Skip to main content

Bioactive Phytochemicals from Cotton (Gossypium hirsutum) Seed Oil Processing By-products

  • Living reference work entry
  • First Online:
Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-products

Abstract

Cotton (Gossypium hirsutum L.) is an important species used as a source of fiber for the textile industry and oil for biodiesel agro-industries. The main by-product generated from the oil extraction from cottonseed is cottonseed oil processing by-products, mainly used as animal feed or fertilizer. Although cottonseed by-product has a low price, one of the limitations of its application is its toxicity due to the presence of gossypol, which limits its use for human consumption. However, techniques for removing gossypol have been developed, allowing the application of cottonseed by-products and their fractions in food products. Therefore, research on the application of cottonseed by-product is a new advance and of great relevance for utilizing a by-product generated in significant quantities by the industry and is still undervalued. The by-product of cotton oil extraction has a high content of compounds of interest, such as protein (~41.2 g 100 g−1), fiber (~16.1 g 100 g−1), ash (~5.9 g 100 g−1), potassium (~1.5 g 100 g−1), phosphorus (~1.0 g 100 g−1), iron (~7.6 mg kg−1), and zinc (~56.4 mg kg−1) and also high composition in bioactive phytochemicals, including phenolic compounds and other molecules with biological potentials, such as antioxidant, antimicrobial, antihypertensive, neuroprotective, and antidepressant properties, among others. In this sense, this chapter provides an overview of the main components, including phytochemical components found in cottonseed oil processing by-products, to provide information and increase utilization, especially in food products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Rojo-Gutiérrez E, Buenrostro-Figueroa JJ, López-Martínez LX, Sepúlveda DR, Baeza-Jiménez R (2020) Biotechnological potential of cottonseed, a by-product of cotton production. In: Zakaria Z, Aguilar C, Kusumaningtyas R, Binod P (eds) Valorisation of agro-industrial residues – volume II: non-biological approaches, Applied environmental science and engineering for a sustainable future. Springer, New York

    Google Scholar 

  2. Dugan M (2009) Cotton. J Agric Food Inf 10(2):92–101. https://doi.org/10.1080/10496500902802742

    Article  Google Scholar 

  3. Avci U, Pattathil S, Singh B, Brown V, Hahn M, Haigler C (2013) Cotton fiber cell walls of Gossypium hirsutum and Gossypium barbadense have differences related to loosely-bound xyloglucan. PLoS One 8(2):e56315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nix A, Paull C, Colgrave M (2017) Flavonoid profile of the cotton plant, Gossypium hirsutum: a review. Plants 6(4):43

    Article  PubMed Central  CAS  Google Scholar 

  5. He Z, Zhang H, Olk D (2015) Chemical composition of defatted cottonseed and soy meal products. PLoS One 10(6):e0129933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Panagiotopoulos I, Pasias S, Bakker R, De Vrije T, Papayannakos N, Claassen P et al (2013) Biodiesel and biohydrogen production from cotton-seed cake in a biorefinery concept. Bioresour Technol 136:78–86

    Article  CAS  PubMed  Google Scholar 

  7. Oliveira Filho J, Rodrigues J, Valadares A, de Almeida A, Valencia-Mejia E, Fernandes K et al (2021) Bioactive properties of protein hydrolysate of cottonseed byproduct: antioxidant, antimicrobial, and angiotensin-converting enzyme (ACE) inhibitory activities. Waste Biomass Valor 12(3):1395–1404

    Article  CAS  Google Scholar 

  8. Egea M, Oliveira Filho J, Lemes A, Valencia-Mejia E, Fernandes K, de Figueiredo Sousa H et al (2020) Bioactive properties of protein hydrolysate of cottonseed byproduct: antioxidant, antimicrobial, and angiotensin-converting enzyme (ACE) inhibitory activity. FASEB J 34(S1):1

    Article  Google Scholar 

  9. Oliveira Filho J, Rodrigues J, Valadares A, Almeida A, Lima T, Takeuchi K et al (2019) Active food packaging: alginate films with cottonseed protein hydrolysates. Food Hydrocoll 92:267–275. https://doi.org/10.1016/j.foodhyd.2019.01.052

