
Mr NISC: Multiparty Reusable
Non-Interactive Secure Computation

Fabrice Benhamouda1(B) and Huijia Lin2(B)

1 Algorand Foundation, New York, USA
fabrice.benhamouda@normalesup.org

2 University of Washington, Seattle, USA
rachel@cs.washington.edu

Abstract. Reducing interaction in Multiparty Computation (MPC) is
a highly desirable goal in cryptography. It is known that 2-round MPC
can be based on the minimal assumption of 2-round Oblivious Trans-
fer (OT) [Benhamouda and Lin, Garg and Srinivasan, EC 2018], and 1-
round MPC is impossible in general. In this work, we propose a natural
“hybrid” model, called multiparty reusable Non-Interactive Secure Com-
putation (mrNISC). In this model, parties publish encodings of their pri-
vate inputs xi on a public bulletin board, once and for all. Later, any subset
I of them can compute on-the-fly a function f on their inputs xI = {xi}i∈I

by just sending a single message to a stateless evaluator, conveying the
result f(xI) and nothing else. Importantly, the input encodings can be
reused in any number of on-the-fly computations, and the same classical
simulation security guaranteed by multi-round MPC, is achieved. In short,
mrNISC has a minimal yet “tractable” interaction pattern.

We initiate the study of mrNISC on several fronts. First, we formalize
the model of mrNISC protocols, and present both a UC security defini-
tion and a game-based security definition. Second, we construct mrNISC
protocols in the plain model with semi-honest and semi-malicious security
based on pairing groups. Third, we demonstrate the power of mrNISC by
showing two applications: non-interactive MPC (NIMPC) with reusable
setup and a distributed version of program obfuscation.

At the core of our construction of mrNISC is a witness encryp-
tion scheme for a special language that verifies Non-Interactive Zero-
Knowledge (NIZK) proofs of the validity of computations over commit-
ted values, which is of independent interest.

1 Introduction

Reducing interaction in Multiparty Computation (MPC) is a highly desirable
goal in cryptography, both because each round of communication is expensive
and because the liveness of parties is hard to guarantee, especially when the num-
ber of participants is large. Contrary to throughput, latency is now essentially
limited by physical constraints, and the time taken by a round of communication
cannot be significantly reduced anymore. Moreover, non-interactive primitives
are more versatile and more amenable to be used as powerful building blocks.

c© International Association for Cryptologic Research 2020
R. Pass and K. Pietrzak (Eds.): TCC 2020, LNCS 12551, pp. 349–378, 2020.
https://doi.org/10.1007/978-3-030-64378-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64378-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-64378-2_13


350 F. Benhamouda and H. Lin

Recent works [7,21] constructed 2-round MPC protocols from the minimal prim-
itive of 2-round Oblivious Transfer (OT), where in each round all participants
simultaneously broadcast one message. Is it possible to further reduce interac-
tion? The answer is no in general as any non-interactive (i.e., one-round) protocol
is susceptible to the so-called residual attack, and cannot achieve the classical
simulation security.

In this work, we introduce and study a natural “hybrid” model, between the
2-round and the 1-round settings, which gets us close to having non-interactive
protocols while still providing classical security guarantees. We call this model
multiparty reusable Non-Interactive Secure Computation (mrNISC).
In this model, parties publish encodings of their private inputs xi on a pub-
lic bulletin board, once and for all. Later, any subset I of them can compute
on-the-fly a function f on their inputs xI = {xi}i∈I by just sending a single
public message to a stateless evaluator, conveying the result f(xI) and nothing
else. Importantly, the input encodings are reusable across any number of com-
putation sessions, and are generated independently of any information of later
computation sessions—each later computation can evaluate any polynomial-time
function, among any polynomial-size subset of participants. Figure 1 depicts the
setting. The security guarantee is that an adversary corrupting a subset of par-
ties, chosen statically at the beginning, learns no information about the private
inputs of honest parties, beyond the outputs of the computations they partici-
pated in. This holds for any polynomial number of computation sessions.

Fig. 1. mrNISC market (z is a public input to the function)

Our Contributions. We initiate the study of mrNISC at the following fronts:

Modeling: We introduce the mrNISC model and formalize both UC security
through an ideal mrNISC functionality, and a simpler game-based security
notion that implies UC security. Our model aims for maximal flexibility. Con-
sider the simplest form of 2-round MPC with reusable first messages, where
the first messages could potentially depend on the number of parties, com-
plexity of the computations, and potentially all parties must participate in all



Multiparty Reusable Non-Interactive Secure Computation 351

computations. mrNISC does not have such restriction. In addition, our model
allows adaptive choices of inputs and computations, uses weak communication
channels, and allows honest parties to individually opt out of computations.

Construction: We construct the first mrNISC protocols based on SXDH in asym-
metric (prime-order) pairing groups. Our protocols are in the plain-model
(without any trusted setup), and satisfies semi-honest, and semi-malicious
security. For malicious security, reliance on some trusted setups is inevitable.
We use a CRS.

Techniques: At the core of our construction is a witness encryption (WE) scheme
for a special language that verifies non-interactive zero-knowledge (NIZK)
proofs of the validity of computations over committed values. We construct
it from bilinear groups. This significantly extends the range of languages for
which we know how to construct WE from standard assumptions, which is a
result of independent interest.

Applications: We demonstrate the power of mrNISC protocols in two cryp-
tographic applications. First mrNISC allows to generically transform non-
interactive MPC protocols [5] using correlated randomness into non-
interactive MPC protocols in the PKI plus CRS model. Second, mrNISC
enables a secret-sharing analogue of Virtual Black-Box program obfusca-
tion [4]—called secret sharing VBB.

Comparing with previous models of MPC with minimal interaction, mrNISC
naturally generalizes the beautiful notion of reusable NISC by Ishai et al. [30]
from two party to multiple parties. It differs from the notions of non-interactive
MPC (NIMPC) [5] and Private Simultaneous Messages (PSM) [17,29] which
achieves weaker security or restricts the corruption pattern.

It is very plausible that multi-key fully-homomorphic encryption (MKFHE)
with threshold decryption, which implies 2-round MPC [2,13,33], is sufficient for
mrNISC. However, proving it is not straightforward. For instance, the current
definitions of threshold decryption e.g., [3,33] are insufficient for constructing
mrNISC, as simulatability only ensures that a single partial decryption can be
simulated (hence this definition does not allow to re-use ciphertexts.)

Organization of the Paper. Next we start with giving more details of our
results. In Sect. 2, we formally define mrNISC schemes, and provide an overview
of our construction of mrNISC from bilinear maps; the technical bulk of the
construction is constructing WE for NIZK of commitments. Next, we define
witness encryption for NIZK of commitments, and construct a scheme for NC1

in Sect. 3. Due to the lack of space, we refer the reader to the full version [8] for the
following: 1) Bootstrapping WE for NIZK of commitments for NC1 to a scheme
for P, 2) the UC definition of mrNISC protocols, 3) The formal constructions
of UC-secure mrNISC protocols from mrNISC schemes, 4) the applications of
mrNISC, and 5) more detailed comparison with related works.



352 F. Benhamouda and H. Lin

1.1 Our Results in More Detail

Definition. We start with defining a mrNISC scheme, consisting of an input
encoding Com, computation Encode, and output Eval algorithms. An mrNISC
scheme immediately yields an MPC protocol with minimal interaction pat-
tern, called an mrNISC protocol. We formalize a game-based security notion
for mrNISC scheme, as well as UC-security for mrNISC protocols, and show
that the former implies the latter. We have both definitions since they each has
its own advantage: UC security is the strongest security notion for MPC proto-
cols, and implies security under composition. The ideal mrNISC functionality we
define provides a simple interface for using our protocols in bigger systems. On
the other hand, the game-based security notion is more succinct and easier to
manipulate. By showing that game-based security implies UC security, we have
the best of both sides.
mrNISC Scheme. A mrNISC scheme is defined by:

– Input Encoding: A party Pi encodes its private input xi by invoking (x̂i, si) ←
Com(1λ, xi). It then publishes the encoding x̂i and keeps the secret state si.

– Computation: In order for a subset of parties {Pi}i∈I to compute the func-
tionality f on their private inputs xI and a public input z, each party in
I generates a computation encoding αi ← Encode(z, {x̂j}j∈I , si) and sends
it to the evaluator. Here, z can be viewed as part of the description of the
function f(z, �) that is computed.

– Output: The evaluator reconstructs the output y = Eval(z, {x̂i}i∈I , {αi}i∈I).
(Note that reconstruction is public as the evaluator has no secret state.)Correct-
ness requires that y = f(z, {xi}i∈I) when everything is honestly computed.

It is easy to see that an mrNISC scheme for f immediately gives an mrNISC
protocol for f . Simulation-security requires that the view of an adversary cor-
rupting the evaluator and any subset of parties, can be simulated using just
the outputs of the computations that honest parties participate in. We consider
static corruption: The set of corrupted parties C are chosen at the beginning
and fixed; later, in a computation involving parties I, the corrupted and honest
parties are respectively I ∩ C and I ∩ C̄.

The same security intuition can be formalized with different degree of flex-
ibility. In the simplest selective setting, where the function f , parties’ inputs
x1, . . . , xm, and (z1, I1), . . . , (zK , IK) for different computations are all chosen
selectively at the beginning, the view of corrupted parties in C is simulatable by
a universal simulator S as follows.

Selective Security:
{

{xi, ri}i∈C , {x̂i}i∈C̄ , {α1
i }i∈I1∩C̄ , . . . , {αK

i }i∈IK∩C̄

}

≈
{

S ({xi}i∈C ,
(
y1, z1, I1

)
, . . . ,

(
yK , zK , IK

)) }

yk = f(zk,xIk), ∀k ∈ [K]

where {xi, ri}i∈C are the inputs and randomness of corrupted parties, x̂i is the
input encoding of an honest party Pi, and αk

i the computation encoding from an



Multiparty Reusable Non-Interactive Secure Computation 353

honest party Pi in session k. The above definition captures semi-honest security.
In the stronger semi-malicious security [2], the corrupted parties still follow the
protocol specification but are allowed to choose the randomness arbitrarily.

Dynamics in the mrNISC. The simple selective setting has several drawbacks
undesirable for capturing a dynamic mrNISC setting we envision. Instead, in
mrNISC, we have:

– Adaptive Choices: Each party’s input xi is chosen adaptively. Each computa-
tion specified by (z, I) is chosen adaptively, before it starts. Different compu-
tation can use the same z and/or I, or different ones. Parties outside I are
not involved in and not even aware of computation (z, I). f(z, �) can be any
polynomial time computable function, and I any polynomial size subset.

