
Multi-key Fully-Homomorphic
Encryption in the Plain Model

Prabhanjan Ananth1(B), Abhishek Jain2, Zhengzhong Jin2,
and Giulio Malavolta3

1 University of California Santa Barbara, Santa Barbara, CA, USA
prabhanjan@cs.ucsb.edu

2 Johns Hopkins University, Baltimore, MD, USA
{abhishek,zzjin}@cs.jhu.edu

3 Max Planck Institute for Security and Privacy, Bochum, Germany
giulio.malavolta@hotmail.it

Abstract. The notion of multi-key fully homomorphic encryption
(multi-key FHE) [López-Alt, Tromer, Vaikuntanathan, STOC’12] was
proposed as a generalization of fully homomorphic encryption to the
multiparty setting. In a multi-key FHE scheme for n parties, each party
can individually choose a key pair and use it to encrypt its own pri-
vate input. Given n ciphertexts computed in this manner, the parties
can homomorphically evaluate a circuit C over them to obtain a new
ciphertext containing the output of C, which can then be decrypted via
a decryption protocol. The key efficiency property is that the size of the
(evaluated) ciphertext is independent of the size of the circuit.

Multi-key FHE with one-round decryption [Mukherjee and Wichs,
Eurocrypt’16], has found several powerful applications in cryptography
over the past few years. However, an important drawback of all such
known schemes is that they require a trusted setup.

In this work, we address the problem of constructing multi-key FHE
in the plain model. We obtain the following results:

– A multi-key FHE scheme with one-round decryption based on the
hardness of learning with errors (LWE), ring LWE, and decisional
small polynomial ratio (DSPR) problems.

– A variant of multi-key FHE where we relax the decryption algo-
rithm to be non-compact – i.e., where the decryption complexity
can depend on the size of C – based on the hardness of LWE. We
call this variant multi-homomorphic encryption (MHE). We observe
that MHE is already sufficient for some of the applications of multi-
key FHE.

1 Introduction

Fully-homomorphic encryption [21] (FHE) allows one to compute on encrypted
data. An important limitation of FHE is that it requires all of the data to be

c© International Association for Cryptologic Research 2020
R. Pass and K. Pietrzak (Eds.): TCC 2020, LNCS 12550, pp. 28–57, 2020.
https://doi.org/10.1007/978-3-030-64375-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64375-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-64375-1_2

Multi-key Fully-Homomorphic Encryption in the Plain Model 29

encrypted under the same public key in order to perform homomorphic evalu-
ations. To circumvent this shortcoming, López-Alt et al. [29] proposed a multi-
party extension of FHE, namely, multi-key FHE, where each party can sample a
key pair (ski, pki) locally and encrypt its message under its own public key. Then
one can publicly evaluate any (polynomially computable) circuit over the result-
ing ciphertexts ci = Enc(pki,mi), each encrypted under an independently sam-
pled public key. Naturally, decrypting the resulting multi-key ciphertext requires
one to know all the secret keys for the parties involved.

In this work we are interested in multi-key FHE schemes with a one-round
decryption protocol: Given a multi-key ciphertext c = Enc((pk1, . . . , pkN), C(m1,
. . . ,mN)), the decryption consists of (i) a local phase, where each party indepen-
dently computes a decryption share pi using its secret key ski, and a (ii) public
phase, where the plaintext m can be publicly recovered from the decryption
shares (p1, . . . , pN).

Other than being an interesting primitive on its own, multi-key FHE with
one-round (also referred to as “non-interactive”) decryption implies a natural
solution for secure multi-party computation (MPC) with optimal round com-
plexity and communication complexity independent of the size of the circuit
being computed [31]. Additionally, multi-key FHE with one-round decryption
has proven to be a versatile tool to construct powerful cryptographic primi-
tives, such as spooky encryption [18], homomorphic secret sharing [11,12], obfus-
cation and functional encryption combiners [4,5], multiparty obfuscation [25],
homomorphic time-lock puzzles [14,30], and ad-hoc multi-input functional
encryption [1].

To the best of our knowledge, all known multi-key FHE schemes with one-
round decryption assume a trusted setup [16,17,31,32] or require non-standard
assumptions, such as the existence of sub-exponentially secure general-purpose
obfuscation [18]. A major open question in this area (stated in [16,31]) is whether
it is possible to avoid the use of a common setup and obtain a solution in the
plain model.

1.1 Our Results

We present the first construction of a multi-key FHE with one-round decryption
in the plain model, i.e. without a trusted setup, from standard assumptions over
lattices. Specifically, we prove the following main theorem:

Theorem 1 (Informal). Assuming,

– Two-round semi-malicious oblivious transfer in the plain model,
– Multi-key FHE with trusted setup and one-round decryption and,
– Multi-key FHE in the plain model but with arbitrary round decryption,

there exists multi-key FHE in the plain model with one-round decryption.

A multi-key FHE with one-round decryption in the common reference string
(CRS) model can be constructed assuming the hardness of the standard learning

30 P. Ananth et al.

with errors (LWE) problem [17,31]. Similarly, two-round semi-malicious oblivi-
ous transfer can also be instantiated assuming learning with errors [13]. On the
other hand, a multi-key FHE scheme without setup, but with complex decryp-
tion, was proposed in [29] assuming the hardness of the Ring LWE and the
decisional small polynomial ratio (DSPR) problems,1 Thus, we obtain the fol-
lowing implication:

Theorem 2 (Informal). Assuming that the LWE, Ring LWE, and DSPR
problems are hard, there exists a leveled multi-key FHE scheme in the plain
model with one-round decryption. Additionally assuming circular security of
our scheme, there exists multi-key FHE in the plain model with one-round
decryption.

We remark that our compiler is completely generic in the choice of the scheme
and thus can benefit from future development in the realm of multi-key FHE
with multi-round decryption. We also point out that our construction achieves a
relaxed security notion where, among other differences, we require computational
indistinguishability of simulated decryption shares, whereas the works of [16,31,
32] achieved statistical indistinguishability (see Sect. 4 for a precise statement).
To the best of our knowledge, this definition suffices for known applications of
multi-key FHE.

Multiparty Homomorphic Encryption. As a stepping stone towards our
main result, we introduce the notion of multiparty homomorphic encryption
(MHE). MHE is a variant of multi-key FHE that retains its key virtue of com-
munication efficiency but sacrifices on the efficiency of final output computation
step. Specifically, the reconstruction of the message from the decryption shares
is “non-compact”, i.e. its computational complexity might depend on the size
of the evaluated circuit. Crucially, we still require that the size of the (eval-
uated) ciphertexts is independent of size of the circuit. As we discuss below,
MHE suffices for some applications of multi-key FHE, including a two-round
MPC protocol where the first message depends only on the input of each party
and can be reused for arbitrarily many evaluations of different circuits.

Note that unlike the case of (single-key) FHE, allowing for non-compact
output computation does not trivialize the notion of MHE. Indeed, in the case
of FHE, a trivial scheme with non-compact output computation can be obtained
via any public-key encryption scheme by simply considering a decryption process
that first recovers the plaintext and then evaluates the circuit to compute the
output. Such an approach, however, does not extend to the multiparty setting
since it would violate the security requirement of MHE (defined similarly to that
of multi-key FHE).

We prove the following theorem:

1 These assumptions have been cryptanalyzed in [2,27], which affects the concrete
choice of the parameters of the scheme. However, all known attacks (including these
works) run in sub-exponential time. We refer the reader to [26] for recommendations
on the parameter choices for conjectured λ-bits of security.

Multi-key Fully-Homomorphic Encryption in the Plain Model 31

Theorem 3 (Informal). Assuming the hardness of the LWE problem (with
sub-exponential modulus-to-noise ratio), there exists an MHE scheme in the plain
model.

At a technical level, we develop a recursive self-synthesis transformation that
lifts any one-time MHE scheme (i.e. where the first message can be securely used
only for the evaluation of a single circuit) to an unbounded MHE. Our approach
bears resemblance to and builds upon several seemingly unrelated works dating
as far back as the construction of pseudorandom functions from pseudorandom
generators [23], as well as recent constructions of indistinguishability obfusca-
tion from functional encryption [6,9] (and even more recently, constructions of
identity-based encryption [15,20]).

Reusable MPC. A direct application of MHE is a two-round (semi-honest)
MPC protocol in the plain model with the following two salient properties:

– The first round of the protocol, which only depends on the inputs of the
parties, can be reused for an arbitrary number of computations. That is, after
the completion of the first round, the parties can execute the second round
multiple times, each time with a different circuit C� of their choice, to learn
the output of C� over their fixed inputs.

– The communication complexity of the protocol is independent of the circuit
size (and only depends on the circuit depth).

Alternately, we can use our multi-key FHE to achieve the same result with com-
munication complexity independent of the circuit size, albeit based on stronger
assumptions.

Previously, such a protocol – obtained via multi-key FHE – was only known in
the CRS model [31]. Benhamouda and Lin [8] recently investigated the problem
of two-round reusable MPC (with circuit-size dependent communication) and
give a construction for the same, in the plain model, based on bilinear maps.2

Our construction is based on a different assumption, namely, LWE, and therefore
can be conjectured to satisfy post-quantum security.

Concurrent Work on Reusable MPC. The work of Bartusek et al. [7] inves-
tigate the question of two-round MPC with reusable first message. They propose
schemes assuming the hardness of the DDH assumption over traditional groups.
In contrast with our work, the resulting MPC is non-compact, i.e. the communi-
cation complexity is proportional to the size of the circuit. Moreover, unlike [7],
our scheme can be conjectured to be secure against quantum adversaries.