    Article  CAS  Google Scholar 

  10. He Z, Chapital D, Cheng H, Dowd M (2014) Comparison of adhesive properties of water- and phosphate buffer-washed cottonseed meals with cottonseed protein isolate on maple and poplar veneers. Int J Adhes Adhes 50:102–106

    Article  CAS  Google Scholar 

  11. Zhang B, Cui Y, Yin G, Li X, You Y (2010) Synthesis and swelling properties of hydrolyzed cottonseed protein composite superabsorbent hydrogel. Int J Polym Mater 59(12):1018–1032

    Article  CAS  Google Scholar 

  12. González J, Faría-Mármol J, Rodríguez C, Ouarti M, Alvir M, Centeno C (2006) Protein value for ruminants of a sample of whole cottonseed. Anim Sci 82(1):75–81

    Article  CAS  Google Scholar 

  13. Gerasimidis K, Fillou D, Babatzimcpoulou M, Tassou K, Katsikas H (2007) Preparation of an edible cottonseed protein concentrate and evaluation of its functional properties. Int J Food Sci Nutr 58(6):486–490

    Article  CAS  PubMed  Google Scholar 

  14. Zhuge Q, Posner E, Deyoe C (1988) Production study of a low-gossypol protein product from cottonseed meal. J Agric Food Chem 36(1):153–155

    Article  CAS  Google Scholar 

  15. Rhee K, Ziprin Y, Calhoun M (2001) Antioxidative effects of cottonseed meals as evaluated in cooked meat. Meat Sci 58(2):117–123

    Article  CAS  PubMed  Google Scholar 

  16. He Z, Cheng H, Chapital D, Dowd M (2014) Sequential fractionation of cottonseed meal to improve its wood adhesive properties. J Am Oil Chem Soc 91(1):151–158

    Article  CAS  Google Scholar 

  17. He Z, Klasson K, Wang D, Li N, Zhang H, Zhang D et al (2016) Pilot-scale production of washed cottonseed meal and co-products. Mod Appl Sci 10(2):25–33

    Article  CAS  Google Scholar 

  18. Cheng Z, Hardy R (2002) Apparent digestibility coefficients and nutritional value of cottonseed meal for rainbow trout (Oncorhynchus mykiss). Aquaculture 212(1–4):361–372

    Article  CAS  Google Scholar 

  19. Araujo R, Macedo S, Korn MG, Pimentel M, Bruns R, Ferreira S (2008) Mineral composition of wheat flour consumed in Brazilian cities. J Braz Chem Soc 19(5):935–942

    Article  CAS  Google Scholar 

  20. Vincent O, Adewale I, Dare O, Rachael A, Bolanle J-O (2009) Proximate and mineral composition of roasted and defatted cashew nut (Anarcadium occidentale) flour. Pak J Nutr 8(10):1649–1651

    Article  CAS  Google Scholar 

  21. Peterson L (1997) Potassium in nutrition. In: Handbook of nutritionally essential minerals. Marcel Dekker, New York, pp 153–183

    Google Scholar 

  22. Russo D, Bellasi A, Pota A, Russo L, Di Iorio B (2015) Effects of phosphorus-restricted diet and phosphate-binding therapy on outcomes in patients with chronic kidney disease. J Nephrol 28(1):73–80

    Article  CAS  PubMed  Google Scholar 

  23. Asuk AA, Agiang MA, Dasofunjo K, Willie AJ (2015) The biomedical significance of the phytochemical, proximate and mineral compositions of the leaf, stem bark and root of Jatropha curcas. Asian Pac J Trop Biomed 5(8):650–657

    Article  CAS  Google Scholar 

  24. Mafra D, Cozzolino S (2004) The importance of zinc in human nutrition. Rev Nutr 17(1):79–87

    Article  CAS  Google Scholar 

  25. Heuze V, Tran G, Bastianelli D, Hassoun P, Lebas F (2013) Cottonseed meal. Feedipedia.org. A programme by INRA, CIRAD, AFZ and FAO

  26. Ma X, Hu J, Shang Q, Liu H, Piao X (2019) Chemical composition, energy content and amino acid digestibility in cottonseed meals fed to growing pigs. J Appl Anim Res 47(1):280–288

    Article  CAS  Google Scholar 

  27. Gao D, Cao Y, Li H (2010) Antioxidant activity of peptide fractions derived from cottonseed protein hydrolysate. J Sci Food Agric 90(11):1855–1860

