Skip to main content

Coronaviruses: What Should We Know About the Characteristics of Viruses?

  • Chapter
  • First Online:
Coronavirus Disease - COVID-19

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1318))

Abstract

The ongoing coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is highly contagious and fatal, posing a direct threat to human health and the global economy. Most strategies to prevent, control, and eradicate COVID-19 are established based on the specific characteristics of the pathogen. The quest for interruption and eradication of COVID-19 has moved research forward in understanding fundamental aspects of the virus genome, proteome, replication mechanisms, and virus-host interactions, which pave the way for the development of effective antiviral drugs and vaccines. This chapter provides an overview of recent progress in human coronavirus taxonomy, molecular features of the SARS-CoV-2 genome and proteome, and virus life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul-Rasool S, Fielding BC (2010) Understanding human coronavirus HCoV-NL63. Open Virol J 4:76–84. https://doi.org/10.2174/1874357901004010076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adedeji AO, Marchand B, Te Velthuis AJW, Snijder EJ, Weiss S, Eoff RL, Singh K, Sarafianos SG (2012a) Mechanism of nucleic acid unwinding by SARS-CoV helicase. PLoS One 7(5):e36521–e36521. https://doi.org/10.1371/journal.pone.0036521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adedeji AO, Singh K, Sarafianos SG (2012b) Structural and biochemical basis for the difference in the helicase activity of two different constructs of SARS-CoV helicase. Cell Mol Biol (Noisy-le-Grand) 58(1):114–121

    CAS  Google Scholar 

  • Alhammad YMO, Kashipathy MM, Roy A, Johnson DK, McDonald P, Battaile KP, Gao P, Lovell S, Fehr AR (2020) The SARS-CoV-2 conserved macrodomain is a highly efficient ADP-ribosylhydrolase enzyme. bioRxiv:2020.2005.2011.089375. https://doi.org/10.1101/2020.05.11.089375

  • Angeletti S, Benvenuto D, Bianchi M, Giovanetti M, Pascarella S, Ciccozzi M (2020) COVID-2019: the role of the nsp2 and nsp3 in its pathogenesis. J Med Virol 92(6):584–588. https://doi.org/10.1002/jmv.25719

    Article  PubMed  CAS  Google Scholar 

  • Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, Al-Rabiah FA, Al-Hajjar S, Al-Barrak A, Flemban H, Al-Nassir WN, Balkhy HH, Al-Hakeem RF, Makhdoom HQ, Zumla AI, Memish ZA (2013) Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis 13(9):752–761. https://doi.org/10.1016/S1473-3099(13)70204-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Benvenuto D, Angeletti S, Giovanetti M, Bianchi M, Pascarella S, Cauda R, Ciccozzi M, Cassone A (2020) Evolutionary analysis of SARS-CoV-2: how mutation of non-structural protein 6 (NSP6) could affect viral autophagy. J Infect. https://doi.org/10.1016/j.jinf.2020.03.058

  • Bhardwaj K, Sun J, Holzenburg A, Guarino LA, Kao CC (2006) RNA recognition and cleavage by the SARS coronavirus endoribonuclease. J Mol Biol 361(2):243–256. https://doi.org/10.1016/j.jmb.2006.06.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bianchi M, Benvenuto D, Giovanetti M, Angeletti S, Ciccozzi M, Pascarella S (2020) Sars-CoV-2 envelope and membrane proteins: differences from closely related proteins linked to cross-species transmission? Preprints

    Google Scholar 

  • Bouvet M, Debarnot C, Imbert I, Selisko B, Snijder EJ, Canard B, Decroly E (2010) In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog 6(4):e1000863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouvet M, Imbert I, Subissi L, Gluais L, Canard B, Decroly E (2012) RNA 3′-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proc Natl Acad Sci 109(24):9372–9377. https://doi.org/10.1073/pnas.1201130109

    Article  PubMed  PubMed Central  Google Scholar 

  • Burrell CJ, Howard CR, Murphy FA (2017) Chapter 31 – coronaviruses. In: Burrell CJ, Howard CR, Murphy FA (eds) Fenner and White’s medical virology, 5th edn. Academic, London, pp 437–446. https://doi.org/10.1016/B978-0-12-375156-0.00031-X

    Chapter  Google Scholar 

  • Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen K-Y (2015) Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin Microbiol Rev 28(2):465–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clasman JR, Everett RK, Srinivasan K, Mesecar AD (2020) Decoupling deISGylating and deubiquitinating activities of the MERS virus papain-like protease. Antivir Res 174:104661

    Article  CAS  PubMed  Google Scholar 

  • Claverie J-M (2020) The likely role of de-mono-ADP-ribosylation of STAT1 by the SARS-CoV-2 nsp3 protein in the cytokine storm syndrome of COVID-19

    Google Scholar 

  • Copertino Jr DC, Lima B, Duarte R, Wilkin T, Gulick R, de Mulder Rougvie M, Nixon D (2020) Antiretroviral drug activity and potential for pre-exposure prophylaxis against COVID-19 and HIV infection

    Google Scholar 

  • Davidson AD, Williamson MK, Lewis S, Shoemark D, Carroll MW, Heesom K, Zambon M, Ellis J, Lewis PA, Hiscox JA, Matthews DA (2020) Characterisation of the transcriptome and proteome of SARS-CoV-2 using direct RNA sequencing and tandem mass spectrometry reveals evidence for a cell passage induced in-frame deletion in the spike glycoprotein that removes the furin-like cleavage site. bioRxiv:2020.2003.2022.002204. https://doi.org/10.1101/2020.03.22.002204

  • Decroly E, Debarnot C, Ferron F, Bouvet M, Coutard B, Imbert I, Gluais L, Papageorgiou N, Sharff A, Bricogne G, Ortiz-Lombardia M, Lescar J, Canard B (2011) Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2’-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog 7(5):e1002059–e1002059. https://doi.org/10.1371/journal.ppat.1002059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dinesh DC, Chalupska D, Silhan J, Veverka V, Boura E (2020) Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. bioRxiv:2020.2004.2002.022194. https://doi.org/10.1101/2020.04.02.022194

  • Eckerle LD, Becker MM, Halpin RA, Li K, Venter E, Lu X, Scherbakova S, Graham RL, Baric RS, Stockwell TB, Spiro DJ, Denison MR (2010) Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog 6(5):e1000896. https://doi.org/10.1371/journal.ppat.1000896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Egloff M-P, Malet H, Putics A, Heinonen M, Dutartre H, Frangeul A, Gruez A, Campanacci V, Cambillau C, Ziebuhr J (2006) Structural and functional basis for ADP-ribose and poly (ADP-ribose) binding by viral macro domains. J Virol 80(17):8493–8502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elfiky A, Ibrahim N, Elshemey W (2020) Drug repurposing against MERS CoV and SARS-COV-2 PLpro in silico

    Google Scholar 

  • Frick DN, Virdi RS, Vuksanovic N, Dahal N, Silvaggi NR (2020) Molecular basis for ADP-ribose binding to the macro-X domain of SARS-CoV-2 Nsp3. bioRxiv:2020.2003.2031.014639. https://doi.org/10.1101/2020.03.31.014639

  • Gaunt ER, Hardie A, Claas ECJ, Simmonds P, Templeton KE (2010) Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol 48(8):2940–2947. https://doi.org/10.1128/jcm.00636-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graham RL, Baric RS (2010) Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J Virol 84(7):3134–3146. https://doi.org/10.1128/jvi.01394-09

    Article  PubMed  CAS  Google Scholar 

  • Graham RL, Sims AC, Brockway SM, Baric RS, Denison MR (2005) The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication. J Virol 79(21):13399–13411. https://doi.org/10.1128/jvi.79.21.13399-13411.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gui M, Song W, Zhou H, Xu J, Chen S, Xiang Y, Wang X (2017) Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res 27(1):119–129

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Hu B-J, Yang X-L, Zeng L-P, Li B, Ouyang S-Y, Shi Z-L (2020) Evolutionary arms race between virus and host drives genetic diversity in bat SARS related coronavirus spike genes. bioRxiv:2020.2005.2013.093658. https://doi.org/10.1101/2020.05.13.093658

  • Hillen HS, Kokic G, Farnung L, Dienemann C, Tegunov D, Cramer P (2020) Structure of replicating SARS-CoV-2 polymerase. bioRxiv:2020.2004.2027.063180. https://doi.org/10.1101/2020.04.27.063180

  • Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu N-H, Nitsche A, Müller MA, Drosten C, Pöhlmann S (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2):271–280.e278. https://doi.org/10.1016/j.cell.2020.02.052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Irigoyen N, Firth AE, Jones JD, Chung BY-W, Siddell SG, Brierley I (2016) High-resolution analysis of coronavirus gene expression by RNA sequencing and ribosome profiling. PLoS Pathog 12(2)

    Google Scholar 

  • Ivanov KA, Thiel V, Dobbe JC, van der Meer Y, Snijder EJ, Ziebuhr J (2004) Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol 78(11):5619–5632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C (2020a) Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature:1–5

    Google Scholar 

  • Jin Z, Zhao Y, Sun Y, Zhang B, Wang H, Wu Y, Zhu Y, Zhu C, Hu T, Du X (2020b) Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug Carmofur. Nat Struct Mol Biol:1–4

    Google Scholar 

  • Jockusch S, Tao C, Li X, Anderson TK, Chien M, Kumar S, Russo JJ, Kirchdoerfer RN, Ju J (2020) Triphosphates of the two components in DESCOVY and TRUVADA are inhibitors of the SARS-CoV-2 polymerase. bioRxiv:2020.2004.2003.022939. https://doi.org/10.1101/2020.04.03.022939

  • Kamitani W, Huang C, Narayanan K, Lokugamage KG, Makino S (2009) A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein. Nat Struct Mol Biol 16(11):1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang S, Yang M, Hong Z, Zhang L, Huang Z, Chen X, He S, Zhou Z, Zhou Z, Chen Q, Yan Y, Zhang C, Shan H, Chen S (2020) Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm Sin B. https://doi.org/10.1016/j.apsb.2020.04.009

  • Kelly JA, Dinman JD (2020) Structural and functional conservation of the programmed −1 ribosomal frameshift signal of SARS-CoV-2. bioRxiv:2020.2003.2013.991083. https://doi.org/10.1101/2020.03.13.991083

  • Kim D, Lee J-Y, Yang J-S, Kim JW, Kim VN, Chang H (2020a) The architecture of SARS-CoV-2 transcriptome. Cell 181(4):914–921.e910. https://doi.org/10.1016/j.cell.2020.04.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim Y, Jedrzejczak R, Maltseva NI, Wilamowski M, Endres M, Godzik A, Michalska K, Joachimiak A (2020b) Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein Sci n/a (n/a). https://doi.org/10.1002/pro.3873

  • Kneller DW, Phillips G, O’Neill HM, Jedrzejczak R, Stols L, Langan P, Joachimiak A, Coates L, Kovalevsky A (2020) Structural plasticity of the SARS-CoV-2 3CL M pro active site cavity revealed by room temperature X-ray crystallography

    Google Scholar 

  • Krafcikova P, Silhan J, Nencka R, Boura E (2020) Structural analysis of the SARS-CoV-2 methyltransferase complex involved in coronaviral RNA cap creation. bioRxiv:2020.2005.2015.097980. https://doi.org/10.1101/2020.05.15.097980

  • Ku Z, Ye X, Toa Salazar G, Zhang N, An Z (2020) Antibody therapies for the treatment of COVID-19. Antibody Ther. https://doi.org/10.1093/abt/tbaa007

  • Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, Luo S, Wong SK, Huang IC, Xu K, Vasilieva N (2005) Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J 24(8):1634–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Guo M, Tian X, Liu C, Wang X, Yang X, Wu P, Xiao Z, Qu Y, Yin Y, Fu J, Zhu Z, Liu Z, Peng C, Zhu T, Liang Q (2020) Virus-host interactome and proteomic survey of PMBCs from COVID-19 patients reveal potential virulence factors influencing SARS-CoV-2 pathogenesis. bioRxiv:2020.2003.2031.019216. https://doi.org/10.1101/2020.03.31.019216

  • Liang Q, Li J, Guo M, Tian X, Liu C, Wang X, Yang X, Wu P, Xiao Z, Qu Y (2020) Virus-host interactome and proteomic survey of PMBCs from COVID-19 patients reveal potential virulence factors influencing SARS-CoV-2 pathogenesis. bioRxiv

    Google Scholar 

  • Ling R, Dai Y, Huang B, Huang W, Yu J, Lu X, Jiang Y (2020) In silico design of antiviral peptides targeting the spike protein of SARS-CoV-2. Peptides 130:170328. https://doi.org/10.1016/j.peptides.2020.170328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Littler DR, Gully BS, Colson RN, Rossjohn J (2020) Crystal structure of the SARS-CoV-2 non-structural protein 9, Nsp9. bioRxiv:2020.2003.2028.013920. https://doi.org/10.1101/2020.03.28.013920

  • Liu P, Li L, Millership JJ, Kang H, Leibowitz JL, Giedroc DP (2007) A U-turn motif-containing stem-loop in the coronavirus 5′ untranslated region plays a functional role in replication. RNA 13(5):763–780. https://doi.org/10.1261/rna.261807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu DX, Fung TS, Chong KK, Shukla A, Hilgenfeld R (2014) Accessory proteins of SARS-CoV and other coronaviruses. Antivir Res 109:97–109. https://doi.org/10.1016/j.antiviral.2014.06.013

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Yang Y, Gao Y, Shen C, Ju B, Liu C, Tang X, Wei J, Ma X, Liu W (2020a) Viral architecture of SARS-CoV-2 with post-fusion spike revealed by Cryo-EM. bioRxiv

    Google Scholar 

  • Liu Y, Hu G, Wang Y, Zhao X, Ji F, Ren W, Gong M, Ju X, Li C, Hong J, Zhu Y, Cai X, Wu J, Lan X, Xie Y, Wang X, Yuan Z, Zhang R, Ding Q (2020b) Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. bioRxiv:2020.2004.2022.046565. https://doi.org/10.1101/2020.04.22.046565

  • Masters P, Perlman S (2013) Coronaviridae, pp 825–858. Fields virology 1

    Google Scholar 

  • Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ (2020) COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395(10229):1033–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mielech AM, Kilianski A, Baez-Santos YM, Mesecar AD, Baker SC (2014) MERS-CoV papain-like protease has deISGylating and deubiquitinating activities. Virology 450–451:64–70. https://doi.org/10.1016/j.virol.2013.11.040

    Article  PubMed  CAS  Google Scholar 

  • Minskaia E, Hertzig T, Gorbalenya AE, Campanacci V, Cambillau C, Canard B, Ziebuhr J (2006) Discovery of an RNA virus 3′→5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci U S A 103(13):5108–5113. https://doi.org/10.1073/pnas.0508200103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mirza MU, Froeyen M (2020) Structural elucidation of SARS-CoV-2 vital proteins: computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. J Pharm Anal. https://doi.org/10.1016/j.jpha.2020.04.008

  • Navratil V, Lionnard L, Longhi S, Hardwick JM, Combet C, Aouacheria A (2020) The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope (E) protein harbors a conserved BH3-like sequence. bioRxiv:2020.2004.2009.033522. https://doi.org/10.1101/2020.04.09.033522

  • Nomburg J, Meyerson M, DeCaprio JA (2020) Noncanonical junctions in subgenomic RNAs of SARS-CoV-2 lead to variant open reading frames. bioRxiv:2020.2004.2028.066951. https://doi.org/10.1101/2020.04.28.066951

  • Ogando NS, Ferron F, Decroly E, Canard B, Posthuma CC, Snijder EJ (2019) The curious case of the Nidovirus exoribonuclease: its role in RNA synthesis and replication fidelity. Front Microbiol 10(1813). https://doi.org/10.3389/fmicb.2019.01813

  • Organization WH (2004) Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003 based on data as of the 31 December 2003. Computer software] http://www.who.int/csr/sars/country/table2004_04_21/en/index.html

  • Peiris J, Guan Y, Yuen K (2004) Severe acute respiratory syndrome. Nat Med 10(12):S88–S97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pene F, Merlat A, Vabret A, Rozenberg F, Buzyn A, Dreyfus F, Cariou A, Freymuth F, Lebon P (2003) Coronavirus 229E-related pneumonia in immunocompromised patients. Clin Infect Dis 37(7):929–932. https://doi.org/10.1086/377612

    Article  PubMed  Google Scholar 

  • Peng Q, Peng R, Yuan B, Zhao J, Wang M, Wang X, Wang Q, Sun Y, Fan Z, Qi J, Gao GF, Shi Y (2020) Structural and biochemical characterization of nsp12-nsp7-nsp8 core polymerase complex from COVID-19 virus. bioRxiv:2020.2004.2023.057265. https://doi.org/10.1101/2020.04.23.057265

  • Putics A, Filipowicz W, Hall J, Gorbalenya AE, Ziebuhr J (2005) ADP-ribose-1″-monophosphatase: a conserved coronavirus enzyme that is dispensable for viral replication in tissue culture. J Virol 79(20):12721–12731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyrc K, Berkhout B, van der Hoek L (2007) The novel human coronaviruses NL63 and HKU1. J Virol 81(7):3051–3057

    Article  CAS  PubMed  Google Scholar 

  • Rangan R, Watkins AM, Kladwang W, Das R (2020a) De novo 3D models of SARS-CoV-2 RNA elements and small-molecule-binding RNAs to guide drug discovery. bioRxiv:2020.2004.2014.041962. https://doi.org/10.1101/2020.04.14.041962

  • Rangan R, Zheludev IN, Das R (2020b) RNA genome conservation and secondary structure in SARS-CoV-2 and SARS-related viruses. bioRxiv:2020.2003.2027.012906. https://doi.org/10.1101/2020.03.27.012906

  • Ratia K, Kilianski A, Baez-Santos YM, Baker SC, Mesecar A (2014) Structural basis for the ubiquitin-linkage specificity and deISGylating activity of SARS-CoV papain-like protease. PLoS Pathog 10(5):e1004113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romano M, Ruggiero A, Squeglia F, Maga G, Berisio R (2020) A structural view at SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping

    Google Scholar 

  • Rosas-Lemus M, Minasov G, Shuvalova L, Inniss NL, Kiryukhina O, Wiersum G, Kim Y, Jedrzejczak R, Maltseva NI, Endres M, Jaroszewski L, Godzik A, Joachimiak A, Satchell KJF (2020) The crystal structure of nsp10-nsp16 heterodimer from SARS-CoV-2 in complex with S-adenosylmethionine. bioRxiv:2020.2004.2017.047498. https://doi.org/10.1101/2020.04.17.047498

  • Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Peñaranda S, Bankamp B, Maher K, Chen M-h, Tong S, Tamin A, Lowe L, Frace M, DeRisi JL, Chen Q, Wang D, Erdman DD, Peret TCT, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, McCaustland K, Olsen-Rasmussen M, Fouchier R, Günther S, Osterhaus ADME, Drosten C, Pallansch MA, Anderson LJ, Bellini WJ (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300(5624):1394–1399. https://doi.org/10.1126/science.1085952

    Article  PubMed  CAS  Google Scholar 

  • Rut W, Lv Z, Zmudzinski M, Patchett S, Nayak D, Snipas SJ, El Oualid F, Huang TT, Bekes M, Drag M, Olsen SK (2020a) Activity profiling and structures of inhibitor-bound SARS-CoV-2-PLpro protease provides a framework for anti-COVID-19 drug design. bioRxiv:2020.2004.2029.068890. https://doi.org/10.1101/2020.04.29.068890

  • Rut W, Zmudzinski M, Lyu Z, Nayak D, Snipas SJ, Bekes M, Huang TT, Olsen SK, Drag M (2020b) Activity profiling of SARS-CoV-2-PLpro protease provides structural framework for anti-COVID-19 drug design. bioRxiv:2020.2004.2029.068890. https://doi.org/10.1101/2020.04.29.068890

  • Saikatendu KS, Joseph JS, Subramanian V, Clayton T, Griffith M, Moy K, Velasquez J, Neuman BW, Buchmeier MJ, Stevens RC (2005) Structural basis of severe acute respiratory syndrome coronavirus ADP-ribose-1 ″-phosphate dephosphorylation by a conserved domain of nsP3. Structure 13(11):1665–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai Y, Kawachi K, Terada Y, Omori H, Matsuura Y, Kamitani W (2017) Two-amino acids change in the nsp4 of SARS coronavirus abolishes viral replication. Virology 510:165–174. https://doi.org/10.1016/j.virol.2017.07.019

    Article  PubMed  CAS  Google Scholar 

  • Sarkar M, Saha S (2020) Structural insight into the putative role of novel SARS CoV-2 E protein in viral infection: a potential target for LAV development and therapeutic strategies. bioRxiv:2020.2005.2011.088781. https://doi.org/10.1101/2020.05.11.088781

  • Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F (2020a) Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci:202003138. https://doi.org/10.1073/pnas.2003138117

  • Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F (2020b) Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci 117(21):11727–11734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Z, Hu Z (2008) A review of studies on animal reservoirs of the SARS coronavirus. Virus Res 133(1):74–87. https://doi.org/10.1016/j.virusres.2007.03.012

    Article  PubMed  CAS  Google Scholar 

  • Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A, Schulz L, Widera M, Mehdipour A, Tascher G (2020) Inhibition of papain-like protease PLpro blocks SARS-CoV-2 spread and promotes anti-viral immunity

    Google Scholar 

  • Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T (2011) A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol 85(2):873–882

    Article  CAS  PubMed  Google Scholar 

  • Song H-D, Tu C-C, Zhang G-W, Wang S-Y, Zheng K, Lei L-C, Chen Q-X, Gao Y-W, Zhou H-Q, Xiang H (2005) Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci 102(7):2430–2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahir Ul Qamar M, Alqahtani SM, Alamri MA, Chen L-L (2020) Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal. https://doi.org/10.1016/j.jpha.2020.03.009

  • Taiaroa G, Rawlinson D, Featherstone L, Pitt M, Caly L, Druce J, Purcell D, Harty L, Tran T, Roberts J (2020) Direct RNA sequencing and early evolution of SARS-CoV-2. bioRxiv

    Google Scholar 

  • Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S (2020) Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antivir Res 178:104792–104792. https://doi.org/10.1016/j.antiviral.2020.104792

    Article  PubMed  CAS  Google Scholar 

  • Tanner JA, Watt RM, Chai Y-B, Lu L-Y, Lin MC, Peiris JM, Poon LL, Kung H-F, Huang J-D (2003) The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5′ to 3′ viral helicases. J Biol Chem 278(41):39578–39582

    Article  CAS  PubMed  Google Scholar 

  • Thomas S (2020) The structure of the membrane protein of SARS-CoV-2 resembles the sugar transporter semiSWEET

    Google Scholar 

  • Thoms M, Buschauer R, Ameismeier M, Koepke L, Denk T, Hirschenberger M, Kratzat H, Hayn M, Mackens-Kiani T, Cheng J, Stürzel CM, Fröhlich T, Berninghausen O, Becker T, Kirchhoff F, Sparrer KMJ, Beckmann R (2020) Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. bioRxiv:2020.2005.2018.102467. https://doi.org/10.1101/2020.05.18.102467

  • Vabret A, Mourez T, Gouarin S, Petitjean J, Freymuth F (2003) An outbreak of coronavirus OC43 respiratory infection in Normandy, France. Clin Infect Dis 36(8):985–989. https://doi.org/10.1086/374222

    Article  PubMed  Google Scholar 

  • Viehweger A, Krautwurst S, Lamkiewicz K, Madhugiri R, Ziebuhr J, Hölzer M, Marz M (2019) Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis. Genome Res 29(9):1545–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walls AC, Tortorici MA, Snijder J, Xiong X, Bosch B-J, Rey FA, Veesler D (2017) Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc Natl Acad Sci 114(42):11157–11162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell

    Google Scholar 

  • Wan Y, Shang J, Graham R, Baric RS, Li F (2020) Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 94(7). https://doi.org/10.1128/JVI.00127-20

  • Wang S, Chen S, Lu H, Zhang X, Tan Y, Ling Y, Lu G, Liu F, Yi Z, Jia X (2020a) Viral and host factors related to the clinic outcome of the SARS-CoV-2 infection

    Google Scholar 

  • Wang T, Du Z, Zhu F, Cao Z, An Y, Gao Y, Jiang B (2020b) Comorbidities and multi-organ injuries in the treatment of COVID-19. Lancet 395(10228):e52. https://doi.org/10.1016/S0140-6736(20)30558-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W (2020c) Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. https://doi.org/10.1001/jama.2020.3786

  • Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M (2020) Site-specific analysis of the SARS-CoV-2 glycan shield. bioRxiv:2020.2003.2026.010322. https://doi.org/10.1101/2020.03.26.010322

  • WHO (2020a) MERS-CoV case report. https://www.who.int/emergencies/mers-cov/en/

  • WHO (2020b) SARS-CoV case report. https://www.who.int/csr/don/archive/disease/severe_acute_respiratory_syndrome/en/

  • Wilson L, Mckinlay C, Gage P, Ewart G (2004) SARS coronavirus E protein forms cation-selective ion channels. Virology 330(1):322–331

    Article  CAS  PubMed  Google Scholar 

  • Woo PC, Lau SK, Tsoi HW, Huang Y, Poon RW, Chu CM, Lee RA, Luk WK, Wong GK, Wong BH, Cheng VC, Tang BS, Wu AK, Yung RW, Chen H, Guan Y, Chan KH, Yuen KY (2005) Clinical and molecular epidemiological features of coronavirus HKU1-associated community-acquired pneumonia. J Infect Dis 192(11):1898–1907. https://doi.org/10.1086/497151

    Article  PubMed  CAS  Google Scholar 

  • Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367(6483):1260–1263. https://doi.org/10.1126/science.abb2507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, Wang Q, Xu Y, Li M, Li X, Zheng M, Chen L, Li H (2020a) Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. https://doi.org/10.1016/j.apsb.2020.02.008

  • Wu Y, Li C, Xia S, Tian X, Wang Z, Kong Y, Gu C, Zhang R, Tu C, Xie Y (2020b) Fully human single-domain antibodies against SARS-CoV-2. bioRxiv

    Google Scholar 

  • Wu Y, Wang F, Shen C, Peng W, Li D, Zhao C, Li Z, Li S, Bi Y, Yang Y, Gong Y, Xiao H, Fan Z, Tan S, Wu G, Tan W, Lu X, Fan C, Wang Q, Liu Y, Zhang C, Qi J, Gao GF, Gao F, Liu L (2020c) A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science:eabc2241. https://doi.org/10.1126/science.abc2241

  • Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, Qi F, Bao L, Du L, Liu S, Qin C, Sun F, Shi Z, Zhu Y, Jiang S, Lu L (2020) Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 30(4):343–355. https://doi.org/10.1038/s41422-020-0305-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang X, Yu Y, Xu J, Shu H, Ja X, Liu H, Wu Y, Zhang L, Yu Z, Fang M, Yu T, Wang Y, Pan S, Zou X, Yuan S, Shang Y (2020) Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 8(5):475–481. https://doi.org/10.1016/S2213-2600(20)30079-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, Lu G, Wu Y, Yan J, Shi Y (2017) Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun 8:15092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R (2020) Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368(6489):409–412. https://doi.org/10.1126/science.abb3405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng Y-Y, Ma Y-T, Zhang J-Y, Xie X (2020) COVID-19 and the cardiovascular system. Nat Rev Cardiol 17(5):259–260

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273. https://doi.org/10.1038/s41586-020-2012-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ji, W. (2021). Coronaviruses: What Should We Know About the Characteristics of Viruses?. In: Rezaei, N. (eds) Coronavirus Disease - COVID-19. Advances in Experimental Medicine and Biology, vol 1318. Springer, Cham. https://doi.org/10.1007/978-3-030-63761-3_2

Download citation

Publish with us

Policies and ethics