1.2 Open Problems

Our work leaves open some interesting directions for future research. The most
compelling problem is to construct a multi-key FHE with one-round decryption
2 The authors communicated their result statement privately to us. A public version

of their paper was not available at the time of first writing of this paper, but can
now be found in [8].

32 P. Ananth et al.

assuming only the hardness of the (plain) LWE problem. Another relevant direc-
tion is to improve the practical efficiency of our proposal and to obtain a more
“direct” construction of multi-key FHE from lattice assumptions.

2 Technical Overview

Towards constructing both multi-key FHE and MHE, we first consider a relaxed
notion of MHE where the evaluation algorithm is allowed to be private; we call
this notion pMHE.

MHE with Private Evaluation (pMHE). An MHE scheme with private
evaluation, associated with n parties, consists of the following algorithms:

– Encryption: The ith party, for i ∈ [n], on input xi produces a ciphertext cti
and secret key ski.

– Evaluation: The ith party on input all the ciphertexts ct1, . . . , ctN , secret key
ski, and circuit C, it evaluates the ciphertexts to obtain a partial decrypted
value pi. We emphasize that the ith party requires ski for its evaluation and
thus is not a public operation.

– Final Decryption: Given all the partial decrypted values (p1, . . . , pN) and
the circuit C, reconstruct the output C(x1, . . . , xN).

Towards obtaining our main results, we will also sometimes consider a version of
pMHE in the CRS model, where the encryption, evaluation and the final decryp-
tion algorithms additionally take as input a CRS, generated by a trusted setup.
Furthermore, we will also consider pMHE schemes with an efficiency property
that we refer to as ciphertext succinctness. We postpone defining this property
to later in this section.

Roadmap of our Approach. Using the abstraction of pMHE, we achieve both
of our results as illustrated in Fig. 1:

– The starting point of our approach is a one-time pMHE, namely, a pMHE
scheme where the initial ciphertexts, i.e., encryptions of xi for every i ∈ [n],
can be evaluated upon only once. The first step in our approach, involving the
technical bulk of our work, is a reusability transformation that takes a one-
time pMHE in the CRS model and converts it into a pMHE scheme (in the
plain model), that allows for (unbounded) polynomially-many homomorphic
evaluations (of different circuits) over the initial ciphertexts. We outline this
in Sect. 2.1.

– We next describe two different transformations: The first transformation con-
verts a pMHE scheme to multi-key FHE (Sect. 2.2) and the second transfor-
mation converts it to an MHE scheme (Sect. 2.3).

– Finally, in Sect. 2.4, we discuss instantiation of one-time pMHE.

Multi-key Fully-Homomorphic Encryption in the Plain Model 33

One-Time pMHE
with

ciphertext succinctness

(Reusable) pMHE
with

ciphertext succinctness

Multi-key FHE
in plain model

(Reusable) MHE
in plain model

CRS

Reusability Transformation (Section 7)

+ [29] (Section 8)

+ LFE (Section 9.1)
+ FHE (Section 9.2)

Fig. 1. Our approach

2.1 Reusability Transformation

We now proceed to describe our reusability transformation from a one-time
pMHE scheme in the CRS model to a (reusable) pMHE scheme in the plain
model. We will in fact first consider the simpler problem of obtaining a pMHE
scheme in the CRS model. Later, we show how we can modify the transformation
to get rid of the CRS.

Reusability: Naive Attempt. Let OneMHE denote a one-time pMHE scheme.
Using two instantiations of OneMHE that we call OneMHE0 and OneMHE1, we
first attempt to build an pMHE scheme for a circuit class C = {C0, C1} that
allows for only two decryption queries, denoted by TwoMHE.

– The ith party, for i ∈ [N], on input xi, produces two ciphertexts cti0 and cti1,
where cti0 is computed by encrypting xi using OneMHE0 and ct1 is computed
by encrypting xi using OneMHE1.

– To evaluate a circuit Cb, for b ∈ {0, 1}, run the evaluation procedure of
OneMHEb to obtain the partial decrypted values.

– The final decryption on input Cb and partial decrypted values produces the
output.

It is easy to see that the above scheme supports two decryption queries. While
the above template can be generalized if C consists of polynomially many circuits;

34 P. Ananth et al.

every circuit in C is associated with an instantiation of OneMHE. However, it is
clear that this approach does not scale when C consists of exponentially many
circuits.

Recursive Self-synthesis. Instead of generating all the instantiations of
OneMHE during the encryption phase, as is done in TwoMHE, our main insight is
to instead defer the generation of the instantiations of OneMHE to the evaluation
phase. The advantage of this approach is that, during the evaluation phase, we
know exactly which circuit is being evaluated and thus we can afford to be frugal
and only generate the instantiations of OneMHE that are necessary, based on the
description of this circuit. The idea of bootstrapping a”one-time” secure scheme
into a “multi-time” secure scheme is not new and has been studied in different
contexts in cryptography; be it the classical result on pseudorandom functions
from pseudorandom generators [24] or the more recent results on indistinguisha-
bility from functional encryption [6,10,28] and constructions of identity-based
encryption [15,19,20]. In particular, as we will see soon, our implementation of
deferring the executions of OneMHE and only invoke the instantiations as needed
bears some resemblance to techniques developed in these works, albeit in a very
different context.

Illustration. Before explaining our approach to handle any polynomial number
of decryption queries, we start with the same example as before: The goal is to
build pMHE scheme for a circuit class C = {C0, C1} that allows for 2 decryption
queries. The difference, however, is, unlike before, the approach we describe
below will scale to exponentially many circuits.

We employ a tree-based approach to solve this problem. The tree associated
with this scheme consists of three nodes: a root and two leaves. The first leaf is
associated with the circuit C0 and the second leaf is associated with the circuit
C1. Every node is associated with an instantiation of the one-time pMHE scheme.
Denote the one-time pMHE scheme associated with the root to be OneMHE⊥,
with the left leaf to be OneMHE0 and the right leaf node to be OneMHE1.

Armed with the above notation, we now present an overview of construction
of a pMHE scheme for C = {C0, C1} allowing for 2 decryption queries as follows:

– The ith party, for i ∈ [N], on input xi, produces the ciphertext cti⊥, where
cti⊥ is computed by encrypting xi using OneMHE⊥.

– To evaluate a circuit Cb, for b ∈ {0, 1}, the ith party does the following:
• First run the evaluation procedure of OneMHE⊥ on input circuit C⊥
(defined below) to obtain the ith partial decrypted value associated with
OneMHE⊥.
Denote C⊥ to be the circuit3 that takes as input (x1, . . . , xN) and pro-
duces: (i) GCi,0 wire labels for OneMHE0 ciphertext of xi under the ith

party’s secret key, for every i, and, (ii) GCi,1 wire labels for OneMHE1

ciphertext of xi under the ith party’s secret key, for every i.
3 We consider the setting where the circuit is randomized; this is without loss of

generality since we can assume that the randomness for this circuit is supplied by
the parties.

Multi-key Fully-Homomorphic Encryption in the Plain Model 35

• It computes a garbled circuit GCi,b defined below.
Denote GCi,b to be the garbling of a circuit that takes as input OneMHEb

ciphertexts of x1, . . . , xN , performs evaluation of Cb using the ith secret
key associated with OneMHEb and outputs the OneMHEb partial decryp-
tion values.

Output the ith partial decrypted value of OneMHE⊥ and the garbled circuit
GCi,b.

– The final decryption algorithm takes as input the OneMHE⊥ partial decryp-
tion values from all the parties, garbled circuits GC1,b, . . . , GCN,b, circuit Cb

(to be evaluated) and performs the following operations:
• It first runs the final decryption procedure of OneMHE⊥ to obtain the
wire labels corresponding to all the garbled circuits GC1,b, . . . , GCN,b.
• It then evaluates all the garbled circuits to obtain the OneMHEb partial
decryption values.
• Using the OneMHEb partial decryption values, compute the final decryp-
tion procedure of OneMHEb to obtain Cb(x1, . . . , xN).

Full-Fledged Tree-Based Approach. We can generalize the above approach
to construct a pMHE scheme for any circuit class and that handles any poly-
nomially many queries. If s is the maximum size of the circuit in the class of
circuits, we consider a binary tree of depth s.

– Every edge in the tree is labeled. If an edge e is incident from the parent to
its left child then label it with 0 and if e is incident from the parent to its
right child then label it with 1.

– Every node in the tree is labeled. The label is the concatenation of all the
edge labels on the path from the root to the node.

– Every leaf is associated with a circuit of size s.

With each node v, associate with v a new instantiation of a one-time pMHE
scheme, that we denote by OneMHEl(v), where l(v) is the label associated with
node v. If v is the root node l(v) = ⊥.

Informally, the encryption algorithm of pMHE generates OneMHE⊥ encryp-
tion of xi under the ith secret key. During the evaluation procedure, on input C,
each party generates s garbled circuits, one for every node on the path from the
root to the leaf labeled with C. The role of these garbled circuits is to delegate
the computation of the partial decrypted values to the final decryption phase. In
more detail, the garbled circuit associated with the node v computes the partial
decrypted values associated with OneMHEl(v). The partial decryption values will
be generated by homomorphically evaluating the following circuit: (i) the wire
labels, associated with OneMHElv||0 encryptions of x1, . . . , xN , of all the N gar-
bled circuits associated with the node v||0 and, (ii) the wire labels, associated
with OneMHElv||1 encryptions of x1, . . . , xN , of all the N garbled circuits asso-
ciated with the node v||1. Note that the homomorphic evaluation is performed
inside the garbled circuit.