    CAS  PubMed  Google Scholar 

  28. Sun H, Yao X, Wang X, Wu Y, Liu Y, Tang J et al (2015) Chemical composition and in vitro antioxidant property of peptides produced from cottonseed meal by solid-state fermentation. CYTA J Food 13(2):264–272

    Article  CAS  Google Scholar 

  29. Qian J, Wang F, Liu S, Yun Z (2008) In situ alkaline transesterification of cottonseed oil for production of biodiesel and nontoxic cottonseed meal. Bioresour Technol 99(18):9009–9012

    Article  CAS  PubMed  Google Scholar 

  30. Yu J, Yang H, Wan X, Chen Y, Yang Z, Liu W et al (2020) Effects of cottonseed meal on slaughter performance, meat quality, and meat chemical composition in Jiangnan White goslings. Poult Sci 99(1):207–213

    Article  CAS  PubMed  Google Scholar 

  31. Tavares-Samay A, Dutra Junior W, Palhares L, Lopes C, Rabello C-V, Coelho A (2019) Determination of nutrient and energy values of cottonseed meal supplemented or not with phytase and protease for broiler chicks. Rev Bras Zootec 48:e20180142

    Article  Google Scholar 

  32. Dadgar S, Saad C, Alimon A, Kamarudin M, Nafisi Bahabadi M (2010) Comparison of Soybean meal and Cottonseed meal variety Pak (CSMP) on growth and feed using in rainbow trout (Oncorhynchus mykiss). Iran J Fish Sci 9(1):49–60

    Google Scholar 

  33. Delgado E, Valles-Rosales D, Flores N, Reyes-Jáquez D (2021) Evaluation of fish oil content and cottonseed meal with ultralow gossypol content on the functional properties of an extruded shrimp feed. Aquac Rep 19:100588

    Article  Google Scholar 

  34. Bhise S, Kaur A (2013) Development of functional chapatti from texturized deoiled cake of sunflower, soybean and flaxseed. Int J Eng Res Appl 3(5):1581–1587

    Google Scholar 

  35. Sanz A, Morales A, De la Higuera M, Gardenete G (1994) Sunflower meal compared with soybean meals as partial substitutes for fish meal in rainbow trout (Oncorhynchus mykiss) diets: protein and energy utilization. Aquaculture 128(3–4):287–300

    Article  Google Scholar 

  36. Kouser S, Mahmood K, Anwar F (2015) Variations in physicochemical attributes of seed oil among different varieties of cotton (Gossypium hirsutum L.). Pak J Bot 47(2):723–729

    CAS  Google Scholar 

  37. Matthäus B, Musazcan Özcan M (2015) Oil content, fatty acid composition and distributions of vitamin-E-active compounds of some fruit seed oils. Antioxidants 4(1):124–133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Okonkwo S, Okafor E (2016) Determination of the proximate composition, physicochemical analysis and characterization of fatty acid on the seed and oil of Gossypium hirsutum. Int J Chem 8(3):57–61

    Article  CAS  Google Scholar 

  39. do Prado Paim T, Viana P, Brandão E, Amador S, Barbosa T, Cardoso C, et al. (2014) Carcass traits and fatty acid profile of meat from lambs fed different cottonseed by-products. Small Rumin Res 116(2–3):71–77

    Google Scholar 

  40. Pereira E, Mizubuti I, Oliveira R, Pinto A, Ribeiro E, Gadelha C et al (2016) Supplementation with cashew nut and cottonseed meal to modify fatty acid content in lamb meat. J Food Sci 81(9):C2143–C21C8

    Article  CAS  PubMed  Google Scholar 

  41. Thirukkumar S, Hemalatha G, Vellaikumar S, Amutha S, Murugan M (2021) Studies on selected cotton seed (Gossypium sp) varieties nutrient profile for human consumption in Tamil Nadu. J Cotton Res Dev 35(1):79–87

    Google Scholar 

  42. Dowd M, Boykin D, Meredith W Jr, Campbell B, Bourland F, Gannaway J et al (2010) Fatty acid profiles of cottonseed genotypes from the national cotton variety trials. J Cotton Sci 14:64–73

