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Abstract. This paper studies concrete security with respect to expected-
time adversaries. Our first contribution is a set of generic tools to obtain
tight bounds on the advantage of an adversary with expected-time guar-
antees. We apply these tools to derive bounds in the random-oracle and
generic-group models, which we show to be tight.

As our second contribution, we use these results to derive concrete
bounds on the soundness of public-coin proofs and arguments of knowl-
edge. Under the lens of concrete security, we revisit a paradigm by Boo-
tle et al. (EUROCRYPT ’16) that proposes a general Forking Lemma
for multi-round protocols which implements a rewinding strategy with
expected-time guarantees. We give a tighter analysis, as well as a modular
statement. We adopt this to obtain the first quantitative bounds on the
soundness of Bulletproofs (Bünz et al., S&P 2018), which we instantiate
with our expected-time generic-group analysis to surface inherent depen-
dence between the concrete security and the statement to be proved.

Keywords: Concrete security · Proof systems

1 Introduction

Cryptography usually adopts a worst-case angle on complexity. For example,
in the context of concrete security, a typical theorem shows that an adversary
running for at most t steps succeeds with advantage at most ε. In this paper, we
instead study the concrete security of cryptographic schemes and assumptions
as a function of the expected running time of the adversary.

Expected-time complexity is a natural measure in its own right – e.g., it
is very common in cryptanalysis, as it is often much easier to analyze. But
it is also a useful technical tool – indeed, simulators and extractors are often
expected time, sometimes inherently so [1]. To use these technical tools, we need
assumptions to hold with respect to expected time.

The problem has been studied closely by Katz and Lindell [14], who also
suggest expected-time adversaries as a natural model, which however also comes
with several technical challenges. Either way, the resulting common wisdom is
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that assumptions which are true with respect to (non-uniform) worst-case poly-
nomial time are true for expected polynomial-time, and often more fine-grained
statements are possible via Markov’s inequality (see below). However, for con-
crete security, such generic argument fail to give tight bounds.

Summary of contributions. This paper makes progress on two fronts.
First, as our main technical contribution, we introduce general tools to give

tight concrete security bounds in information-theoretic settings (e.g., in the
random-oracle or generic-group models) for expected-time adversaries. Our tools
can easily translate many existing proofs from the worst-case to the expected-
time regime. We derive for example tight bounds for finding collisions in a ran-
dom oracle, for the PRF security of random oracles, and for computing discrete
logarithms in the generic-group model. We also obtain bounds for the security
of key-alternating ciphers against expected-time adversaries.

Second, we study a “Forking Lemma” to prove soundness of multi-round
public-coin proofs and arguments (of knowledge) satisfying a generalized notion
of special soundness, enabling witness extraction from a suitable tree of accepting
interactions. In particular, we follow a blueprint by Bootle et al. [6], which has
also been adopted by follow-up works [7,8,24]. In contrast to prior works, we
provide a concrete analysis of the resulting expected-time witness extraction
strategy, and also give a modular treatment of the techniques which may be of
independent interest.

We showcase these tools by deriving concrete bounds for the soundness of
Bulletproofs [7] in terms of the expected-time hardness of solving the discrete
logarithm problem. Instantiating the bound with our generic-group model analy-
sis will in particular illustrate the dependence of soundness on group parameters
and on the complexity of the statement to be proved. We are unaware of any
such result having been proved, despite the practical appeal of these protocols.

The remainder of this introduction provides a detailed overview of our results.

1.1 Information-Theoretic Bounds for Expected-Time Adversaries

Our first contribution is a framework to prove tight bounds with respect to
expected-time adversaries. We focus on information-theoretic analyses, such as
those in the random oracle [3] and the generic group [18,22] models.

Our focus on tight bounds is what makes the problem hard. Indeed, one
can usually obtain a non-tight bound using Markov’s inequality. For example,
the probability ε(T,N) of a T -time adversary finding a collision in a random
oracle with N outputs satisfies ε(T,N) � T 2/2N , and this bound is tight. If we
instead aim to upper bound the probability ε(μT , N) of finding a collision for
an adversary that runs in expected time μT = E[T ], Markov’s inequality yields,
for every T ∗ > μT ,

ε(μT , N) � Pr [T > T ∗] +
(T ∗)2

2N
� μT

T ∗ +
(T ∗)2

2N
� 2 · 3

√
μ2

T

2N
, (1)
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where the right-most inequality is the result of setting T ∗ such that μT

T ∗ = (T ∗)2

2N .
Here, we prove the better upper bound

ε(μT , N) �
√

μ2
T

2N
, (2)

as a corollary of the techniques we introduce below. This bound is tight: To see
this, take an adversary which initially flips a biased coin, which is heads with
probability μT /

√
N . If the coin is tails, it aborts, failing to find a collision. If

the coin is heads, it makes
√

N queries to find a collision with high probability.
Then, this adversary succeeds with probability Ω(μT /

√
N) = Ω(

√
μ2

T /N), and
its expected run time is μT .

Both (1) and (2) show that μT � Ω(
√

N) must hold to find a collision with
probability one. However, exact probability bounds are important in the regime
μT = o(

√
N). For example, say we are asked to find a collision in at least one out

of u independent random oracles, and the expected number of queries to each is
μT . Then, a hybrid argument bounds the probability by u ·ε(μT , N), making the
difference between a square-root and a cube-root bound on ε(μT , N) important.

A Generic Approach for bad-flag analyses. We aim for a general app-
roach to transform information-theoretic bounds for worst-case query complexity
into bounds with respect to expected query complexity. If an existing analysis
(with respect to worst-case complexity) follows a certain pattern, then we easily
obtain an expected query complexity bound.

More concretely, many security proofs follow the “equivalent-until-bad” for-
mat (as formalized by Bellare and Rogaway [4], but equivalent formulations can
be derived from the works of Maurer [17] and Shoup [23]). The goal here is to
upper bound the advantage of an adversary A distinguishing two games G0 and
G1, which behave identically until some bad flag bad is set. Then, the distinguish-
ing advantage is upper bounded by the probability of setting bad to true – an
event we denote as BADA. Typically, G0 is the “real world” and G1 is the “ideal
world”. Now, let Q1 be the number of queries by an adversary A in G1, which is
a random variable. Then, we say that this game pair satisfies δ-boundedness if

Pr
[
BADA | Q1 = q

]
� δ(q)

for all q � 1 and adversaries A. This condition is not without loss of generality,
but it can be ensured in all examples we verified.

Our first main theorem (Theorem 1) shows that if δ(q) = Δ · qd/N , then
the probability of setting BADA (in either of the two games), and hence the
advantage of distinguishing G0 and G1, is upper bounded as

Pr
[
BADA

]
� 5 ·

(
ΔE[Q0]d

N

)1/d

,

where (quite) crucially Q0 is the number of queries of A in G0. This asymmetry
matters in applications - we typically measure complexity in the real world, but
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δ-boundedness only holds in the ideal world.

Proof idea. The key step behind the proof of Theorem 1 is the introduction of
an early-terminating adversary B, which behaves as A in attempting to set bad,
but aborts early after U =

⌊
d
√

Nu/Δ
⌋

= Θ( d
√

N/Δ) queries, where u = 2−d.
One can then show that (we can think of the following probabilities in G0)

Pr
[
BADA

]
� Pr

[
BADB

]
+ Pr [Q0 > U ] ,

because Pr
[
BADA ∧ Q0 � U

]
� Pr

[
BADB

]
. Markov’s inequality then yields

Pr [Q0 > U ] � E [Q0]
U

= Θ

(
d

√
ΔE [Q0]

d
/N

)
,

which is of the right order.

Therefore, the core of the proof is to show Pr
[
BADB

]
= O

(
d

√
ΔE [Q0]

d
/N

)
.

This will require using δ-boundedness first, but a careful reader may observe that
this will only upper bound the probability with respect to E [Q1], and not E [Q0].
The bulk of the proof is then to switch between the two.

Examples. We apply the above framework to a few examples, to show its appli-
cability. We show bounds on the hardness of discrete logarithms in the generic-
group model [18,22], and on the collision-resistance and PRF security of random
oracles. In particular, our framework also works for notions which are not indis-
tinguishability based, such as collision-resistance of a random oracle, by intro-
ducing a suitable world G1 where it is hard to win the game.

