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Abstract. We introduce a new primitive in information-theoretic cryp-
tography, namely zero-communication reductions (zcr), with different
levels of security. We relate zcr to several other important primitives,
and obtain new results on upper and lower bounds.

In particular, we obtain new upper bounds for PSM, CDS and OT
complexity of functions, which are exponential in the information com-
plexity of the functions. These upper bounds complement the results of
Beimel et al. [BIKK14] which broke the circuit-complexity barrier for
“high complexity” functions; our results break the barrier of input size
for “low complexity” functions.

We also show that lower bounds on secure zcr can be used to estab-
lish lower bounds for OT-complexity. We recover the known (linear) lower
bounds on OT-complexity [BM04] via this new route. We also formulate
the lower bound problem for secure zcr in purely linear-algebraic terms,
by defining the invertible rank of a matrix.

We present an Invertible Rank Conjecture, proving which will
establish super-linear lower bounds for OT-complexity (and if accom-
panied by an explicit construction, will provide explicit functions with
super-linear circuit lower bounds).

1 Introduction

Modern cryptography has developed a remarkable suite of information-theoretic
primitives, like secret-sharing and its many variants, secure multi-party com-
putation (MPC) in a variety of information-theoretic settings, (multi-server)
private information retrieval (PIR), randomness extractors, randomized encod-
ing, private simultaneous messages (PSM) protocols, conditional disclosure of
secrets (CDS), and non-malleable codes, to name a few. Even computationally
secure primitives are often built using these powerful tools. Further, a rich web
of connections tie these primitives together.

Even as these primitives are often simple to define, and even as a large
body of literature has investigated them over the years, many open questions
remain. For instance, the efficiency of secret-sharing, communication complexity
in MPC, PIR, and CDS, characterization of functions that admit MPC (without
honest majority or setups) all pose major open problems. Interestingly, recent
progress in some of these questions have arisen from surprising new connections
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across primitives (e.g., MPC from PIR [BIKK14], CDS from PIR [LVW17], and
secret-sharing from CDS [LVW18,AA18]).

In this work, we introduce a novel information-theoretic primitive called Zero-
Communication Reductions (zcr) that fits right into this toolkit, and provides
a bridge to information theoretic tools which were so far not brought to bear on
cryptographic applications. The goal of a zcr scheme is to let two parties com-
pute a function on their joint inputs, without communicating with each other!
Instead, in a zcr from a function f to a predicate φ, each party locally pro-
duces an output candidate along with an input to the predicate. The correctness
requirement is that when the predicate outputs 1 (“accepts”), then the output
candidates produced by the two parties should be correct; when the predicate
outputs 0, correctness is not guaranteed. The non-triviality requirement places
a (typically exponentially small) lower bound on the acceptance probability. We
also define a natural security notion for zcr, resulting in a primitive that is
challenging to realize, and requires predicates with cryptographic structure.

Thanks to its minimalistic nature, zcr emerges as a fundamental primitive.
In this work we develop a theory that connects it with other fundamental crypto-
graphic and information-theoretic notions. We highlight two classes of important
applications of zcr to central questions in information-theoretic cryptography –
one for upper bounds and one for lower bounds. On the former front, we derive
new upper bounds for communication in PSM and CDS protocols and for “OT-
complexity” of a function – i.e., the number of OTs needed by an information-
theoretically secure 2-Party Computation (2PC) protocol for the function – in
terms of (internal) information complexity, a fundamental complexity measure
of a 2-party function closely related to its communication complexity. On the
other hand, we present a new potential route for strong lower bounds for OT-
complexity, via Secure zcr (szcr), which has a much simpler combinatorial and
linear algebraic structure compared to 2PC protocols.

Barriers: Avoiding and Confronting. One of the key questions that moti-
vates our work is that of lower bounds for “cryptographic complexity” of 2-party
functions – i.e., the number of accesses to oblivious transfer (or any other finite
complete functionality) needed to securely evaluate the function (say, against
honest-but-curious adversaries). Proving such lower bounds would imply lower
bounds on representations that can be used to construct protocols. Specifically,
small circuits and efficient private information retrieval (PIR) schemes imply low
cryptographic complexity. As such, establishing strong lower bounds for crypto-
graphic complexity will entail showing breakthrough results on circuit complex-
ity and also on PIR lower bounds (which in turn has implications to Locally
Decodable Codes).

Nevertheless, there is room to pursue cryptographic complexity lower bound
questions without necessarily breaking these barriers. Firstly, there are existen-
tial questions of cryptographic complexity lower bounds that remain open, while
the corresponding questions for circuit lower bounds are easy and pose no barrier
by themselves. Secondly, when perfect correctness is required, the cryptographic
lower bound questions are interesting and remain open for randomized func-
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tions with very fine-grained probability values. In these cases, since the input
(or index) must be long enough to encode the random choice, the corresponding
circuit lower bounds and PIR lower bounds are already implied.

Finally, cryptographic complexity provides a non-traditional route—though
still difficult—to attack these barriers. In fact, this work could be seen as provid-
ing a step along this path. We formulate szcr lower bounds as a linear algebraic
question of lower bounding what we call the invertible rank, which in turn implies
cryptographic complexity and hence circuit complexity and PIR lower bounds.
We conjecture that there exist matrices (representing the truth table of func-
tions) that have a high invertible rank. Attacking the circuit complexity lower
bound question translates to finding such matrices explicitly.

1.1 Our Results

We summarize our main contributions, and elaborate on them below.

– New Primitives. We define zero-communication reductions with different
levels of security (zcr, wzcr, and szcr). We kick-start a theory of zero-
communication reductions with several basic feasibility and efficiency results.

– New Upper Bounds via Information Complexity. Building on results of
[BW16,KLL+15] which related information complexity of functions to com-
munication complexity and “partition” complexity, we obtain constructions
of zcr whose complexity is upper bounded by the information complexity of
the function. This in turn lets us obtain new upper bounds for statistically
secure PSM, CDS, and OT complexity, which are exponential in the infor-
mation complexity of the functions. As a concrete illustration of our upper
bounds based on information complexity, for the “bursting noise function” of
Ganor, Kol and Raz [GKR15], we obtain an exponential improvement over
all existing constructions.

– A New Route to Lower Bounds. We show that an upper bound on OT-
complexity of a function f implies an upper bound on the complexity of a
szcr from f to a predicate corresponding to OT. Hence lower bounding the
latter would provide a potential route to lower bounding OT-complexity.

– We motivate the feasibility of this new route in a couple of ways:
• We recover the known (linear) lower bounds on OT-complexity [BM04]
via this new route by providing lower bounds on szcr complexity.
• We formulate the lower bound problem for szcr in purely linear-
algebraic terms, by defining the invertible rank of a matrix. We present
our Invertible Rank Conjecture, proving which will establish super-
linear lower bounds for OT-complexity (and if accompanied by an explicit
construction, will provide explicit functions with super-linear circuit lower
bounds).

Defining zcr and szcr. Our first contribution is definitional. The zero-
communication model that we introduce is a powerful framework that, on the
one hand, is convenient to analyze and, on the other hand, has close connec-
tions to a range of cryptographic primitives. Our definition builds on a line of
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work that used zero-communication protocols for studying communication and
information complexity, in classical and quantum settings (see, e.g., [KLL+15]
and references therein), but we extend the model significantly to enable the
cryptographic connections we seek. In Sect. 2, we define three variants – zcr,
wzcr, and szcr– with three levels of security (none, weak, and standard or
strong). All these reductions relate a function f to a predicate φ, and, option-
ally, a correlation ψ, with the primary complexity measure being “non-triviality”
or “acceptance probability” of the reduction: A μ-zcr (or μ-wzcr, or μ-szcr)
needs to accept the outputs produced by the non-communicating parties with
probability at least 2−μ, and may abort otherwise.

(In)Feasibility Results. We follow up on the definitions with several basic
positive and negative results about szcr, presented in Sect. 4. In particular, we
show that every function f has a non-trivial szcr to some predicate φf (using no
correlation); also every function f has a szcr to the AND predicate, using some
correlation ψf . Complementing these results, we show that for many natural
choices of the predicate (AND, OR, or XOR), there are functions f which do
not have a szcr to the predicate, if no correlation is used. In fact, we completely
characterize all functions that have a szcr to these predicates.

On the other hand, there are predicates which are complete in the sense that
any function f has a szcr to it (possibly using a common random string). In a
dual manner, a correlation ψ can be considered complete if any function f can be
reduced to a constant-sized predicate like AND using ψ. Our results (discussed
below) show that the predicate φsupp(OT+)– which checks if its inputs are in the
support of one or more instances of the oblivious transfer (OT) correlation – is
a complete predicate (Theorem 3) and OT is a complete correlation (Theorem
12). These results rely on OT being complete for secure 2-party computation
and having a “regularity” structure.

We also consider reducing randomized functionalities without inputs to ran-
domized predicates; in this case, we characterize the optimal non-triviality achiev-
able (Theorem 9).

Upper Bounds. Our upper bounds for CDS, PSM and 2PC for a function f
are obtained by first constructing a zcr (or wzcr) from f to a simple predicate.
We offer two sets of results – perfectly secure constructions with complexity
exponential in the communication complexity of f , and statistically secure con-
structions with complexity exponential in the information complexity.

The first set of results presented in Sect. 6.1, may be informally stated as
follows.
Theorem 1 (Informal). For a deterministic function f : X × Y → {0, 1},
with communication complexity �, there exist perfectly secure protocols for CDS,
PSM and 2PC using OTs, all with communication complexity O(2�). Further,
the 2PC protocol uses O(2�) invocations of OT.
They follow from a sequence of connections illustrated below:

Communication
complexity → Tiling → Deterministic

wzcr
→ CDS, PSM

and 2PC
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Here tiling refers to partitioning the function’s domain X ×Y into monochromatic
rectangles – i.e., sets X ′ × Y ′ on which the function’s value remains constant.

We significantly improve on these results (while sacrificing perfect security)
in our second set of constructions presented in Sect. 6.2. They follow the outline
below.

Information
complexity → Relaxed

partition → wzcr → CDS, PSM
and 2PC

Note that now, instead of a tiling of f , we only require a (relaxed) partition
of f [JK10,KLL+15], which allows overlapping monochromatic rectangles with
fractional weights. The connection between information complexity and relaxed
partition is a non-trivial result of Kerenidis et al. [KLL+15], that builds on
[BW16]. We then construct a wzcr from a relaxed partition, and finally show
how a wzcr (in fact, a zcr) can be turned into a CDS, PSM or 2PC proto-
col. This leads us to the following theorem, stated in terms of the information
complexity of f , ICε(f), and statistical PSM, CDS and 2PC.

Theorem 2 (Informal). Let f : X × Y → {0, 1} be a deterministic function.
For any constant ε > 0, the communication complexity of ε-PSM of f , com-
munication complexity of ε-CDS for predicate f , and OT and communication
complexity of ε-secure 2PC of f are upperbounded by 2O(ICε/8(f)).

This result is all the more interesting because it is known that information com-
plexity can be exponentially smaller than communication complexity. In partic-
ular, Ganor, Kol and Raz described an explicit (partial) function in [GKR15],
called the “bursting noise function,” which on inputs of size n, have a commu-
nication complexity lower bound of Ω(log log n) and an information complexity
upper bound of O(log log log n). Note that the existing general 2PC techniques
do not achieve sub-linear OT-complexity. Theorem 1 would allow O(log n) OT-
complexity, whereas Theorem 2 brings it down to O(log log n).

Our results can be seen as complementing [BIKK14] which offered improve-
ments over the circuit size for “very high complexity” functions. We offer the
best known protocols, improving over the input size, and even the communica-
tion complexity, for “very low complexity” functions.
Constructions of szcr and Connection to Lower Bounds. We show
that for a function f with OT-complexity m, there is a μ-szcr from f to the
constant-depth predicate φsupp(OT+)(which checks if its inputs are in the support
of oblivious transfer (OT) correlations), where μ is roughly m:

Theorem 3 (Informal). If a deterministic functionality f with domain
{0, 1}n×{0, 1}n and has OT-complexity m, then there exists an (m+O(n))-szcr
from f to φsupp(OTm+1), possibly using a common random string.

This result is proved more generally in Theorem 11, where it is also shown
that the common random string can be avoided for a natural class of functions
f (which are “common-information-free”). The results also extend to a “dual
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version” where the reduction is to a simple AND predicate, but uses a correlation
that provides m copies of OT (Theorem 12).

A consequence of Theorem 3 is that it can recover the best known lower bound
for OT-complexity in terms of one-way communication complexity [BM04]. We
show

One-way communication
complexity ≤ Predicate-domain

complexity of szcr ≤ OT-complexity

where the first bound is shown using a simple support based argument (Lemma
2), and the second one follows from the upper bound on the domain size of
the predicate φsupp(OTk) in Theorem 3. This is formally stated and proved as
Corollary 2.
Invertible Rank. Theorem 3 provides a new potential route for lower bounding
OT-complexity of f , by lower bounding μ or k in a μ-szcr from f to φsupp(OTk).
In turn, this problem can be formulated as a purely linear-algebraic question
of what we term “invertible rank” (Sect. 5.1). Compared to previous paths for
lower bounding OT-complexity [BM04,PP14], this new route is not known to be
capped at linear bounds, and could even be seen as a stepping stone towards a
fresh line of attack on circuit complexity lower bounds (as they are implied by
OT-complexity lower bounds).

Invertible rank characterizes the best complexity – in terms of non-triviality
and predicate-domain complexity – achievable by a szcr from f to φ+ (con-
junction of one or more instances of φ). Specifically, for a matrix Mf encoding
a function f and a matrix Pφ encoding a predicate, we have:

Theorem 4 (Informal). If a function f has a perfect μ-szcr to φk then the
invertible rank of Mf w.r.t. Pφ is at most μ + k.

This characterization, combined with Theorem 3 implies that if a determin-
istic n-bit input functionality f has OT-complexity m, then its invertible rank
w.r.t. POT is O(m + n). Hence, a super-linear lower bound on invertible rank
w.r.t. POT would imply super-linear OT-complexity, and consequently, super-
linear circuit complexity for f . We conjecture the existence of function families
f with super-linear invertible rank, and leave it as an important open problem
to resolve it.

1.2 Related Work

As mentioned above, zero-communication protocols have been used to study
communication and information complexity, in classical and quantum settings.
The model can be traced back to the work of Gisin and Gisin [GG99], who pro-
posed it as a local-hidden variable model (i.e., no quantum effects) that could
explain apparent violation of the Bell inequality, when there is a significant
probability of abort (i.e., missed detection) built into the system. More recently,
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Kerenidis et al. [KLL+15], using a compression lemma by Braverman and Wein-
stein [BW16], presented a zero-communication protocol with non-abort proba-
bility of at least 2−O(IC), given a protocol for computing f with information
complexity IC.

OT-complexity was explicitly introduced as a fundamental measure of com-
plexity of a function f by Beimel and Malkin [BM04], who also presented a lower
bound for f ’s OT-complexity in terms of the one-way communication complexity
of f . In [PP14] an information-theoretic measure called tension was developed,
and was shown to imply lower bounds for OT-complexity, among other things.
Unfortunately, both these techniques can yield lower bounds on OT-complexity
that are at most the length of the inputs. On the other hand, the best known fea-
sibility result for OT-complexity, achieved via connections to PIR, by Beimel et
al. [BIKK14], is sub-exponential (a.k.a. weakly exponential) in the input length.
Closing this gap, even existentially, is an open problem.

In the PSM model, all functions are computable [FKN94] and efficient pro-
tocols are known when the function has small non-deterministic branching pro-
grams [FKN94,IK97]. Upper bounds on communication complexity were stud-
ied by Beimel et al. [BIKK14]. See [AHMS18] and references therein for lower
bounds. In CDS, protocols have been constructed with communication complex-
ity linear in the formula size [GIKM00]. Efficient protocols were later developed
for branching programs [KN97] and arithmetic span programs [AR17]. Liu et
al. [LVW17] obtained an upper bound of 2O(

√
k log k) for arbitrary predicates

with domain {0, 1}k × {0, 1}k. Applebaum et al. [AA18] showed that amortized
complexity over very long secrets can be brought down to a constant.

1.3 Technical Overview

We discuss some of the technical aspects of a few of our contributions mentioned
above.
A New Model of Secure Computation. zcr and its secure variants present
a fundamentally new cryptographic primitive, highlighting aspects of secure
computation common to many seemingly disparate notions like PSM, CDS and
secure 2PC using correlated randomness.

Recall that in a zcr from a function f to a predicate φ, each party locally
produces an output candidate along with an input to the predicate. The output
candidates produced by the two parties should be correct when the predicate
outputs 1. Instances of zero-communication models have appeared in the com-
munication complexity literature (see [KLL+15]), but they typically prescribed
a specific predicate as part of the model (e.g.., the equality predicate). By allow-
ing an arbitrary predicate rather than one that is fixed as part of the model, we
view our protocols as reductions from 2-party functionalities to predicates. This
generalization is key to obtaining the various connections we develop.

Secondly, we add security requirements to the model. One may expect that
a zero-communication protocol is naturally secure, as neither party receives any
information about the other party’s input or output. While that is the case
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for honest parties, we shall allow the adversary to learn the outcome of the
predicate as well. This is the “right” definition, in that it allows interpreting a
zero-communication protocol as a standard secure computation protocol when
the predicate is implemented by a trusted party, who announces its result to the
two parties. The secure version of zcr – called szcr – admits stronger lower
bounds (and even impossibility results), as discussed below.

We further generalize the notion of zero-communication reduction to allow
the two parties access to a correlation ψ, rather than just common randomness
as in the original models in the literature.

In Fig. 1, we illustrate a zero communication reduction from a functionality
f = (fA, fB) to a predicate φ, using a correlation ψ.

A B

φ

ψx y

A B

R S

U V

D

Fig. 1. The random variables involved in
a zcr.

The reduction is specified as a pair of
randomized algorithms (A,B) executed
by two parties, Alice and Bob. Alice,
given input x and her part of the cor-
relation R, samples (A,U) ← A(x,R),
where A is her proposed output for the
functionality f , and U is her input to
φ. Similarly, Bob computes (B, V ) ←
B(y, S). The non-triviality guarantee is
that φ(U, V ) = 1 with a positive proba-
bility 2−μ, and correctness guarantee is
that conditioned on φ(U, V ) = 1, the
outputs of Alice and Bob are (almost
always) correct.

The security definitions we attach
to wzcr and szcr could be seen
as based on the standard simulation
paradigm. However, when defining sta-
tistical (rather than perfect) security in the case of szcr, a novel aspect emerges
for us. Note that a μ-szcr needs to accept an execution with probability only
2−μ, which can be negligible. As such, allowing a negligible statistical error in
security would allow one to have no security guarantees at all whenever the
execution is not aborting, and would render szcr no different from wzcr. The
“right” security definition of szcr with statistical security is to require security
to hold conditioned on acceptance (as well as over all).
PSM, CDS, and 2PC from zcr. Due to its minimalistic nature, a zcr can
be used as a reduction in the context of PSM, CDS, and 2PC. At a high-level, a
zcr from f to a predicated φ could be thought of as involving a “trusted party”
which implements φ. Since the reduction itself involves no communication, it
can easily be turned into a PSM, CDS or 2PC scheme for the function f , if
we can “securely implement” a trusted party for φ in the respective model. One
complication however, is that a zcr can abort with a high probability. This is
handled by repeating the execution several times (inversely proportional to the
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acceptance probability), and using the answer produced in an execution that is
accepted.

While it may appear at first that zcr with a security guarantee will be needed
here, we can avoid it. This is done by designing the secure component (PSM,
CDS, or 2PC) to not implement the predicate φ directly, but to implement a
selector function as described below. Recall that in an execution of the zcr
protocol, Alice and Bob will generate candidate outputs (a, b) as well as inputs
(u, v) for φ. The parties will now carry out this protocol n times in parallel,
to generate (ai, bi) and (ui, vi), for i = 1 to n. The selector function accepts all
(ai, bi, ui, vi) as inputs and outputs a pair (ai, bi) such that φ(ui, vi) = 1, without
revealing i itself (we choose n sufficiently large as to guarantee that there will
be at least one such instance, except with negligible probability; if multiple such
i exist, then, say, the largest index is selected).

The overall communication complexity of the resulting protocol is exactly
determined by the PSM, CDS, or 2PC protocol for the selector function (as the
zcr itself adds no communication overhead). By instantiating our results for the
predicate φAND, the selector function has a small formula complexity, and hence
efficient PSM, CDS, and 2PC protocols.
zcr and Information Complexity.wzcr and the notion of relaxed partition
[JK10,KLL+15] are intimately connected to each other. A relaxed partition of a
2-input function f could be seen as a tiling of the function table with fractionally
weighted tiles such that each cell in the table is covered by (almost) 1 unit worth
of tiles, (almost) all of them having the same color (i.e., output value) as the cell
itself. The goal of a partition is to use as few tiles as possible – or more precisely,
to minimize the total weight of all the tiles used. In Lemma 4, we show that a
relaxed partition can be turned into a wzcr of f to the predicate φAND, with
acceptance probability roughly equal to the reciprocal of the total weights of the
tile. (In fact, if no error were to be allowed, a wzcr with maximum acceptance
probability exactly corresponds to a partition with minimum total weight.) A
result of [KLL+15] can then be used to relate this acceptance probability to the
information complexity of f .

Thus, via zcr, we can upper bound PSM, CDS, and OT-complexity of func-
tions by a quantity exponential in their information complexity. While this upper
bound is rather loose in the worst case, in general, it appears incomparable to
all other known upper bounds.
szcr from 2PC. Any boolean function f has a szcr to a predicate φf with
acceptance probability of at least 1/4 (Theorem 5). However, the computational
complexity (measured in size or depth) of φf is as much as that of f . An impor-
tant question is whether – and how well can – a function be reduced to a uni-
versal, constant-depth predicate.

We show that if the predicate is φAND, and no correlations are used (except
possibly common randomness), then only simple functions have a szcr to the
predicate. (Simple functions are those that are not complete [MPR13].)

On the other hand, there is a universal constant-depth predicate φsupp(OT+),
which simply checks if its inputs are in the support of several copies of oblivious
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transfer correlations, such that every function f has a szcr to it. In fact, we show
that f has a μ-szcr (i.e., a szcr with acceptance probability 2−μ) to φsupp(OT+)

where μ is at most the OT complexity of f . (Corollary 1). (In this result, OT
can be replaced by a general class of correlations, called “regular correlations.”)

The idea is to transform a 2-party protocol ΠOT that (against passive cor-
ruption) perfectly securely realizes f using OT correlations, into a szcr from
f to φsupp(OT+). The transformation relies on the fact that any protocol admits
transcript factorization: i.e., the probability of a transcript q occurring in an exe-
cution of ΠOT, given inputs (x, y) and OT correlation (u, v) to the two parties
respectively, can be written as

PrΠOT(q|x, y, u, v) = ρ(x, u, q) · σ(y, v, q),

for some functions ρ and σ. This could be exploited by the parties to non-
interactively sample an instance of the protocol execution, and derive their out-
puts from it. One issue here is that since the parties have access to OTs, the
product structure on the transcript distribution applies only conditioned on their
respective views from the OT. Thus, it is in fact the views in the OT, u and
v that the two parties sample locally, conditioned on their own inputs and a
transcript q that is determined by a common random string.1 φsupp(OT+) is used
to check if the two views of the OT correlations sampled thus are compatible
with each other.

Several technical complications arise in the above plan. In particular, ensuring
that the abort event does not reveal any information beyond the input and out-
put to each party, requires a careful choice of probabilities with which each party
selects its view of the OT correlations; also, each party unilaterally forces an
abort with some probability (implemented using a couple of extra OTs included
in the input to φsupp(OT+)). For simplicity, here we summarize the scheme for a
common-information-free function f . In this case, there will be no common ran-
dom string. We fix an arbitrary transcript q∗ (which has a non-zero probability
of occurring), and define

ρ† := max
x

∑

u

ρ(x, u, q∗), σ† := max
y

∑

v

σ(y, v, q∗). (1)

Recall that a szcr is given by a pair of algorithms (A,B) which, respectively,
take x and y as inputs, and output (U,A) and (V,B) (Fig. 1). We define these
algorithms below. In addition to the quantities mentioned above, we also refer
to the algorithms Πout

A and Πout
B which are the output computation algorithms

of the protocol Π.

A(x): For each u ∈ U , let (U, A) = (u, Πout
A (x, u, q∗)) with probability ρ(x,u,q∗)

ρ† , and (⊥, ⊥) with

remaining probability (if any).
B(y): For each u ∈ U , let (V, B) = (v, Πout

B (y, v, q∗)) with probability σ(y,v,q∗)
σ† , and (⊥, ⊥) with

remaining probability (if any).

1 For secure protocols for common-information-free functions, a transcript can be
fixed, avoiding the need for a common random string.
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Note that for x which maximizes the expression defining ρ†, A(x) does not
set (u, a) = (⊥,⊥), but in general, this costs the szcr in terms of non-triviality.
This sacrifice in acceptance probability is needed for Alice to even out the accep-
tance probability across her different inputs, so that Bob’s view combined with
the acceptance event, does not reveal information about x (beyond f(x, y)). Nev-
ertheless, we can show that the probability of acceptance is lower bounded by
2−(m+n), where m is the number of OTs (so u, v are each 2m-bit strings) and
the combined input of f is n bits long.

The construction is somewhat more delicate when f admits common-
information. This means that there is some common information that Alice and
Bob could agree on if they are given (x, fA(x, y)) and (y, fB(x, y)) respectively.
For such functions, the szcr construction above is modified so that a candidate
value for the common information is given as a common random string; it is
arranged that the execution is rejected by the predicate if the common informa-
tion in the common random string is not correct. Also, in this case, we can no
more choose an arbitrary transcript (even after fixing the common information);
instead we argue that there is a “good” transcript for each value of common
information, that would let us still obtain a similar non-triviality guarantee as
in the case of common-information-free f .

We give an analogous result for szcr to φAND, but using OT correlations.
Here, each party locally checks if their input is consistent with a given transcript
(determined by common randomness) and their share of OT correlations. Here
also, for the sake of security, even if it is consistent, the party aborts with a
carefully calibrated probability.

In both the above transformations from a secure 2PC protocol Π for f to a
szcr, an important consideration is the probability of not aborting. To establish
our connection with OT-complexity, we need a μ-szcr where μ is directly related
to the number of OTs used in Π, and not the length of the transcripts. One
element in establishing such a szcr is an analysis of the given 2PC protocol
when it is run with correlations drawn using a wrong distribution. We refer the
reader to Theorem 11 and its proof for further details.
Invertible Rank. The conditions of a szcr (from a possibly randomized func-
tion to a possible randomized predicate) without correlations can be captured
purely in linear algebraic terms, leading to the definition of a new linear-algebraic
complexity measure for functions.

The correctness condition for μ-szcr of f to φ has the form AᵀPB = 2−μM ,
where M and P are matrices that encode the function f and the predicate φ in
a natural way. If P were to be replaced with the identity matrix, and μ by 0,
the smallest possible size of P would correspond to the rank of M . In defining
invertible rank with respect to a finite matrix Pφ, we let P = P⊗k

φ and ask for
the smallest k possible, for a given μ (thus the invertible rank is analogous to
log-rank). Also, A,B are required to satisfy natural stochasticity properties so
that they correspond to valid probabilistic actions.

In addition to the correctness guarantees, we also incorporate the security
guarantees of szcr into our complexity measure. This takes the form of the
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existence of simulators, which are again captured using linear transformations.
The “invertibility” in the term invertible rank refers to the existence of such
simulators.

We remark that linear-algebraic complexity measures have been prevalent in
studying the computational or communication complexity of functions – matrix
rigidity [Val77], sign rank [PS86], the “rank measure” of Razborov [Raz90],
approximate rank [ALSV13] and probabilistic rank [AW17] have all led to impor-
tant advances in our understanding of functions. In particular, Razborov’s rank
measure was instrumental in establishing exponential lower bounds for linear
secret-sharing schemes [RPRC16,PR17]. Invertible rank provides a new linear-
algebraic complexity measure that is closely related to secure two-party compu-
tation, via our results on szcr; this is in contrast with the prior measures which
were motivated by computational complexity, (insecure) two-party communica-
tion complexity, or secret-sharing (which does not address the issues of secure
two-party computation),

Organization of the Rest of the Paper

We present the formal definitions of zcr, wzcr and szcr in Sect. 2. Before
continuing to our results, we summarize relevant background information in
Sect. 3. The basic feasibility results in our model are presented in Sect. 4. The
connections with lower bounds are given in Sect. 5, and the upper bounds on
CDS, PSM and 2PC are given in Sect. 6. Several proof details are given in in the
full version [NPP20].

2 Defining Zero-Communication Secure Reductions

We refer the reader to Fig. 1, which illustrates the random variables involved in a
zero communication reduction from a functionality f = (fA, fB) to a predicate
φ, using a correlation ψ. The reduction is specified as a pair of randomized
algorithms (A,B) executed by two parties, Alice and Bob. Alice, given input x
and her part of the correlation R, samples (A,U) ← A(x,R), where A is her
proposed output for the functionality f , and U is her input to φ. Similarly, Bob
computes (B, V ) ← B(y, S). The non-triviality guarantee is that φ(U, V ) = 1
with a positive probability 2−μ, and correctness guarantee is that conditioned
on φ(U, V ) = 1, the outputs of Alice and Bob are almost always correct.

We shall define three notions of such a reduction (zcr, wzcr and szcr)
depending on the level of security implied (no security, weak security and stan-
dard security).
Notation: Below, p (R) denotes the distribution of a random variable R, Pr(r, s)
stands for Pr(R = r, S = s), where R,S are random variables, and PrA(α|β)
denotes the probability that a probabilistic process A outputs α on input β.
|D1 − D2| denotes the statistical difference between two distributions D1,D2.
(Further notes on notation are given in Sect. 3.)
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Definition 1. Let f : X × Y → A × B and φ : U × V → {0, 1} be randomized
functions, and let ψ be a distribution over R×S. For any μ, ε ≥ 0, a (μ, ε)-zero-
communication reduction (zcr) from f to the predicate φ using ψ is a pair of
probabilistic algorithms A : X × R → U × A and B : Y × S → V × B such that
the following holds.

Define jointly distributed random variables (R,S, U, V,A,B,D), conditioned
on each (x, y) ∈ X × Y, as

Pr(r, s, u, v, a, b, d|x, y) = Prψ(r, s) · PrA(u, a|x, r) · PrB(v, b|y, s) · Prφ(d|u, v).

– Non-Triviality: ∀(x, y) ∈ X × Y, Pr(D = 1|x, y) ≥ 2−μ.
– Correctness: ∀(x, y) ∈ X × Y, |p ((A,B)|x, y,D = 1) − f(x, y)| ≤ ε.

In other words, in a zcr, Alice and Bob compute “candidate outputs” a
and b, as well as two messages u and v, respectively, such that correctness (i.e.,
f(x, y) = (a, b)) is required only when φ “accepts” (u, v). We allow Alice and
Bob to coordinate their actions using the output of ψ. We also allow a small
error probability of ε. To be non-trivial, we require a lower bound 2−μ on the
probability of φ accepting. Note that as μ increases from 0 to ∞, the non-
triviality constraint gets relaxed.

Next, we add a weak security condition to zcr as follows: Consider an “eaves-
dropper” who gets to observe whether the predicate φ accepts or not. We require
that this reveals (almost) no information about the inputs (x, y) to the eaves-
dropper. Technically, we require the probability of accepting to remain within a
multiplicative factor of (1 − ε)±1 as the inputs are changed.

Definition 2. For any μ ≥ 0, ε ≥ 0, a (μ, ε)-zcr (A,B) from f to φ using ψ

is a (μ, ε)-weakly secure zero-communication reduction (wzcr) if the following
condition holds.

– Weak Security: ∀(x, y), (x′, y′) ∈ X × Y,

Pr(D = 1|x, y) ≥ (1 − ε)Pr(D = 1|x′, y′),

where D is the random variable corresponding to the output of φ, as defined
in Definition 1.

Finally, we present our strongest notion of security, szcr. The definition cor-
responds to security against passive corruption of one of Alice and Bob in a
secure computation protocol (using φ and ψ as trusted parties) that realizes the
following functionality fμ′ (for some μ′ ≤ μ): After computing (a, b) ← f(x, y),
with probability 2−μ′

the functionality sends the respective outputs to the two
parties (“accepting” case); with the remaining probability, it sends the output
only to the corrupt party. The definition of szcr involves a refinement not present
in (statistical) security of secure computation: We require that even conditioned
on the execution “accepting” – which could occur with a negligible probability –
security holds. The formal definition of szcr includes the correctness and (weak)
security properties of a wzcr, and further requires the existence of two simula-
tors ŜA (for corrupt Alice) and ŜB (for corrupt Bob), with separate conditions
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for the accepting and non-accepting cases. We formalize these conditions below.

Definition 3. For any μ ≥ 0, ε ≥ 0, a (μ, ε)-wzcr (A,B) from f to φ using
ψ is a (μ, ε)-secure zero-communication reduction (szcr) if the following condi-
tions hold.

• Security: ∀x ∈ X , y ∈ Y, and a, b s.t. Prf (a, b|x, y) > 0

∣∣∣p (R,U |x, y, a, b,D = 1) − ŜA(x, a, 1)
∣∣∣ ≤ ε, (2)

∣∣∣p (S, V |x, y, a, b,D = 1) − ŜB(y, b, 1)
∣∣∣ ≤ ε, (3)

∣∣∣p (R,U |x, y,D = 0) − ŜA(x, fA(x, y), 0)
∣∣∣ ≤ ε, (4)

∣∣∣p (S, V |x, y,D = 0) − ŜB(y, fB(x, y), 0)
∣∣∣ ≤ ε. (5)

where the random variables R,S, U, V,D are as defined in Definition 1, and ŜA :
X × A × D → R × U and ŜB : Y × B × D → S × V are randomized functions.

Above, (2) and (4) correspond to corrupting Alice, with the first one being
the accepting case. (The other two equations correspond to corrupting Bob.)
Note that in these cases the adversary’s view consists of (R,U), in addition to
the input x and the boolean variable D (accepting or not), which are given to
the environment as well. In the accepting case, the environment also observes
the outputs (a, b). In either case, ŜA is given (x, fA(x, y),D) as inputs; in the
accepting case, we naturally require that the simulated view has the same output
a as fA(x, y) given to ŜA.

Special Cases. A few special cases of the above definitions will be of interest,
and we use specialized notation for them. A perfect reduction guarantees perfect
correctness and security, wherein ε = 0. In this case instead of (μ, 0)-zcr (wzcr,
szcr), we simply say μ-zcr (wzcr, szcr).

For deterministic f , when ε = 0, the security conditions (2)–(5) in Definition
3 can be replaced with the following equivalent conditions: ∀x, y, r, s, u, v, d,

Pr(r, u, d|x, y1) = Pr(r, u, d|x, y2), if fA(x, y1) = fA(x, y2), (6)
Pr(s, v, d|x1, y) = Pr(s, v, d|x2, y), if fB(x1, y) = fB(x2, y). (7)

A formal proof of this equivalence is provided in the full version [NPP20].
We would consider perfect szcr of a functionality f to a predicate φ using

no correlation. This notion of reduction still suffices for many of our connections
(e.g., to lower bounds on OT complexity), while being simpler to analyze. A
correlation ψ which only offers a common random string to the two parties
is denoted as ψCRS. Indeed, for zcr and wzcr, ψCRS is the only non-trivial
correlation one may consider.
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3 Preliminaries for the Remainder

Before proceeding further, we present background material and some notation
needed for the remainder of the paper.

Probability Notation. The probability assigned by a distribution D (or a
probabilistic process D) to a value x is denoted as PrD(x), or simply Pr(x),
when the distribution is understood. We write x ← D to denote sampling a
value according to the distribution D. Given two distributions D1,D2, we write
|D1 − D2| to denote the statistical difference (a.k.a. total variation distance)
between the two.

For a random variable X, we write p (X) to denote the probability distri-
bution associated with it. We write p (X|Y = y) (or simply p (X|y), letting the
lower case y signify that it is the value of the random variable Y ), to denote the
distribution of a random variable X, conditioned on the value y for a random
variable Y that is jointly distributed with X.

Functionalities. We denote a 2-party functionality as f : X × Y → A × B, to
indicate that the functionality accepts an input x ∈ X from Alice and y ∈ Y
from Bob, computes (a, b) = f(x, y), and sends a to Alice and b to Bob. We
allow f to be a randomized function too, in which case f(x, y) stands for a
probability distribution over A × B, for each (x, y) ∈ X × Y; for readability, we
write Prf (a, b|x, y) instead of Prf(x,y)(a, b) to denote the probability of f(x, y)
outputting (a, b). We write f = (fA, fB), where fA : X × Y → A and fB : X ×
Y → B are such that (making the randomness ξ used by f explicit), f(x, y; ξ) =
(fA(x, y; ξ), fB(x, y; ξ)). If fB is a constant function, we identify f with fA and
refer to it as a one-sided functionality. Similarly, if fA = fB , then we may use
f to refer to either of these functions; in this case, we refer to f as a symmetric
functionality.

Correlations. A correlation ψ over a domain R × S is the same as a 2-party
randomized functionality ψ : {⊥} × {⊥} → R × S (i.e., a functionality with
no inputs). supp(ψ) = {(r, s)|Prψ(r, s) > 0} is the support of ψ. We say that a
correlation is regular if (1) ∀(r, s) ∈ supp(ψ), Prψ(r, s) = 1

|supp(ψ)| , (2) ∀r ∈ R,
∑

s∈S Prψ(r, s) = 1
|R| , and (3) ∀s ∈ S,

∑
r∈R Prψ(r, s) = 1

|S| . Common exam-
ples of regular correlations are those corresponding to Oblivious Transfer (OT)
and Oblivious Linear Function Evaluation (OLE), and their n-fold repetitions.
Another regular correlation of interest is the common randomness correlation
ψCRS, in which (r, s) ∈ supp(ψCRS) if only if r = s.

We denote t independent copies of a correlation ψ by ψt. It will be convenient
to denote ψt for an unspecified t by ψ+.

Predicates. We shall also refer to predicates of the form φ : U × V → {0, 1}.
Again, as in the case of functionalities above, a predicate could be random-
ized. Given a correlation ψ over U × V, we define the predicate φsupp(ψ) so that
φsupp(ψ)(u, v) = 1 iff (u, v) ∈ supp(ψ). The predicate φsupp∗(ψ) is defined identi-
cally, except that we allow the domain of φsupp∗(ψ) to be (U ∪ {⊥})× (V ∪ {⊥})
where ⊥ is a symbol not in U ∪ V.
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It will also be convenient to define supp(ψ+) :=
⋃∞

t=1 supp(ψ
t).

Evaluation Graph Gf . For a functionality f , it is useful to define a bipartite
graph Gf [MPR13].

Definition 4. For a randomized functionality f : X ×Y → A×B, the weighted
graph Gf is defined as the bipartite graph on vertices (X × A) ∪ (Y × B) with
weight on edge ((x, a), (y, b)) = Prf (a, b|x, y).

Note that for deterministic f , the graph Gf is unweighted (all edges have weight
1 or 0). If f is a correlation, with no inputs, the nodes in the graph Gf can be
identified with A ∪ B.

Definition 5. In an evaluation graph Gf , a connected component is a set of
edges that form a connected component in the unweighted graph consisting only of
edges in Gf with positive weight. A function f is said to be common-information-
free if all the edges in Gf belong to the same connected component.

For each connected component C in Gf , we define XC ⊆ X as the set
{x|∃y, a, b s.t. ((x, a), (y, b)) ∈ C}; YC ⊆ Y is defined analogously. Also, we
define C|X×Y := {(x, y)|∃(a, b) s.t. ((x, a), (y, b)) ∈ C}.

For a correlation ψ, we will denote by ψ|C the restriction of ψ to the con-
nected component C. That is, Prψ|C (a, b) ∝ Prψ(a, b) for (a, b) ∈ C and 0 oth-
erwise.

A simple functionality [MPR12,MPR13] is one whose graph Gf consists of
connected components that are all product graphs. For deterministic functional-
ities, it can be defined as follows:

Definition 6. A deterministic functionality f = (fA, fB) with domain X × Y
is a simple functionality if there exist no x, x′ ∈ X and y, y′ ∈ Y such that
fA(x, y) = fA(x, y′) and fB(x, y) = fB(x′, y) but either fA(x′, y) �= fA(x′, y′) or
fB(x, y′) �= fB(x′, y′).

Simple functionalities satisfy the following (see [MPR12]).

Lemma 1. If (fA, fB) is a simple deterministic functionality, then there exists
a partition X × Y into k rectangles (Ai × Bi)i∈[k] for some number k such that
the following properties are satisfied.

1. For each i ∈ [k], for any x ∈ Ai, whenever y, y′ ∈ Bi, fA(x, y) = fA(x, y′).
Similarly, for each y ∈ Bi whenever x, x′ ∈ Ai, fB(x, y) = fB(x′, y).

2. For distinct i, j ∈ [k], if Ai ∩ Aj �= ∅ (in this case Bi and Bj are disjoint), if
x ∈ Ai ∩ Aj and y ∈ Bi and y′ ∈ Bj then fA(x, y) �= fA(x, y′).

3. For distinct i, j ∈ [k], if Bi ∩ Bj �= ∅, if y ∈ Bi ∩ Bj and x ∈ Ai and x′ ∈ Aj

then fB(x, y) �= fB(x′, y).

Secure Protocols and OT Complexity. A standard (interactive) 2-party pro-
tocol using a correlation ψ, denoted as Πψ, consists of a pair of computationally
unbounded randomized parties Alice and Bob. We write (r, s, q, a, b) ← Πψ(x, y)
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to denote the outcome of an execution of Πψ on inputs (x, y), as follows: Sample
(r, s) ← ψ, and give r to Alice and s to Bob. Then they exchange messages to
(probabilistically) generate a transcript q. Finally, Alice samples a based on her
view (x, r, q) and outputs it; similarly, Bob outputs b based on (y, s, q).

We are interested in passive secure protocols for computing a 2-party function
f : X × Y → A × B, possibly with a statistical error. See the full version
[NPP20] for a formal definition of secure 2-party computation protocols that use
correlations.

It is well-known that there are correlations – like randomized oblivious trans-
fer (OT) correlation – that can be used to perfectly securely compute any func-
tion f using its circuit representation (see [Gol04]) or sometimes more efficiently
using its truth table [BIKK14]. The OT-complexity of a functionality f is the
smallest number of independent instances of OT-correlations needed by a per-
fectly secure 2-party protocol that securely realizes f against passive adversaries.

Transcript Factorization. An important and well-known property (e.g..,
[CK91]) of a protocol Πψ is that the probability of generating the transcript, as a
function of (x, y, r, s), can be factorized into separate functions of (x, r) and (y, s).
More formally, there exist transcript factorization functions ρ : X×R×Q → [0, 1]
and σ : Y × S × Q → [0, 1], such that

PrΠψ(q|x, y, r, s) = ρ(x, r, q) · σ(y, s, q). (8)

To see this, note that a transcript q = (m1, . . . ,mN ) is generated by Πψ(x, y),
given (r, s) from ψ, if Alice produces the message m1 given (x, r), and then Bob
produces m2 given (y, s) as well as m1, and so forth. That is,

PrΠψ(m1, . . . ,mN |x, y, r, s) = Pr(m1|x, r) · Pr(m2|y, s,m1) · Pr(m3|x, r,m1,m2) · . . . .
We get (8) by collecting the products of odd factors and of even factors separately
as ρ(x, r,m1, . . . ,mN ) and σ(y, s,m1, . . . ,mN ).

We remark that the only property regarding the nature of a protocol we
shall need in our results is the transcript factorization property. As such, our
results stated for protocols in Theorems 11 and 12 are applicable more broadly to
“pseudo protocols” which are distributions over transcripts satisfying (8), without
necessarily being realizable using protocols [PP16].

The following claim about protocols (which holds for pseudo protocols as
well) would be useful in our proofs. The proof for the same is provided in the
full version [NPP20].

Claim 1. Let Πψ be a perfectly secure protocol for computing a deterministic
functionality f . For any two edges ((x1, a1), (y1, b1)) and ((x2, a2), (y2, b2)) in
the same connected component of Gf , for all transcripts q ∈ Q, it holds that
PrΠψ(q|x1, y1, a1, b1) = PrΠψ(q|x2, y2, a2, b2).

Private Simultaneous Messages & Conditional Disclosure of Secrets.
We refer to the full version [NPP20] for a detailed description of private simul-
taneous messages (PSM) and conditional disclosure of secrets (CDS). In this
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paper, we use statistically secure variants of both these models of secure com-
putation. An ε-secure PSM protocol (represented as ε-PSM) guarantees that for
every input (x, y), Carol recovers f(x, y) with at least 1− ε probability and that
whenever f evaluates to the same value for two different inputs, Carol’s view for
these inputs are at most ε far in statistical distance. An ε-secure CDS protocol
(represented as ε-CDS) is defined similarly.

4 Feasibility Results

In this section, we present several feasibility and infeasibility results for our
various models. For want of space, we defer the proofs of these results to the full
version [NPP20]. Note that all our feasibility results are backward compatible
and all the impossibility results are forward compatible. That is, a szcr implies
a wzcr which in turn implies a zcr, whereas, impossibility of a zcr implies
impossibility of wzcr which implies impossibility of szcr. We define a simple
predicate of interest, φAND : {0, 1} × {0, 1} → {0, 1}, which refers to the AND
predicate. The following show that any functionality has a szcr with ε = 0, i.e.,
perfect correctness and security, to appropriate predicates using no correlation.

Theorem 5. For every (possibly randomized) functionality f : X ×Y → A×B,
there exists a predicate φf such that f has a perfect log(|A||B|)-szcr to φf using
no correlation.

Following theorem establishes that any functionality has a perfect szcr to φAND

using an appropriate correlation.

Theorem 6. For every deterministic functionality f : X × Y → A × B, there
exists a correlation ψf such that f has a perfect log(|X ||Y|)-szcr to φAND using
ψf .

We next look at the computational power of the predicate φAND in the context
of reductions using common randomness (ψCRS). As we shall see in Lemma 3,
every deterministic functionality has a perfect wzcr to φAND. In contrast, the
next theorem shows that only simple functionalities have perfect szcr to φAND

using common randomness.

Theorem 7. A deterministic functionality f has a perfect μ-szcr to φAND using
ψCRS, for some μ < ∞, if and only if it is simple.

An even simpler predicate φXOR : {0, 1} × {0, 1} → {0, 1} refers to the XOR
predicate. The following theorem shows that it has very limited power and even
the AND function does not have a reduction to φXOR.

Theorem 8. A deterministic functionality f = (fA, fB) has a perfect μ-szcr
to φXOR using ψCRS, for some μ < ∞, if and only if there exists sets A ⊆ X and
B ⊆ Y such that,

1. For all x ∈ X , fA(x, y) = fA(x, y′) if and only if y, y′ ∈ B or y, y′ ∈ B̄.
2. For all y ∈ Y, fB(x, y) = fB(x′, y) if and only if x, x′ ∈ A or x, x′ ∈ Ā.
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Finally, we consider reducing a randomized functionality without inputs (i.e.,
a correlation) to a randomized predicate. To state our result, we define a measure
of “productness” of a correlation ψ over R × S:

K(ψ) = max
(λ1,λ2)

min
r∈R,s∈S

Prλ1(r)Prλ1(s)
Prψ(r, s)

, (9)

where the maximum2 is taken over all pairs of distributions λ1,λ2 over R and
S respectively.

Theorem 9. For any correlation ψ there exists a predicate φψ such that ψ has
a perfect μ-szcr to φψ using no correlation, where μ = − log(K(ψ)). Further,
if ψ has a perfect μ′-szcr to any predicate φ using no correlation, then μ′ ≥ μ.

5 Lower Bounds via szcr

szcr provides a new route for approaching lower bound proofs. The high-level
approach, for showing a lower bound for a certain complexity measure is in two
parts:

– First show that an upper bound on that complexity measure implies an upper
bound on a complexity measure related to szcr.

– Then showing a lower bound for szcr implies the desired lower bound.

The complexity measure related to szcr that we use is what we call the invertible
rank of a matrix associated with the function. In Sect. 5.2, we upper bound
invertible rank by OT complexity. While invertible rank of a matrix (with respect
to another matrix) is easy to define, establishing super-linear lower bounds for
it is presumably difficult (circuit complexity lower bounds being a barrier). But
currently, even showing the existence of functions whose matrices have super-
linear invertible rank remains open. One may wonder if invertible rank would
turn out to not have interesting lower bounds at all. In Sect. 5.3, we present
some evidence that invertible rank has non-trivial lower bounds, as it is an upper
bound on communication complexity, and use it to recover the best known lower
bounds on OT complexity.

5.1 Linear Algebraic Characterization of szcr

Conditions for szcr naturally yield a linear algebraic characterization. In this
section, we focus on perfect szcr using no correlation (i.e., (μ, 0)-szcr).

A brief introduction to invertible rank was given in Sect. 1.3. Below, we shall
formally define this quantity. But first, we set up some notation. It will be
convenient to consider matrices as having elements indexed by pairs of elements
(a, b) ∈ A×B for arbitrary finite sets A and B. Below, for clarity, we write M(a, b)

2 The supremum is achieved since we are maximizing a continuous function over a
compact set.
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instead of Ma,b to denote the element indexed by (a, b) in the matrix M . For a
matrix M indexed by A × B, [M ]� be the matrix indexed by A × (B × A) and
[M ]� be the matrix indexed by A × (A × B) defined as follows: For all a, a′ ∈ A
and b ∈ B,

[M ]�(a, (b, a′)) = [M ]�(a, (a′, b)) =

{
M(a, b) if a = a′,
0 otherwise.

A matrix M with non-negative entries indexed by A×B, is said to be stochas-
tic if ∀a ∈ A,

∑
b∈B M(a, b) = 1. A matrix M indexed by A × (B × C), is said

to be B-block stochastic if ∀b ∈ B,
∑

a∈A,c∈C
M(a, (b, c)) = 1.

Though we shall define invertible rank generally for a matrix (w.r.t. another
matrix), our motivation is to use it as a complexity measure of a possibly ran-
domized function (w.r.t. a predicate). Towards this, we represent a function f
using a matrix Mf , and also define a 0–1 matrix Pφ for a predicate φ.

Definition 7. For a (possibly randomized) function f : X × Y → A × B, Mf is
the matrix indexed by (X × A)×(Y×B), defined as follows: For all (x, a) ∈ X ×A
and (y, b) ∈ Y × B,

Mf ((x, a), (y, b)) = Prf (a, b|x, y).

For a predicate φ : U × V → {0, 1}, the matrix Pφ indexed by U × V is defined
as follows. For all (u, v) ∈ U × V,

Pφ(u, v) = φ(u, v)

Given a matrix P indexed by U×V, the tensor-power P⊗k is a matrix indexed by
Uk × Vk, where P⊗k((u1, . . . , uk), (v1, . . . , vk)) =

∏k
i=1 P (ui, vi). We note that

for the k-fold conjunction φk of a predicate φ, we have Pφk = P⊗k
φ .

Now, we are ready to define the invertible rank of a matrix M w.r.t. a matrix
P . To motivate the definition, consider M to be of the form Mf for a function
f : X × Y → A × B, and P to be of the form Pφ for some predicate φ : U × V →
{0, 1}. Suppose (A,B) is a (perfect) μ-zcr from f to φ. Consider a U × (X × A)
dimensional matrix A and a V × (Y × B) dimensional matrix B corresponding
to A and B, respectively, as follows:

A(u, (x, a)) = PrA(u, a|x) B(v, (y, b)) = PrB(v, b|y).
Note that A is X -block stochastic and B is Y-block stochastic. Given a 0-1
matrix Q indexed by U × V, with Q(u, v) = φ(u, v) for a predicate φ, we can
write the function implemented by the zcr as a matrix W = AᵀQB, indexed by
(X × A) × (Y × B). The probability of the zcr accepting, given input (x, y), is∑

a,b W ((x, a), (y, b)). If (A,B) is a (perfect) μ-wzcr from f to φ, then we have
W = 2−μ′

Mf for some μ′ ≤ μ. This corresponds to the condition (10) below.
Now, if (A,B) is a szcr, we also have a security guarantee when either party
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is corrupt. Note that when both parties are honest, the environment’s view of
the protocol, consisting of (x, y, a, b), is specified by the matrix W above. But
when Bob, say, is corrupt, the view also includes the message v that Bob sends
to φ, and hence it would be specified by a matrix indexed by (X × A) × (Y ×
B ×V). This matrix can be written as Aᵀ ·Q · [B]� (where [B]� “copies” the row
index information of B to the column index, corresponding to v becoming visible
outside the protocol). On the other hand, the security condition says that this
view can be simulated by having ŜB sample v given (y, b); ŜB can be encoded in
a stochastic matrix H indexed by (Y×B)×V. The view of the environment in the
simulated execution, taking into account the fact that it aborts with probability
1 − 2−μ, can be written as 2−μ Mf · [H]� (where [H]� is derived from H by
adding the row index information (y, b) to the column index v). This aspect of
szcr is reflected in (12) in the definition below. Similarly, (11) corresponds to
security against corruption of Alice.

Thus the linear algebraic conditions in the definition below correspond to
the existence of a μ-szcr from f to φk. The invertible rank of Mf w.r.t. Pφ

corresponds to minimizing μ and k simultaneously (or more concretely, their
sum).

Definition 8. Given a matrix M indexed by (X × A) × (Y × B) and matrix P
indexed by U × V, the μ∗-invertible rank of M w.r.t. P is defined as

IR
(μ∗)
P (M) = min

A,B,G,H,μ
k

subject to μ ≤ μ∗ and

Aᵀ · P⊗k · B = 2−μ M, (10)

[A]ᵀ� · P⊗k · B = 2−μ [G]ᵀ� · M, (11)

Aᵀ · P⊗k · [B]� = 2−μ M · [H]�, (12)

where A is a X -block stochastic matrix indexed by Uk × (X × A), B is a Y-block
stochastic matrix indexed by Vk × (Y × B), G is a stochastic matrix indexed by
(X × A) × Uk, and H is a stochastic matrix indexed by (Y × B) × Vk.

The invertible rank of M w.r.t. P is defined as

IRP (M) = min
μ

IR
(μ)
P (M) + μ.

As discussed above, a (μ, 0)-szcr from f to φk (using no correlation) corre-
sponds to the existence of matrices A,B,G,H that satisfy the conditions (10)–
(12). Then the invertible rank of Mf w.r.t. Pφ would be upper bounded by μ+k.
This is captured in the following theorem (proven in the full version [NPP20].

Theorem 10. For a (possibly randomized) functionality f : X ×Y → A×B and
a predicate φ : U × V → {0, 1}, f has a perfect μ-szcr to φ using no correlation
if and only if IR(μ)

Pφ
(Mf ) ≤ 1. Further, if f has a perfect μ-szcr to φk using no

correlation then IRPφ
(Mf ) ≤ μ + k.
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Invertible Rank w.r.t. OT. Let POT denote the matrix that corresponds to
the predicate φsupp(OT).3 It can be written as the following circulant matrix:

POT =

⎡

⎢⎢⎣

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

⎤

⎥⎥⎦

We present a conjecture on the existence of functions f which have super-linear
invertible ranks with respect to POT.

Conjecture 1 (Invertible Rank Conjecture). There exists a family of func-
tions fn : {0, 1}n × {0, 1}n → {0, 1} × {0, 1} such that IRPOT

(Mfn
) = ω(n).

Proving this conjecture, for a family of common-information-free functions,
would imply super-linear lower bounds for OT complexity, thanks to Corollary 1
in the sequel. Finding such an explicit family fn would be a major breakthrough,
as it would give a function family with super-linear circuit complexity.

On the other hand, a weakly exponential upper bound of 2Õ(
√

n) exists on
invertible rank of n-bit input functions, as implied by an upper bound on OT-
complexity [BIKK14], re-instantiated using the 2-server PIR protocols of [DG16].

The following corollary of Theorems 10 and 3 gives a purely linear algebraic
problem – namely, lower bounding invertible rank – that can yield OT complexity
lower bounds.

Corollary 1. If a deterministic common-information-free functionality f :
{0, 1}n × {0, 1}n → A × B has OT-complexity m, then IRPOT

(Mf ) = O(m + n).

Proof: Recall that by Theorem 3, there exists a μ-szcr from f to φsupp(OTm+1),
where μ = m+O(n). We will use the further guarantee that, since f is common-
information-free, this szcr does not use any correlation. Then, by Theorem 10,
we have IRPOT

(Mf ) ≤ (m + 1) + μ = O(m + n).4 ��

5.2 szcr vs. OT Complexity

In this section we prove Theorem 3 and its extensions, that show that szcr
lower bounds translate to lower bounds for OT-complexity, or more generally,
2PC complexity w.r.t. any regular correlation ψ (see Sect. 3). Our main result in
this section is Theorem 11, where we transform a perfectly secure 2PC protocol
for a general deterministic functionality f using a regular correlation ψ, into a
szcr from f to the predicate φsupp∗(ψ). (Recall from Sect. 3 that φsupp∗(ψ) is a
predicate that evaluates to 1 on inputs (u, v) ∈ supp(ψ); it allows u or v to be
the symbol ⊥, in which case it evaluates to 0.) Theorem 3 follows from this result
when ψ is taken as OTm.
3 More generally, for a correlation ψ, the 0-1 matrix corresponding to the associated

predicate φsupp(ψ) will be denoted as Pψ.
4 Using the sharper statement from Theorem 11, we would have µ = m + 2n, and

hence we have IRPOT(Mf ) ≤ 2(m+ n) + 1.
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Theorem 11. If protocol Πψ using regular correlation ψ distributed over U ×V
computes a deterministic functionality f : X × Y → A × B with perfect security,
then f has a μ-szcr to φsupp∗(ψ) using ψCRS, where μ = log |U| |V||X |2|Y|2

|supp(ψ)| .
Additionally, if f is common-information-free, then f has a μ′-szcr to

φsupp∗(ψ) using no correlation, where μ′ = log |U| |V||X ||Y|
|supp(ψ)| .

A proof of this theorem is provided in the full version [NPP20]. Theorem 3
is obtained by specializing the above result to the correlation of OT.

Proof: [Proof of Theorem 3] A single instance of OT is a regular correlation with
its support being a 1/2 fraction of its entire domain (see the matrix POT).
Hence m independent OTs form a regular correlation OTm distributed over
U × V = {0, 1}2m × {0, 1}2m such that |supp(OTm)|

|U||V| = 1
2m . Invoking Theorem

11 for |X | = |Y| = 2n, we get a μ-szcr from f to φsupp∗(OTm) using ψCRS, where

μ = log |U||V||X |2|Y|2
|supp(OTm)| = m + 4n. (If f is common-information-free, i.e., it has a

single connected component in Gf , then ψCRS is not needed and μ = m + 2n.)
Recall that the domain of φsupp∗(OTm) contains a special symbol ⊥, in addition

to 2m bit long strings that are in the support of OTm. It is not hard to see that we
can implement the functionality of this symbol ⊥ using an additional instance of
OT. That is, every (u, v) in the domain of φsupp∗(OTm) can be encoded as (û, v̂) in
the domain of φsupp(OTm+1) so that φsupp∗(OTm)(u, v) = φsupp(OTm+1)(û, v̂). Hence,
f has a μ-szcr to φsupp(OTm+1) using a ψCRS (or, if f is common-information-free,
using no correlation). ��

We also prove Theorem 12, which is a “dual version” of Theorem 11: Here,
when the protocol Πψ is transformed into a szcr, instead of ψ transforming
into the predicate, it remains a correlation that is used by the reduction; this
reduction is to the constant-sized predicate φAND.

Theorem 12. Suppose Πψ is a perfectly secure protocol for a deterministic func-
tionality f : X ×Y → A×B, that uses a regular correlation ψ over R×S. Then
f has a μ-szcr to φAND using ψ, where μ = log |X ||Y||R||S|.
The reduction and its analysis is similar to that in Theorem 11. A detailed proof
is provided in the full version [NPP20].

5.3 Communication Complexity vs. szcr

In this section, we lower bound the domain size of a predicate φ to which a
functionality has a non-trivial szcr. In combination with Theorem 11, which
provides an upper bound on the domain size of the predicate in terms of OT
complexity, we obtain a lower bound on OT complexity in terms of (one-way)
communication complexity, reproducing a result of [BM04].

More precisely, the connection between the domain size of φ and the com-
munication complexity of f is captured below. To be able to base the lower
bound on the one-way communication complexity of f , we consider a one-sided
functionality f .
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Lemma 2. Let f : X ×Y → A×{⊥} be a deterministic one-sided functionality
such that for all y, y′ there exists some x such that fA(x, y) �= fA(x, y′). For any
predicate φ : U × V → {0, 1}, and μ > 0, f has a perfect μ-szcr to φ using no
correlation only if |V| ≥ |Y|.
Proof: We will show that if f has a perfect μ-szcr to φ using no correlation,
then there exists a one-way communication protocol for computing fA, where
the message is an element of the set V. By our assumption, no two inputs of
Bob are equivalent w.r.t. fA. Hence in a one-way communication protocol for
fA, Bob must communicate his exact input to Alice. This implies that |V| ≥ |Y|.

Suppose (A,B) is a μ-szcr from f to the predicate φ using no correlation.
Consider the jointly distributed random variables (U,A, V,D) (as described in
Fig. 1), conditioned on input (x, y). Since fB(x, y) = ⊥ for all (x, y), the security
condition (3) (for ε = 0) guarantees that Pr(v|x, y,D = 1) = Pr(ŜB(y,⊥, 1) = v),
for all x, y, v.

The one-way communication protocol for computing f when Alice and Bob
have inputs x and y, respectively can be described as follows. Bob picks a v in
the support of the distribution ŜB(y,⊥, 1), and sends it to Alice. Alice, chooses
(u, a) ∈ U × A such that PrA(u, a|x) > 0 and φ(u, v) = 1, and outputs a.
Existence of such a pair (u, a) is argued as follows. By non-triviality of the szcr,
Pr(D = 1|x, y) > 0 and since v is in the support of ŜB(y,⊥, 1),

Pr(v|x, y,D = 1) = Pr(ŜB(y,⊥, 1) = v) > 0.

Hence, Pr(D = 1|x, y, v) > 0. This implies that there exists (u, a) such that
Pr(a, u, v,D = 1|x, y) > 0. The new one-way communication protocol is correct
since the perfect correctness of (A,B) implies that a = fA(x, y). ��
Corollary 2. If f is a deterministic functionality with one-sided output, such
that for all y, y′ there exists some x such that fA(x, y) �= fA(x, y′), then its OT
complexity is lower bounded by its one-way computation complexity.

Proof: Since f is a one-sided (hence common-information-free) functionality, by
Theorem 11 f has a perfect non-trivial szcr to φsupp(OTm+1) using no correlation
if the OT complexity of f is m. Since f is one-sided, by Lemma 2, 2m+1 is at
least the size of the domain of the non-computing user. This proves the claim. ��

6 Upper Bounds

In this section, we show that zcr provides a new path to protocols in different
secure computation models. In Sect. 6.1, we obtain upper bounds on CDS, PSM
and 2PC, in terms of the communication complexity of the functions being com-
puted, followed by improved upper bounds in Sect. 6.2 which leverage zcr and
its connections to information complexity.
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6.1 Upper Bounds Using Communication Complexity

In this section, we follow the outline below to prove Theorem 1.

Communication
complexity → Tiling → Deterministic

wzcr
→ CDS, PSM

and 2PC

For a deterministic function f : X ×Y → Z, a k-tiling is the partition of X ×Y
into k monochromatic rectangles – i.e., sets R1, . . . , Rk such that Ri = Xi × Yi

and ∃zi ∈ Z s.t., ∀(x, y) ∈ Ri, f(x, y) = zi. (Then, abusing the notation, we
write f(Ri) to denote zi.) We refer to the smallest number k such that f has a k-
tiling, as the tiling number of f . The first step above is standard: Communication
complexity of � implies a protocol with at most 2� transcripts, and the inputs
consistent with each transcript corresponds to a monochromatic tile.

The last step requires a (non-trivial) perfect deterministic wzcr from f to
(say) φAND using ψCRS. If � is the length of the common random string supplied
by ψCRS, the resulting CDS, PSM or 2PC (in the OT-hybrid model) protocols
for f , will have O(2�) communication complexity (as well as OT complexity,
in the case of 2PC). Further, we show that such a wzcr can be readily con-
structed from a tiling for f , with 2� tiles. Lemma 3 summarizes the upperbounds
we obtain using such constructions under different secure computation models.
The detailed construction of all the protocols are relegated to the full version
[NPP20].

Lemma 3. For a deterministic function f : X × Y → Z, if f admits a k-tiling,
then the following exist.

1. A perfectly secure CDS for predicate f (when Z = {0, 1}) with O(k) commu-
nication.

2. A perfectly secure PSM for f with O(k log |Z|) communication.
3. A perfectly secure 2-party symmetric secure function evaluation protocol for

f , against passive corruption, with O(k log |Z|) communication and OT invo-
cations.

Remark 1. In our proof of the above lemma, we show a (μ, 0)-wzcr for any
deterministic functionality g : X × Y → A × B to φAND (with μ = log(k1 · k2)
where k1 and k2 are the tiling numbers of gA and gB , respectively). This is in
contrast with Theorem 7 where we showed that only simple functions have a
(μ, 0)-szcr to φAND for any μ > 0.

Lemma 3, combined with the fact that a communication complexity of �
implies a tiling with at most 2� tiles, proves Theorem 1.

6.2 Upper Bounds Using Information Complexity

In this section we follow the outline below to prove Theorem 2.

Information
complexity → Relaxed

partition → wzcr → CDS, PSM
and 2PC
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In Sect. 6.2.1, we present the definitions as well as the first step from [KLL+15],
and show how a relaxed partition of f can be turned into a wzcr for f . Then,
in Sect. 6.2.2, we show how a wzcr (in fact, a zcr) can be transformed into
(statistically secure) PSM, CDS, and 2PC protocols. A detailed form of the final
result is presented in Theorem 13 (from which Theorem 2 follows).

6.2.1 Information Complexity and Relaxed Partition
First, we define information complexity and relaxed partition bound.

Information Complexity. Consider a deterministic function f : X × Y → Z
and a possibly randomized non-secure protocol Π for computing f . When Π is
executed with x ∈ X and y ∈ Y, respectively, as inputs of Alice and Bob, let
Π(x, y) be the random variable for the transcript of the protocol, and let A and B
denote the outputs of Alice and Bob, respectively. For jointly distributed random
variables (X,Y ) over X × Y, the error of the protocol errorfX,Y (Π) = Pr[A �=
f(X,Y ) or B �= f(X,Y )]. For ε ≥ 0, information complexity of a function is
defined as

ICε(f) = max
p(X,Y )

min
Π:errorfX,Y (Π)≤ε

I(X;Π(X,Y )|Y ) + I(Y ;Π(X,Y )|X).

Relaxed Partition. Relaxed partition bound was originally defined
in [KLL+15], extending partition bound defined in [JK10]. Here we provide an
equivalent definition of the relaxed partition bound that makes the connection
with wzcr clearer.

Definition 9 (Relaxed partition bound). Consider a deterministic func-
tion f : X × Y → Z. For every rectangle R ∈ 2X × 2Y and z ∈ Z, let
w(R, z) ∈ [0, 1]. The relaxed partition bound for ε ≥ 0, denoted by p̄rtε(f),
is defined as min 1

η subject to:
∑

R,z w(R, z) = 1,

∑

R:(x,y)∈R

w(R, f(x, y)) ≥ η(1 − ε), ∀(x, y) ∈ X × Y
∑

R:(x,y)∈R

∑

z∈Z
w(R, z) ≤ η, ∀(x, y) ∈ X × Y

w(R, z) ≥ 0. ∀R ∈ 2X × 2Y , z ∈ Z
The following proposition restates a theorem due to Kerenidis et al. [KLL+15]

that gives a connection between relaxed partition bound and information com-
plexity. The statement has been modified for our purposes.

Proposition 1 (Theorem 1.1 in [KLL+15]). There is a positive constant C
such that for every function f : X × Y → Z and ε > 0,

log p̄rt2ε(f) ≤
(
9C · ICε(f)

ε2
+

3C
ε

+ log |Z|
)

.
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See the full version [NPP20] for details on the modification of [KLL+15, The-
orem 1.1] which gives the above form. Interestingly, this result is established
in [KLL+15] via a notion of zero communication protocols, which is similar to
(albeit more restricted than) our notion of zcr. This is not surprising given the
close connection between relaxed partition bound and wzcr that we establish
below. The following lemma is proved in the full version [NPP20].

Lemma 4. For any f : X × Y → Z, functionality (f, f) has a (μ, ε)-wzcr to
φAND using ψCRS, where μ = log p̄rtε(f)

1−ε .

6.2.2 From zcr to Secure Computation
In this section we use zcr to construct protocols for statistically secure PSM,
CDS and secure 2PC. To accomplish this, the parties carry out the zcr protocol
n times, for n sufficiently large as to guarantee (except with negligible probabil-
ity) that there will be at least one instance which would accept. Amongst these
n executions, a selector function selects the candidate outputs corresponding to
a reduction in which the predicate is accepted, without revealing the execution
itself. For this we use the notion of selector functions, which we next define. We
conclude this section with Theorem 13, which formally states and proves the
claim in Theorem 2.

Definition 10. For a predicate φ : U × V → {0, 1}, finite set Z and t ∈ N, we
define selector function Selφ,Z,t : U t × Zt × Vt → Z as follows.
For ut := (u1, . . . , ut) ∈ U t, vt := (v1, . . . , vt) ∈ Vt and zt := (z1, . . . , zt) ∈ Zt,

Selφ,Z,t(ut, vt, zt) =

{
zi if ∃i s.t. φ(ui, vi) = 1,∀j > i,φ(uj , vj) = 0,
z∗ otherwise.

Here, z∗ is a fixed arbitrary member of Z. For the specific case where Z = {0, 1},
we will set z∗ = 0.

Selector function for the predicate φAND is of special interest. The following
lemma shows that for t ∈ N and finite set Z, there is an efficient PSM protocol
and a secure 2-party protocol that compute SelφAND,Z,t, when Alice and Bob
get inputs (ut, zt) ∈ U t × Zt and vt ∈ Vt, respectively. When Z = {0, 1},
there is an efficient protocol for CDS with predicate SelφAND,Z,t. We use this to
show upper bounds for communication complexity of statistically secure PSM
and CDS protocols, and for OT complexity and communication complexity of
statistically secure 2PC.

Lemma 5. The following statements hold for the predicate φAND, t ∈ N and a
finite set Z.

(i). SelφAND,Z,t : (U t × Zt) × Vt → Z has perfect PSM with communication
complexity O(t2 · log |Z|).

(ii). CDS for the predicate SelφAND,{0,1},t : (U t × {0, 1}t) × Vt → {0, 1} and
domain {0, 1} has communication complexity O(t).
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(iii). The functionality
(
SelφAND,Z,t,SelφAND,Z,t,

)
: (U t × Zt) × Vt → Z × Z has

a perfectly secure 2PC protocol with communication complexity and OT
complexity O(t · log |Z|).

Since there are efficient PSM protocols for branching programs, the first state-
ment is shown by providing a small branching program for SelφAND,Z,t. Statements
(ii) and (iii) are proved by showing that SelφAND,{0,1},t and SelφAND,Z,t, respectively,
have small formulas [FKN94], [IK97]. The detailed proof is provided in the full
version [NPP20].

We now proceed to give constructions for statistically secure PSM, CDS and
2PC using zcr. All the three constructions follow the same framework. We start
with zcr of a functionality f to predicate φ. The zcr is executed (independently)
sufficiently many times to guarantee that at least one of the executions satisfy
the predicate but with negligible probability. The output of a reduction in which
the predicate was accepted is securely chosen using the selector function for
the predicate. Following lemma summarizes the upper bounds we obtain for
statistically secure PSM, CDS and 2PC via. constructions using zcr. Detailed
proof of the lemma is provided in the full version [NPP20].

Lemma 6. Let f : X × Y → Z be a deterministic function and ⊥ be a constant
function with the same domain If (f,⊥) has a (μ, ε)-zcr to φ using ψCRS, then
for t = 2μ ln 1

ε , we obtain the following upper bound.

1. The 4ε-PSM complexity of f is at most the PSM complexity of the selector
function Selφ,Z,t : (U t × Zt) × Vt → Z.

2. The communication complexity of 4ε-CDS for predicate f (when Z = {0, 1})
is at most that of CDS for predicate Selφ,Z,t : (U t × Zt) × Vt → Z.

3. The communication complexity (respectively, OT complexity) of 4ε-secure
computation of the functionality (f, f) is at most the communication com-
plexity (respectively, OT complexity) of perfectly secure computation of the
symmetric functionality

(
Selφ,Z,t,Selφ,Z,t

)
: (U t × Zt) × Vt → Z × Z.

Theorem 13. Let f : X × Y → Z be a deterministic function and ε > 0. There
exists a positive constant C such that for

K = 2(
9C·ICε(f)

ε2
+ 3C

ε +log |Z|) ·
(
ln(1/2ε)
1 − 2ε

)
,

1. The communication complexity of 8ε-PSM of f is O
(
K2 log |Z|).

2. The communication complexity of 8ε-CDS for predicate f (when Z = {0, 1})
and domain {0, 1} is O(K).

3. The OT complexity and communication complexity of 8ε-secure computation
of f is O (K log |Z|).

Proof: The statistically secure protocols described in the above lemma taken
together with the connection between wzcr and information complexity allow
us to prove our upper bounds on complexities in terms of information complexity
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for these models. Specifically, it follows from Proposition 1 and Lemma 4 that
(f, f) (hence (f,⊥)) has a (μ, 2ε)-zcr to φAND using ψCRS, where

μ ≤ log
1

1 − 2ε
·
(
9C · ICε(f)

ε2
+

3C
ε

+ log |Z|
)

.

Using the statement 1 in Lemma 6 along with Lemma 5, we can now show
that there exists an 8ε-PSM protocol for f with communication complexity
O

((
2μ · log 1

2ε

)2 · log |Z|
)
. Similarly, using statement 2 in Lemmas 6 and 5, we

can show that there is an 8ε-CDS protocol for predicate f with communica-
tion complexity O

(
2μ · log 1

2ε · log |{0, 1}|). And using statement 3 in Lemmas
6 and 5, we can show that there is an 8ε-secure 2-party protocol for f with
communication complexity O

(
2μ · log 1

2ε · log |Z|). This proves the theorem. ��
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