    CAS  Google Scholar 

  43. Nagalakshmi D, Rao S, Panda A, Sastry V (2007) Cottonseed meal in poultry diets: a review. J Poult Sci 44(2):119–134

    Article  CAS  Google Scholar 

  44. Obert J, Hughes D, Sorenson W, McCann M, Ridley W (2007) A quantitative method for the determination of cyclopropenoid fatty acids in cottonseed, cottonseed meal, and cottonseed oil (Gossypium hirsutum) by high-performance liquid chromatography. J Agric Food Chem 55(6):2062–2067

    Article  CAS  PubMed  Google Scholar 

  45. USDA (2019) U.S. Department of Agriculture (USDA). Agricultural Research Service, 2019. Accessed 4 Apr 2021

    Google Scholar 

  46. NRC (2001) Nutrient requirements of dairy cattle. In: Committee on Animal Nutrition, Board on Agriculture, National Research Council (eds) National Research Council, 7th rev edn. National Academy Press, Washington, DC

    Google Scholar 

  47. Sterling K, Costa E, Henry M, Pesti G, Bakalli R (2002) Responses of broiler chickens to cottonseed- and soybean meal-based diets at several protein levels. Poult Sci 81(2):217–226

    Article  CAS  PubMed  Google Scholar 

  48. Watkins S, Saleh E, Waldroup P (2002) Reduction in dietary nutrient density aids in utilization of high protein. Int J Poult Sci 1(4):53–58

    Article  Google Scholar 

  49. Sahin A, Duru M, Kaya S, Camci O (2006) Effects of raw material in finisher diet on broiler performance in choice feeding system. Arch Geflugelkd 70(1):8–13

    CAS  Google Scholar 

  50. Thirumalaisamy G, Purushothaman M, Kumar P, Selvaraj P, Natarajan A, Senthilkumar S et al (2016) Nutritive and feeding value of cottonseed meal in broilers – a review. Adv Anim Vet Sci 4(8):398–404

    Article  Google Scholar 

  51. Tang J, Sun H, Yao X, Wu Y, Wang X, Feng J (2012) Effects of replacement of soybean meal by fermented cottonseed meal on growth performance, serum biochemical parameters and immune function of yellow-feathered broilers. Asian Australas J Anim Sci 25(3):393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bernard J, Tao S, Smith T (2016) Production response of lactating cows to diets based on corn or forage sorghum silage harvested on two dates and supplemented with soybean meal or mechanically pressed cottonseed meal. J Anim Sci 94:700–701

    Article  Google Scholar 

  53. Vázquez-Olivo G, Cabanillas-Bojórquez L, Elizalde-Romero C, Heredia J (2020) Phenolics from agro-industrial by-products. In: Plant phenolics in sustainable agriculture. Springer, Singapore, pp 331–346

    Chapter  Google Scholar 

  54. Oskoueian E, Abdullah N, Hendra R, Karimi E (2011) Bioactive compounds, antioxidant, xanthine oxidase inhibitory, tyrosinase inhibitory and anti-inflammatory activities of selected agro-industrial by-products. Int J Mol Sci 12(12):8610–8625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Salas C, Ekmay R, England J, Cerrate S, Coon C (2013) The TMEn, proximate analysis, amino acid content and amino acid digestibility of glandless and commercial cottonseed meal for broilers. Int J Poult Sci 12(4):212–216

    Article  Google Scholar 

  56. Gilani A, Kermanshahi H, Golian A, Tahmasbi A (2013) Impact of sodium bentonite addition to the diets containing cottonseed meal on productive traits of HY-line W-36 hens. J Anim Plant Sci 23:411–415

    CAS  Google Scholar 

  57. Kumar M, Potkule J, Patil S, Saxena S, Patil P, Mageshwaran V et al (2021) Extraction of ultra-low gossypol protein from cottonseed: characterization based on antioxidant activity, structural morphology and functional group analysis. LWT Food Sci Technol 140:110692