– Asynchronous P2P Communication: Parties have access to a common public
bulletin board, but otherwise should only use asynchronous point-to-point
authenticated channels. We do not assume any broadcast channel.

– Optional Participation: In a computation session (zk, Ik), honest parties in Ik

may opt in or out of any computation. We do not require all honest parties to
participate. Furthermore, the output of a computation is revealed only after
all parties in Ik send their computation encoding. (This means that, in any
computation session, the simulation of all but the last honest computation
encoding must be done without knowing the output of the computation.)

Our mrNISC ideal functionality in the UC framework [11] captures all above
features. Clearly, selective security is insufficient for implementing the mrNISC
ideal functionality. We thus formalize a game-based adaptive-security of mrNISC
schemes, Definition 3 in the overview (Sect. 2.1) and we show that it implies UC-
security. We emphasize that our adaptive security does not mean security against
adaptive corruptions.

Lemma 1 (Informal). An mrNISC scheme for a function f satisfying adaptive
semi-malicious (or semi-honest) privacy implies a protocol that UC-implements
the mrNISC ideal functionality for f in the plain model with semi-malicious (or
semi-honest) security.

Following standard techniques [2], semi-malicious UC protocols in the plain
model can be transformed into malicious UC protocols in the CRS model using
malicious UC-NIZK.

Plain-Model mrNISC from Bilinear Groups. We construct mrNISC
schemes for polynomial time computable functions in the plain model from bilin-
ear maps.

Theorem 1 (Informal). There is an mrNISC scheme in the plain model for
any function in P, satisfying adaptive semi-malicious security, based on the
SXDH assumption on asymmetric bilinear groups.

Our construction builds upon the construction of 2-round MPC protocols using
general purpose WE and NIZK [24], which in turn improves upon the protocols



354 F. Benhamouda and H. Lin

of [18] based on indistinguishability obfuscation. (Unfortunately, follow-up works
based on standard assumptions [7,20,21] do not have reusable first messages.)

So far, known WE schemes can be split into two categories. The first is
WE for general NP language from very strong obfuscation-like assumptions,
e.g., [19]. The second is WE from standard assumptions, but for very specific
languages, such as, language of commitment (or hashes) of a given message, like
in [15,16], and languages of commitments that commit to value satisfying up to
quadratic equations, like in [20,21]. These functionality, however, is too weak for
constructing 2-round MPC.

WE for NIZK of Com. We observe that it suffices to have witness encryption
for a language that verifies NIZK proofs for the validity of computation over
committed values. We then construct a commitment scheme Com, a NIZK proof
system NIZK, and a WE scheme for the language LWE of statements of form
XWE = (crs, c1, . . . , cm, G, y) (where crs is a CRS of NIZK, every ci is a commit-
ment of Com, and G is an arbitrary polynomial-sized circuit). The statement is
true if and only if there exists a NIZK proof π (i.e., the witness) proving w.r.t.
crs that G evaluated on the values v1, . . . , vm committed in c1, . . . , cm through
Com outputs y, i.e., G(v1, . . . , vm) = y. More precisely, the witness relations for
WE and NIZK proof are:

RWE(XWE = (crs, c1, . . . , cm, G, y), π) = 1 iff NIZKVer(crs,XNIZK, π) = 1 (1)

RNIZK(XNIZK = (c1, . . . , cm, G, y), ((v1, ρ1), . . . , (vm, ρm))) = 1
iff ∀i ∈ [m], (vi, ρi) is a valid opening of ci and G(v1, . . . , vm) = y (2)

We call such a triple (Com,NIZK,WE) as WE for NIZK of commitments and
construct it from bilinear pairing groups.

Theorem 2 (Informal). There is a WE for NIZK of commitments
(Com,NIZK,WE) based on SXDH over asymmetric bilinear pairing groups.

We remark that our construction co-designs (Com,NIZK,WE) together. It sig-
nificantly extends the range of statements that WE supports, and is based on
standard assumptions, which is of independent interest.

Fig. 2. Construction of mrNISC schemes and protocols (mrNISC protocols implement
the mrNISC ideal functionality; MPC� is an MPC with some special properties). Cita-
tion [8] is the full version of the paper.

Applications. We show two applications of mrNISC. A summary of the appli-
cations is in Fig. 3.



Multiparty Reusable Non-Interactive Secure Computation 355

Fig. 3. Applications of mrNISC schemes (mrNISC protocols implement the mrNISC
ideal functionality). See the full version [8].

Non-Interactive MPC with Reusable Setup [5] proposed the model of
non-interactive MPC (NIMPC), where to jointly compute a function, each party
sends a single message to an evaluator, without initially committing to their
inputs. In this setting, adversaries can always evaluate the residual function
f |H,{xi}i∈H

where the inputs of the honest parties are fixed, on all possible
inputs of the corrupted parties, a.k.a. the residual attack. Thus, NIMPC aims
at achieving the best-possible security that the only information of honest par-
ties’ inputs revealed is the residual function f |H,{xi}i∈H

. NIMPC is a powerful
and flexible concept equivalent, under different corruption models (i.e., what set
C of parties can be corrupted), to garbled circuits, Private Simultaneous Mes-
sages [17,29] protocols, and program obfuscation. Almost all NIMPC protocols
are constructed in a model where parties receive correlated randomness sampled
by a trusted third party from some distribution. However, correlated random-
ness is not reusable, and must be re-sampled independently for each computation
session. So far, the only construction of NIMPC protocols with reusable setups
is by [28], which makes use of a (reusable) PKI plus CRS, but is based on the
sub-exponential security of IO and DDH. Using mrNISC, we give a generic trans-
formation from any NIMPC protocols using correlated randomness to ones in
the PKI plus CRS model.

Corollary 1. Applying our transformation to known NIMPC protocols [5,6],
gives the following NIMPC protocols in the PKI plus CRS model assuming
mrNISC for P and UC-NIZK for NP.

1. NIMPC for the iterated product function f(x1, . . . , xn) = x1 · · · xn over a
group, against any number of corruption.

2. NIMPC for P from multi-input functional encryption, against any number of
corruption.

3. NIMPC for P, against a constant number of corruption (each holding a O(1)-
bit input).

The first and third bullets are achieved for the first time, using only reusable
setups. We weaken the assumption needed for the second bullet from sub-
exponentially secure IO in [28] to polynomially secure IO, equivalent to multi-
input functional encryption [23], which is a necessary assumption.



356 F. Benhamouda and H. Lin

Secret-Sharing VBB We propose a new primitive called secret-sharing VBB
obfuscation. As the name suggests, it enables the owner of a private program
M to secret share M among N servers, where the i’th server holds share Mi.
Later, the servers can evaluate the program on any input x, by sending one
message, called the output shares, to an evaluator who learns the output M(x)
and nothing else; this holds even if the evaluator colludes with all but one server.
Analogous to VBB obfuscation, the secret shares of M are reusable and security
is simulation-based. While VBB is impossible in general, secret-sharing VBB
can be implemented using mrNISC in a simple way. Though the construction
from mrNISC is simple, we found secret-sharing VBB conceptually interesting
and it can be readily used to turn applications of VBB into their secret-sharing
counterparts. For instance, for cryptographic primitives, such as, IBE, ABE, PE,
and FE, where a central trusted authority issues secret keys for identities, key
policies, and functions respectively, we can decentralize the trusted authority
by creating a secret-sharing VBB obfuscation of the key generation algorithm
among multiple servers. Importantly, the servers do not need to communicate
with each other and only need to send a single message to the inquirer of a key.

The notion of secret-sharing VBB appears similar to the notions of Homomor-
phic Secret Sharing and Function Secret Sharing (HSS/FSS) [9,10]. The main dif-
ference is that in secret-sharing VBB the evaluator may collude with all but one
servers, whereas in HSS/FSS the evaluator is honest. Consequently, the security
of secret-sharing VBB must hold even when all output shares are made public,
whereas HSS/FSS does not guarantee security in this setting. Another similar
notion is bit-fixing homomorphic sharing proposed in [31], which is tailor made
for the construction there. Secret sharing VBB is simpler and more natural.

2 Technical Overview

2.1 Security Definition of mrNISC Schemes

We now present the game-based definition of adaptive security of mrNISC
scheme. In the full version [8], we present the ideal mrNISC functionality and
show that the definition below implies UC-security.

Definition 3 (Adaptive Security). An mrNISC scheme mrNISC for f is semi-
honest (or semi-malicious) private if there exists a PPT simulator S, such
that, for all PPT adversary A, the views of A in the following experiments
ExpA,S(Real, λ, f) and ExpA,S(Ideal, λ, f) are indistinguishable.
Experiment ExpA,S(Real, λ, f): A chooses the number of parties M and the
set of honest parties H ⊆ [M ]; the set of corrupted parties is H̄. It interacts
with a challenger in an arbitrary number of iterations till it terminates. In every
iteration k, it can submit one query of one of the following three types.

Corrupt Input Encoding: Upon A sending a query (input, Pi, xi, ρi) for a
corrupt party i ∈ H̄, record x̂i generated by (x̂i, si) = Com(1λ, xi; ρi). In the
semi-honest case, ρi is randomly sampled, whereas in the semi-malicious case,
it is chosen by A.



Multiparty Reusable Non-Interactive Secure Computation 357

Honest Input Encoding: Upon A choosing the input (input, Pi, xi) of an hon-
est party i ∈ H, generate (x̂i, si) ← Com(1λ, xi) and send x̂i to A.
A is restricted to submit one input query for each party Pi.

Honest Computation Encoding: Upon A querying (compute, Pi, z, I) for
an honest party i ∈ H ∩ I, if the input encodings {x̂j}j∈I of all parties
in H ∩ I have been generated, send A the computation encoding αi ←
Encode(z, {x̂j}j∈I , si). ((z, I) is the unique identifier of a computation.)

Experiment ExpA,S(Ideal, λ, f): Same as the above experiment, except: Invoke
S(1λ, f).

Corrupt Input Encoding: Additionally send query (input, Pi, xi, ρi) to S.
Honest Input Encoding: Upon A choosing (input, Pi, xi) for i ∈ H, send

query (input, Pi) to S who generates a simulated input encoding x̃i for Adv.
Honest Computation Encoding: Upon A choosing (compute, Pi, z, I), if this

is the last honest computation encoding to be generated for computation (z, I)
(i.e., ∀ j �= i ∈ I ∩ H, A has queried (compute, Pj , z, I) before), send S the
query (compute, Pi, z, I) and the output y = f(z, {xt}t∈I); otherwise, send S
the query (compute, Pi, z, I) without y. S generates a simulated computation
encoding α̃i for Adv.