36 P. Ananth et al.

During the final decryption, starting from the root node, each garbled circuit
(of every party) is evaluated to obtain wire labels of the garbled circuit associated
with the child node on the path from the root to the leaf labelled with C. Finally,
the garbled circuit associated with the leaf labelled with C is then evaluated to
obtain the OneMHEC partial decrypted values. These partial decrypted values
are then decoded to recover the final output C(x1, . . . , xN).

We give an overview of the final decryption process in Fig. 2.

GC1,0

(performs evaluation
of OneMHE0)

GCn,0

(performs evaluation
of OneMHE0)

· · ·

1st party’s
partial de-
cryptions

w.r.t. OneMHE0

nth party’s
partial de-
cryptions

w.r.t. OneMHE0

+

· · ·

· · ·

{GCi,00}i∈[n]
wire labels

for
(CTs of

OneMHE00)

{GCi,01}i∈[n]
wire labels

for
(CTs of

OneMHE01)

GC1,01

(performs evaluation
of OneMHE01)

GCn,01

(performs evaluation
of OneMHE01)

· · ·

Fig. 2. A glimpse of the final decryption process of the reusable pMHE scheme when
evaluated upon the circuit with the boolean representation C = 01 · · · . During the eval-
uation process, the ith party generates the garbled circuits GCi,0, GCi,01, · · · , GCi,C

as part of the partial decrypted values. The garbled circuit GCi,l(v), associated with
the prefix l(v) of C, computes the evaluation procedure of OneMHEl(v). The output of
final decryption of OneMHEl(v) are (i) the wire labels of GCi,l(v)||0, for every i ∈ [n],
of the encryptions of all the inputs of the parties, x1, . . . , xN generated with respect to
OneMHEl(v)||0 and, (ii) the wire labels of GCi,l(v)||1, for every i ∈ [n], for the encryptions
of all the inputs of the parties, x1, . . . , xN generated with respect to OneMHEl(v)||1.

Efficiency Challenges. To argue that the above scheme is a pMHE scheme, we
should at the very least argue that the encryption, evaluation and final decryp-
tion algorithms can be executed in polynomial time. Let us first argue that all

Multi-key Fully-Homomorphic Encryption in the Plain Model 37

the garbled circuits can be computed in polynomial time by the ith party. The
time to compute the garbled circuit associated with the root node is polynomial
in the time to compute OneMHE0 and OneMHE1 ciphertexts. Even if the time
to compute OneMHE0 and OneMHE1 ciphertexts only grows proportional to the
depth of the circuits being evaluated, the recursion would already blow up the
size of the first garbled circuit to be exponential in s! This suggests that we
need to define a suitable succinctness property on OneMHE in order to make the
above transformation work.

Identifying the Necessary Efficiency for Recursion. To make the above
recursion idea work, we impose a stringent efficiency constraint on the encryption
complexity of OneMHE. In particular, we require two properties to hold:

1. The size of the encryption circuit is a polynomial in the security parameter
λ, the number of parties, the input length, and the depth of the circuit.

2. The depth of the encryption circuit OneMHE grows polynomially in λ, the
number of parties and and the input length.

Put together, we refer to the above efficiency properties as ciphertext succinct-
ness. It turns out that if we have an OneMHE scheme with ciphertext succinct-
ness, then the resulting reusable pMHE scheme has polynomial efficiency and
moreover, the ciphertext sizes in the resulting scheme are polynomial in the
security parameter alone.4

Removing the CRS. Note that if we start with OneMHE in the CRS model,
we end up with reusable pMHE scheme still in the CRS model. However, our
goal was to construct a pMHE in the plain model. To fix this, we revisit the
tree-based approach to construct pMHE and make two important changes.

The first change is the following: Instead of instantiating the root node with
a OneMHE scheme satisfying ciphertext succinctness, we instantiate it by a
OneMHE scheme that need not satisfy any succinctness property (and thus can
be instantiated by any semi-malicious MPC in the plain model); if we work
out the recursion analysis carefully it turns out that its not necessary that the
OneMHE scheme associated with the root node satisfy ciphertext succinctness.
The intermediate nodes, however, still need to satisfy ciphertext succinctness
and thus need to be instantiated using OneMHE in the CRS model.

Since the intermediate nodes still require a CRS, we make the parent node
generate the CRS for its children. That is, upon evaluating the partial decryp-
tion values output by a garbled circuit associated with node v (see Fig. 2 for
reference), we obtain: (i) wire labels for crslv||0 and the OneMHEl(v)||0 cipher-
texts computed with respect to the common reference string crsl(v)||0 and, (ii)

4 An informed reader may wish to draw an analogy to recent works that devise recur-
sive strategies to build indistinguishability obfuscation from functional encryption
[6,10,28]. These works show that a functional encryption scheme with a sufficiently
compact encryption procedure (roughly, where the complexity of encryption is sub-
linear in the size of the circuit) can be used to build an indistinguishability obfusca-
tion scheme. In a similar vein, ciphertext succinctness can be seen as the necessary
efficiency notion for driving the recursion in our setting without blowing up efficiency.

38 P. Ananth et al.

wire labels for crslv||1 and OneMHEl(v)||1 ciphertexts computed with respect to
the common reference string crsl(v)||1. That is, the circuit being homomorphi-
cally evaluated by OneMHEl(v) first generates crsl(v)||0, crsl(v)||1, then generates
the OneMHEl(v)||0,OneMHEl(v)||1 ciphertexts followed by generating wire labels
for these ciphertexts. This is the reason why we require the root node to be
associated with a OneMHE scheme in the plain model; if not, its unclear how we
would be able to generate the CRS for the root node.

2.2 From pMHE to Multi-key FHE

Once we obtain a reusable pMHE in the plain model, our main result follows from
a simple bootstrapping procedure. Our transformation lifts a multi-key FHE
scheme in the plain model with “complex” (i.e. not one-round) decryption to a
multi-key FHE in the plain model with one-round decryption, by additionally
assuming the existence of a reusable pMHE. Plugging the scheme from [29] into
our compiler yields our main result.

The high-level idea of our transformation is to use the pMHE scheme to
securely evaluate the decryption circuit (no matter how complex is) of input the
multi-key FHE. This allows us to combine the compactness of the multi-key FHE
and the one-round decryption of the pMHE into a single scheme that inherits
the best of both worlds. More concretely, our compiled scheme looks as follows.

– Key Generation: The i-th party runs the key generation algorithm of the
underlying multi-key FHE to obtain a key pair (pki, ski), then computes the
pMHE encryption of ski to obtain a ciphertext c̃ti and an secret evaluation
key s̃ki. The public key is set to (pki, c̃ti).

– Encryption: To encrypt a message mi, the i-th party simply runs the encryp-
tion algorithm of the multi-key FHE scheme to obtain a ciphertext cti.

– Evaluation: On input the ciphertexts ct1, . . . , ctN and a circuit C, the i-th
party runs the (deterministic) multi-key evaluation algorithm to obtain an
evaluated ciphertext ct. Then each party runs the evaluation algorithm of the
pMHE scheme for the circuit

Γ (sk1, . . . , skN) = Dec((ski, . . . , skN), ct)

over the pMHE ciphertexts c̃t1, . . . , c̃tN , where the value ct is hardwired in
the circuit. The i-th party returns the corresponding output pi.

– Final Decryption: Given the description of the circuit Γ (which is known
to all parties) and the decryption shares (p1, . . . , pN), reconstruct the output
using the final decryption algorithm of pMHE.

We stress that, in order to achieve the functionality of a multi-key FHE scheme,
it is imperative that the underlying pMHE scheme has reusable ciphertexts,
which was indeed the main challenge for our construction. It is important to
observe that even thought the pMHE scheme does not have a compact decryption
algorithm, this does not affect the compactness of the complied scheme. This is
because the size of the circuit Γ is independent of the size of the evaluated circuit
C, by the compactness of the underlying multi-key FHE scheme.

Multi-key Fully-Homomorphic Encryption in the Plain Model 39

2.3 From pMHE to MHE

Equipped with pMHE, we discuss how to construct a full-fledged MHE scheme.
There are two hurdles we need to cross to obtain this application. The first being
the fact that pMHE only supports private evaluation and the second being that
pMHE only satisfies ciphertext succinctness and in particular, could have large
partial decryption values.

We address the second problem by applying a compiler that generically trans-
forms a pMHE scheme with large partial decryption values into a scheme with
succinct partial decryption values; that is, one that only grows proportional to
the input, output lengths and the depth of the circuit being evaluated. Such
compilers, that we refer to as low communication compilers were recently stud-
ied in the context of two-round secure MPC protocols [3,33] and we adapt them
to our setting. Once we apply such a compiler, we achieve our desired pMHE
scheme that satisfies the required efficiency property.

To achieve an MHE scheme with public evaluation, we use a (single-key)
leveled FHE scheme. Each party encrypts its secret key using FHE, that is, the
ith party generates an FHE key pair (pki, ski) and encrypts the ith secret key of
pMHE under pki; we denote the resulting ciphertext as FHE.cti. The ith party
ciphertext of the MHE scheme (MHE.cti) now consists of the ith party cipher-
text of the pMHE scheme (pMHE.cti) along with FHE.cti. The public evaluation
of MHE now consists of homomorphically evaluating the pMHE private eval-
uation circuit, with (C, pMHE.ct1, . . . , pMHE.ctN) hardwired, on the ciphertext
FHE.cti. Since this is performed for each party, there are N resulting FHE cipher-
texts (̂FHE.ct1, . . . , ̂FHE.ctN). During the partial decryption phase, the ith party
decrypts ̂FHE.cti using ski to obtain the partial decryption value corresponds
to the pMHE scheme. The final decryption of MHE is the same as the final
decryption of pMHE.

2.4 Instantiating One-Time pMHE in the CRS Model

So far we have shown that one-time pMHE suffices to achieve both of our results.
All that remains is to instantiate the one-time pMHE in the CRS model. We
instantiate this using the multi-key FHE scheme with one-round decryption in
the CRS model. A sequence of works [16,17,31] have presented a construction
of such a scheme based on the LWE problem.

3 Preliminaries

We denote the security parameter by λ. We focus only on boolean circuits
in this work. For any circuit C, let C.in, C.out, C.depth be the input length,
output length and depth of the circuit C, respectively. Denote C.params =
(C.in, C.out, C.depth).

For any totally ordered sets S1, S2, . . . , Sn, and any tuple (i∗1, i
∗
2, . . . , i

∗
n) ∈

S1×S2×· · ·×Sn, we use the notation (i∗1, i
∗
2, . . . , i

∗
n)+1 (resp. (i∗1, i

∗
2, . . . , i

∗
n)−1)

40 P. Ananth et al.

to denote the lexicographical smallest (resp. biggest) element in S1×S2×· · ·×Sn

that is lexicographical greater (resp. less) than (i∗1, i
∗
2, . . . , i

∗
n).

Pseudorandom Generators. We recall the definition of pseudorandom gen-
erators. A function PRGλ : {0, 1}PRG.inλ → {0, 1}PRG.outλ is a pseduorandom
generator, if for any PPT distinguisher D, there exits a negligible function ν(λ)
such that

∣
∣
∣
∣
Pr

[

s ← {0, 1}PRG.inλ : D(1λ,PRGλ(s)) = 1
] −

Pr
[

u ← {0, 1}PRG.outλ : D(1λ, u) = 1
]
∣
∣
∣
∣
< ν(λ).

Learning with Errors. We recall the learning with errors (LWE) distribution.

Definition 1 (LWE distribution). For a positive integer dimension n and
modulo q, the LWE distribution As,χ is obtained by sampling a ← Z

n
q , and an

error e ← χ, then outputting (a, b = sT · a + e) ∈ Z

n
q × Zq.

Definition 2 (LWE problem). The decisional LWEn,m,q,χ problem is to dis-
tinguish the uniform distribution from the distribution As,χ, where s ← Z

n
q , and

the distinguisher is given m samples.

Standard instantiation of LWE takes χ to be a discrete Gaussian distribution.

Definition 3 (LWE assumption). Let n = n(λ),m = m(λ), q = q(λ) and
χ = χ(λ). The Learning with Error (LWE) assumption states that for any PPT
distinguisher D, there exits a negligible function ν(λ) such that

|Pr[D(1λ, (A, sT A + e)) = 1] − Pr[D(1λ, (A,u)) = 1]| < ν(λ)

where A ← Z

n×m
q , s ← Z

n
q ,u ← Z

m
q , e ← χm.

3.1 Garbling Schemes

A garbling scheme [34] is a tuple of algorithms (GC.Garble,GC.Eval) defined as
follows.

GC.Garble(1λ, C, lab) On input the security parameter, a circuit C, and a set of
labels lab = {labi,b}i∈[C.in],b∈{0,1}, where labi,b ∈ {0, 1}λ, it outputs a garbled
circuit C̃.

GC.Eval(C̃, lab) On input a garbled circuit C̃ and a set of labels lab =
{labi}i∈[C.in], it outputs a value y.

We require the garbling scheme to satisfy the following properties.

Correctness. For any circuit C, and any input x ∈ {0, 1}C.in,

Pr
[

lab={labi,b}(i,b)∈[C.in]×{0,1}←{0,1}2λC.in,
˜C←GC.Garble(1λ,C,lab),y←GC.Eval(˜C,(labi,xi

)i∈[C.in])
: y = C(x)

]

= 1.

Multi-key Fully-Homomorphic Encryption in the Plain Model 41

Simulation Security. There exits a simulator Sim = (Sim1,Sim2) such that,
for any input x, any circuit C, and any non-uniform PPT distinguisher D,
we have

∣
∣
∣
∣
Pr

[

lab ← {0, 1}2λC.in, C̃ ← GC.Garble(1λ, C, lab) : D(1λ, labx, C̃) = 1
]

−

Pr
[

(stS , l̃ab) ← Sim1(1
λ, C.params), C̃ ← Sim2(stS , C(x)) : D(1λ, l̃ab, C̃) = 1

]
∣
∣
∣
∣
< ν(λ).

Theorem 4 ([34]). There exists a garbling scheme for all poly-sized circuits
from one-way functions.

Remark 1. For the ease of representation, for any labels lab= {labi,b}i∈[n],b∈{0,1},
and any input x ∈ {0, 1}n, we denote labx = {labi,xi

}i∈[n].

3.2 Laconic Function Evaluation

A laconic function evaluation (LFE) scheme [33] for a class of poly-sized circuits
consists of four PPT algorithms crsGen,Compress,Enc,Dec described below.

crsGen(1λ, params) It takes as input the security parameter λ, circuit parameters
params and outputs a uniformly random common string crs.

Compress(crs, C) It takes as input the common random string crs, poly-sized
circuit C and outputs a digest digestC . This is a deterministic algorithm.

Enc(crs, digestC , x) It takes as input the common random string crs, a digest
digestC , a message x and outputs a ciphertext ct.

Dec(crs, C, ct) It takes as input the common random string crs, circuit C, cipher-
text ct and outputs a message y.

Correctness. We require the following to hold:

Pr

[
crs←crsGen(1λ,params)

digestC←Compress(crs,C)
ct←Enc(crs,digestC ,x)

y←Dec(crs,C,ct)

: y = C(x)

]

= 1.

Efficiency. The size of CRS should be polynomial in λ, the input, output lengths
and the depth of C. The size of digest, namely digestC , should be polynomial
in λ, the input, output lengths and the depth of C. The size of the output of
Enc(crs, digestC) should be polynomial in λ, the input, output lengths and the
depth of C.

Security. For every PPT adversary A, input x, circuit C, there exists a PPT
simulator Sim such that for every PPT distinguisher D, there exists a negligible
function ν(λ) such that
∣
∣
∣ Pr

crs←crsGen(1λ,params)
digestC←Compress(crs,C)

[

1 ← D (

1λ, crs, digestC ,Enc(crs, digestC , x)
)] −

Pr
crs←crsGen(1λ,params)

digestC←Compress(crs,C)

[

1 ← D (

1λ, crs, digestC ,Sim(crs, digestC , C(x))
)]

∣
∣
∣ < ν(λ).

42 P. Ananth et al.

Remark 2. A strong version of security, termed as adaptive security, was defined
in [33]; for our construction, selective security suffices.

Theorem 5 ([33]). Assuming the hardness of learning with errors, there exists
a laconic function evaluation protocol.

4 Multi-key Fully Homomorphic Encryption

A multi-key FHE [29] allows one to compute functions over ciphertexts encrypted
under different and independently sampled keys. One can then decrypt the result
of the computation by gathering together the corresponding secret keys and run a
decryption algorithm. In this work we explicitly distinguish between two families
of schemes, depending on structural properties of the decryption algorithm.

– One-Round Decryption: The decryption algorithm consists of two sub-
routines (i) a local phase (PartDec) where each party computes a decryption
share of the ciphertext based only on its secret key and (ii) a public phase
(FinDec) where the plaintext can be publicly reconstructed from the decryp-
tion shares. This variant is the focus of our work.

– Unstructured Decryption: The decryption is a (possibly interactive) pro-
tocol that takes as input a ciphertext and all secret keys and returns the
underlying plaintext. No special structural requirements are imposed.

In this work we are interested in constructing the former. However, the latter is
going to be a useful building block in our transformation. More formally, a multi-
key FHE is a tuple of algorithms MKFHE = (KeyGen,Enc,Eval,Dec) defined as
follows.

KeyGen(1λ, i) On input the security parameter λ, and an index i ∈ [N], it outputs
a public-key secret-key pair (pki, ski) for the i-th party.

Enc(pki, xi) On input a public key pki of the i-th party, and a message xi, it
outputs a ciphertext cti.

Eval(C, (ctj)j∈[N]) On input the circuit C of size polynomial in λ and the cipher-
texts (ctj)j∈[N], it outputs the evaluated ciphertext ĉt.

Dec((skj)j∈[N], ĉt) On input a set of keys sk1, . . . , skN and the evaluated cipher-
text ĉt, it outputs a value y ∈ {0, 1}C.out. We say that a multi-key FHE has
a one-round decryption if the decryption protocol consists of the algorithms
PartDec and FinDec with the following syntax.
PartDec(ski, i, ĉt) On input the secret key ski of ith party, the index i, and

the evaluated ciphertext ĉt, it outputs the partial decryption pi of the ith

party.
FinDec(C, (pj)j∈[N]) On input all the partial decryptions (pj)j∈[N], it outputs

a value y ∈ {0, 1}C.out.

Multi-key Fully-Homomorphic Encryption in the Plain Model 43

We say that the scheme is fully homomorphic if it is homomorphic for P/poly.

Trusted Setup. We also consider multi-key FHE schemes in the presence of a
trusted setup, in which case we also include an algorithm Setup that, on input
the security parameter 1λ, outputs a common reference string crs that is given
as input to all algorithms.

Correctness. We define correctness for multi-key FHE with one-round decryp-
tion, the more general notion can be obtained by modifying our definition in a
natural way. Note that we only define correctness for a single application (single-
hop) of the homomorphic evaluation procedure. It is well known that (multi-key)
FHE schemes can be generically converted to satisfy the more general notion of
multi-hop correctness [22].

Definition 4 (Correctness). A scheme MKFHE = (KeyGen,Enc,Eval,
PartDec,FinDec) is said to satisfy the correctness of an MHE scheme if for any
inputs (xi)i∈[N], and circuit C, the following holds:

Pr

⎡

⎢
⎣

∀i∈[N],(pki,ski)←KeyGen(1λ,i)
cti←Enc(pki,xi)

̂ct←Eval(C,(ctj)j∈[N])

pi←PartDec(ski,i,̂ct)
y←FinDec((pj)j∈[N])

: y = C(x1, . . . , xN)

⎤

⎥
⎦ = 1.

Compactness. We say that a scheme is compact if the size of the evaluated
ciphertexts does not depend on the size of the circuit C and only grows with
the security parameter (and possibly the number of keys N). Furthermore, we
require that the runtime of the decryption algorithm (and of its subroutines
PartDec and FinDec) is independent of the size of the circuit C.

Reusable Semi-malicious Security. We define the notion of reusable security
for multi-key FHE with one-round decryption. Intuitively, this notion says that
the decryption share do not reveal anything beyond the plaintext that they
reconstruct to. In this work we present a unified notion that combines semantic
security and computational indistingushability of partial decryption shares. This
is a weakening of the definition given in [31], where the simulated decryption
shares were required to be statistically close to the honestly compute ones. To
the best of our knowledge, this weaker notion is sufficient for all applications of
multi-key FHE. Note that by default we consider a semi-malicious adversary,
that is allowed to choose the random coins of the corrupted parties arbitrarily.

We define security in the real/ideal world framework. The experiments are
parameterized by adversary A = (A1,A2), a PPT simulator Sim implemented as
algorithms (Sim1,Sim2), the subset of honest parties H ⊆ [N], and their input
(xi)i∈H . For the simplicity, we denote H̄ = [N] \ H.

44 P. Ananth et al.

RealA(1λ, H, (xi)i∈H)

for i ∈ H,

(pki, ski) ← KeyGen(1λ, i)

cti ← Enc(pki, xi)

endfor

(stA, (xi, ri, r
′
i)i∈H̄) ← A1(1λ, (pki, cti)i∈H)

for i ∈ H̄,

(pki, ski) = KeyGen(1λ, i; ri)

cti = Enc(pki, xi; r′
i)

endfor

AO(1λ,·)
2 (stA)

return ViewA

O(1λ, C)

̂ct ← Eval(C, (ctj)j∈[N])

for i ∈ H, pi ← PartDec(ski, i, ̂ct)

return (pi)i∈H

IdealA(1λ, H, (xi)i∈H)

(stS , (pki, cti)i∈H) ← Sim1(1λ, H)

(stA, (xi, ri, r
′
i)i∈H̄) ← A1(1λ, (pki, cti)i∈H)

AO′(1λ,·)
2 (stA)

return ViewA

O′(1λ, C)

(st′S , (pi)i∈H) ← Sim2(stS , C, C((xi)i∈[N]), (xi, ri, r
′
i)i∈H̄)

Update stS = st′S
return (pi)i∈H

Definition 5. A scheme MKFHE = (KeyGen,Enc,Eval,PartDec,FinDec) is said
to satisfy the reusable semi-malicious security if the following holds: there exists
a simulator Sim = (Sim1,Sim2) such that for any PPT adversary A, for any set
of honest parties H ⊆ [N], any n.u. PPT distinguisher D, and any messages
(xi)i∈H , there exists a negligible function ν(λ) such that

∣
∣
∣
∣
Pr

[

D
(

1λ,RealA(1λ,H, (xi)i∈H)
)

= 1
]

−

Pr
[

D
(

1λ, IdealA(1λ,H, (xi)i∈H)
)

= 1
]
∣
∣
∣
∣
< ν(λ).

5 Multiparty Homomorphic Encryption

We define the notion of multiparty homomorphic encryption (MHE) in this
section. As mentioned earlier, this notion can be seen as a variant of multi-
key FHE [17,31]; unlike multi-key FHE, this notion does not require a trusted
setup, however, the final decryption phase needs to take as input the circuit
being evaluated as input.

5.1 Definition

A multiparty homomorphic encryption is a tuple of algorithms MHE = (KeyGen,
Enc,Eval,PartDec,FinDec), which are defined as follows.

KeyGen(1λ, i) On input the security parameter λ, and an index i ∈ [N], it outputs
a public-key secret-key pair (pki, ski) for the i-th party.

Multi-key Fully-Homomorphic Encryption in the Plain Model 45

Enc(pki, xi) On input a public key pki of the i-th party, and a message xi, it
outputs a ciphertext cti.

Eval(C, (ctj)j∈[N]) On input the circuit C of size polynomial in λ and the cipher-
texts (ctj)j∈[N], it outputs the evaluated ciphertext ĉt.

PartDec(ski, i, ĉt) On input the secret key ski of ith party, the index i, and the
evaluated ciphertext ĉt, it outputs the partial decryption pi of the ith party.

FinDec(C, (pj)j∈[N]) On input the circuit C, and all the partial decryptions
(pj)j∈[N], it outputs a value y ∈ {0, 1}C.out.

We require that a MHE scheme satisfies the properties of correctness, succinct-
ness and reusable simulation security.

Correctness. We require the following definition to hold.

Definition 6 (Correctness). A scheme MHE = (KeyGen,Enc,Eval,PartDec,
FinDec) is said to satisfy the correctness of an MHE scheme if for any inputs
(xi)i∈[N], and circuit C, the following holds:

Pr

⎡

⎢
⎣

∀i∈[N],(pki,ski)←KeyGen(1λ,i)
cti←Enc(pki,xi)

̂ct←Eval(C,(ctj)j∈[N])

pi←PartDec(ski,i,̂ct)
y←FinDec(C,(pj)j∈[N])

: y = C(x1, . . . , xN)

⎤

⎥
⎦ = 1.

Succinctness. We require that the size of the ciphertexts and the partial
decrypted values to be independent of the size of the circuit being evaluated.
More formally,

Definition 7 (Succinctness). A scheme MHE = (KeyGen,Enc,Eval,PartDec,
FinDec) is said to satisfy the succinctness property of an MHE scheme if for any
inputs (xi)i∈[N], and circuit C, the following holds: for any inputs (xi)i∈[N], and
circuit C,

– Succinctness of Ciphertext: for j ∈ [N], |ctj | = poly(λ, |xj |).
– Succinctness of Partial Decryptions: for j ∈ [N], |pj | = poly(λ,N,C.in, C.out,

C.depth), where N is the number of parties, C.in is the input length of the
circuit being evaluated, C.out is the output length and C.depth is the depth of
the circuit.

where, for every i ∈ [N], (i) (pki, ski) ← KeyGen(1λ, i), (ii) cti ← Enc(pki, xi),
(iii) ĉt ← Eval(C, (ctj)j∈[N]) and, (iv) pi ← PartDec(ski, i, ĉt).

Remark 3. En route to constructing MHE schemes satisfying the above suc-
cinctness properties, we also consider MHE schemes that satisfy the correctness
and security (stated next) properties but fail to satisfy the above succinctness
definition. We refer to such schemes as non-succinct MHE schemes.

46 P. Ananth et al.

5.2 Security

We define the security of MHE by real world-ideal world paradigm. We only
consider the semi-honest security notion.

In the real world, the adversary is given the public key pki and ciphertext
cti for the honest parties, and also the uniform randomness coins ri, r

′
i for the

dishonest parties, where ri is used for the key generation, and r′
i is used for

the encryption. In addition, the adversary is given access to an oracle O. Each
time, the adversary can query O with a circuit C. The oracle O firstly evaluates
C homomorphically over the ciphertexts (cti)i∈[N], and obtains an evaluated
ciphertext ĉt. Then it outputs the partial decryption of ĉt of the honest parties.

In the ideal world, a simulator Sim1 generates the pki and cti of honest
parties, and also the random coins (ri, r

′
i)i∈H̄ of dishonest parties, and sends

them the the adversary. Then, the adversary is given access to an oracle O′.
For each query C made by the adversary, the oracle O′ executes the stateful
simulator Sim2 to obtain the simulating partial decryption messages (pi)i∈H of
honest parties. Then the oracle O′ outputs (pi)i∈H .

Reusable Semi-honest Security. We define the real and ideal experiments
below. The experiments are parameterized by adversary A, a PPT simulator Sim
implemented as algorithms (Sim1,Sim2), the subset of honest parties H ⊆ [N],
and the input (xi)i∈[N]. For the simplicity, we denote H̄ = [N] \ H.

RealA(1λ, H, (xi)i∈H)

for i ∈ [N],

ri, r
′
i ← {0, 1}∗

(pki, ski) = KeyGen(1λ, i; ri)

cti = Enc(pki, xi; r′
i)

endfor

AO(1λ,·)(1λ, (pki, cti)i∈H , (ri, r
′
i)i∈H̄)

return ViewA

O(1λ, C)

̂ct ← Eval(C, (ctj)j∈[N])

for i ∈ H, pi ← PartDec(ski, i, ̂ct)

return (pi)i∈H

IdealA(1λ, H, (xi)i∈H)

(stS , (pki, cti)i∈H , (ri, r
′
i)i∈H̄) ← Sim1(1λ, H, (xi)i∈H̄)

AO′(1λ,·)
2 (1λ, (pki, cti)i∈H , (ri, r

′
i)i∈H̄)

return ViewA

O′(1λ, C)

(st′S , (pi)i∈H) ← Sim2(stS , C, C((xi)i∈[N]))

Update stS = st′S
return (pi)i∈H

Definition 8. A scheme (MHE.KeyGen, MHE.Enc, MHE.Eval, MHE.PartDec,
MHE.FinDec) is said to satisfy the reusable semi-honest security if the following
holds: there exists a simulator MHE.Sim = (MHE.Sim1,MHE.Sim2) such that for
any PPT adversary A, for any set of honest parties H ⊆ [N], any n.u. PPT
distinguisher D, and any messages (xi)i∈[H], there exists a negligible function
ν(λ) such that

Multi-key Fully-Homomorphic Encryption in the Plain Model 47

∣
∣
∣
∣
Pr

[

D
(

1λ,RealA(1λ,H, (xi)i∈[N])
)

= 1
]

−

Pr
[

D
(

1λ, IdealA(1λ,H, (xi)i∈[N])
)

= 1
]
∣
∣
∣
∣
< ν(λ).

Remark. Definition 8 directly captures the reusability property implied by the
definition of [31]. However, our definition is somewhat incomparable to [31] due to
the following reasons: [31] give a one-time (semi-malicious) statistical simulation
security definition for threshold decryption, which implies multi-use security
via a standard hybrid argument. In contrast, Definition 8, which guarantees
(semi-honest) computational security, is given directly for the multi-use setting.
Second, [31] define security of threshold decryption only for n − 1 corruptions5

whereas our definition captures any dishonest majority.

6 Intermediate Notion: MHE with Private Evaluation
(pMHE)

Towards achieving MHE, we first consider a relaxation of the notion of MHE
where we allow the evaluation algorithm to be a private-key procedure. We call
this notion MHE with private evaluation, denoted by pMHE.

A multiparty homomorphic encryption with private evaluation (pMHE) is a
tuple of algorithms (Enc,PrivEval,FinDec), which are defined as follows.

Enc(1λ, C.params, i, xi) On input the security parameter λ, the parameters of a
circuit C, C.params = (C.in, C.out, C.depth), an index i, and an input xi, it
outputs a ciphertext cti, and a partial decryption key ski.

PrivEval(ski, C, (ctj)j∈[N])6 On input the partial decryption key ski, a circuit C,
and the ciphertexts (ctj)j∈[N], it outputs a partial decryption message pi.

FinDec(C, (pj)j∈[N]) On input the circuit C and the partial decryptions (pj)j∈[N],
it outputs y ∈ {0, 1}C.out.

Correctness. For any input (xi)i∈[N], and any circuit C, we have

Pr
[∀i (cti,ski)←Enc(1λ,C.params,i,xi)

∀i pi←PrivEval(ski,C,(ctj)j∈[N])

y←FinDec(C,(pj)j∈[N])
: y = C((xi)i∈[N])

]

= 1.

Reusable Semi-malicious Security. The experiments are parameterized by
the adversary A = (A1,A2), the subset of honest parties H ⊆ [N], the inputs
(xi)i∈H , and the PPT simulator Sim implemented as algorithms (Sim1,Sim2).
Denote H̄ = [N] \ H.
5 As such, counter-intuitively, additional work is required when using it in applications

such as MPC, when less than n − 1 parties may be corrupted. We refer the reader
to [31] for details.

6 In fact, PrivEval is a combination of private evaluation and partial decryption.

48 P. Ananth et al.

RealA(1λ, H, (xi)i∈H)

for i ∈ H, (cti, ski) ← Enc(1λ, C.params, i, xi)

(stA, (xi, ri)i∈H̄) ← A1(1λ, (cti)i∈H)

for i ∈ H̄, (cti, ski) = Enc(1λ, C.params, i, xi; ri)

AO(1λ,·)
2 (stA)

return ViewA

O(1λ, C)

for i ∈ H, pi ← PrivEval(ski, C, (ctj)j∈[N])

return (pi)i∈H

IdealA(1λ, H, (xi)i∈H)

(stS , (cti)i∈H) ← Sim1(1λ, H,C.params)

(stA, (xi, ri)i∈H̄) ← A1(1λ, (cti)i∈H)

AO′(1λ,·)
2 (stA)

return ViewA

O′(1λ, C)

(st′S , (pi)i∈H) ← Sim2(stS , C, C((xi)i∈[N]), (xi, ri)i∈H̄)

Update stS = st′S
return (pi)i∈H

Definition 9. A scheme pMHE = (Enc,PrivEval,FinDec) is said to satisfy the
reusable semi-malicious security if the following holds: there exists a simulator
Sim = (Sim1,Sim2) such that for any PPT adversary A, for any set of honest
parties H ⊆ [N], PPT distinguisher D, and any messages (xi)i∈H , there exists
a negligible function ν(λ) such that

∣
∣
∣
∣
Pr

[

D
(

1λ,RealA(1λ,H, (xi)i∈H)
)

= 1
]

−

Pr
[

D
(

1λ, IdealA(1λ,H, (xi)i∈H)
)

= 1
]
∣
∣
∣
∣
< ν(λ).

6.1 CRS Model

A pMHE in the common random/reference string model is a tuple of algo-
rithms pMHE = (Setup,Enc,PrivEval,FinDec), where the PrivEval,FinDec works
the same way as in the plain model, while Setup,Enc are defined as follows.

Setup(1λ) On input the security parameter, it outputs a common reference string
crs.

Enc(crs, C.params, i, xi) On input the common reference string crs, the parame-
ters of C, an index i, and an input xi, it output a ciphertext cti, and a partial
decryption key ski.

6.2 One-Time pMHE

We consider a weak version of pMHE scheme called one-time pMHE.

Definition 10. A pMHE scheme is a one-time pMHE scheme, if the security
holds for all n.u. PPT adversary A that only query the oracle O at most once.

We will use a one-time pMHE scheme as a starting point in the reusability
transformation.

Multi-key Fully-Homomorphic Encryption in the Plain Model 49

Remark 4. In this setting, without loss of generality, we assume that the pri-
vate evaluation algorithm PrivEval is deterministic, and the secret key is the
randomness used by Enc.

6.3 Ciphertext Succinctness

We define the notion of ciphertext succinctness associated with a pMHE scheme.
Roughly, we require the size of the encryption circuit to only grow with the depth
of the circuits being homomorphically evaluated. We additionally require the
depth of the encryption circuit to be only poly-logarithmically in the depth. We
allow the depth of the encryption circuit to, however, grow polynomially in the
number of parties and input lengths. We impose similar efficiency requirements
on the setup procedure as well.

Note that this is an incomparable to the traditional succinctness property we
defined for an MHE scheme; on one hand, ciphertext succinctness imposes an
additional requirement on the encryption circuit whereas it doesn’t say anything
about the size of the partial decryption values. The succinctness property of
MHE is about the size of the ciphertexts whereas the ciphertext succinctness
property is about the complexity of the encryption circuit.

Definition 11 (Ciphertext Succinctness). A pMHE scheme with a setup
pMHE = (Setup,Enc,PrivEval,FinDec) is said to satisfy strong ciphertext suc-
cinctness property if it satisfies the correctness, strong semi-honest security, and
in addition, satisfies the following properties:

– The size of the Setup circuit is poly(λ,N,C.depth).
– The depth of the Setup circuit is poly(λ,N, log(C.depth)).
– The size of the Enc circuit is poly(λ,N,C.in, C.depth).
– The depth of the Enc circuit is poly(λ,N,C.in, log(C.depth)).

where N is the number of parties, and (C.in, C.out, C.depth) are the parameters
associated with the circuits being evaluated.

Remark 5. The ciphertext succinctness property is incomparable with the suc-
cinctness property of an MHE scheme; while there is no requirement on the size
of the partial decryptions in the above definitions, there is a strict requirement
on the complexity of the encryption procedure in the above definition as against
a requirement on just the size of the ciphertexts as specified in the succinctness
definition of MHE.

6.4 Instantiation

We can instantiate any one-time pMHE scheme satisfying ciphertext sucinctness
in the CRS model from any multi-key FHE in the CRS model. Thus, have the
following:

Theorem 6 (Ciphertext-Succinct One-Time pMHE with CRS from
LWE). Assuming learning with errors, there exists a one-time pMHE scheme
in the CRS model satisfying ciphertext succinctness property.

We defer the proof to the full version.

50 P. Ananth et al.

7 Main Step: One-Time pMHE in CRS =⇒ Reusable
pMHE

In this section, we show how to bootstrap from a one-time pMHE with ciphertext
succinctness property into a (possibly non-succinct) reusable pMHE scheme.

Lemma 1 (Bootstrap from One-Time Ciphertext Succinctness Sch-
eme to Reusable Scheme). From the following primitives,

– pMHE′ = (pMHE′.Setup, pMHE′.Enc, pMHE′.PrivEval, pMHE′.FinDec): a one-
time ciphertext succinct pMHE scheme in the CRS model.