    Article  CAS  Google Scholar 

  58. Conceição A, Soares Neto C, Ribeiro J, Siqueira F, Miller R, Mendonça S (2018) Development of an RP-UHPLC-PDA method for quantification of free gossypol in cottonseed cake and fungal-treated cottonseed cake. PLoS One 13(5):e0196164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Câmara A, Gadelha I, Borges P, de Paiva S, Melo M, Soto-Blanco B (2015) Toxicity of gossypol from cottonseed cake to sheep ovarian follicles. PLoS One 10(11):e0143708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Tegtmeier D, Hurka S, Klüber P, Brinkrolf K, Heise P, Vilcinskas A (2021) Cottonseed press cake as a potential diet for industrially farmed black soldier fly larvae triggers adaptations of their bacterial and fungal gut microbiota. Front Microbiol 12:563

    Article  Google Scholar 

  61. Grewal J, Tiwari R, Khare S (2019) Secretome analysis and bioprospecting of lignocellulolytic fungal consortium for valorization of waste cottonseed cake by hydrolase production and simultaneous gossypol degradation. Waste Biomass Valor 11:1–16

    Google Scholar 

  62. Knutsen H, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S et al (2017) Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA J 15:e04851

    PubMed  PubMed Central  Google Scholar 

  63. Lago A, Neves I, Oliveira N, Botrel D, Minim L, de Resende J (2019) Ultrasound-assisted oil-in-water nanoemulsion produced from Pereskia aculeata Miller mucilage. Ultrason Sonochem 50:339–353

    Article  CAS  PubMed  Google Scholar 

  64. Sloley B, Urichuk L, Morley P, Durkin J, Shan J, Pang P et al (2000) Identification of kaempferol as a monoamine oxidase inhibitor and potential neuroprotectant in extracts of Ginkgo biloba leaves. J Pharm Pharmacol 52(4):451–459

    Article  CAS  PubMed  Google Scholar 

  65. Berger A, Venturelli S, Kallnischkies M, Böcker A, Busch C, Weiland T et al (2013) Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases. J Nutr Biochem 24(6):977–985

    Article  CAS  PubMed  Google Scholar 

  66. Imran M, Rauf A, Shah Z, Saeed F, Imran A, Arshad M et al (2019) Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: a comprehensive review. Phytother Res 33(2):263–275

    Article  PubMed  Google Scholar 

  67. Wong S, Chin K-Y, Ima-Nirwana S (2019) The osteoprotective effects of kaempferol: the evidence from in vivo and in vitro studies. Drug Des Devel Ther 13:3497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ren J, Lu Y, Qian Y, Chen B, Wu T, Ji G (2019) Recent progress regarding kaempferol for the treatment of various diseases. Exp Ther Med 18(4):2759–2776

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Salehi B, Fokou P, Sharifi-Rad M, Zucca P, Pezzani R, Martins N et al (2019) The therapeutic potential of naringenin: a review of clinical trials. Pharmaceuticals 12(1):11

    Article  CAS  PubMed Central  Google Scholar 

  70. Chin L, Hon C, Chellappan D, Chellian J, Madheswaran T, Zeeshan F et al (2020) Molecular mechanisms of action of naringenin in chronic airway diseases. Eur J Pharmacol 879:173139

    Article  CAS  PubMed  Google Scholar 

  71. Wang Q, Yang J, Zhang X-M, Zhou L, Liao X-L, Yang B (2015) Practical synthesis of naringenin. J Chem Res 39(8):455–457

    Article  CAS  Google Scholar 

  72. NCBI (2020) National Center for Biotechnology Information, PubChem Compound Database, cid=439246. Accessed 15 June 2020

    Google Scholar 

  73. Zobeiri M, Belwal T, Parvizi F, Naseri R, Farzaei M, Nabavi S et al (2018) Naringenin and its nano-formulations for fatty liver: cellular modes of action and clinical perspective. Curr Pharm Biotechnol 19(3):196–205

    Article  CAS  PubMed  Google Scholar 

  74. Jayachitra J, Nalini N (2012) Effect of naringenin (citrus flavanone) on lipid profile in ethanol-induced toxicity in rats. J Food Biochem 36(4):502–511

    Article  CAS  Google Scholar 

  75. Frutos MJ, Rincón-Frutos L, Valero-Cases E (2018) Rutin. In: Mohammad S, Silva AS (eds) Nonvitamin and nonmineral nutritional supplements. Academic Press, London, pp 111–117