We emphasize that the definition above captures all dynamic choices described
in the introduction. For instance, in the ideal world, for each computation ses-
sion, simulation of all but the last honest computation encoding do not use the
output of that session, ensuring that the output remains hidden until all honest
computation encodings are sent.

2.2 Overview of Our mrNISC Scheme

Our construction of mrNISC scheme follows the round collapsing approach for
constructing 2-round MPC protocols started in [18]; in particular, we build on
the work of [24].

The Round Collapsing Approach. The round-collapsing approach collapses
a inner MPC protocol with a polynomial L number of rounds into a 2-round
outer MPC protocol as follows. Assume that each party Pi in the inner MPC
broadcast one message m�

i in each round �. In the first round of outer MPC, each
party Pi commits ci ← COM(xi, ri) to its input xi and some random tape ri

to be used to execute the inner MPC protocol. In the second round, each party
Pi sends one garbled circuit F̂�

i per round � ∈ [L] of the inner MPC protocol
corresponding to the next message function F�

i of Pi. This garbled circuit takes
as input all the messages m<� = {ml

j}l<�,j∈[n]
sent in previous rounds, and

outputs the next message m�
i of Pi of the inner MPC (or the output for the last

round � = L).
To compute the output from all garbled circuits {F̂�

i}�∈[L],i∈[n], each Pi needs

to provide a way to compute the labels of its garbled circuits F̂�
i that correspond



358 F. Benhamouda and H. Lin

to the correct messages of the inner MPC, where a message ml
j is correct if it

is computed from Pj ’s input and randomness (xj , rj) committed to in the first
round. For this, [24] proposed the following mechanism using a general purpose
WE and NIZK. Let k0, k1 be two labels of Pi’s garbled circuit F̂�

i for an input
wire that takes in the t’th bit y = ml

j,t of a message from Pj . Recall that ml
j is

output by Pj ’s garbled circuit F̂l
j . The goal is translating the valid bit y to the

corresponding label ky—that is “let F̂l
j communicate y to F̂�

i”. [24] modifies the
garbled circuits as follows.

– To “receive” y, F̂�−1
i for round �−1 additionally outputs cty ← WEnc(Xy, ky)

for y ∈ {0, 1}, under the statement Xy that there is a NIZK proof πy proving
that y = ml

j,t is computed correctly from Pj ’s input and randomness (xj , rj)
committed in cj , according to the protocol specification and the partial tran-
script of messages m<l before round l.

– To “send” y, F̂l
j additionally outputs a NIZK proof π that y = ml

j,t is com-
puted correctly from (xj , rj) committed in cj .

For correctness, decrypting cty using π as a witness reveals ky. For security, k1−y

remains hidden, thanks to the security of WE and soundness NIZK. Moreover,
the ZK property of NIZK ensures that Pj ’s committed input and randomness
(xj , rj) remains hidden, protecting Pj ’s privacy.

Observe that the first messages of the [24] protocol consist of a commitment
to parties’ input xi and randomness ri. We show (as a corollary of our mrNISC
construction) that the first messages can be made reusable if we replace ri with a
PRF seed si which can generate pseudo-random tapes for an unbounded number
of computations.

Challenge and Our Method. The problem is we do not have general purpose
WE from standard assumptions. Previous 2-round MPC constructions from stan-
dard assumptions circumvent this problem using weaker tools, namely functional
commitment with witness encryption from OT in [7], or homomorphic proof com-
mitment with encryption from bilinear pairing groups in [20], or achieving its
effect using OT in [21]. Unfortunately, as we explain shortly, using these weaker
tools kills the reusability of the first messages.

We restore the reusability of first messages using WE for NIZK of com-
mitments, which suffices for the purpose of [24]. WE for NIZK of commitments
is a triple (Com,NIZK,WE) of commitment, NIZK, and WE schemes. It allows to
commit to any values c1 ← Com(v1) . . . cm ← Com(vm) and later reveal multiple
NIZK proofs πk w.r.t. a crs that Gk(v1 . . . vm) = yk for multiple polynomial-
size circuits Gk and outputs yk. In addition, the proofs πk can be used to
decrypt ciphertexts ct ← WEnc((crs, c1 . . . cm, Gk, yk),m) tied to a statement
Xk = (crs, c1 . . . cm, Gk, yk), so that, the message m is recovered if and only if
πk is an accepting proof that Gk(v1 . . . vm) = yk w.r.t. crs. The formal witness
relation for WE is in Eq. (1) and that for NIZK in Eq. (2).

The two key properties of WE for NIZK of commitments are i) reusabil-
ity of commitments – one can generate an unbounded number of NIZK proofs
and WE ciphertexts w.r.t. them while keeping committed values hidden (only



Multiparty Reusable Non-Interactive Secure Computation 359

information in the statements is revealed), and ii) support for P computation –
the statements Xk = (c,G, y) are about the correctness of arbitrary polynomial-
sized circuits. These two properties are crucial for achieving the reusability of
MPC first messages. Our specific definition and construction of WE for NIZK
of commitments has an additional bonus feature that it is “dual-mode” in the
sense that in a binding mode, binding of commitments, soundness of NIZK,
and semantic security of WE are all information theoretic and perfect, and in
a simulation mode, the commitments are perfectly equivocable, NIZK perfectly
zero-knowledge. These two modes are controlled by how the CRS is sampled and
are indistinguishable. The “dual-mode” feature is not necessary for mrNISC, but
might be useful for other applications. We give an overview of our WE for NIZK
of commitments in Sect. 2.3, and formal construction for NC1 in Sect. 3 and for
P in the full version [8].

Combined with the round-collapsing approach of [24], we obtain semi-honest,
in fact semi-malicious, mrNISC protocols in the CRS model from pairing groups.
We can further remove the CRS, by letting each party Pi sample a CRS in
the binding mode for generating its own commitments and NIZK proofs, while
generating WE ciphertexts w.r.t. other parties’ CRS, yielding protocols in the
plain model. This does not hurt security because for every correctly generated
binding CRS, the binding of commitments and the soundness of NIZK hold
information theoretically; hence semi-malicious corrupted parties can’t cheat
and the WE ciphertexts they receive are information theoretically secure. The
simulator on the other hand can sample honest parties’ CRS in the simulation
mode to simulate their commitments and NIZK proofs.

Implementing Additional Features in mrNISC. Beyond making the first
messages reusable, we carefully implement features in mrNISC—namely, adap-
tive choices of inputs and computations, asynchronous P2P communication, and
optional participation of honest parties. Technically, this means simulation of a
message can only use information that is available to the simulator at the moment,
e.g., only the last delivered honest message in a session can be simulated using
the output of that session, all other honest messages are simulated with no infor-
mation. We show this can be achieved if the inner MPC satisfies output-delayed
simulatability—all but the last message from honest parties can be simulated with-
out the output, which is the case w.r.t. the GMW protocol [22]. We then show that
the resulting collapsed protocols achieves dynamics in mrNISC.

Comparison with Homomorphic Proof Commitments with Encryp-
tion. The homomorphic proof commitment with encryption of [20,21] can be
viewed as a WE for NIZK of the statement that (a linear combination of)
committed values is 0 or 1. This in turns gives WE for NIZK of NAND,
which verifies NIZK proofs that c1, c2, c3 commit to three values v1, v2, v3 such
that v3 = NAND(v1, v2). The acute reader may remark that being able to
prove NAND relations between committed values allow to prove any statement
Xk = (c,Gk, yk), by including, in the NIZK proof, commitments to intermediate
values in the computation of Gk, and proofs of correctness of every NAND gate
computation w.r.t. them. This is the whole idea of GOS NIZK [25], on which



360 F. Benhamouda and H. Lin

[20] is based. However, we do not know how to construct WE for verifying such
NIZK proofs, because checking these proofs require verifying quadratic relations
among (committed) elements in the proof. The essence of the problem is that
we do not how to construct WE verifying quadratic relations in the witness (i.e.,
the NIZK proof here); if we knew, we would have obtained general purpose WE.
This should be distinguished from checking quadratic relations between (com-
mitted) elements in the statement. The latter is the case in [20] and is easier,
because the WE encryption procedure knows the statement and can use it to
create the ciphertext, but it cannot do the same with the witness.

2.3 Construction of WE for NIZK of Commitments

Key Ideas. Our key idea is to design NIZK proofs π that can be verified by
a linear equation, so that we can construct WE for verifying the proofs using a
WE for linear languages, which are essentially hash proof systems (see, e.g., [1]).
More specifically, we want to turn verifying a NIZK proof π of a statement
X = (c,G, y) into verifying a system of linear equations θ = Γπ. Crucially, θ
and Γ , which describe the linear equations, must depend only on the statement X
(independent of π). As such, θ,π are known at WE encryption time, and we can
use hash proof systems to generate a WE ciphertext that reveals the message
given a witness π satisfying the linear system, and information theoretically
hides the message if no such witness exists. More precisely, commitments and
NIZKs are pairing group elements, and the linear equations are on values in the
exponent; at the moment, we ignore this detail.

Unfortunately, verifying known NIZK proofs requires verifying quadratic rela-
tions between elements in the proof—the proof contains intermediate computa-
tion values, and verification checks the correctness of computation of each gate,
which is quadratic. Designing WE for checking quadratic relations between ele-
ments in the witness is a barrier, which would give general purpose WE. Our
next idea is leveraging that NC1 circuits can be represented as restricted mul-
tiplication straight-line (RMS) programs, where multiplication occurs between
intermediate values and input elements; importantly, the latter are committed
in c contained in the statement X. This asymmetry in multiplication allows to
design NIZK proofs π verified by a linear system θ,Γ defined by the statement.
Roughly speaking, the proof π contain (encodings of) intermediate values, while
θ,Γ contain (encodings of) inputs elements. Then, multiplication between Γ
and π captures multiplication between input elements and intermediate values
in RMS programs. Hence, we can use WE for linear language to obtain WE
for NIZK of commitments for NC1. Finally, we present a generic bootstrapping
technique for lifting from a scheme for NC1, to a scheme for all polynomial-size
circuits P.

Our NIZK for NC1 with linear verification equations makes use of the homo-
morphic commitment schemes developed in existing NIZK proofs and some of the
ideas behind these proofs [25,27]. For simplicity, our description below uses GOS
homomorphic proof commitments which are based on composite-order bilinear



Multiparty Reusable Non-Interactive Secure Computation 361

groups. Our final solution in Sect. 3 uses the same ideas but is based on the
Groth and Sahai NIZK [27] which uses prime order bilinear groups.

WE for Linear Languages. We start with witness encryption for linear lan-
guages. A linear language over Zp consists of tuples of a matrix Γ ∈ Z

K×k
p and

a vector θ ∈ Z
K
p in the column span of Γ . A witness for (θ, Γ ) is a vector π

s.t. θ = Γπ. There is an extremely simple WE scheme for linear language: A
ciphertext encrypting m ∈ Zp consists of αT Γ and αT θ + m for a random row
vector αT . When the statement is false, that is, θ is outside the column span of
Γ , αT Γ contains no information of αT θ, which hides m.

Linear WE LWEnc((θ, Γ ),m) : α ← Z
K
p , ct = αT θ + m,αT Γ

Can we use linear WE to verify a complex computation G(v) = y over com-
mitted values v? If we had a fully homomorphic commitment scheme for which
verification of the opening (i.e., decommitment) is linear, we would solve the
problem. Verifying that “c opens to v and G(v) = y” is equivalent to that “c′

opens to y” w.r.t. c′ obtained from homomorphic evaluation of G on c. Now a
message m can be encrypted using linear WE w.r.t. c′, y (which decides θ, Γ )
and a proof π is simply an opening of c′ (ignoring ZK for now). Unfortunately,
we do not know how to construct such commitment scheme.

Linear Proof for One Multiplication. GOS [25] constructed a commitment
scheme with linear opening that can do one homomorphic multiplication, using
pairing groups.

Let (N,G1,G2,Gt, e, g1, g2) describe a bilinear group of order N . We use
the bracket notation [a]b := ga

b in Gb for a ∈ ZN – referred to as an encoding
of a, and write a[a′]b = [aa′]b as applying group exponentiation in Gb and
[aa′]t = [a]1[a

′]2 as applying the pairing operation. GOS uses a composite order
N = pq symmetric bilinear group, where the two source groups are the same
G = G1 = G2; we simply write [a] as a source group element.

The CRS of the commitment scheme contains [h] for a random element in
ZN of order q. A commitment to v in Zp is simply [c] = [rh + v] using a random
scalar r ← ZN . Such a commitment is perfectly binding, because h has order q,
and v is in Zp. Given two commitments [c1] = [r1h + v1] and [c2] = [r2h + v2],
we can compute a commitment of the product in the target group. Furthermore,
we can prove that the product v1v2 is equal to some value v12, and the verification
is linear in the proof π:

One Multiplication [c1c2]t = [c1][c2] = [(r1r2h + r1v2 + r2v1) h + v1v2]t
Proof [π] := [t1 + t2h] for t1 = r1v2 + r2v1, t2 = r1r2

Verification 0 ?= [c1][c2] − [h][π] − [1][v12]

In other words, the last equation shows that [π] = [t1 + t2h] is a proof for the
statement “[c1] and [c2] commits to values v1 and v2 so that v1v2 = v12.”

Since the verification is linear, combined with WE for linear language, this
immediately gives a WE for NIZK of correctness of one multiplication. This app-
roach was exploited in [20] for obtaining WE for NIZK of correctness of one NAND.



362 F. Benhamouda and H. Lin

Going beyond one Multiplication (Step 1). The main issue of the above
construction is that a GOS commitment only allows for the evaluation of a
single multiplication gate (or equivalently a single NAND), as [c1c2]t is now in
the target group. To evaluate more complex functions G, we need to be able to
make further multiplications. The idea is that the prover can commit to v1v2 in
the source group: [c×] = [r×h + v1v2] and then prove that [c×] indeed commits
to the same value as [c1c2]t:

Multiplication [c× − c1c2]t = [1][c×] − [c1][c2] = [(−r1r2h + r× − r1v2 − r2v1) h]t
Proof [π×] := [t1 + t2h] for t1 = r× − r1v2 − r2v1, t2 = −r1r2 (3)

Verification 0 ?= [1][c×] − [c1][c2] − [h][π×] (4)

Furthermore, by linearity of the GOS commitment, it is also possible to prove
that a commitment [c+] = [r+h + v+] commits to a value v+ that is a linear
combination of values v1 and v2 committed in [c1] and [c2]: v+ = μ1v1 + μ2v2
(for some public scalars μ1, μ2).

Linear [c+ − μ1c1 − μ2c2]t = [c+] − μ1[c1] − μ2[c2] = [(r+ − μ1r1 − μ2r2) h]t

Proof [π+] := r+ − μ1r1 − μ2r2 (5)

Verification 0 ?= [c+] − μ1[c1] − μ2[c2] − [h][π+] (6)

To extend to proving P computations, we can proceed as follows. To commit
a bitstring v, we commit each bit individually as a GOS commitment: [ci] =
[rih + vi]. Then, to prove that G(v) = y, we represent G as a sequence of linear
operations and multiplications, and introduce an intermediate commitment for
each intermediate result. The proof consists of these intermediate commitments[
c′
j

]
, intermediate proofs that they were computed properly (using Eq. (3) or Eq.

(5)) and the opening r′
o of the commitment [c′

o] = [r′
oh + y] corresponding to

the output of G. Verification would consist of verifying the intermediate proofs
(using Eqs. (4) and (6)) and the opening of the output commitment.

The final proof would actually be a zero-knowledge proof and would in essence
be a GOS or a Groth-Sahai proof [25,27]. The zero-knowledge property comes
from the following two facts: (1) if h is chosen to be of order N (instead of q),
commitments are fully equivocable, and (2) there is a single proof [π×] (resp.,
[π+] satisfying the verification Eq. 3 (resp., Eq. (5)). Leveraging these two facts,
a ZK simulator for a proof of, say one multiplication, can equivocate c1, c2, c×
to any values satisfying ṽ× = ṽ1ṽ2, the equivocation gives a fake witness for
computing the unique proof.

Unfortunately, the final proof verification is not linear: if two intermediate
values v1, v2 need to be multiplied, Eq. (4) would involve a product of the cor-
responding two commitments c1, c2, which is quadratic in the final proof.

Restricted Multiplication Program (Step 2). To keep verification linear in
the final proof, we remark that we just need to ensure that every multiplication



Multiparty Reusable Non-Interactive Secure Computation 363

involves at least one input commitment, but never two intermediate commit-
ments (which are part of the final proof). In that case Eq. (4) becomes linear
in the intermediate commitment. Hence, we can use the above ideas to ver-
ify any restricted multiplication straight-line (RMS) computation [10,14], which
includes all NC1 computations. Indeed, in an RMS program, the only allowed
operations are linear operations over inputs or intermediate values, and multi-
plications of one intermediate value v′

j with one input vi (but not of two inter-
mediate values).

Improved NC1 Scheme Based on SXDH. The above construction of WE for
NIZK of commitments for NC1 uses composite group order with pairings which
are notoriously inefficient. In Sect. 3, we propose a construction solely based on
the standard assumption SXDH over asymmetric prime order pairing groups.
The construction follows the same ideas described above, but is based on the
Groth-Sahai NIZK proofs, which use vector subspaces to implement features
of the subgroup structure. The scheme becomes more complex. That’s why we
explain our ideas w.r.t. the simpler GOS NIZK system.

Polynomial-Size Circuits. We now present a generic bootstrapping technique
from a WE scheme for NIZK of commitments for RMS to one for P. We can
encode any polynomial-size computation y = G(v) into a randomized encoding
o = RE(G, v;PRF(k)) that reveals only y (with randomness expanded from a
seed k using a PRF). Since both RE and PRF are computable in NC1, our RMS-
scheme can verify whether o is correctly computed from v, k committed in some
commitments c, but cannot verify that o indeed decodes to y (which belongs to
P). Instead, we use a garbled circuit to verify the latter and use WE to ensure
that only labels corresponding to the correct RE encoding o are revealed. More
precisely, a WE ciphertext of m w.r.t. (G, c, y) for a polynomial-size circuit G

contains 1) a garbled circuit F̂y,m of Fy,m that outputs m iff given an input
o′ that decodes to y, and 2) WE encryption (using the RMS-scheme) of labels
under statements that verify the computation of o from (k, v) committed in c.
Decryption requires NIZK proofs certifying the correctness of o, which allows
recovering labels for o, and then m.

Applications. Due to the lack of space, we refer the reader to the full ver-
sion [8] for applications of mrNISC. At a very high-level, in scenarios where a
set of parties need many copies of freshly sampled correlated randomness, we
can use mrNISC to replace correlated randomness with reusable PKI and CRS
setup: Parties’ public key in the PKI is simply an encoding of their private PRF
key, later on, they can jointly run mrNISC to sample fresh correlated random-
ness using the pseudorandom coins generated from all parties’ PRF keys. In
NIMPC, sampling correlated randomness and generating NIMPC message using
this correlated randomness can be combined in one mrNISC computation.



364 F. Benhamouda and H. Lin

3 WE for NIZK of Commitments: NC1

In this section, we define and construct our new primitive: witness encryption
(WE) for NIZK of commitments (for the complexity class P), which is the main
component for the construction of our mrNISC scheme.

As explained in Sect. 2.3, from a high-level point of view, WE for NIZK
of commitments combines the properties of homomorphic proof commitments
with encryption [20] and of functional commitments with witness selector [7].
Compared with the former, it supports general statements in P (instead of a
single NAND gate evaluation). Compared with the latter, it allows for zero-
knowledge to hold when multiple NIZK proofs are generated.

3.1 Definition of Witness Encryption for NIZK of Commitments

We start by defining dual-mode commitment schemes (a.k.a., hybrid commit-
ments [12]), where the CRS can be generated in two computationally indistin-
guishable ways: one yielding perfectly binding commitments and one yielding
equivocal (a.k.a., simulatable or trapdoor) commitments. The term “dual-mode
commitment” comes from [32].

We may not need dual-mode commitments to construct mrNISC, but just
simulatable/equivocal commitments (without a perfectly binding setup). How-
ever using dual-mode commitments significantly simplifies definitions and proofs.
Since our constructions achieve this stronger security notion, we use it. More
precisely, without a dual-mode commitment, we could not use the standard
definition of witness encryption: witness encryption indeed just ensures that
ciphertexts related to a false statement (about the committed value, in our set-
ting) cannot be decrypted. Without the dual mode, because of equivocality of
the commitments, it would be possible to open any commitment to any value.
Hence any statement about a committed value would be always true or always
false (independently of the committed value).