The H-Coefficient method. Equivalent-until-bad analyses are not always the
simplest way to prove security (despite the fact that in principle every analysis
can be cast in this format, as shown in [19]). We also give a variant of the above
approach tailored at proving security in a simpler version of the H-coefficient
method [9,20] which considers what is referred to as pointwise-proximity in [12].
This amounts to using the standard H-coefficient method without bad tran-
scripts. (To the best of our knowledge, this simpler version of the method is
due to Bernstein [5].) This allows us to obtain expect-time versions of security
bounds for the PRF/PRP switching lemma and for key-alternating ciphers, the
latter building on top of work by Hoang and Tessaro [12].We defer details on
this to the full version of this paper [13].

1.2 Forking Lemmas and Concrete Soundness

One motivation for studying expected-time adversaries is as a tool to prove
bounds for worst-case complexity, rather than as a goal on itself. We expose here
one such application in the context of proving soundness bounds for public-coin
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proofs/arguments (of knowledge). In particular, soundness/proof-of-knowledge
proofs for several protocols (like [6–8,24]) rely on generalizations of the Fork-
ing Lemma (originally proposed by Pointcheval and Stern [21] for three-round
protocols) which adopt expected-time witness extraction strategies. These have
only been analyzed in an asymptotic sense, and our goal is to give a concrete-
security treatment. We propose here a modular treatment of these techniques,
and instantiate our framework to provide concrete bounds on the soundness of
Bulletproofs [7], a succinct proof system which has enjoyed wide popularity.

Forking Lemmas. Pointcheval and Stern’s original “Forking Lemma” [21] deals
with Σ-protocols that satisfy special soundness - these are three-round protocols,
where a transcript takes the form (a, c, d), with c being the verifier’s single ran-
dom challenge. Here, given common input x, the prover P proves knowledge to
V of a witness w for a relation R. The proof of knowledge property is proved by
giving an extractor B which produces a witness for x given (black-box) access to
a prover P∗ – if P∗ succeeds with probability ε, then B succeeds with probability
(roughly) ε2. Concretely, B simulates an execution of P∗ with a random chal-
lenge c, which results in a transcript (a, c, d), and then rewinds P∗ to just before
obtaining c, and feeds a different challenge c′ to obtain a transcript (a, c′, d′). If
both transcripts are accepting, and c �= c′, a witness can be extracted via special
soundness. Bellare and Neven [2] give alternative Forking Lemmas where B’s
success probability approaches ε, at the cost of a larger running time.

Expected-time extraction. It is natural to expect that the success probabil-
ity of B above degrades exponentially in the number of required accepting tran-
scripts. Crucially, however, one can make the Forking Lemma tight with respect
to probability if we relax B to have bounded expected running time. Now, B runs
P∗ once with a random challenge c and, if it generates a valid transcript (a, c, d),
we rewind P∗ to before receiving the challenge c, and keep re-running it from there
with fresh challenges until we obtain a second valid transcript (a, c′, d′) for c �= c′.
The expected running time is only twice that of P∗.

A general Forking Lemma. An extension of this idea underlies the anal-
ysis of recent succinct public-coin multi-round interactive arguments of knowl-
edge [6–8,24], following a workflow introduced first by Bootle et al. (BCCGP) [6]
which extracts a witness from a tree of multi-round executions obtained by clever
rewinding of P∗. In particular, since the number of generated accepted inter-
actions is large (i.e., exponential in the number of rounds), the usage of an
expected-time strategy is essential to extract with good enough probability.

These works in fact prove the stronger property of witness-extended emula-
tion [11,16]. This means that with black-box access to a prover P∗, an expected-
time emulator E (1) generates a transcript with the same distribution as in an
interaction between P∗ and the verifier V, and (2) if this transcript is accepting,
then a valid witness is produced along with it. In the case of arguments, it is
possible that (2) fails, but this would imply breaking an underlying assumption.

The BCCGP framework was refined in follow-up works [7,8,24], but these
remain largely asymptotic. We give here a clean and modular treatment of the
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BCCGP blueprint, which makes it amenable to a concrete security treatment.
This will in particular require using our tools from the first part of the paper to
analyze the probability that we generate a well-formed tree of transcripts from
which a witness can be generated. We believe this to be of independent interest.

In the full version of this paper [13], we compare this expected-time forking
lemma to one with strict running-time guarantees and confirm that the expected-
time approach achieves a clear benefit in terms of tightness of the reduction.

Application to Bulletproofs. Finally, we apply the above framework to
obtain a bound on the concrete soundness for public-coin interactive argument
systems, and focus on Bulletproofs [7]1. We obtain a bound in terms of the
expected-time hardness of the discrete logarithm problem, and we combine this
with our generic-group analysis to get a bound on the soundness in the generic-
group model2. Of independent interest, the result relies on a tight reduction of
finding non-trivial discrete log relations to the plain discrete log problem – which
we give in Lemma 3.

Our bound is in particular on the probability AdvsoundPS,G(P∗) of a cheating
prover P∗ convincing a verifier V (from proof system PS) on input x generated
by a (randomized) instance generator G, and we show that

AdvsoundPS,G(P∗) � AdvwitPS,G(B) + O

(
qP∗ · LM3 log2(M)√|G|

)
,

where qP∗ measures the number of group operations by P∗, M is the number of
multiplication gates for a circuit representing the relation R, L is a parameter
of that circuit (which we assume is small for this discussion, but may be as
large as 2M), AdvwitPS,G(B) is the probability of B extracting a witness w for an x
sampled by G, where B is an extractor whose (expected) running time amounts
to roughly M3 that of P∗.

This bound is interesting because it highlights the dependence of the sound-
ness probability on the group size |G| and on M . It in fact shows that for typical
instantiations, where |G| ≈ 2256, the guaranteed security level is fairly low for
modest-sized circuits (say with M = 220). It is a good question whether this
bound can be made tighter, in particular with respect to its dependence on M .

We also note that for specific instance generators G our tools may be helpful
to estimate AdvwitPS,G(B).

1 Our focus is somewhat arbitrary, and motivated by the popularity of this proof
system.

2 This bound is helped by the fact that our casting of the generic-group model allows
multi-exponentiations (g0, . . . , gn, a0, . . . , an → ∏n

i=0 gai
i ) as a unit operation. This

does not change the derived bound in the generic-group model, while decreasing the
number of generic-group queries made by the Bulletproofs verifier.
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2 Preliminaries

Let N = {0, 1, 2, . . . } and N>0 = N\{0}. For N ∈ N, let [N ] = {1, 2, . . . , N}. For
j > k we adopt the conventions that

∏k
i=j ni = 1 and (mj ,mj+1, . . . , mk) = ().

Equivalence mod p is denoted ≡p.
We let Perm(S) denote the set of all permutations on set S and Fcs(S, S′)

denote the set of all functions from S to S′. Sampling x uniformly from the
set S is denoted x ←$ S. The notation S = S′ 	 S′′ means that S = S′ ∪ S′′

and S′ ∩ S′′ = ∅, i.e., S′ and S′′ partition S. We let {0, 1}∗ denote the set of
finite-length bitstrings and {0, 1}∞ denote the set of infinite-length bitstrings.

We let y ← AO(x1, x2, . . . ; c) denote the execution of A on input x1, x2, . . .
and coins c ∈ {0, 1}∞ with access to oracle(s) O, producing output y. When
c is chosen uniformly we write y ←$ AO(x1, x2, . . . ). For a stateful algorithm A
with state s we use y ← AO(x1, x2, · · · : s; c) as shorthand for the expression
(y, s) ← AO(x1, x2, . . . , s; c). When some of an algorithm’s output is not going
to be used we will write · in place of giving it a variable name.

We use pseudocode games, inspired by the code-based game framework of
Bellare and Rogaway [4]. See Fig. 1 for some example games. If H is a game,
then Pr[H] denotes the probability that it outputs true. We use ∧, ∨, ⇔, and ¬
for the logical operators “and”, “or”, “iff”, and “not”.

Running-time conventions. The most commonly used notion for the running
time of an algorithm is worst-case. For this, one first fixes a computational model
with an associated notion of computational steps. Then an algorithm A has
worst-case running time t if for all choice of x1, x2, . . . and c it performs at
most t computation steps in the execution AO(x1, x2, . . . ; c), no matter how O

responds to any oracle queries A makes.
In this paper we are interested in proving bounds that instead depend on

the expected number of computation steps that A performs. There may be ran-
domness in how the inputs x1, x2, . . . to A and the responses to O queries are
chosen (in addition to the random selection of c).

There is more variation in how expected running time may be defined. We
will provide our bounds in terms of the expected running time of adversaries
interacting with the “real” world that they expect to interact with. Such a notion
of expected runtime is brittle because the expected runtime of the adversary
may vary greatly when executing in some other world; however, this notion
is the strongest for the purposes of our results because it will guarantee the
same bounds for notions of expected running time which restrict the allowed
adversaries more. See [10,15] for interesting discussion of various ways to define
expected polynomial time.

For many of the results of this paper, rather than directly measuring the
runtime of the adversary we will look at the (worst-case or expected) number
of oracle queries that it makes. The number of oracle queries can, of course, be
upper bounded by the number of computational steps.
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Fig. 1. Left: Game defining discrete log security of group G. Middle: Game defining
discrete log relation security of group G. Right: Reduction adversary for Lemma 3.

Useful lemmas. We will make use of Markov’s inequality and the Schwartz-
Zippel Lemma, which we reproduce here.

Lemma 1 (Markov’s Inequality). Let X be a non-negative random variable
and c > 0 be a non-negative constant, then

Pr[X > c] � Pr[X � c] � E[X]/c.

Lemma 2 (Schwartz-Zippel Lemma). Let F be a finite field and let p ∈
F[x1, x2, . . . xn] be a non-zero polynomial with degree d � 0. Then

Pr[p(r1, . . . , rn) = 0] � d/|F|
where the probability is over the choice of r1, . . . , rn according to ri ←$ F.

Discrete Logarithm Assumptions. Let G be a cyclic group of prime order p
with identity 1G and G

∗ = G\{1G} be its set of generators. Let (g0, . . . , gn) ∈ G
n

and (a0, . . . , an) ∈ Zp. If
∏n

i=0 gai
i = 1G and a least one of the ai are non-zero,

this is said to be a non-trivial discrete log relation. It is believed to be hard to
find non-trivial discrete log relations in cryptographic groups (when the gi are
chosen at random). We refer to computing

∏n
i=0 gai

i as a multi-exponentiation
of size n + 1.

Discrete log relation security is defined by the game in the middle of Fig. 1.
In it, the adversary A is given a vector g = (g0, . . . , gn) and attempts to find a
non-trivial discrete log relation. We define Advdl-relG,n (A) = Pr[Hdl-rel

G,n (A)]. Normal
discrete log security is defined by the game in the left panel of Fig. 1. In it, the
adversary attempts to find the discrete log of h ∈ G with respect to a generator
g ∈ G

∗. We define AdvdlG(A) = Pr[Hdl
G(A)].

It is well known that discrete log relation security is asymptotically equivalent
to discrete log security. The following lemma makes careful use of self-reducibility
techniques to give a concrete bound showing that discrete log relation security
is tightly implied by discrete log security.

Lemma 3. Let G be a group of prime order p and n � 1 be an integer. For any
B, define C as shown in Fig. 1. Then

Advdl-relG,n (B) � AdvdlG(C) + 1/p.
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Fig. 2. Identical-until-bad games defined from game specification (G, G′).

The runtime of C is that of B plus the time to perform n+1 multi-exponentiations
of size 2 and some computations in the field Zp.

The proof of this theorem is deferred to the full version of the paper [13].

3 Bad Flag Analysis for Expected-Time Adversaries

In this section we show how to (somewhat) generically extend the standard
techniques for analysis of “bad” flags from worst-case adversaries to expected-
time adversaries. Such analysis is a fundamental tool for cryptographic proofs
and has been formalized in various works [4,17,23]. Our results are tailored
for the setting where the analysis of the bad flag is information theoretic (e.g.,
applications in ideal models), rather than reliant on computational assumptions.

We start by introducing our notation and model for identical-until-bad games
in Sect. 3.1. Then in Sect. 3.2 we give the main theorem of this section which
shows how to obtain bounds on the probability that an expected time adver-
sary causes a bad flag to be set. Finally, in Sect. 3.3 we walk through some
basic applications (collision-resistance and PRF security in the random oracle
model and discrete log security in the generic group model) to show the analysis
required for expected time adversaries follows from simple modifications of the
techniques used for worst-case adversaries.

3.1 Notation and Experiments for Identical-Until-Bad Games

Identical-until-bad games. Consider Fig. 2 which defines a pair of games
G

(G,G′)
0 and G

(G,G′)
1 from a game specification (G,G′). Here G and G′ are stateful

randomized algorithms. At the beginning of the game, coins c0, c1, and cA are
sampled uniformly at random3. The first two of these are used by G and G′

3 In the measure-theoretic probability sense with each individual bit of the coins being
sampled uniformly and independently.
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while the last is used by A4. The counter t is initialized to 0, the flag bad is set
to false, and states s and s′ are initialized for use by G and G′.

During the execution of the game, the adversary A repeatedly makes queries
to the oracle Orac. The variable t counts how many queries A makes. As long
as bad is still false (so ¬bad is true), for each query made by A the algorithm
G′ will be given this query to determine if bad should be set to true. When
b = 1, the behavior of Orac does not depend on whether bad is set because the
output of the oracle is always determined by running G(1, x : s; c1, c1). When
b = 0, the output of the oracle is defined in the same way up until the point
that bad is set to true. Once that occurs, the output is instead determined by
running G(0, x : s; c1, c0). Because these two games are identical except in the
behavior of the code d ← b which is only executed once bad = true, they are
“identical-until-bad”.

In this section, the goal of the adversary is to cause bad to be set to true.
Bounding the probability that A succeeds in this can be used to analyze secu-
rity notions in two different ways. For indistinguishability-based security notions
(e.g., PRG or PRF security), the two games Gb would correspond to the two
worlds the adversary is attempting to distinguish between. For other security
notions (e.g., collision resistance or discrete log security), we think of one of the
Gb as corresponding to the game the adversary is trying to win and the other
as corresponding to a related “ideal” world in which the adversary’s success
probably can easily be bounded. In either case, the fundamental lemma of game
playing [4] can be used to bound the advantage of the adversary using a bound
on the probability that bad is set.

A combined experiment. For our coming analysis it will be useful to relate
executions of G(G,G′)

0 (A) and G
(G,G′)
1 (A) to each other. For this we can think of

a single combined experiment in which we sample c0, c1, and cA once and then
run both games separately using these coins.

For b ∈ {0, 1}, we let QA
b be a random variable denoting how many oracle

queries A makes in the execution of G(G,G′)
b (A) during this experiment. We let

BADA
t [b] denote the event that G′ sets badt to true in the execution of G(G,G′)

b (A).
Note that BADA

t [0] will occur if and only if BADA
t [1] occurs, because the behavior

of both games are identical up until the first time that bad is set and G′ is never
again executed once bad is true. Hence we can simplify notation by defining
BADA

t to be identical to the event BADA
t [0], while keeping in mind that we can

equivalently think of this event as occurring in the execution of either game.
We additionally define the event that bad is ever set BADA =

∨∞
i=1 BAD

A
i , the

event that bad is set by one of the first j queries the adversary makes BADA
�j =∨j

i=1 BAD
A
j , and the event that bad is set after the j-th query the adversary

makes BADA
>j =

∨∞
i=j+1. Clearly, Pr[BADA] = Pr[BADA

�j ] + Pr[BADA
>j ]. Again

we can equivalently think of these events as occurring in either game. When the

4 We emphasize that these algorithms are not allowed any randomness beyond the use
of these coins.
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adversary is clear from context we may choose to omit it from the superscript
in our notation.

The fact that both games behave identically until bad is set true allows us
to make several nice observations. If BAD does not hold, then Q0 = Q1 must
hold. If BADt holds for some t, then both Q0 and Q1 must be at least t. One
implication of this is that if Q1 = q holds for some q, then BAD is equivalent to
BAD�q. Additionally, we can see that Pr[BAD>q] � Pr[Qb > q] must hold.

Defining our events and random variables in this single experiment will later
allow to consider the expectation E[Qd

0|Q1 = q] for some d, q ∈ N. In words, that
is the expected value of Q0 raised to the d-th power conditioned on c0, c1, cA
having been chosen so that Q1 = q held. Since Q0 and Q1 can only differ if BAD
occurs we will be able to use Pr[BAD|Q1 = q] to bound how far E[Qd

0|Q1 = q]
can be from E[Qd

1|Q1 = q] = qd.

δ-boundedness. Existing analysis of identical-until-bad games is done by
assuming a worst-case bound qA on the number of oracle queries that A makes
(in either game). Given such a bound, one shows that Pr[BADA] � δ(qA) for
some function δ. We will say that a game specification (G,G′) is δ-bounded if
for all A and q ∈ N we have that

Pr[BADA|Q1 = q] � δ(q).