– pMHE0 = (pMHE0.Enc, pMHE0.PrivEval, pMHE0.FinDec): a one-time delayed-
function semi-malicious pMHE scheme without setup. (Note: this pMHE
scheme need not satisfy any succinctness property)

– PRG : {0, 1}PRG.in → {0, 1}PRG.out, a pseduorandom generator, where PRG.out
= poly(PRG.in) for some large polynomial poly. Moreover, we require the
depth of PRG to be poly(λ, log(PRG.out)) for some fixed poly independent
of PRG.out.

we can build a reusable semi-malicious pMHE scheme pMHE = (pMHE.Enc,
pMHE.PrivEval, pMHE.FinDec) without the trusted setup.

Construction. We present the construction below.
In our construction, each party generates a PRG seed ki, then in on the t-th

level of the tree, the i-th party uses ki to generate a pseudorandom string, which
is divided into the following 5 parts.

1. (labi,t+1,b)b∈{0,1} is used as the labels of the children nodes.
2. (kt+1

i,b)b∈{0,1} are the PRG seeds for the children nodes.
3. (rt+1

i,1,b)b∈{0,1} is the randomness used to generate the two new ciphertexts for
the children nodes.

4. (rt+1
i,2,b)b∈{0,1} is the randomness used to generate the garbled circuits for the

children nodes.
5. (rt+1

i,3,b)b∈{0,1} is the randomness used to generate the CRS of the children
nodes. We will xor the ri,3,b for all the parties to achieve semi-malicious
security.

pMHE.Enc(1λ, C.params, i, xi):
– Randomly sample ki ← {0, 1}PRG.in, and random coins ri.
– (ct′i, sk

′
i) ← pMHE0.Enc(1λ,NewEnc1.params, i, (xi, ki)), where NewEnc1

is defined in Fig. 3.
– Let cti = ct′i and ski = (sk′

i, (ki, ri)).
Output (cti, ski).

pMHE.PrivEval(ski, C, (ctj)j∈[N]):
– Parse ski as (sk′

i, (ki, ri)).
– Let id be the binary representation of the circuit C. Denote n = |id|.

Multi-key Fully-Homomorphic Encryption in the Plain Model 51

NewEnct (xj , kj)j∈[N]
)

– For any j ∈ [N], parse PRG(kj) as (labj,t,b, kt
j,b, r

t
j,1,b, r

t
j,2,b, r

t
j,3,b)b∈{0,1}.

– For any b ∈ {0, 1}, crsb = pMHE′.Setup(1λ;
⊕

j∈[N] r
t
j,3,b)

– For any j ∈ [N], b ∈ {0, 1},

(ctj,b, skj,b) = pMHE′.Enc(crsb,NewEnct+1.params, j, (xj , k
t
j,b); r

t
j,1,b)

– For any b ∈ {0, 1}, let ctb = (ctj,b)j∈[N].
– Output (labi,t,0

ct0 , labi,t,1
ct1)i∈[N].

Fig. 3. Description of NewEnct, for t ∈ [n].

– For t ∈ [n], Boott is defined as follows.
Boott[skt

i]
(ctt)

• Let pt
i = pMHE′.PrivEval(skt

i,NewEnc
t+1, ctt), where NewEnc is

defined in Figs. 3 and 4.
• Output pt

i.

– Let p0i = pMHE′.PrivEval(sk′
i,NewEnc

1, (ctj)j∈[N]; ri), k0
i = ki.

– For each t = 1, 2, . . . , n,
Let b = id[t]. Parse PRG(kt−1

i) as (labi,t,b′
, kt

i,b′ , rt
i,1,b′ , rt

i,2,b′ , rt
i,3,b′)b′∈{0,1}

Let skt
i = rt

i,1,b,
˜Bootti ← GC.Garble(1λ,Boott[skt

i]
, labi,t,b; rt

i,2,b).
Let kt

i = kt
i,b.

– Let pi = (p0i , (
˜Bootti)t∈[n], cti).

– Output pi.

NewEncn+1 (xj , kj)j∈[N]
)

– Let y = C((xj)j∈[N]).
– Output y.

Fig. 4. Description of NewEncn+1.

52 P. Ananth et al.

pMHE.FinDec(C, (pi)i∈[N]):

– Let id be the binary representation of C. Parse pi as (p0i , (
˜Bootti)t∈[n], cti).

– For each t = 1, 2, . . . , n,
Let b = id[t].
If t = 1, (lab′i,t,0, lab′i,t,1)i∈[N] ← pMHE0.FinDec(NewEnc

t, (pt−1
i)i∈[N]).

Otherwise, (lab′i,t,0, lab′i,t,1)i∈[N] ← pMHE′.FinDec(NewEnct, (pt−1
i)i∈[N]).

For each i ∈ [N], execute pt
i ← GC.Eval(1λ, ˜Bootti, lab

′i,t,b).
– Let y ← pMHE′.FinDec(NewEncn+1, (pn

i)i∈[N]).
– Output y.

7.1 Correctness

Lemma 2 (Correctness). The construction of pMHE is correct.

We defer the proof to the full version.

7.2 Security

Lemma 3 (Reusable Semi-malicious Security). The construction of
pMHE is reusable semi-malicious secure.

We defer the proof to the full version.

7.3 Instantiation

We can instantiate pMHE0 based on any two-round semi-malicious MPC in the
plain model and this in turn can be based on any two-round semi-malicious
oblivious transfer (OT); we crucially use the fact that pMHE0 need not satisfy
any succinctness property for this implication. Furthermore, we can instantiate
the two-round semi-malicious OT from learning with errors [13]. Similarly, we can
also instantiate one-time pMHE in the CRS model with ciphertext succcintness
from learning with errors (Theorem 6) and finally, the pseudorandom generator
mentioned above any pseudorandom function which in turn can be based on
one-way functions. Thus, we have the following theorem.

Theorem 7. Assuming LWE, there exists a (non-succinct) reusable pMHE
scheme in the plain model.

8 Result #1: Construction of Multi-key FHE

In the following we show how to combine a multi-key FHE with unstructured
decryption with a reusable pMHE without trusted setup to obtain a multi-key
FHE scheme in the plain model with one-round decryption.

Multi-key Fully-Homomorphic Encryption in the Plain Model 53

Theorem 8 (Multi-key FHE in the Plain Model). If there exists a seman-
tically secure multi-key FHE scheme MKFHE′ = (MKFHE′.KeyGen,MKFHE′.Enc,
MKFHE′.Eval,MKFHE′.Dec) without trusted setup and with unstructured decryp-
tion, and a reusable semi-malicious pMHE scheme pMHE = (pMHE.Enc,
pMHE.PrivEval, pMHE.FinDec) without trusted setup, then there exists a semi-
malicious multi-key FHE scheme MKFHE = (MKFHE.KeyGen,MKFHE.Enc,
MKFHE.Eval,MKFHE.PartDec,MKFHE.FinDec) without trusted setup.

Construction. Let Γ.params be the input, output size, and depth of the decryp-
tion circuit of the multi-key FHE scheme MKFHE′. The construction is described
below.

MKFHE.KeyGen(1λ, i):
Let (MKFHE′.pki,MKFHE′.ski) ← MKFHE′.KeyGen(1λ, i).
Let (pMHE.cti, pMHE.ski) ← pMHE.Enc(1λ, Γ.params, i,MKFHE′.ski)
Let pki = (MKFHE′.pki, pMHE.cti), and ski = (MKFHE′.ski, pMHE.ski).
Output (pki, ski).

MKFHE.Enc(pki, xi):
Parse pki as (MKFHE′.pki, pMHE.cti).
Let MKFHE′.cti ← MKFHE′.Enc(MKFHE′.pki, xi).
Let cti = (MKFHE′.cti, pMHE.cti).
Output cti.

MKFHE.Eval(C, (ctj)j∈[N]):
For all j ∈ [N] parse ctj as (MKFHE′.ctj , pMHE.ctj).
Compute MKFHE′.ĉt ← MKFHE′.Eval(C, (ctj)j∈[N]).
Let ĉt = (MKFHE′.ĉt, (pMHE.ctj)j∈[N]).
Output ĉt.

MKFHE.PartDec(ski, i, ĉt):
Parse ĉt as (MKFHE′.ĉt, (pMHE.ctj)j∈[N]).
Parse ski as (MKFHE′.ski, pMHE.ski).
Define Γ ((sj)j∈[N]) = MKFHE′.Dec((sj)j∈[N], ĉt).
Let pMHE.pi ← pMHE.PrivEval(pMHE.ski, Γ, (pMHE.ctj)j∈[N]).
Let pi = (pMHE.pi, ĉt)
Output pi.

MKFHE.FinDec((pj)j∈[N]):
For all j ∈ [N] parse pj as (pMHE.pj , ĉt).
Define Γ ((sj)j∈[N]) = MKFHE′.Dec((sj)j∈[N], ĉt).
Let y ← pMHE.FinDec(Γ, (pMHE.pj)j∈[N]).
Output y.

We defer the proof to the full version.

54 P. Ananth et al.

8.1 Instantiation

By Theorem 7 we can instantiate the reusable semi-malicious pMHE scheme from
the LWE problem (with sub-exponential modulus-to-noise ratio). For the multi-
key FHE with unstructured decryption, we can use the scheme from [29], which
is shown semantically secure against the Ring LWE and the DSPR problem.
Thus we obtain the following implication.

Theorem 9. Assuming LWE, Ring LWE, and DSPR, there exists a multi-key
FHE scheme with one-round decryption in the plain model.

9 Result #2: Construction of MHE

We now show how to construct an MHE scheme. In Sect. 7, we constructed
a pMHE scheme satisfying ciphertext succinctness. To obtain an MHE scheme
from pMHE with ciphertext succinctness, we perform the following two steps:
(1) first, we transform the above pMHE scheme into another scheme satisfying
succinctness (recall that succinctness is incomparable to ciphertext succinctness)
and, (2) secondly, we show how to achieve public evaluation generically to obtain
the MHE scheme.

9.1 Non-Succinct pMHE to Succinct pMHE

We now show how to generically transform a non-succinct pMHE scheme into
a succinct pMHE scheme. Furthermore, the transformation preserves the num-
ber of queries the adversary can make to the decryption oracle. That is, if the
underlying pMHE scheme is reusable, then so is the resulting scheme.

Theorem 10. Assuming LWE, there exists a generic transformation from any
non-succinct (Remark 3) semi-honest pMHE to a succinct (Definition 7) semi-
honest pMHE scheme.

We defer the proof to the full version.

9.2 pMHE to MHE: Private to Public Evaluation

We show how to construct an MHE scheme from pMHE and a leveled fully
homomorphic encryption scheme.

Theorem 11 (From pMHE to MHE). If there exits a reusable semi-
honest secure pMHE scheme pMHE with succinctness property, and a (lev-
eled) fully homomorphic encryption scheme FHE = (FHE.KeyGen,FHE.Enc,
FHE.Dec,FHE.Eval), then there exits a reusable semi-honest secure MHE scheme
MHE with succinctness property.

We defer the proof to the full version.

Acknowledgments. The second and third author were supported in part by a
DARPA/ARL Safeware Grant W911NF-15-C-0213, NSF CNS-1814919, NSF CAREER
1942789, Samsung Global Research Outreach award and Johns Hopkins University
Catalyst award.

Multi-key Fully-Homomorphic Encryption in the Plain Model 55

References

1. Agrawal, S., Clear, M., Frieder, O., Garg, S., O’Neill, A., Thaler, J.: Ad hoc multi-
input functional encryption. In: Vidick, T. (ed.) ITCS 2020, vol. 151, pp. 40:1–
40:41. LIPIcs, Seattle, WA, USA, 12–14 January 2020. https://doi.org/10.4230/
LIPIcs.ITCS.2020.40

2. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part 1. LNCS,
vol. 9814, pp. 153–178. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 6

3. Ananth, P., Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: From FE com-
biners to secure MPC and back. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019.
LNCS, vol. 11891, pp. 199–228. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-36030-6 9

4. Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal constructions and
robust combiners for indistinguishability obfuscation and witness encryption. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part 2. LNCS, vol. 9815, pp. 491–520.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 17

5. Ananth, P., Jain, A., Sahai, A.: Robust transforming combiners from indistin-
guishability obfuscation to functional encryption. In: Coron, J.-S., Nielsen, J.B.
(eds.) EUROCRYPT 2017, Part 1. LNCS, vol. 10210, pp. 91–121. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56620-7 4

6. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part 1. LNCS,
vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 15

7. Bartusek, J., Garg, S., Masny, D., Mukherjee, P.: Reusable two-round MPC from
DDH. Cryptology ePrint Archive, Report 2020/170 (2020). https://eprint.iacr.org/
2020/170

8. Benhamouda, F., Lin, H.: Multiparty reusable non-interactive secure computation.
Cryptology ePrint Archive, Report 2020/221 (2020). https://eprint.iacr.org/2020/
221

9. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: Guruswami, V. (ed.) 56th FOCS. pp. 171–190. IEEE Computer
Society Press, Berkeley, CA, USA, 17–20 Oct 2015. https://doi.org/10.1109/FOCS.
2015.20

10. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. J. ACM (JACM) 65(6), 39 (2018)

11. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure compu-
tation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part 1. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 19

12. Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing
rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017, Part 2. LNCS, vol. 10211, pp. 163–193. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56614-6 6

13. Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from
LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp.
370–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 14

https://doi.org/10.4230/LIPIcs.ITCS.2020.40
https://doi.org/10.4230/LIPIcs.ITCS.2020.40
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-030-36030-6_9
https://doi.org/10.1007/978-3-030-36030-6_9
https://doi.org/10.1007/978-3-662-53008-5_17
https://doi.org/10.1007/978-3-319-56620-7_4
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://eprint.iacr.org/2020/170
https://eprint.iacr.org/2020/170
https://eprint.iacr.org/2020/221
https://eprint.iacr.org/2020/221
https://doi.org/10.1109/FOCS.2015.20
https://doi.org/10.1109/FOCS.2015.20
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-319-56614-6_6
https://doi.org/10.1007/978-3-030-03810-6_14

56 P. Ananth et al.

14. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryp-
tion: rate-1 fully-homomorphic encryption and time-lock puzzles. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019, Part 2. LNCS, vol. 11892, pp. 407–437. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-36033-7 16

15. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE,
leakage resilience and circular security from new assumptions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018, Part 1. LNCS, vol. 10820, pp. 535–564.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 20

16. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part 1. LNCS, vol.
9814, pp. 190–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 8

17. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning
with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part 2. LNCS,
vol. 9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7 31

18. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part 3. LNCS, vol.
9816, pp. 93–122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53015-3 4

19. Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part 1. LNCS, vol. 10677, pp. 372–408.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 13

20. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part 1. LNCS, vol. 10401, pp.
537–569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 18

21. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC. pp. 169–178. ACM Press, Bethesda, 31 May –2 Jun
2009. https://doi.org/10.1145/1536414.1536440

22. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption and
rerandomizable yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 155–172. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 9

23. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: 25th FOCS, pp. 464–479. IEEE Computer Society Press,
Singer Island, 24–26 Oct 1984. https://doi.org/10.1109/SFCS.1984.715949

24. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM (JACM) 33(4), 792–807 (1986)

25. Halevi, S., Ishai, Y., Jain, A., Komargodski, I., Sahai, A., Yogev, E.: Non-
interactive multiparty computation without correlated randomness. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017, Part 3. LNCS, vol. 10626, pp. 181–211.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 7

26. Kirchner, P., Fouque, P.A.: Comparison between subfield and straightforward
attacks on NTRU. IACR Cryptol. ePrint Arch. 2016, 717 (2016)

27. Kirchner, P., Fouque, P.-A.: Revisiting lattice attacks on overstretched NTRU
parameters. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part 1.
LNCS, vol. 10210, pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-56620-7 1

https://doi.org/10.1007/978-3-030-36033-7_16
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-319-70500-2_13
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-14623-7_9
https://doi.org/10.1007/978-3-642-14623-7_9
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1007/978-3-319-70700-6_7
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1

Multi-key Fully-Homomorphic Encryption in the Plain Model 57

28. Lin, H., Pass, R., Seth, K., Telang, S.: Output-compressing randomized encodings
and applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part 1. LNCS,
vol. 9562, pp. 96–124. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49096-9 5

29. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Karloff, H.J., Pitassi,
T. (eds.) 44th ACM STOC, pp. 1219–1234. ACM Press, New York, 19–22 May
2012. https://doi.org/10.1145/2213977.2214086

30. Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and appli-
cations. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part 1. LNCS,
vol. 11692, pp. 620–649. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26948-7 22

31. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part 2. LNCS, vol.
9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 26

32. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith,
A. (eds.) TCC 2016, Part 2. LNCS, vol. 9986, pp. 217–238. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 9

33. Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and applications. In:
Thorup, M. (ed.) 59th FOCS, pp. 859–870. IEEE Computer Society Press, Paris,
7–9 October 2018. https://doi.org/10.1109/FOCS.2018.00086

34. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, Toronto, Ontario, 27–29 Octo-
ber 1986. https://doi.org/10.1109/SFCS.1986.25

https://doi.org/10.1007/978-3-662-49096-9_5
https://doi.org/10.1007/978-3-662-49096-9_5
https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-53644-5_9
https://doi.org/10.1109/FOCS.2018.00086
https://doi.org/10.1109/SFCS.1986.25

	Multi-key Fully-Homomorphic Encryption in the Plain Model
	1 Introduction
	1.1 Our Results
	1.2 Open Problems

	2 Technical Overview
	2.1 Reusability Transformation
	2.2 From pMHE to Multi-key FHE
	2.3 From pMHE to MHE
	2.4 Instantiating One-Time pMHE in the CRS Model

	3 Preliminaries
	3.1 Garbling Schemes
	3.2 Laconic Function Evaluation

	4 Multi-key Fully Homomorphic Encryption
	5 Multiparty Homomorphic Encryption
	5.1 Definition
	5.2 Security

	6 Intermediate Notion: MHE with Private Evaluation (pMHE)
	6.1 CRS Model
	6.2 One-Time pMHE
	6.3 Ciphertext Succinctness
	6.4 Instantiation

	7 Main Step: One-Time pMHE in CRS -3mu Reusable pMHE
	7.1 Correctness
	7.2 Security
	7.3 Instantiation

	8 Result #1: Construction of Multi-key FHE
	8.1 Instantiation

	9 Result #2: Construction of MHE
	9.1 Non-Succinct pMHE to Succinct pMHE
	9.2 pMHE to MHE: Private to Public Evaluation

	References