Definition 4 (Dual-Mode Commitments). A (dual-mode) commitment
scheme COM has a binding mode and a simulation mode, each involves three
polynomial-time algorithms.

– Binding Setup: crs ← CSetupbind(1λ) on input the security parameter λ gen-
erates a binding CRS crs.

– Commitment: (c, d) ← CCom(crs, v) on input the CRS crs and a message v in
some implicitly defined message set V,1 generates a commitment c of v and
an associated decommitment (a.k.a., opening) d.

1 The message set V may depend on the CRS crs. The only required constraints
are that messages in V have polynomial size in the security parameter λ and that
testing membership to V can be done in polynomial-time given crs. The reason to
use messages spaces more complicated than {0, 1}poly(λ) is to allow messages to be
elements of some finite field Zp for the definition of bilinear commitments with proofs
of quadratic relations.



Multiparty Reusable Non-Interactive Secure Computation 365

– Verification: b := CVer(crs, c, v, d) on input the CRS crs, a commitment c, a
message v ∈ V, and a decommitment d, outputs 1 if c indeed commits to v,
and 0 otherwise.

– Simulation Setup: (crs, τ) ← CSetupsim(1λ) on input the security parameter
λ generates a simulation CRS crs and an associated trapdoor τ .

– Commitment Simulation: (c, aux) ← CSimCom(τ) on input a simulation trap-
door τ , generates a simulated commitment c and some auxiliary data aux.

– Opening Simulation: d ← CSimOpen(τ, aux, v) on input an auxiliary data aux
and a message v ∈ V, generates some decommitment d corresponding to an
opening of the associated commitment c to v.

satisfying the following properties:

Perfect Correctness: For every security parameter λ ∈ N, CRS crs ←
CSetupbind(1λ) or (crs, τ) ← CSetupsim(1λ), message v ∈ V, and commitment
(c, d) ← CCom(crs, v), we have: CVer(crs, c, v, d) = 1.

Setup Indistinguishability: The following two distributions are computationally
indistinguishable:

{
crs ← CSetupbind(1

λ) : crs
}

λ
≈ {

(crs, τ) ← CSetupsim(1λ) : crs
}

λ
.

Perfect Binding in Binding Mode: For every security parameter λ ∈ N, bind-
ing CRS crs ← CSetupbind(1λ), message v ∈ V, commitment (c, d) ←
CCom(crs, v), message v′ ∈ V, bitstring d′, if v′ �= v: CVer(crs, c, v′, d′) = 0.

Perfect Equivocality in Simulation Mode: For every security parameter λ ∈ N,
simulation CRS (crs, τ) ← CSetupsim(1λ), message v ∈ V, the following two
distributions are identical:

{(c, d) ← CCom(crs, v) : (c, d)} ,

{(c, aux) ← CSimCom(τ), d ← CSimOpen(τ, aux, v) : (c, d)} .

We are interested in proving statements “in zero-knowledge” of the form: “c
commits to some value v such that G(v) = y,” where G is a circuit in some cir-
cuit class G and y is the expected output of the function. In our construction, the
trapdoor of the NIZK will actually be the trapdoor of the commitment. That is
why we cannot easily rely on a generic definition of NIZK and instead introduce
the notion of dual-mode NIZK of commitments. The binding setup yields perfectly
sound NIZK proofs, while the simulation setup yields zero-knowledge proofs.

Definition 5 (Dual-Mode NIZK of Commitments). Let COM be as in
Definition 4, and G be a class of polynomial-size circuits. A dual-mode NIZK
NIZK associated with COM for G consists of two polynomial-time algorithms:

– Proof: π ← CProve(crs, c, G, v, d) on input the CRS crs, a commitment c,
a circuit G ∈ G,2 the committed message v ∈ V, the decommitment d, as
defined by COM, generates a proof π that G on input the value v committed
in c outputs y = G(v). Refer to (c,G, y) as the statement and (v, d) the
witness.

2 We implicitly systematically assume that G has input size corresponding to the size
of messages in the message set V.



366 F. Benhamouda and H. Lin

– Proof Verification: b := CPVer(crs, c, G, y, π) on input the CRS crs, a state-
ment (c,G, y), and a proof π, accepts or rejects the proof.

The algorithms satisfy the following properties:

Perfect Proof Correctness: For every security parameter λ ∈ N, CRS crs ←
CSetupbind(1λ) or (crs, τ) ← CSetupsim(1λ), message v ∈ V, circuit G ∈ G,
commitment (c, d) ← CCom(crs, v) and proof π ← CProve(crs, c, G, v, d), we
have: CPVer(crs, c, G(v), π) = 1.

Perfect Soundness in Binding Mode: For every security parameter λ ∈ N, bind-
ing CRS crs ← CSetupbind(1λ), message v ∈ V, commitment (c, d) ←
CCom(crs, v), circuit G ∈ G, incorrect output y′ �= G(v), and bitstring π,
CPVer(crs, c, y′, π) = 0.

Zero-Knowledge in Simulation Mode: There exists a PPT simulator algorithm
CPSim, such that for any PPT adversary A, the quantity is negligible in λ:∣∣∣∣∣ Pr

[
(crs, τ) ← CSetupsim(1λ), (st, v) ← A(crs, τ),
(c, aux) ← CSimCom(τ), d ← CSimOpen(τ, aux, v) : AProve(st) = 1

]

−Pr
[

(crs, τ) ← CSetupsim(1λ), (st, v) ← A(crs, τ),
(c, aux) ← CSimCom(τ) : ASim(st) = 1

] ∣∣∣∣∣ ,

where Prove(G) := CProve(crs, c, G, v, d) and
Sim(G) := CPSim(τ, aux, G,G(v)).

We remark that our notion of zero-knowledge allows the adversary to see
the trapdoor τ but not the auxiliary data aux, that is why we let the adversary
consider a single simulated commitment but as many simulated proofs as it
wants. The reason that aux is not given to the adversary is because we need to
store a PRF key in aux, to generate the randomness for simulation, to be sure to
use the same randomness if the simulation is called twice with the same circuit
G in the construction for P.

Definition 6 (Witness Encryption for NIZK of Commitments). Let
COM, NIZK, and G be as in Definition 4 and 5. A Witness Encryption WE
associated with COM,NIZK for G consists of two polynomial-time algorithms:

–Witness Encryption: ct ← CWEnc(crs, c, G, y,m) on input the CRS crs, a state-
ment (c,G, y) where G ∈ G, and a bitstring m, encrypts m into a ciphertext
ct, under that statement.

–Witness Decryption: m := CWDec(crs, ct, c, G, y, π) on input the CRS crs, a
ciphertext ct, a statement (c,G, y), and a NIZK proof π, decrypts ct into the
message m, or outputs ⊥.

The algorithms satisfy the following properties:

Perfect Encryption Correctness: For every λ ∈ N, CRS crs ← CSetupbind(1λ) or
(crs, τ) ← CSetupsim(1λ), message v ∈ V, circuit G ∈ G, commitment (c, d) ←
CCom(crs, v) and proof π ← CProve(crs, c, G, v, d), bitstring m, and ciphertext
ct ← CWEnc(crs, c, G,G(v),m), we have: CWDec(crs, ct, c, G,G(v), π) = m.



Multiparty Reusable Non-Interactive Secure Computation 367

Semantic Security: For any PPT adversary A, the following is negligible in λ:
∣∣∣∣∣∣∣∣∣∣
2 · Pr

⎡
⎢⎢⎢⎢⎣

(st, ρ′) ← A(1λ), crs ← CSetupbind(1λ; ρ′),
(st, v, ρ,G, y,m0,m1) ← A(st, crs),
(c, d) := CCom(crs, v; ρ),
b ← {0, 1}; ct ← CWEnc(crs, c, G, y,mb)
ct :=⊥ if G(v) = y

: A(st, ct) = b

⎤
⎥⎥⎥⎥⎦

− 1

∣∣∣∣∣∣∣∣∣∣
,

where ρ denotes the random tape used by CCom to generate the commitment
c of the message v (ρ is provided by the adversary).

We remark that semantic security of our WE holds even when the binding CRS
is generated semi-maliciously, i.e., the adversary chooses the random tape ρ′. This
is important for our semi-malicious construction of mrNISC schemes, as the adver-
sary generates itself the binding CRS. We also note that our construction for NC1

actually achieves perfect semantic security for binding CRS, however, our trans-
formation from NC1 to P only achieves computational semantic security.

3.2 Bilinear Commitments with Proofs of Quadratic Relations

As a tool to construct witness encryption for NIZK of commitments, we first
introduce the notion of bilinear commitments with proofs of quadratic relations.
Such commitments essentially allow to “prove linearly and in a strong form of
zero-knowledge” that one commitment c× commits to the product of the values
committed by two commitments c1 and c2 (quadratic proofs), and that one
commitment c+ commits to some linear combination of the values committed
by two commitments c1 and c2 (linear proofs). These proofs are amenable to be
verified by hash proof systems and can be combined to construct WE for NIZK
of commitments.

Bilinear Groups and Notations. Denote by (p,G1,G2,Gt, e, g1, g2) a bilinear
group where e : G1 × G2 → Gt is an efficiently computable bilinear map (called
a pairing) such that e(g1, g2) = gT generates Gt. We use the bracket notation
[a]ι to denote the element ga

ι in group Gι for a ∈ Zp and write a[a′]ι = [aa′]ι
as applying group exponentiation in Gι and [aa′]t = [a]1[a

′]2 as applying the
pairing operation. This notation extends to vectors and matrices. We assume
the Symmetric External Diffie-Hellman assumption (SXDH) assumption over
asymmetric bilinear pairing groups, which requires the Decisional Diffie-Hellman
(DDH) assumption to hold in each source group G1 and G2, namely, for any
ι ∈ {1, 2}, {[r]ι, [s]ι, [rs]ι} ≈ {[r]ι, [s]ι, [t]ι}, where r, s, t are random scalars
sampled from Zp. All vectors are denoted by bold letters and all matrices are
denoted by uppercase letters.

Bilinear Commitments. Our construction starts from the SXDH-based com-
mitment scheme used in Groth-Sahai NIZK [26]. This commitment scheme allows
to commit values both in G1 and G2. The resulting commitments are dual-mode
and called type-1 and type-2 commitments respectively. More formally we define:



368 F. Benhamouda and H. Lin

– Binding Setup: crs ← QSetupbind(1λ) generates a bilinear group
(p,G1,G2,Gt, e, g1, g2), and for ι ∈ {1, 2}, generates a random matrix Aι ∈
Z
2×2
p of rank 1 such that the vector 1 := (1, 1)T ∈ Z

2
p is not in the column

span of Aι, and outputs crs = (p,G1,G2,Gt, e, g1, g2, [A1]1, [A2]2).
– Simulation Setup: (crs, τ) ← QSetupsim(1λ) is identical to binding setup

except that A1 and A2 are chosen of rank 2. The trapdoor is τ = (A1, A2).
Note that 1 is in the column spans of A1 and A2.

– Commitment: (c,d) ← QComι(crs, v) generates a type-ι commitment of a
message v ∈ V := Zp as follows:

d ← Z
2
p , c := [c̃]ι := [Aι · d + v · 1]ι ∈ G

2
ι .

– Verification: b := QVerι(crs, c, v,d) checks whether c is a valid type-ι com-
mitment of v as follows: it returns 1 if and only if:

c ?= [Aι · d + v · 1]ι . (7)

– Commitment Simulation: (c, aux) ← QSimComι(τ) simulates a type-ι com-
mitment as follows:

aux ← Z
2
p , c := [aux]ι ∈ G

2
ι . (8)

– Opening Simulation: d ← QSimOpenι(τ = (A1, A2), aux, v) opens the type-ι
commitment corresponding to aux as follows:

d := A−1
ι · (aux − v · 1) ∈ Z

2
p . (9)

We have the following lemma following directly from [26].

Lemma 2 (in [26]). The two commitment schemes (QSetupbind,QComι,QVerι,
QSetupsim,QSimComι,QSimOpenι) (for ι ∈ {1, 2}) described above are both dual-
mode commitments.

Remark 1. Jumping ahead, for semi-malicious security of mrNISC in the plain
model, we want the binding of COM, soundness of NIZK, and semantic security
of WE to hold against every CRS in the support of QSetupbind. This boils down
to ensuring that the bilinear group generated by QSetupbind is always a valid
one: p must be a prime number, g1, g2 generates the cyclic groups G1 and G2 of
order p, and it is possible to check in polynomial time whether an element is in
G1 or G2. This can be done, and we implicitly assume that this is the case.

Bilinear Commitments with Proofs of Linear Relations. We now show
how to prove that a type-2 commitment c+ commits to a given linear combi-
nation of values committed in two type-2 commitments c1 and c2. Concretely,
we want to prove that c1, c2, c+ respectively commit to values v1, v2, v+ that
satisfy the linear relation: v+ = μ1v1 + μ2v2, where μ1, μ2 ∈ Zp are some public
parameters.

Statement: (Linear, crs, {μi, ci}i∈{1,2}, c+), Witness: (v1,d1, v2,d2,d+)



Multiparty Reusable Non-Interactive Secure Computation 369

The main idea of the construction is to remark that the commitments are
linearly homomorphic and the above statement is equivalent to proving that
[c̃+ − μ1c̃1 − μ2c̃2]2 is a commitment of 0, where for i ∈ {1, 2,+}, ci = [c̃i]2.
Hence the proof π+ is the opening of this commitment to the value v = 0:

[c̃+ − μ1c̃1 − μ2c̃2]2 = [A2 · π+ + 0 · 1]2 .

Zero-knowledge comes from the fact that this value π+ always exists and is
unique in the simulation mode, as the matrix A2 is full rank in that mode.

Formally, the construction is as follows:

– Linear Proof: QLinProve(crs, {μi, ci, vi,di}i∈[2], (c+,d+)), given information
of both statement and witness, outputs:

π+ := d+ − μ1d1 − μ2d2 ∈ Z
2
p . (10)

– Linear Proof Verification: QLinVer(crs, {μi, ci}i∈[2], c+,π+) returns 1 iff:

[c̃+ − μ1c̃1 − μ2c̃2]2
?= [A2 · π+]2 , (11)

where ci = [c̃i]2 for i ∈ {1, 2,+}.

Lemma 3. For any security parameter λ ∈ N, for any CRS crs ←
QSetupbind(1λ) or (crs, τ) ← QSetupsim(1λ), messages v1, v2, v+ ∈ Zp, scalars
μ1, μ2, μ+ ∈ Zp, bitstrings c1,d1, c2,d2, c+,d+ s.t. ∀i ∈ {1, 2,+},QVer2(crs, ci,
vi,di) = 1,

Perfect Correctness: If v+ = μ1v1 + μ2v2, a proof π+ ← QLinProve(crs, {μi,
ci, vi,di}i, (c+,d+)) passes verification: QLinVer(crs, {μi, ci}i∈[2], c+,π+) = 1

Perfect Uniqueness: If v+ = μ1v1 + μ2v2 and the CRS is simulated, then there
is a unique vector π+ = (c̃+ −μ1c̃1 −μ2c̃2)A−1

2 ∈ Z
2
p that passes verification.

Perfect Soundness: If v+ �= μ1v1 + μ2v2 and the CRS is binding, then no vector
π+ ∈ Z

2
p passes verification: QLinVer(crs, {μi, ci}i∈[2], c+,π+) = 0 for all

π+ ∈ Z
2
p.

Proof. Perfect correctness is straightforward. Perfect uniqueness follows
from Eq. (11) and the fact that when the CRS is simulated, the matrix A2 is
full rank. Perfect soundness comes from the fact that:

[μ1c̃1 + μ2c̃2]2 = [A2 · (μ1d1 + μ2d2) + (μ1v1 + μ2v2) · 1]2 ∈ G
2
2

is a (perfectly binding) commitment of μ1v1 + μ2v2 �= v+. �
Remark 2 (Zero-knowledge of the linear proof π+ in simulation mode). Perfect
uniqueness of the proof π+ in simulation mode is a very strong form of wit-
ness indistinguishability: whatever witness (v1,d1, v2,d2,d+) is used, the proof
is exactly the same π+ = (c̃+ −μ1c̃1 −μ2c̃2)A−1

2 . To show further that it is ZK,
we need to argue that π+ is also efficiently computable. This the case when the
commitments ci = [c̃i]2 are simulated with QSimCom, as the simulator can then
equivocate c1, c2, c+ to any v′

1, v
′
2, v

′
+ satisfying v′

+ = μ1v
′
1+μ2v

′
2 with decommit-

ments d′
1,d

′
2,d

′
+ using QSimOpen. This gives a valid witness (v′

1,d
′
1, v

′
2,d

′
2,d

′
+)

for the statement and a simulated proof can be generated by running the honest
prover algorithm QLinProve with this witness.



370 F. Benhamouda and H. Lin

Bilinear Commitments with Proofs of Quadratic Relations. We now
show how to prove that a type-2 commitment c× commits to the product
of values committed in a type-1 commitment c1 and a type-2 commitment
c2. Concretely, we want to prove that c1, c2, c+ respectively commit to values
v1, v2, v× that satisfy the quadratic relation v× = v1 · v2.

Statement: (Mult, crs, {ci}i∈{1,2,×}), Witness:(v1,d1, v2,d2,d×) (12)

The main idea of the construction is to construct from c1 = [c̃1]1 and c2 = [c̃2]2
a commitment of v1 · v2. Remember that in the technical overview Sect. 2.3, we
could multiply commitments c1 and c2 directly (by using a pairing operation) to
get a commitment of v1 · v2, as commitments were a single group element. Intu-
itively, the equivalent of this multiplication to vector of group elements c1 and c2
is the tensor product operation ⊗. And we want to prove that [1 ⊗ c̃× − c̃1 ⊗ c̃2]t
is a “commitment” of 0 in Gt, where 1 is used as a type-1 commitment of 1.3

Similar to multiplication of commitments in Sect. 2.3, computing these tensor
products uses pairings.

The basic idea is then that the proof is a decommitment of this commitment
[1 ⊗ c̃× − c̃1 ⊗ c̃2]t to 0. Unfortunately, this would not be zero-knowledge since
there are multiple possible decommitments and choosing one may reveal informa-
tion about the witness (v1,d1, v2,d2,d×). To tackle this subtle issue (which does
not happen with the commitments from the technical overview in Sect. 2.3 nor
with proof of linear relations), the prover needs to rerandomize this decommit-
ment, similarly to what is done in [26] to get perfect witness indistinguishability.
This is the purpose of the vector ρ in Eq. (14).

Tensor Products. We first need to briefly recall the notion of tensor products.
The tensor product of two matrices M ∈ Z

k×m
p and M ′ ∈ Z

k′×m′
p is the matrix

T = M ⊗ M ′ ∈ Z
kk′×mm′
p defined as:

T =

⎛
⎜⎝

M1,1 · M ′ · · · M1,m · M ′
...

...
Mk,1 · M ′ · · · Mk,m · M ′

⎞
⎟⎠ .

We extensively use the following identity: if M ∈ Z
k×m
p , M ′ ∈ Z

k′×m′
p , N ∈

Z
m×n
p and N ′ ∈ Z

m′×n′
p , then we have,

(M ⊗ M ′) · (N ⊗ N ′) = (M · N) ⊗ (M ′ · N ′) . (13)

Construction. Recall that the construction essentially consists of proving that
[1 ⊗ c̃× − c̃1 ⊗ c̃2]t is a commitment of 0, which is what Eq. (15) below ensures.

3 [1 ⊗ c̃× − c̃1 ⊗ c̃2]t is not a type-1 commitment (using the matrix A1) nor a type-
2 commitment (using the matrix A2) but yet another type of commitment using
another matrix B (formally defined in the proof in Eq. (17)). When the CRS is
binding, this matrix B is such that the commitment is also binding.



Multiparty Reusable Non-Interactive Secure Computation 371

To better understand how this value is computed (in term of group elements,
pairings, and exponentiations), we explicitly write it down:

[1 ⊗ c̃× − c̃1 ⊗ c̃2]t =

⎛
⎜⎜⎝

e(g1, c×,1) · e(c1,1, c2,1)
−1

e(g1, c×,1) · e(c1,1, c2,2)
−1

e(g1, c×,2) · e(c1,2, c2,1)
−1

e(g1, c×,2) · e(c1,2, c2,2)
−1

⎞
⎟⎟⎠ where ci =

(
ci,1

ci,2

)

The construction is as follows:

– Quadratic Proof: π× ← QQuadProve(crs, {ci, vi,di}i∈[2], c×,d×) picks ρ ∈
Z
4
p and outputs:

π× :=
([

π̃�
×

]
2[

π̃⊥
×

]
1

)
=

(
[−v2 · d1 ⊗ 1 + (Id ⊗ A2) · ρ]2

[1 ⊗ d× − c̃1 ⊗ d2 − (A1 ⊗ Id) · ρ]1

)
, (14)

where Id ∈ Z
2×2
p is the identity matrix. Recall that the vector ρ is used to

randomize the proof so that it is uniformly random among the valid proofs,
and hence is perfectly witness indistinguishable.