As observed earlier, if Q1 = q holds then badt cannot be set for any t > q. Hence
Pr[BADA|Q1 = q] = Pr[BADA

�q|Q1 = q].
We will, in particular, be interested in that case that δ(q) = Δ · qd/N for

some Δ, d,N � 15. We think of Δ and d as “small” and of N as “large”. The
main result of this section bounds the probability that an adversary sets bad by
O

(
d
√

δ (E[Qb])
)

for either b if (G,G′) is δ-bounded for such a δ.
While δ-boundedness may seem to be a strange condition, we show in Sect. 3.3

that the existing techniques for proving results of the form Pr[BADA] � δ(qA)
for A making at most qA queries can often be easily extended to show the
δ-boundedness of a game (G,G′). The examples we consider are the collision-
resistance and PRF security of a random oracle and the security of discrete log
in the generic group model. In particular, these examples all possess a com-
mon form. First, we note that the output of G(1, . . . ) is independent of c0.
Consequently, the view of A when b = 1 is independent of c0 and hence Q1

is independent of c0. To analyze Pr[BAD|Q1 = q] we can then think of c′ and
c1 being fixed (fixing the transcript of interaction between A and its oracle in
GG

1 ) and argue that for any such length q interaction the probability of BAD is
bounded by δ(q) over a random choice of c0.

We note that this general form seems to typically be implicit in the existing
analysis of bad flags for the statistical problems one comes across in ideal model
analysis, but would not extend readily to examples where the probability of the

5 We could simply let ε = Δ/N and instead say δ(q) = εqd, but for our examples we
found it more evocative to write these terms separately.
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bad flag being set is reduced to the probability of an adversary breaking some
computational assumption.

3.2 Expected-Time Bound from δ-boundedness

We can now state our result lifting δ-boundedness to a bound on the probability
that an adversary sets bad given only its expected number of oracle queries.

Theorem 1. Let δ(q) = Δ · qd/N for Δ, d,N � 1. Let (G,G′) be a δ-bounded
game specification. If N � Δ · 6d, then for any A,

Pr[BADA] � 5
d

√
Δ · E[QA

0 ]d

N
= 5 d

√
δ
(
E[QA

0 ]
)
.

If N � Δ · 2d, then for any A,

Pr[BADA] � 3
d

√
Δ · E[QA

1 ]d

N
= 3 d

√
δ
(
E[QA

1 ]
)
.

We provide bounds based on the expected runtime in either of the two games
since they are not necessarily the same. Typically, one of the two games will
correspond to a “real” world and it will be natural to desire a bound in terms of
the expected runtime in that game. The proof for Q0 is slightly more complex
and is given in this section. The proof for Q1 is simpler and deferred to the full
version of this paper [13]. In the full version we show via a simple attack that
the d-th root in these bounds is necessary.

Proof (of Theorem 1). Let u = 2−d and U =
⌊

d
√

Nu/Δ
⌋
. Note that δ(U) � u.

Now let B be an adversary that runs exactly like A, except that it counts the
number of oracle queries made by A and halts execution if A attempts to make
a U + 1-th query. We start our proof by bounding the probability of BADA by

the probability of BADB and an O
(

d

√
δ
(
E[QA

0 ]
))

term by applying Markov’s
inequality. In particular we perform the calculations

Pr[BADA] = Pr[BADA
�U ] + Pr[BADA

>U ] (3)

= Pr[BADB
�U ] + Pr[BADA

>U ] (4)

� Pr[BADB] + Pr
[
QA

0 > U
]

(5)

� Pr[BADB] + E[QA
0 ]/U (6)

� Pr[BADB] + 3E[QA
0 ] d

√
Δ/N. (7)

Step 4 follows because for all queries up to the U -th, adversary B behaves identi-
cally to A (and thus BADA

i = BADB
i for i � U). Step 5 follows because BADB

>U

cannot occur (because B never makes more than U queries) and BADA
>U can

only occur if QA
0 is at greater than U . Step 6 follows from Markov’s inequality.
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Step 7 follows from the following calculation which uses the assumption that
N � Δ · 6d and that u = 2−d,

U =
⌊

d
√

Nu/Δ
⌋

� d
√

Nu/Δ − 1 = d
√

N/Δ
(

d
√

u − d
√

Δ/N
)

� d
√

N/Δ

(
d
√

2−d − d

√
Δ/(Δ · 6d)

)
= d

√
N/Δ (1/2 − 1/6) .

In the rest of the proof we need to establish that Pr[BADB] � 2E[QA
0 ] d

√
Δ/N .

We show this with E[QB
0 ], which is clearly upper bounded by E[QA

0 ]. We will do
this by first bounding Pr[BADB] in terms of E[(QB

1 )d], then bounding E[(QB
1 )d]

in terms of E[(QB
0 )d], and then concluding by bounding this in terms of E[QB

0 ].
For the first of these steps we expand Pr[BADB] by conditioning on all possible
values of QB

1 and applying our assumption that (G,G′) is δ-bounded to get

Pr[BADB] =
U∑

q=1

Pr[BADB|QB
1 = q]Pr[QB

1 = q] �
U∑

q=1

(Δ · qd/N)Pr[QB
1 = q]

= Δ/N
U∑

q=1

qdPr[QB
1 = q] = ΔE[(QB

1 )d]/N.

So next we will bound E[(QB
1 )d] in terms of E[(QB

0 )d]. To start, we will give
a lower bound for E[(QB

0 )d|QB
1 = q] (when q � U) by using our assumption that

(G,G′) is δ-bounded. Let R0 be a random variable which equals QB
0 if BADB

does not occur and equals 0 otherwise. Clearly R0 � QB
0 always. Recall that

if BADB does not occur, then QB
0 = QB

1 (and hence R0 = QB
1 ) must hold. We

obtain

E[(QB
0 )d|QB

1 = q] � E[Rd
0|QB

1 = q]

= qdPr[¬BADB|QB
1 = q] + 0dPr[BADB|QB

1 = q]

= qd(1 − Pr[BADB|QB
1 = q])

� qd(1 − δ(q)) � qd(1 − u).

The last step used that δ(q) � δ(U) � u because q � U .
Now we proceed by expanding E[(QB

1 )d] by conditioning on the possible value
of QB

1 and using the above bound to switch E[(QB
0 )d|QB

1 = q] in for qd. This gives,

E[(QB
1 )d] =

U∑
q=1

qd · Pr[QB
1 = q]

=
U∑

q=1

E[(QB
0 )d|QB

1 = q] · qd

E[(QB
0 )d|QB

1 = q]
· Pr[QB

1 = q]

�
U∑

q=1

E[(QB
0 )d|QB

1 = q] · qd

qd(1 − u)
· Pr[QB

1 = q]

= (1 − u)−1E[(QB
0 )d]
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Our calculations so far give us that Pr[BADB] � (1−u)−1E[(QB
0 )d] ·Δ/N . We

need to show that this is bounded by 2E[QB
0 ] d

√
Δ/N . First note that QB

0 � U
always holds by the definition of B, so

(1 − u)−1E[(QB
0 )d] · Δ/N � (1 − u)−1E[QB

0 ] · Ud−1 · Δ/N.

Now since U =
⌊

d
√

Nu/Δ
⌋
, we have Ud−1 � (Nu/Δ)(d−1)/d which gives

(1 − u)−1E[QB
0 ] · Ud−1 · Δ/N � (1 − u)−1(u(d−1)/d)E[QB

0 ] d
√

Δ/N.

Finally, recall that we set u = 2−d and so

(1 − u)−1(u(d−1)/d) =
2−d·(d−1)/d

1 − 2−d
=

21−d

1 − 2−d
� 21−1

1 − 2−1
= 2.

Bounding E[QB
0 ] � E[QA

0 ] and combining with our original bound on Pr[BADA]
completes the proof. �	

3.3 Example Applications of Bad Flag Analysis

In this section we walk through some basic examples to show how a bound of
Pr[bad|Q1 = q] � Δ · qd/N can be proven using essentially the same techniques
as typical bad flag analysis for worst-case runtime, allowing Theorem 1 to be
applied. All of our examples follow the basic structure discussed earlier in this
section. We write the analysis in terms of two games which are identical-until-
bad and parameterized by a bit b. In the b = 1 game, the output of its oracles
will depend on some coins we identify as c1, while in the b = 0 case the output
will depend on both c1 and independent coins we identify as c0. Then we think
of fixing coins c1 and the coins used by the adversary, which together fix Q1 (the
number of queries A would make in the b = 1 case), and argue a bound on the
probability that bad is set over a random choice of c0.

We write the necessary games in convenient pseudocode and leave the map-
ping to a game specification (G,G′) to apply Theorem 1 implicit. We will abuse
notation and use the name of our pseudocode game to refer to the corresponding
game specification.