    Google Scholar 

  76. Ganeshpurkar A, Saluja A (2017) The pharmacological potential of rutin. Saudi Pharm J 25(2):149–164

    Article  PubMed  Google Scholar 

  77. Marin F, Frutos M, Perez-Alvarez J, Martinez-Sanchez F, Del Rio J (2002) Flavonoids as nutraceuticals: structural related antioxidant properties and their role on ascorbic acid preservation. In: Studies in natural products chemistry. Elsevier, New York, pp 741–778

    Google Scholar 

  78. Gullón B, Lú-Chau T, Moreira M, Lema J, Eibes G (2017) Rutin: a review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci Technol 67:220–235

    Article  CAS  Google Scholar 

  79. Chua L (2013) A review on plant-based rutin extraction methods and its pharmacological activities. J Ethnopharmacol 150(3):805–817

    Article  CAS  PubMed  Google Scholar 

  80. Lee Y, Jeune K (2013) The effect of rutin on antioxidant and anti-inflammation in streptozotocin-induced diabetic rats. Appl Microsc 43(2):54–64

    Article  Google Scholar 

  81. Kim H-Y, Nam S-Y, Hong S-W, Kim M-J, Jeong H-J, Kim H-M (2015) Protective effects of rutin through regulation of vascular endothelial growth factor in allergic rhinitis. Am J Rhinol Allergy 29(3):e87–e94

    Article  PubMed  Google Scholar 

  82. Tian X, Ruan J, Huang J, Fang X, Mao Y, Wang L et al (2016) Gossypol: phytoalexin of cotton. Sci China Life Sci 59(2):122–129

    Article  CAS  PubMed  Google Scholar 

  83. Scheffler J (2016) Evaluating protective terpenoid aldehyde compounds in cotton (Gossypium hirsutum L.) roots. Am J Plant Sci 7(7):1086

    Article  CAS  Google Scholar 

  84. Lu Y, Li J, Dong C-E, Huang J, Zhou H-B, Wang W (2017) Recent advances in gossypol derivatives and analogs: a chemistry and biology view. Future Med Chem 9(11):1243–1275

    Article  CAS  PubMed  Google Scholar 

  85. Zhang Y, Han M, Wang Y (1994) Estrogen and progesterone cytosol receptor concentrations in patients with endometriosis and their changes after gossypol therapy. Zhonghua Fu Chan Ke Za Zhi 29(4):220–223. 53

    PubMed  Google Scholar 

  86. Band V, Hoffer A, Band H, Rhinehardt A, Knapp R, Matlin S et al (1989) Antiproliferative effect of gossypol and its optical isomers on human reproductive cancer cell lines. Gynecol Oncol 32(3):273–277

    Article  CAS  PubMed  Google Scholar 

  87. Sung B, Ravindran J, Prasad S, Pandey M, Aggarwal B (2010) Gossypol induces death receptor-5 through activation of the ROS-ERK-CHOP pathway and sensitizes colon cancer cells to TRAIL. J Biol Chem 291(32):16923

    Article  CAS  Google Scholar 

  88. Gadelha I, Fonseca N, Oloris S, Melo M, Soto-Blanco B (2014) Gossypol toxicity from cottonseed products. Sci World J 2014:231635

    Article  Google Scholar 

  89. Piccinelli AL, Veneziano A, Passi S, De Simone F, Rastrelli L (2007) Flavonol glycosides from whole cottonseed by-product. Food Chem 100(1):344–349

    Article  CAS  Google Scholar 

  90. Dai C, Ma H, Zhang L, Zhu S, Yin X, He R (2016) Effects of ultrafine grinding and pulsed magnetic field treatment on removal of free gossypol from cottonseed meal. Food Bioprocess Technol 9(9):1494–1501

    Article  Google Scholar 

  91. Romero A, Calori-Domingues M, Abdalla A, Augusto P (2021) Evaluation of ozone technology as an alternative for degradation of free gossypol in cottonseed meal: a prospective study. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 38:1–11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Buranelo Egea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

de Oliveira Filho, J.G., Bertolo, M.R.V., Gautério, G.V., de Mendonça, G.M.N., Lemes, A.C., Egea, M.B. (2021). Bioactive Phytochemicals from Cotton (Gossypium hirsutum) Seed Oil Processing By-products. In: Ramadan Hassanien, M.F. (eds) Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-products. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-63961-7_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63961-7_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63961-7

  • Online ISBN: 978-3-030-63961-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics