a The wave vector (k) is aligned with [100]. The angular dependence is computed by
rotating the polarization vector (ε) about [100] with θ = 0o for ε ‖ [001] as depicted in the sketch
on the right. b k is aligned with [ 1√

2
1√
2
0]. The angular dependence is computed by rotating ε about

[ 1√
2

1√
2
0] with θ = 0o for ε ‖ [001] as depicted in the sketch on the right

Octahedral Crystal Field with Exchange Field ‖ z

Consider a magnetic 3d9 ion where the crystal field is Oh with an exchange field
aligned along the z-axis. Seven fundamental spectra come into play, namely, R(0, 0),
R(1, 0), R(2, 0), R(3, 0), R(4, 0), R(4,−4), and R(4, 4).We have shown previously
that for Oh symmetry,when k is aligned parallel to the [100] direction, and ε is rotated
in the z − y-plane, angular dependence is observed (see Fig. 4.16a). Repeating the
same calculation with an exchange field aligned along the z-axis leads to an angular
dependent XAS as shown in Fig. 4.18a. The exchange field reduces the symmetry
along the z-axis. The effects of rotating the incident linear polarization in the z − y-
plane on the fundamental cross sections are shown in Fig. 4.19. Only the terms
σ(2, 0), σ(4, 0), σ(4, 4), and σ(4,−4) are non-zero and exhibit a twofold angular
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Fig. 4.17 Angular dependence of XAS for a quadrupole transition in a 3d9 ion in a D4h crystal
field (10Dq = 1.1 eV and Ds = −0.2 eV). a The wave vector (k) is aligned with [100]. The angular
dependence is computed by rotating the polarization (ε) about [100] with θ = 0o for ε ‖ [001]. b
k is aligned with [001] and ε is rotated about the [001] with θ = 0o for ε ‖ [100]

dependence. However, one notes that σ(4, 0) is 90◦ shifted with respect to σ(4, 4)
and σ(4,−4)which implies that the angular dependence of the XASwill be small. In
comparison, no angular dependence is observed when ε is rotated in the x − y-plane
as shown in Fig. 4.18b.

Finally, the exchange field can give rise to interesting combinations of structural
and magnetic dichroism effects. Consider aligning k ‖ [001] and measuring XAS
using circular polarized light. Rotating the system about the [100] axis gives rise to
unconventional angular dependent XAS as shown in Fig. 4.20. This angular depen-
dence arises from a combination of structural and magnetic dichroism effects.

The magnetic contribution arises from the circular dichroism active terms which
are σ(1, 0) and σ(3, 0) (see Fig. 4.21a). On the other hand, the structural contribution
arises from the linear dichroism active termswhich areσ(4, 0),σ(4, 4), andσ(4,−4)
(see Fig. 4.21b). In addition, these terms contributeweakly to themagnetic dichroism.
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Fig. 4.18 Angular dependence of a quadrupole transition for a 3d9 ion in Oh crystal field (10Dq =
1.1 eV) with an exchange field aligned along the z-axis (B = 0.05 eV). a The wave vector (k) is
aligned with [100]. The angular dependence is computed by rotating the polarization vector (ε)
about [100] with θ = 0o for ε ‖ [001]. b k is aligned with [001] and ε is rotated about the [001]
with θ = 0o for ε ‖ [100]

This is illustrated in Fig. 4.22 where in panel (a) we show the structural dichroism
signal for the same system without an exchange field and in panel (b) the difference
between the case with exchange versus without exchange. Themagnetic contribution
is about three orders ofmagnitude less than the structural contribution for this system.
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Fig. 4.19 Angular dependence of XAS fundamental cross sections σ(1, 0), σ(2, 0), σ(3, 0),
σ(4, 0), σ(4, 4), and σ(4,−4). Here k is aligned with [100] and ε is rotated about [100] with
θ = 0o for ε ‖ [001]

Fig. 4.20 Angular dependence of XAS for a quadrupole transition in a 3d9 ion in an Oh crystal
field (10Dq = 1.1 eV) with an exchange field aligned along the z-axis (B = 0.05 eV). The wave
vector (k) is initially aligned to [001] and polarization (ε) is circular. The angular dependence is
computed by rotating the system about the [100] axis
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Fig. 4.21 Angular dependence of XAS fundamental spectra for a quadrupole transition in a 3d9

ion in an Oh crystal field with an exchange field aligned along the z-axis. a Circular dichroism
active terms σ(1, 0) and σ(3, 0). b Linear dichroism active terms σ(4, 0), σ(4, 4) and σ(4,−4).
The angular dependence is computed by rotating the system about the [100] axis

Fig. 4.22 Angular dependence of XAS for a quadrupole transition in a 3d9 ion: a in an Oh crystal
field (10Dq = 1.1 eV). b The difference between calculation (a) and in an Oh crystal field with an
exchange field aligned along the z-axis (10Dq = 1.1 eV and B = 0.05 eV). The wave vector (k)
is initially aligned to [001] and polarization (ε) is circularly polarized. The angular dependence is
computed by rotating the system about the [100] axis



128 H. Elnaggar et al.

4.3 Conclusion

We have expressed the XAS cross section using Green’s function formalism and
spherical tensors, which allows a tractable investigation of the different types of
dichroism: on the one hand experimentally, by allowing the experimentalist to pre-
dict the smallest set of measurements required to recover the full spectroscopic
information and therefore to optimize beamtime; on the other hand theoretically,
using modern core level spectroscopy codes, by allowing a more efficient calcula-
tion rather than a point-by-point time-consuming treatment. In a forthcoming work,
we intend to use a similar approach for resonant inelastic X-ray scattering (RIXS)
spectroscopy, whose richness lies in the large number of possible spectra that can
be obtained by varying the energy, direction, and polarization state of the incident
and scattered beams [28]. But as a matter of fact, there is so much information in
the spectra that it is difficult to know whether a specific set of experiments measures
all potential information. In our opinion, the possibilities offered by angular and
polarization dependent RIXS measurements have not yet been exploited to the best
of their potential. Nevertheless, the technique has now become mature and popular
and will benefit from the huge instrumentation progress achieved in the last years,
which open new doors for the exploration of dichroims in materials.
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