Collision-resistance of a random oracle. Our first example is the colli-
sion resistance of a random oracle. Here an adversary is given access to a random
function h : {0, 1}∗ → [N ]. It wins if it can find x �= y for which h(x) = h(y),
i.e., a collision in the random oracle. One way to express this is by the game
Hcr

0 shown in Fig. 3. The random oracle is represented by the oracle Ro and the
oracle Fin allows the adversary to submit supposed collisions.

In it, we have written Ro in a somewhat atypical way to allow comparison to
Hcr

1 with which it is identical-until-bad. The coins used by these games determine
a permutation π sampled at the beginning of the game and a value X chosen
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Fig. 3. Game capturing collision-resistance of a random oracle (when b = 0).

Fig. 4. Games capturing PRF security of a random oracle.

at random from [N ] during each Ro query6. We think of the former as c1 and
the latter as c0. Ignoring repeat queries, when in Hcr

1 the output of Ro is simply
π[1], π[2], . . . in order. Thus clearly, Pr[Hcr

1 (A)] = 0 since there are no collisions
in Ro. In Hcr

0 the variable X modifies the output of Ro to provide colliding
outputs with the correct distribution.

These games are identical-until-bad, so the fundamental lemma of game play-
ing [4] gives us,

Pr[Hcr
0 (A)] � Pr[Hcr

0 (A) sets bad] + Pr[Hcr
1 (A)] = Pr[Hcr

0 (A) sets bad].

Now think of the adversary’s coins and the choice of π as fixed. This fixes a
value of Q1 and a length Q1 transcript of A’s queries in Hcr

1 (A). If A made all
of its queries to Fin, then Ro will have been executed 2Q1 times. On the i-th
query to Ro, there is at most an (i − 1)/N probability that the choice of X will
cause bad to be set. By a simple union bound we can get,

Pr[BAD|Q1 = q] � q(2q − 1)/N.

6 We define π[i] = i for i > N just so the game Hcr
1 is well-defined if A makes more

than N queries.
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Setting δ(q) = 2q2/N we have that Hcr is δ-bounded, so Theorem 1 gives

Pr[Hcr
0 (A)] � 5

2

√
2 · E[QA

0 ]2

N
.

Pseudorandomness of a random oracle. Now consider using a random
oracle with domain [N ] × D and range R as a pseudorandom function. The
games for this are shown in Fig. 4. The real world is captured by b = 0 (because
to output of the random oracle Ro is made to be consistent with output of the
real-or-random oracle Ror) and the ideal world by b = 1.

The coins of the game are random tables T and F as well as a random key
K. We think of the key as c0 and the tables as c1. Because we have written the
games so that the consistency check occurs in Ro, we can clearly see the output
of the oracles in Hprf

1 are independent of c0 = K.
These games are identical-until-bad so from the fundamental lemma of game

playing we have,

Pr[Hprf
0 (A)] − Pr[Hprf

1 (A)] � Pr[Hprf
0 (A) sets bad].

Now we think of c1 and the coins of A as fixed. Over a random choice of K, each
Ro query has a 1/N change of setting bad. By a simple union bound we get,

Pr[BAD|Q1 = q] � q/N.

Defining δ(q) = q/N we have that Hprf is δ-bounded, so Theorem 1 gives

Pr[Hprf
0 (A)] − Pr[Hprf

1 (A)] � 5 · E[QA
0 ]/N.

Discrete logarithm security in the generic group model. Next we
consider discrete logarithm security in the generic group model for a prime order
group G with generator g. One way to express this is by the game Hdl

0 shown in
Fig. 5. In this expression, the adversary is given labels for the group elements
it handles based on the time that this group element was generated by the
adversary. The more general framing of the generic group model where gx ∈ G

is labeled by σ(x) for a randomly chosen σ : Z|G| → {0, 1}l for some l � �log |G|�
can easily be reduced to this version of the game.

At the beginning of the game polynomials p0(·) = 0, p1(·) = 1, and p2(·) = X
are defined. These are polynomials of the symbolic variable X, defined over
Z|G|. Then a random x is sampled and the goal of the adversary is to find
this x. Throughout the game, a polynomial pi represents the group element
gpi(x). Hence p0 represents the identity element of the group, p1 represents the
generator g, and p2 represents gx. We think of the subscript of a polynomial as
the adversary’s label for the corresponding group element. The variable t tracks
the highest label the adversary has used so far.

We let Pi denote the set of the first i polynomials that have been generated
and Pi

x be the set of their outputs when evaluated on x. The oracle Init tells
the adversary if x happened to be 0 or 1 by returning the appropriate value
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Fig. 5. Game capturing discrete logarithm security of a generic group (when b = 0).
For i ∈ N and x ∈ Z|G|, we use the notation Pi = {p0, . . . , pi} ⊂ Z|G|[X] and Pi

x =
{p(x) : p ∈ Pi} ⊂ Z|G|.

of 
. The oracle Op allows the adversary to perform multi-exponentiations. It
specifies a vector j of labels for group elements and a vector α of coefficients.
The variable t is incremented and its new value serves as the label for the group
element

∏
i g

α [i]
j [i] where gj [i] is the group element with label j[i], i.e., gpj [i](x). The

returned value 
 is set equal to the prior label of a group element which equals
this new group element (if 
 = t, then no prior labels represented the same group
element).

The only coins of this game are the choice of x which we think of as c0. In Hdl
1 ,

the adversary is never told when two labels it handles non-trivially represent the
same group element so the view of A is independent of c0, as desired7. Because
the view of A is independent of x when b = 1 we have that Pr[Hdl

1 (A)] = 1/|G|.
From the fundamental lemma of game playing,

Pr[Hdl
0 (A)] � Pr[Hdl

0 (A) sets bad] + Pr[Hdl
1 (A)] = Pr[Hcr

0 (A) sets bad] + 1/|G|
Now thinking of the coins of A as fixed, this fixes a value of Q1 and a length
Q1 transcript of queries that would occur in Hdl

1 (A). This in turn fixes the set of
polynomials PQ1+2. The flag bad will be set iff any of polynomials in the set

{p(·) − r(·)|p �= r ∈ PQ1+2}
have the value 0 when evaluated on x. Note these polynomials are non-zero and
have degree at most 1. Thus, applying the Schwartz-Zippel lemma and a union
bound we get,

Pr[BAD|Q1 = q] �
(

q + 3
2

)
· (1/|G|) � 6q2/|G|.

7 Two labels trivially represent the same group element if they correspond to identical
polynomials.
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Note the bound trivially holds when q = 0, since Pr[bad|Q1 = q] = 0, so we have
assumed q � 1 for the second bound. Defining δ(q) = 6q2/|G| we have that Hdl

is δ-bounded, so Theorem 1 gives

Pr[Hdl
0 (A)] � 5 2

√
6 · E[QA

0 ]2

|G| +
1

|G| .

4 Concrete Security for a Forking Lemma

In this section we apply our techniques to obtaining concrete bounds on the
soundness of proof systems. Of particular interest to us will be proof systems
that can be proven to achieve a security notion known as witness-extended emu-
lation via a very general “Forking Lemma” introduced by Bootle, Cerulli, Chai-
dos, Groth, and Petit (BCCGP) [6]. Some examples include Bulletproofs [7],
Hyrax [24], and Supersonic [8]. Our expected-time techniques arise naturally for
these proof systems because witness-extended emulation requires the existence
of an expected-time emulator E for a proof system which is given oracle access
to a cheating prover and produces transcripts with the same distribution as the
cheating prover, but additionally provides a witness w for the statement being
proven whenever it outputs an accepting transcript.

In this section we use a new way of expressing witness-extended emulation
as a special case of a more general notion we call predicate-extended emulation.
The more general notion will serve as a clean, modular way to provide a concrete
security version of the BCCGP forking lemma. This modularity allows us to hone
in on the steps where our expected time analysis can be applied to give concrete
bounds and avoid some technical issues with the original BCCGP formulation
of the lemma.

In the BCCGP blueprint, the task of witness-extended emulation is divided
into a generic tree-extended emulator which for any public coin proof system
produces transcripts with the same distribution as a cheating prover together
with a set of accepting transcripts satisfying a certain tree structure and an
extractor for the particular proof system under consideration which can extract
a witness from such a tree of transcripts. The original forking lemma of BCCGP
technically only applied for extractors that always output a witness given a
valid tree with no collisions. However, typical applications of the lemma require
that the extractor be allowed to fail when the cheating prover has (implicitly)
broken some presumed hard computational problem. Several works subsequent
to BCCGP noticed this gap in the formalism [7,8,24] and stated slight variants
of the BCCGP forking lemma. However, these variants are still unsatisfactory.
The variant lemmas in [7,24] technically only allows extractors which fail in
extracting a witness with at most negligible probability for every tree (rather
than negligible probably with respect to some efficiently samplable distribution
over trees, as is needed). The more recent variant lemma in [8] is stated in such
a way that the rewinding analysis at the core of the BCCGP lemma is omitted
from the variant lemma and (technically) must be shown separately anytime it
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Fig. 6. Predicates we use. Other predicates Πbind and Πrsa are only discussed informally.

is to be applied to a proof system. None of these issues represent issues with the
security of the protocols analyzed in these works. The intended meaning of each
of their proofs is clear from context and sound, these issues are just technical
bugs with the formalism of the proofs. However, to accurately capture concrete
security it will be important that we have a precise and accurate formalism of
this. Our notion of predicate-extended emulation helps to enable this.

In Sect. 4.1, we provide the syntax of proof systems as well as defining
our security goals of predicate-extended emulation (a generalization of witness-
extended emulation) and generator soundness (a generalization of the standard
notion of soundness). Then in Sect. 4.2, we provide a sequence of simple lemmas
and show how they can be combined to give our concrete security version on the
forking lemma. Finally in Sect. 4.3, we discuss how our forking lemma can easily
be applied to provide concrete bounds on the soundness of various existing proof
systems. As a concrete example we give the first concrete security bound on the
soundness of the Bulletproof zero-knowledge proof system for arithmetic circuits
by Bünz et al. [7].

4.1 Syntax and Security of Proof Systems

Proof System. A proof system PS is a tuple PS = (S,R,P,V, μ) specifying a
setup algorithm S, a relation R, a prover P, verifier V, and μ ∈ N. The setup
algorithm outputs public parameters π. We say w is a witness for the statement
u if (u,w) ∈ Rπ. The prover (with input (u,w)) and the verifier (with input u)
interact via 2μ + 1 moves as shown in Fig. 7.

Fig. 7. Interaction between (honest) prover P and
verifier V with public parameters π. Here tr is the
transcript and d ∈ {0, 1} is the decision.

Here tr is the transcript
of the interaction and d ∈
{0, 1} is the decision of V (with
d = 1 representing accep-
tance and d = 0 represent-
ing rejection). Perfect com-
pleteness requires that for all
π and (u,w) ∈ Rπ, Pr[d = 1 :
(·, d) ←$ 〈Pπ(u,w),Vπ(u)〉] =
1. If PS is public-coin, then
m2i−1 output by V each round
is set equal to its random
coins. In this case, we let
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Vπ(u, tr) ∈ {0, 1} denote V’s decision after an interaction that produced tran-
script tr8. Throughout this section we will implicitly assume that any proof
systems under discussion is public-coin. We sometimes refer to the verifier’s out-
puts as challenges.

Predicate-extended emulation. The proof systems we consider were all
analyzed with the notion of witness-extended emulation [11,16]. This requires
that for any efficient cheating prover P∗ there exists an efficient emulator E
which (given oracle access to P∗ interacting with V and the ability to rewind
them) produces transcripts with the same distribution as P∗ and almost always
provides a witness for the statement when the transcript it produces is accepting.
We will capture witness-extended emulation as a special case of what we refer to
as predicate-extended emulation. We cast the definition as two separate security
properties. The first (emulation security) requires that E produces transcripts
with the same distribution as P∗. The second (predicate extension) is parame-
terized by a predicate Π and requires that whenever E produces an accepting
transcript, its auxiliary output must satisfy Π. As we will see, this treatment will
allow a clean, modular treatment of how BCCGP and follow-up work [6–8,24]
analyze witness-extended emulation.

We start by considering game Hemu defined in Fig. 8. It is parameterized by a
public-coin proof system PS, emulator E, and bit b. The adversary consists of a
cheating prover P∗ and an attacker A. This game measures A’s ability to distin-
guish between a transcript generated by 〈P∗

π(u, s),Vπ(u)〉 and one generated by
E. The emulator E is given access to oracles Next and Rew. The former has P∗

and V perform a round of interaction and returns the messages exchanged. The
latter rewinds the interaction to the prior round. We define the advantage func-
tion Advemu

PS,E(P
∗,A) = Pr[Hemu

PS,E,1(P
∗,A)] − Pr[Hemu

PS,E,0(P
∗,A)]. For the examples

we consider there will be an E which (in expectation) performs a small number
of oracle queries and does a small amount of local computation such that for
any P∗ and A we have Advemu

PS,E(P
∗,A) = 0.

Note that creating a perfect emulator is trivial in isolation; E can just make
μ+1 calls to Next to obtain a tr with the exactly correct distribution. Where it
gets interesting is that we will consider a second, auxiliary output of E and insist
that it satisfies some predicate Π whenever tr is an accepting transcript. The
adversary wins whenever tr is accepting, but the predicate is not satisfied. This
is captured by the game Hpredext shown in Fig. 8. We define AdvpredextPS,E,Π(P∗,A) =
Pr[Hpredext

PS,E,Π(P∗,A)]. Again this notion is trivial in isolation; E can just output
rejecting transcripts. Hence, both security notions need to be considered together
with respect to the same E.

The standard notion of witness-extended emulating is captured by the pred-
icate Πwit which checks if aux is a witness for u, that is, Πwit(π, u, aux) =
((u, aux) ∈ Rπ). Later we will define some other predicates. All the predicates we
will make use of are summarized in Fig. 6. A proof system with a good witness-

8 We include m−1 = ⊥ in tr as a notational convenience.
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Fig. 8. Games defining predicate-extended emulation security of proof system PS.

extended emulator under some computational assumption may be said to be an
argument of knowledge.
Hard predicates. One class of predicates to consider are those which embed
some computational problem about the public parameter π that is assumed
to be hard to solve. We will say that Π is witness-independent if its output
does not depend on its second input u. For example, if S outputs of length n
vector of elements from a group G (we will denote this setup algorithm by Sn

G
)

we can consider the predicate ΠG,n
dl which checks if aux specifies a non-trivial

discrete log relation. This predicate is useful for the analysis of a variety of proof
systems [6,7,24]. Other useful examples include: (i) if S output parameters for
a commitment scheme with Πbind that checks if aux specifies a commitment and
two different opening for it [6,8,24] and (ii) if S outputs a group of unknown
order together with an element of that group and Πrsa checks if aux specifies a
non-trivial root of that element [8].

Whether a witness-independent predicate Π is hard to satisfy given the out-
put of S is captured by the game Hpred shown on the left side of Fig. 9. We
define AdvpredS,Π (A) = Pr[Hpred

S,Π (A)]. Note, for example, that if Sn
G

and ΠG,n
dl is used,

then this game is identical to discrete log relation security, i.e., Advpred
Sn
G

,ΠG,n
dl

(A) =

Advdl-relG,n (A) for any adversary A.

Generator soundness. Consider the games shown on the right side of Fig. 9.
Both are parameterized by a statement generator G which (given the parameters
π) outputs a statement u and some auxiliary information s about the statement.
The first game Hsound measure how well a (potentially cheating) prover P∗ can
use s to convince V that u is true. The second game Hwit measures how well
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Fig. 9. Left. Game defining hardness of satisfying predicate Π. Right. Games defining
soundness of proof system PS with respect to instance generator G and difficulty of
finding witness for statements produced by G.

an adversary B can produce a witness for u given s. We define AdvsoundPS,G(P∗) =
Pr[Hsound

PS,G(P∗)] and AdvwitPS,G(B) = Pr[Hwit
PS,G(B)].

Note that the standard notion of soundness (that proving false statements is
difficult) is captured by considering G which always outputs false statements. In
this case, AdvwitPS,G(A) = 0 for all A. In other contexts, it may be assumed that
it is computationally difficult to find a witness for G’s statement.

4.2 Concrete Security Forking Lemma

Now we will work towards proving our concrete security version of the BCCGP
forking lemma. This lemma provides a general framework for how to provide a
good witness-extended emulator for a proof system. First, BCCGP showed how
to construct a tree-extended emulator T which has perfect emulation security
and (with high probability) outputs a set of transcripts satisfying a tree-like
structure (defined later) whenever it outputs an accepting transcript. Then one
constructs, for the particular proof system under consideration, an “extractor”
X which given such a tree of transcripts can always produce a witness for the
statement or break some other computational problem assumed to be difficult.
Combining T and X appropriately gives a good witness-extended emulator.

Before proceeding to our forking lemma we will provide the necessary defini-
tions of a tree-extended emulator and extractor, then state some simple lemmas
that help build toward our forking lemma.

Transcript Tree. Fix a proof system PS = (S,R,P,V, μ) and let the vector
n = (n1, . . . , nμ) ∈ N

μ
>0 be given. Let π be an output of S and u be a statement.

For h = 0, . . . , μ we will inductively define an (nμ−h+1, . . . , nμ)-tree of transcripts
for (PS, π, u). We will often leave some of (PS, π, u) implicit when they are clear
from context.

First when h = 0, a ()-tree is specified by a tuple (m2μ−1,m2μ, 
) where
m2μ−1,m2μ ∈ {0, 1}∗ and 
 is an empty list. Now an (nμ−(h+1), . . . , nμ)-tree is
specified by a tuple (m2(μ−h)−1,m2(μ−h), 
) where m2(μ−h)−1,m2(μ−h) ∈ {0, 1}∗

and 
 is a length nμ−(h+1) list of (nμ−h, . . . , nμ)-trees for (PS, π, u, tr).
When discussing such trees we say their height is h. When h < μ we will

sometimes refer to it as a partial tree. We use the traditional terminology of
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nodes, children, parent, root, and leaf. We say the root node is at height h, its
children are at height h − 1, and so on. The leaf nodes are thus each at height
0. If a node is at height h, then we say it is at depth μ − h.

Every path from the root to a leaf in a height h tree gives a sequence
(m2(μ−h)−1,m2(μ−h), . . . , m2μ−1,m2μ) where (m2(μ−i)−1,m2(μ−i)) are the pair
from the node at height i. Now if we fix a transcript prefix tr′ = (m−1,m0, . . . ,
m2(μ−h−1)−1,m2(μ−h−1)), then we can think of tr′ and the tree as inducing∏μ

i=1 ni different transcripts tr = (m0, . . . , m2μ−1,m2μ), one for each path. We
will say that the tree is valid for tr′ if Vπ(u, tr) = 1 for each transcript tr induced
by the tree. Note that tr′ is an empty list when h = μ so we can omit reference
to tr′ and simply refer to the tree as valid.

Suppose V’s coins are drawn from S ×Zp for some set S and p ∈ N. We will
refer to the second component of its coins are the integer component. Let node
be a parent node at height i > 0. If any two of its children have m2(μ−i+1)−1 with
identical integer components, then we say that node has a challenge collision. A
tree has a challenge collision if any of its nodes have a challenge collision.

A tree-extractor emulator should return trees which are valid and have no
challenge collision. We capture this with the predicates Πn

val and Πn
nocol defined

by:

– Πn
val(π, u, aux) returns true iff aux is a valid n-tree.

– Πn
nocol(π, u, aux) returns true iff aux is an n-tree that does not have a challenge

collision.

Tree-extended Emulator. Let a proof system PS = (S,R,P,V, μ) and let
(n1, . . . , nμ) ∈ N

μ
>2 be given. Then consider the tree-extended emulator T given

in Fig. 10 which comes from BCCGP. The sub-algorithms Ti are given a partial
transcript tr. They call Next to obtain the next messages of a longer partial
transcript and attempt to create a partial tree with is valid for it. This is done
by repeatedly calling Ti+1 to construct each branch of the tree. Should the first
such call fail, then Ti will abort. Otherwise, it will continue calling Ti+1 as many
times as necessary to have ni+1 branches. The base case of this process is Tμ

which does not need children branches and instead just checks if its transcript
is accepting, returning ⊥ to its calling procedure if not. The following result
shows that T emulates any cheating prover perfectly and almost always outputs
a valid tree whenever it outputs an accepting transcript. The technical core of
the lemma is in the bound on the expected efficiency of T.

Lemma 4. Let PS = (S,R,P,V, μ) be a public coin proof system. Suppose V’s
challenges are uniformly drawn from S × Zp for set S and p ∈ N. Let n =
(n1, . . . , nμ) ∈ N

μ
>0 be given. Let N =

∏μ
i=1 ni. Let P∗ be a cheating prover and

A be an adversary. Define T as shown in Fig. 10. Then the following all hold:

1. Advemu
PS,T(P∗,A) = 0

2. AdvpredextPS,T,Πn
val

(P∗,A) = 0

3. AdvpredextPS,T,Πn
nocol

(P∗,A) � 5μN/
√

2p

4. The expected number of times T executes Vπ(u, ·) is N .
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Fig. 10. The BCCGP tree-extended emulator.

5. The expected number of queries that T makes to Next is less than μN + 19.
Exactly one of these queries is made while i = 1 in Next.

For comparison, in the full version of this paper [13] we analyze a natural
tree-extended emulator with a small bounded worst-case runtime. Its ability to
produce valid trees is significantly reduced by its need to work within a small
worst-case runtime, motivating the need for T to only be efficient in expected
runtime.

Proof (of Lemma 4). All of the claims except the third follow from BCCGP’s
analysis of T. The advantage AdvpredextPS,T,Πn

nocol
(P∗,A) can be upper-bounded by the

probability that the integer component of V’s output is repeated across any of
T’s queries to Next. BCCGP bounded this probability by applying Markov’s
inequality to obtain an upper bound on T’s running time and then applying the
birthday bound to get an O(μN/ 3

√
p) bound. We can instead apply our switching

lemma analysis from the full version of this paper [13] (or the techniques from
our analysis of the collision resistance of a random oracle in Sect. 3.3) to obtain
the stated bound because V will sample μN challenges in expectation. �	
Extractors. Let X be an algorithm and Π1,Π2 be predicates. We say that
X is a (Π1,Π2)-extractor if Π1(π, u, aux) ⇒ Π2(π, u,X(π, u, aux)). Let T be an
emulator. Then we define E†[T,X] to be the emulator that on input (π, u) with
oracle access to Next and Rew will first compute (tr, aux) ←$ TNext,Rew(π, u)
and then returns (tr,X(π, u, aux)). The following straightforward lemma relates
the security of T and E†.

Lemma 5. Let PS be a proof system, T be an emulator, Π1 and Π2 be predicates,
P∗ be a cheating prover, and A be an adversary. Let X be a (Π1,Π2)-extractor.
Then the following hold:
9 More precisely, the expected number of queries that T makes to Next is the number

of nodes in a (n1, . . . , nµ)-tree. This is
∑µ

i=0

∏i
j=1 nj , where

∏0
j=1 nj = 1.
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Fig. 11. Reduction adversary for Theorem 2.

– Advemu
PS,E†[T,X](P

∗,A) = Advemu
PS,T(P∗,A)

– Advpredext
PS,E†[T,X],Π2

(P∗,A) � AdvpredextPS,T,Π1
(P∗,A)

Forking lemma. Finally, we can state and prove our concrete security version of
the BCCGP forking lemma. It captures the fact that any protocol with a (Πn

val ∧
Πn

nocol,Πwit ∨ Π∗)-extractor has a good witness-extended emulator (assuming Π∗

is computationally difficult to satisfy)10.

Theorem 2 (Forking Lemma). Let PS = (S,R,P,V, μ) be a public coin proof
system. Suppose V’s challenges are uniformly drawn from S × Zp for set S and
p ∈ N. Let n = (n1, . . . , nμ) ∈ N

μ
>0 be given. Let N =

∏μ
i=1 ni. Let P∗ be a

cheating prover and A be an adversary. Define T as shown in Fig. 10. Let Π∗ be
a witness-independent predicate. Let X be a (Πn

val ∧ Πn
nocol,Πwit ∨ Π∗)-extractor.

Let E = E†[T,X]. Let BE be as defined in Fig. 11. Then the following all hold:

1. Advemu
PS,E(P

∗,A) = 0
2. AdvpredextPS,E,Πwit

(P∗,A) � AdvpredPS,Π∗(BE) + 5μN/
√

2p
3. The expected number of times T executes Vπ(u, ·) (inside of E) is N .
4. The expected number of queries that E makes to Next is less than μN + 1.

Exactly one of these queries is made while i = 1 in Next.
5. The expected runtime of BE is approximately TA + QE · TP∗ + TE where Tx is

the worst-case runtime of x ∈ {A,P∗,E} and QE < μN + 1 is the expected
number of queries that E makes to Next in Hpredext

PS,E,Π∗(P∗,A).

It will be useful to have the following simple lemma for comparing Advpredext

with different choices of predicate that are related by logical operators. It can
be derived from basic probability calculations.

Lemma 6. Let PS be a proof system, E be an emulator, Π1 and Π2 be predicates,
P∗ be a cheating prover, and A be an adversary. Then,

AdvpredextPS,E,Π1∨Π2
(P∗,A)+ AdvpredextPS,E,Π1∧Π2

(P∗,A)

=

AdvpredextPS,E,Π1
(P∗,A)+ AdvpredextPS,E,Π2

(P∗,A).

10 The existence a (Πn
val∧Πn

nocol, Πwit∨Π∗)-extractor is a natural generalization of special
soundness.
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and

AdvpredextPS,E,Π1
(P∗,A) � AdvpredextPS,E,Π1∨Π2

(P∗,A) + AdvpredextPS,E,¬Π2
(P∗,A).

Proof (of Theorem 2). Applying Lemmas 4 and 5, and observing how E is con-
structed give us the first, third, and fourth claim. For the other claims we
need to consider the adversary BE. Note that it runs E just it would be run
in Hpredext

PS,E,Π∗(P∗,A), so the distribution over (π, aux) is identical in Hpred
S,Π (BE) as

in that game. Furthermore, recall that Π∗ is witness-independent, so it ignores
its second input. It follows that,

AdvpredextPS,E,¬Π∗(P∗,A) = Pr[Vπ(u, tr) ∧ ¬(¬Π∗(π, u, aux)) in Hpredext]

� Pr[Π∗(π, u, aux) in Hpredext]

= Pr[Π∗(π, ε, aux) in Hpred] = AdvpredS,Π (BE).

The claimed runtime of B is clear from its pseudocode (noting that the view of
E is distributed identically to its view in Hpredext so its expected number of Next

queries is unchanged).
For the second claim, we perform the calculations

AdvpredextPS,E,Πwit
(P∗,A) � AdvpredextPS,E,Πwit∨Π∗(P∗,A) + AdvpredextPS,E,¬Π∗(P∗,A)

= AdvpredextPS,E,Πn
val∧Πn

nocol
(P∗,A) + AdvpredPS,Π∗(B)

= AdvpredextPS,E,Πn
val

(P∗,A) + AdvpredextPS,E,Πn
nocol

(P∗,A) + AdvpredPS,Π∗(B)

� 5μN/
√

2p + AdvpredPS,Π∗(B).

This sequence of calculation uses (in order) Lemma 6, Lemma 5 and the bound
we just derived, Lemma 6 (again), and Lemma 4.

4.3 Concrete Bounds on Soundness

Now we discuss how the forking lemma we just derived can be used to pro-
vide concrete bounds on soundness. First we make the generic observation that
witness-extended emulation implies soundness. Then we discuss how we can use
these results together with our expected-time generic group model bound on
discrete log security to give concrete bounds on the soundness of various proof
systems based on discrete log security, in particular giving the first concrete
bound on the soundness of the Bulletproofs proof system for arithmetic circuits.

Witness-extended emulation implies soundness. The following theorem
observes that finding a witness for u cannot be much more difficult that con-
vincing a verifier u if an efficient witness-extended extractor exists.

Theorem 3. Let PS = (S,R,P,V, μ) be a proof system, G be a statement gen-
erator, E be an emulator, and P∗ be a cheating prover. Define A and B as shown
in Fig. 12. Then,

AdvsoundPS,G(P∗) � AdvwitPS,G(B) + Advemu
PS,E(P

∗,A) + AdvpredextPS,E,Πwit
(P∗,A).
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Fig. 12. Adversaries used in Theorem 3.

The runtime of that A is roughly that of G plus that of V. The runtime of B is
roughly that of E when given oracle access to P∗ and V interacting.

Proof (Sketch). The use of V in A ensures that the probability E outputs an
accepting transcript must be roughly the same as the probability that P∗ con-
vinces V to accept. The difference between these probabilities is bounded by
Advemu

PS,E(P
∗,A). Then the Πwit security of E ensures that the probability it out-

puts a valid witness cannot be much less than the probability it outputs an
accepting transcript. The difference between these probabilities is bounded by
AdvpredextPS,E,Πwit

(P∗,A). Adversary B just runs E to obtain a witness, so AdvwitPS,G(B)
is the probability that E would output a valid witness.

Discrete log proof systems. A number of the proof systems in [6,7,24]
were shown to have a (Πn

val ∧Πn
nocol,Πwit ∨ΠG,n

dl )-extractor X. For any such proof
system PS, Theorem 3 and Theorem 2 bound the soundness of PS by the discrete
log relation security of G against an expected-time adversary BE†[T,X]. Moreover,
we can then apply Lemma 3 to tightly bound this adversary’s advantage by the
advantage of an expected-time adversary against normal discrete log security.
We know how to bound the advantage of such an adversary in the generic group
model from Sect. 3.3.

So to obtain a bound on the soundness of these proof systems in the generic
group model we can just apply these results to the proof system. To obtain our
final concrete security bound in the generic group model we need only to read
the existing analysis of the proof system and extract the following parameters,

– p: the size of the set V draws the integer component of its challenges from
– |G|: the size of the group used
– N =

∏μ
i=1 ni: the size of the tree that X requires

– n � 1: the number of group elements in the discrete log relation instance
– qV: the number of multi-exponentiations V performs11
– qX: the number of multi-exponentiations that X performs

We say such a proof system PS = (S,R,P,V, μ) and extractor X have param-
eters (p, |G|, N, n, qV, qX). We obtain the following theorem for such a system,
bounding its soundness in the generic group model.
11 Note that the size of these multi-exponentiations does not matter.
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Theorem 4. Let PS = (S,R,P,V, μ) be a proof system and X be an extractor
that has parameters (p, |G|, N, n, qV, qX). Let G be a statement generator perform-
ing at most qG multi-exponentiations and P∗ be a cheating prover that performs
at most qP∗ multi-exponentiations each time it is run. Define B as shown in
Fig. 12. Then in the generic group model we have,

AdvsoundPS,G(P∗) � AdvwitPS,G(B) + 5

√
6 · Q2

C
|G| +

2
|G| +

5μN√
2p

where QC = qG + (μN + 1)qP∗ + qX + NqV + n + 1. The runtime of B is roughly
that of E†[T,X] when given oracle access to P∗ and V interacting.

Proof. The result follows by applying Theorem 3, Theorem 2, Lemma 3, and the
generic group model bound from Sect. 3.3 as discussed above. �	
Concrete security of bulletproofs. Finally, we can use the above to
obtain a concrete security bound on the soundness of the Bulletproofs proof
system for arithmetic circuits of Bünz et al. [7]12. To do so we only need to
figure out the parameters discussed above. Suppose the proof system is being
used for an arithmetic circuit with M multiplication gates. Using techniques of
BCCGP [6] this is represented by a size M Hadamard product and L � 2M linear
constraints. Then per Bünz et al. the proof system has the following parameters:

– p = (|G| − 1)/213

– |G| is the size of group G in which discrete logs are assumed to be hard
– N = 7(L + 1)M3

– n = 2M + 2
– qV = 3M + log2(M) + 4
– qX = 0

Having proven our discrete log bound in a generic group model allowing multi-
exponentiations is helpful here; it makes our bound not depend on the size of
V’s multi-exponentiations.

Corollary 1. Let PS be the Bulletproofs proof system for arithmetic circuits
define in Sect. 5.2 of [7] using a group of size |G|. Let M denote the number of
multiplication gates in the circuit and L � 2M the number of linear constraints.
Let G be a statement generator performing at most qG multi-exponentiations
and P∗ be a cheating prover that performs at most qP∗ multi-exponentiations

12 In particular, throughout this section we refer to the logarithmic-sized arithmetic
circuit protocol described in Section 5.2 of their paper.

13 As described in [7], the challenges are drawn from Z
∗
|G|. For some rounds of the

protocol x, y ∈ Z
∗
|G| would be considered colliding if x ≡|G| ±y. We capture this by

thinking of coins drawn from {+, −} × Zp. Then (+, x) represents x + 1 ∈ Z
∗
|G| and

(−, x) represents −x − 1 mod |G| = |G| − x − 1 ∈ Z
∗
|G|. Hence the collision condition

corresponds to equality in the Zp component.
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each time it is run. Define B as shown in Fig. 12. Assume |G| � 2, L � 1, and
M � 16. Then in the generic group model,

AdvsoundPS,G(P∗) < AdvwitPS,G(B) +
13qG + 258qP∗ · LM3 log2(M) + 644 · LM4√|G| .

The runtime of B is roughly that of E†[T,XB ] when given oracle access to P∗

and V interacting, where XB is the Bulletproofs extractor.

We expect qP∗ to be the largest of the parameters, so the bound is dominated
by the O

(
qP∗ · LM3 log2(M)/

√|G|
)

term.

Proof. The bound was obtained by plugging our parameters (and μ = 3 +
log2(M)) into Theorem 4, then simplifying the expression using that |G| � 2,
L � 1, and M � 16. The (straightforward) details of this are provided in the
full version of this paper [13]. �	
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