Skip to main content

Applying Neural Networks to a Fractal Inverse Problem

  • Conference paper
  • First Online:
Recent Developments in Mathematical, Statistical and Computational Sciences (AMMCS 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 343))

  • 912 Accesses

Abstract

With the increasing potential of convolutional neural networks in image-related problems, we apply these methods to a fractal inverse problem: Given the attractor of a contractive iterated function system (IFS) what are the parameters that define that IFS? We create and analyze fractal databases, and use them to train various convolutional neural networks to predict these parameters. The neural network outputs produce visually different fractals, however, they could be used to create an initial population for other search algorithms. Additionally, the neural networks become increasingly accurate with increasing numbers of functions defining the IFS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abiko, T., Kawamata, M.: IFS coding of non-homogeneous fractal images using Gröbner basis. In: Proceedings of the IEEE International Conference on Image Processing, pp. 25–29 (1999)

    Google Scholar 

  2. Barnsley, M.: Fractals Everywhere, 2nd edn. Academic Press, San Diego (1993)

    MATH  Google Scholar 

  3. Berkner, K.: A wavelet-based solution to the inverse problem for fractal interpolation functions. In: Lévy Véhel, J., Lutton, E., Tricot, C. (eds.) Fractals in Engineering, pp. 81–92. Springer, London (1997). https://doi.org/10.1007/978-1-4471-0995-2_7

  4. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. Las Vegas, NV (2016). https://doi.org/10.1109/CVPR.2016.90

  6. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: IEEE International Conference on Computer Vision (ICCV), pp. 1026–1034. Santiago (2015). https://doi.org/10.1109/ICCV.2015.123

  7. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift (2015). arXiv preprint arXiv:1502.03167v3

  8. Nettleton, D.J., Garigliano, R.: Evolutionary algorithms and a fractal inverse problem. Biosystems 33, 221–231 (1994). https://doi.org/10.1016/0303-2647(94)90007-8

    Article  Google Scholar 

  9. Quirce, J., Iglesias, A., Gálvez, A.: Cuckoo search algorithm approach for the IFS Inverse Problem of 2D binary fractal images. In: Tan, Y., Takagi, H., Shi, Y. (eds.) Advances in Swarm Intelligence, pp. 543–551. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61824-1_59

  10. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. The J. Mach. Learn. Res. 1929–1958 (2014)

    Google Scholar 

  11. Vrscay, E.R.: Moment and collage methods for the inverse problem of fractal construction with iterated function systems. In: Peitgen, H.O., et al. (eds.) Fractals Fundam. Appl. Sci. Elsevier, Amsterdam (1991)

    Google Scholar 

  12. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5987–5995. Honolulu, HI (2017). https://doi.org/10.1109/CVPR.2017.634

Download references

Acknowledgements

This research was enabled in part by support provided by Compute Ontario (www.computeontario.ca) and Compute Canada (www.computecanada.ca).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liam Graham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Graham, L., Demers, M. (2021). Applying Neural Networks to a Fractal Inverse Problem. In: Kilgour, D.M., Kunze, H., Makarov, R., Melnik, R., Wang, X. (eds) Recent Developments in Mathematical, Statistical and Computational Sciences. AMMCS 2019. Springer Proceedings in Mathematics & Statistics, vol 343. Springer, Cham. https://doi.org/10.1007/978-3-030-63591-6_15

Download citation

Publish with us

Policies and ethics