– Quadratic Proof Verification: b := QQuadVer(crs, c1, c2, c×,π×) returns 1 if
and only if:

[1 ⊗ c̃× − c̃1 ⊗ c̃2]t =
(
[A1 ⊗ Id]1 [Id ⊗ A2]2

) · π× , (15)

where Id ∈ Z
2×2
p is the identity matrix. Note that computing [c̃1 ⊗ c̃2]t

involves pairing operations between elements of vectors c1 ∈ G
2
1 and c2 ∈ G

2
2.

Computing the right hand side also involves pairing operations.

Remark 3. Quadratic proof verification just consists of checking a linear equa-
tion in (c2, c×,π×). Indeed, thanks to Eq. (13), Eq. (15) is equivalent to:

0 =
(
[1 ⊗ Id]1 [−c̃1 ⊗ Id]1 [A1 ⊗ Id]1 [Id ⊗ A2]2

) ·

⎛
⎜⎜⎝

[c̃×]2
[c̃2]2[
π̃�

×
]
2[

π̃⊥
×

]
1

⎞
⎟⎟⎠ .

Lemma 4. For any security parameter λ ∈ N, for any CRS crs ←
QSetupbind(1λ) or (crs, τ) ← QSetupsim(1λ), messages v1, v2, v× ∈ Zp, bitstrings
c1,d1, c2,d2, c×,d× such that ∀i ∈ {1, 2,×},QVeri(crs, ci, vi,di) = 1, we have:

Perfect Correctness: If v× = v1v2, a proof QQuadProve(crs, {ci, vi,di}i∈[2],
(c×,d×)) passes verification: QQuadVer(crs, {μi, ci}i∈[2], c×,π×) = 1

Perfect Uniformity: If v× = v1v2 and the CRS is simulated, then the vector π×
generated by QQuadProve follows a uniform distribution among the solutions
of Eq. (15).

Perfect Soundness: If v× �= v1v2 and the CRS is binding, then no π× ∈ Z
8
p

passes verification: QQuadVer(crs, c1, c2, c×,π×) = 0 for all π× ∈ Z
8
p.



372 F. Benhamouda and H. Lin

Proof. To prove perfect correctness, we use Eqs. (13) and (14) and remark:

1 ⊗ c̃× − c̃1 ⊗ c̃2 = 1 ⊗ (A2d× + v× · 1) − c̃1 ⊗ (A2d2 + v2 · 1)
= 1 ⊗ (A2d×) + v× · 1 ⊗ 1 − c̃1 ⊗ (A2d2) − (A1d1 + v1 · 1) ⊗ (v2 · 1)

= 1 ⊗ (A2d×) − c̃1 ⊗ (A2d2) − (A1d1) ⊗ (v2 · 1) + (v× − v1v2) · (1 ⊗ 1)
= (Id ⊗ A2) · (1 ⊗ d×) − (Id ⊗ A2) · (c̃1 ⊗ d2)

−(A1 ⊗ Id) · (v2d1 ⊗ 1) + (v× − v1v2) · (1 ⊗ 1) . (16)

We conclude by remarking that v× = v1v2 and that:

(
A1 ⊗ Id Id ⊗ A2

) ·
(

(Id ⊗ A2) · ρ
−(A1 ⊗ Id) · ρ

)
= 0 .

Perfect soundness follows from Eq. (16) and the fact that 1 ⊗ 1 is not in
the subspace generated by the columns of the matrix

B :=
(
A1 ⊗ Id Id ⊗ A2

) ∈ Z
4×8
p , (17)

when the CRS is binding, because if a1,a2 ∈ Z
2
p are two vectors generating the

column space of A1 and A2 respectively, then (a1 ⊗ a2, a1 ⊗ 1, 1 ⊗ a2, 1 ⊗ 1)
is a basis of Z4

p.
Finally, perfect uniformity comes from the fact that the kernel of the

matrix B (from Eq. (17)) consists of all the vectors:
(

(Id ⊗ A2) · ρ
−(A1 ⊗ Id) · ρ

)
,

for ρ ∈ Z
4
p, since these elements are clearly in the kernel and form a subspace of

dimension 4, and the kernel is of dimension 4 as B ∈ Z
8×4
p is of rank 4 (because

A1 is of full rank and hence A1 ⊗ Id ∈ Z
4×4
p is of full rank).

Remark 4 (Zero-knowledge of the quadratic proof π× in simulation mode). Per-
fect uniformity in the simulation mode is a very strong form of witness indistin-
guishability: whatever witness is used, the proof follows exactly the same uni-
form distribution over solutions of Eq. 15. To show that π× is zero-knowledge,
it remains to argue that this distribution can be efficiently sampled. This can be
done similarly as in Remark 2: for simulated commitments ci, the simulator can
equivocate c1, c2, c× to any v′

1, v
′
2, v

′
× satisfying v′

× = v′
1v

′
2 with decommitment

d′
1,d

′
2,d

′
× using QSimOpen. This gives a valid witness (v′

1,d
′
1, v

′
2,d

′
2,d

′
×) for the

statement and a simulated proof can be generated by running the honest prover
algorithm QQuadProve with this witness.

3.3 WE for NIZK of Commitments for NC1

We now describe our construction of WE for NIZK of commitments for NC1.
It follows the technical overview Sect. 2.3. The idea is to represent the function
by a Restricted Multiplication Straight-line (RMS) Program [10,14], which only



Multiparty Reusable Non-Interactive Secure Computation 373

performs multiplications or quadratic operations between an intermediate vari-
able and an input. We start with defining a variant of RMS where operations
are done modulo some prime number p.

Definition 7 (RMS Programs). Let p be a prime. A Restricted Multiplica-
tion Straight-line (RMS) program modulo p with input v = v1‖ · · · ‖vn ∈ {0, 1}n

and output y = y1‖ · · · ‖ym ∈ {0, 1}m is a sequence of the following instructions:

– Load a constant ω ∈ Zp into the memory value uj : (uj ← ω).
– Linearly combine memory values ui and uj into the memory value uk: (uk ←

μui + μ′uj mod p), with (μ, μ′) ∈ Z
2
p \ {(0, 0)} a non-zero pair of constants.

– Multiply the input value vi by the memory value uj into the memory value
uk: (uk ← vi · uj mod p).

where each memory value is written at most once and each memory value that
is read was written before. The program aborts if one memory value uk is not
in {0, 1}. If it does not abort, it outputs y = y1‖ · · · ‖ym = u1‖ . . . ‖um.

The size of an RMS is the number of instructions. Furthermore, any NC1 cir-
cuit G can be written as an RMS program of polynomial size, because determin-
istic branching programs can be encoded into RMS with constant overhead [10,
Claim A.2]. The resulting RMS program outputs the correct value when evalu-
ated modulo any prime number p, as when evaluated without modulo, all the
memory values are in {0, 1}.

Construction. Let QC = (QSetupbind,QSetupsim, {QComi,QVeri,QSimComi,
QSimOpeni}i∈{1,2},QQuadProve,QQuadVer) be the bilinear commitment scheme
with proofs of quadratic relations from the previous section. We construct a wit-
ness encryption WE for NIZK of commitments for NC1 below. To help differ-
entiate type-1 and type-2 commitments, all type-ι commitments have subscript
starting with ι, such as, cι,k.

– Commitment: (c, d) ← CCom(crs, v) for v ∈ V := {0, 1}n, generates type-1
commitments for each bit of v = v1‖ . . . ‖vn. More formally, c = (c1,1, . . . , c1,n

and d = (d1,1, . . . ,d1,n), where for i ∈ [n], (c1,i,d1,i) ← QCom1(crs, vi).
– Verification, Commitment Simulation and Opening: just consist in running

the respective algorithms QVer1,QSimCom1,QSimOpen1 in parallel for each
commitment c1,i.

– Proof π ← CProve(crs, c, G, v, d), for an NC1 circuit G represented as
an RMS program with n-bit input and m-bit output works as follows.
Let Sω, S+, and S× be the sets of memory indexes written by con-
stant loading, linear, and multiplication instructions respectively. We sup-
pose that the used memory values are u1, . . . , uL. The proof π is a tuple
({c2,k}k∈[L], {d2,k}k∈[m]∪Sω

, {πk}k∈S+∪S×) where these values are generated
as follows, for each instruction



374 F. Benhamouda and H. Lin

• (uk ← ω): generate (c2,k,d2,k) ← QCom2(crs, ω).
• (uk ← μui + μ′uj mod p): compute

(c2,k,d2,k) ← QCom2(crs, μui + μ′uj) ,

πk := QLinProve(crs, (μ, c2,i, ui,d2,i), (μ′, c2,j , uj ,d2,j), (c2,k,d2,k)) .

• (uk ← vi · uj mod p): compute

(c2,k,d2,k) ← QCom2(crs, vi · uj) ,

πk := QQuadProve(crs, (c1,i, vi,d1,i), (c2,j , uj ,d2,j), (c2,k,d2,k)) .

(Note that values vi and uj are known by the prover.)
– Proof Verification: just consists in verifying the provided openings and

quadratic proofs. More formally, CPVer(crs, c, G, y, π) where y = y1‖ · · · ‖ym

returns 1 if and only if all the following tests pass:
• For every i ∈ [m], check that QVer2(crs, c2,i, yi,d2,i)

?= 1.
• For every instruction:

* (uk ← ω): check QVer2(crs, c2,k, ω,d2,k) ?= 1.
* (uk ← μui + μ′uj mod p): check QLinVer(crs, (μ, c2,i), (μ′, c2,j),
c2,k,πk) ?= 1.
* (uk ← vi · uj mod p): check QQuadVer(crs, c1,i, c2,j , c2,k,πk) ?= 1.

– Proof Simulation: π ← CPSim(τ, aux, c, G, y) where c = (c1,1, . . . , c1,n) are
simulated with auxiliary data aux = (aux1,1, . . . , aux1,n), simulates a proof
π = ({c2,k}k∈[L], {d2,k}k∈[m]∪Sω

, {πk}k∈S+∪S×) as follows: Run through the
instructions in RMS in order and for each instruction do:

• (uk ← ω): generate

(c2,k, aux2,k) ← QSimCom2(τ) , d2,k ← QSimOpen2(τ, aux2,k, ω) .

• (uk ← μui + μ′uj mod p): set u′
k := yk if k ∈ [m] or 0 otherwise, and

let u′
i, u

′
j ∈ Zp be arbitrary scalars such that μu′

i + μ′u′
j = u′

k (which is
possible as (μ, μ′) �= 0), and compute:

(c2,k, aux2,k) ← QSimCom2(τ) ,

d′
2,� ← QSimOpen2(τ, aux2,�, u

′
�) for � ∈ {i, j, k} , (18)

πk := QLinProve(crs, (μ, c2,i, u
′
i,d

′
2,i), (μ

′, c2,j , u
′
j ,d

′
2,j), (c2,k,d′

2,k)) .

Note: values u′
i, u′

j , u′
k are local and may be different for different instruc-

tions.
• (uk ← vi · uj mod p): set u′

k := yk is k ∈ [m] or 0 otherwise, as well as
u′

i := 1 and u′
j := u′

k (so that u′
k = u′

iu
′
j—again values u′

i, u′
j , u′

k are
local) and compute:

(c2,k, aux2,k) ← QSimCom2(τ) ,

d′
1,i ← QSimOpen1(τ, aux1,i, u

′
i) (19)



Multiparty Reusable Non-Interactive Secure Computation 375

d′
2,� ← QSimOpen2(τ, aux2,�, u

′
�) for � ∈ {j, k} , (20)

πk := QQuadProve(crs, (c1,i, u
′
i,d

′
1,i), (c2,i, u

′
j ,d

′
2,j), (c2,k,d′

2,k)) .

– Witness Encryption: Looking at Eqs. (7) and (11) and Remark 3, we remark
that the proof verification CPVer(crs, c, G, y, π) is affine in the vector π.
Concretely, there exists a matrix [Γcrs,c,G,y]� and a vector [θcrs,c,G,y]� (both
only depend on crs, c, G, y and can be efficiently computed from these three
values—the star � denotes the fact that elements are not necessarily in the
same group), such that, seeing π as a vector of elements in Zp,G1,G2 of
length β, and denoting by π̃ ∈ Z

β
p the vector derived from π by replacing

every Gι element with its discrete logarithm, we have:

[θcrs,c,G,y]t = [Γcrs,c,G,y · π̃]t .

(Note: This is because: By Eq. 7 and 11, verification of opening and verifica-
tion of a linear proof are both linear equations whose coefficients are either
constants or elements in crs. By Remark 3, verification of a quadratic proof
is a linear equation whose coefficients are constants, or elements in crs, or
commitments c1,i (as in Eq. 19) to the first operand in the multiplication.
Since in RMS the first operand of multiplication is always an input bit, c1,i

is contained in c.)
The witness encryption then just uses hash proof systems from [1]. More
formally, to encrypt a bit message m ∈ {0, 1}, CWEnc(crs, c, G, y,m) picks a
uniformly random row vector α ∈ Z

1×ν
p , where ν is the number of rows of

Γcrs,c,G,y, and outputs the ciphertext ct = ([γ]�, [δ]t) where:

[γ]� := [α · Γcrs,c,G,y]� , [δ]t := [α · θcrs,c,G,y + m]t .

– Witness Decryption: Using the notation from witness encryption, CWDec(crs,
ct, c, G, y, π) outputs m ∈ {0, 1} satisfying

[m]t = [δ − γ · π̃]t .

Efficiency: The algorithms CSetupbind,CCom,CVer (as well as the sim-
ulators CSetupsim,CSimCom,CSimOpen) of the resulting WE for NIZK of
commitments run in time polynomial in their inputs. The algorithms
CProve,CPVer,CWEnc,CWDec run in time polynomial in their inputs and expo-
nential in the depth of the circuit G. This exponential blow up is due to the
representation by a RMS program and explains the restriction to NC1.

Theorem 8. Assuming SXDH over bilinear groups. The construction Π
described above is a WE for NIZK of commitments for NC1.

Proof. Perfect correctness of the commitment, setup indistinguishabil-
ity, perfect binding, and perfect equivocality follow directly from the fact
that (QSetupbind,QSetupsim,QCom1,QVer1,QSimCom1,QSimOpen1) is a dual-
mode commitment scheme. Perfect proof correctness follows from perfect



376 F. Benhamouda and H. Lin

correctness of linear and quadratic proofs. Perfect soundness follows from
perfect binding of type-1 and type-2 commitments as well as perfect soundness
of linear and quadratic proofs. Perfect encryption correctness and perfect
semantic security follow immediately from correctness and smoothness of the
hash proof systems in [1]. It remains to prove the perfect zero-knowledge
property. This is where the uniqueness of linear proofs (Remark 2) and the
perfect uniformity (Remark 4) of the quadratic proofs are used. We give a proof
by games:

– Game 0 corresponds to the zero-knowledge game where proofs are honestly
generated.

– Game 1 is similar to Game 0 except that all the commitments are simulated
but still opened to the value a real prover would use. This game is perfectly
indistinguishable from the previous one by perfect equivocality of type-1 and
type-2 commitments.

– Game 2 is similar to Game 1, except that the decommitments d2,k for k ∈
(S+ ∪ S×) \ [m] (i.e., the ones which are not published) and d′

�,� used to
generate the linear and quadratic proofs (see Eqs. (18) to (20)) are generated
as by CPSim. By perfect equivocality of type-1 and type-2 commitments,
these values d2,k and d′

�,� are valid decommitments. Hence by uniqueness of
linear proofs and perfect uniformity of quadratic proofs, the resulting proofs
πk are perfectly indistinguishable between Game 1 and Game 2.

As Game 2 corresponds to the zero-knowledge game where proofs are simulated,
this conclude the proof of perfect zero-knowledge. �

Acknowledgments. Huijia Lin was supported by NSF grants CNS-1528178, CNS-
1514526, CNS-1652849 (CAREER), CNS-2026774, a Hellman Fellowship, a JP Morgan
Research Award, the Defense Advanced Research Projects Agency (DARPA) and Army
Research Office (ARO) under Contract No. W911NF-15-C-0236, and a subcontract No.
2017-002 through Galois. Part of the work was done while Huijia Lin was visiting the
Simons Institute for the Theory of Computing, Berkeley. The views expressed are those
of the authors and do not reflect the official policy or position of the Department of
Defense, the National Science Foundation, or the U.S. Government.

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof sys-
tems: new constructions and applications. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9057, pp. 69–100. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46803-6 3

2. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

https://doi.org/10.1007/978-3-662-46803-6_3
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29


Multiparty Reusable Non-Interactive Secure Computation 377

3. Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: Threshold multi-key FHE
and applications to round-optimal MPC. Cryptology ePrint Archive, Report
2018/580 (2018). https://eprint.iacr.org/2018/580

4. Barak, B., et al.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

5. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-interactive secure multiparty computation. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 387–404. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-44381-1 22

6. Benhamouda, F., Krawczyk, H., Rabin, T.: Robust non-interactive multiparty com-
putation against constant-size collusion. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10401, pp. 391–419. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63688-7 13

7. Benhamouda, F., Lin, H.: k -round multiparty computation from k -round oblivious
transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8 17

8. Benhamouda, F., Lin, H.: Multiparty reusable non-interactive secure computation.
Cryptology ePrint Archive, Report 2020/221 (2020). https://eprint.iacr.org/2020/
221

9. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 12

10. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure com-
putation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 19

11. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

12. Catalano, D., Visconti, I.: Hybrid trapdoor commitments and their applications.
In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 298–310. Springer, Heidelberg (2005). https://doi.org/
10.1007/11523468 25

13. Clear, M., McGoldrick, C.: Multi-identity and Multi-key leveled FHE from learn-
ing with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 31

14. Cleve, R.: Towards optimal simulations of formulas by bounded-width programs.
Comput. Complex. 1(1), 91–105 (1991)

15. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

16. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 537–
569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 18

17. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: 26th ACM STOC, pp. 554–563. ACM Press, May 1994

https://eprint.iacr.org/2018/580
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1007/978-3-319-63688-7_13
https://doi.org/10.1007/978-3-319-63688-7_13
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-78375-8_17
https://eprint.iacr.org/2020/221
https://eprint.iacr.org/2020/221
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/11523468_25
https://doi.org/10.1007/11523468_25
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-319-63688-7_18


378 F. Benhamouda and H. Lin

18. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 4

19. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 467–
476. ACM Press, June 2013

20. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear
maps. In: Umans, C. (ed.) 58th FOCS, pp. 588–599. IEEE Computer Society Press,
October 2017

21. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 16

22. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC, pp. 218–229. ACM Press, May 1987

23. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

24. Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guar-
antee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48000-7 4

25. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for non interactive zero-
knowledge. J. ACM (JACM) 59(3), 11 (2012)

26. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

27. Groth, J., Sahai, A.: Efficient non interactive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012). https://doi.org/10.1137/080725386

28. Halevi, S., Ishai, Y., Jain, A., Komargodski, I., Sahai, A., Yogev, E.: Non-
interactive multiparty computation without correlated randomness. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 181–211. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 7

29. Ishai, Y., Kushilevitz, E.: Private simultaneous message protocols with applica-
tions. In: Proceedings of ISTCS, pp. 174–184 (1997)

30. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient
non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 23

31. Lin, H., Matt, C.: Pseudo flawed-smudging generators and their application
to indistinguishability obfuscation. Cryptology ePrint Archive, Report 2018/646
(2018). https://eprint.iacr.org/2018/646

32. Lindell, Y.: An efficient transform from sigma protocols to NIZK with a CRS
and non-programmable random Oracle. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9014, pp. 93–109. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46494-6 5

33. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 26

https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1137/080725386
https://doi.org/10.1007/978-3-319-70700-6_7
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-642-20465-4_23
https://eprint.iacr.org/2018/646
https://doi.org/10.1007/978-3-662-46494-6_5
https://doi.org/10.1007/978-3-662-46494-6_5
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26

	Mr NISC: Multiparty Reusable Non-Interactive Secure Computation
	1 Introduction
	1.1 Our Results in More Detail

	2 Technical Overview
	2.1 Security Definition of mrNISC Schemes
	2.2 Overview of Our mrNISC Scheme
	2.3 Construction of WE for NIZK of Commitments

	3 WE for NIZK of Commitments: NC1
	3.1 Definition of Witness Encryption for NIZK of Commitments
	3.2 Bilinear Commitments with Proofs of Quadratic Relations
	3.3 WE for NIZK of Commitments for NC1

	References




