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Chapter 6
Methods of Measuring Spatial Accessibility 
to Health Care in Uganda

Paul Ouma, Peter M. Macharia, Emelda Okiro, and Victor Alegana

Abstract  Ensuring everyone has access to health care regardless of demographic, 
geographic and social economic status is a key component of universal health cov-
erage. In sub-Saharan Africa, where populations are often sparsely distributed and 
services scarcely available, reducing distances or travel time to facilities is key in 
ensuring access to health care. This chapter traces the key concepts in measuring 
spatial accessibility by reviewing six methods—Provider-to-population ratio, 
Euclidean distance, gravity models, kernel density, network analysis and cost dis-
tance analysis—that can be used to model spatial accessibility. The advantages and 
disadvantages of using each of these models are also laid out, with the aim of choos-
ing a model that can be used to capture spatial access. Using an example from 
Uganda, a cost distance analysis is used to model travel time to the nearest primary 
health care facility. The model adjusts for differences in land use, weather patterns 
and elevation while also excluding barriers such as water bodies and protected areas 
in the analysis. Results show that the proportion of population within 1-h travel 
times for the 13 regions in the country varies from 64.6% to 96.7% in the dry period 
and from 61.1% to 96.3% in the wet period. The model proposed can thus be used 
to highlight disparities in spatial accessibility, but as we demonstrate, care needs to 
be taken in accurate assembly of data and interpreting results in the context of the 
limitations.
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�Introduction

Access to health is a key component of universal health coverage, which aims to 
ensure that all individuals are able to obtain quality health services regardless of 
their demographic and socio-economic status (Evans et al. 2013). Access is defined 
as the opportunity or ease with which consumers or communities are able to use 
appropriate services in proportion to their needs (Ensor and Cooper 2004). Poor 
access to health care services has been identified as a challenge in many countries in 
sub-Saharan Africa (SSA). Consequently, vulnerable populations, particularly chil-
dren and mothers die from illness and conditions whose interventions are available 
at health facilities (Feikin et al. 2009; Rutherford et al. 2009, 2010; Schoeps et al. 
2011; Okwaraji et al. 2012). Therefore, analysis of variation in geographical access 
to care is important, not only as an indicator of the strength of a health system but 
also to identify vulnerable populations at greater risk of preventable diseases.

Health care access is multi-dimensional and entails availability, acceptability, 
accommodation, affordability and accessibility. Availability concerns itself with 
resources available in delivering an intervention such as characteristics of health 
facilities (density, distribution and decentralization) and those affecting utilization 
such as duration and flexibility of hours of operation. Acceptability refers to the 
patient’s interaction with health care systems in terms of choice based on such fac-
tors as gender, culture and the perception of the provider towards the patient in 
terms of age, social class and ethnicity. Accommodation is the arrangement and 
organization of health services in order to meet population demand while afford-
ability is the population’s ability to meet financial obligations related to medical 
services (Aday and Andersen 1974; Penchansky and Thomas 1981; Alun and David 
1984; Higgs 2004; Haas et al. 2004; Levesque et al. 2013; Gautam et al. 2014). The 
final dimension is the accessibility commonly referred to as spatial or geographic 
accessibility to health care. These are summarized in Fig. 6.1.

In SSA, populations are often sparsely distributed with few health facilities. 
Transport infrastructure is often poor, hence the influence of geography may over-
shadow the other aspects of access. The focus of this chapter is on geographic acces-
sibility. Traditionally, unavailability of tools/software and datasets that can account 
for geographic factors such as land use, elevation and road networks that affect 
transport have been significant bottlenecks in accurately defining geographic access 
to health care. However, in the recent past there has been increased development of 
geographic analysis tools able to offer sophisticated analysis allowing for the devel-
opment of different accessibility models (Neutens 2015). Additionally, spatially dis-
aggregated data are becoming increasingly available at a higher spatial and temporal 
granularity.

The chapter discusses different approaches of modelling spatial access to health 
care including their advantages, limitations and data needs. The methods include 
provider-to-population ratio, distance and travel time metrics based on Euclidean, 
road network and cost distance algorithms. Based on the discussion, one method is 
used to demonstrate the implementation of geographic access modelling in Uganda 
as a case study.
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�Geographic Accessibility

Geographic access to health care refers to the difficulty or ease in moving from a 
place where a need for health services is triggered to where the health service pro-
vider is located. It addresses the complex interactions between population distribu-
tion, location of services and how people move to the health services. The three 
common ways of measuring geographic access are the provider versus people 
(need), distance or by travel time, and the methods used to estimate these are pro-
vided in the next section.

�Measuring Geographic Accessibility

�Provider-to-Population Ratio

This method involves calculating the provider-to-population ratio (PPR) (Neutens 
2015) based on the number of health facilities, doctors, number of beds, etc., on a 
predefined administrative area relative to the populations in these areas. PPR is use-
ful in highlighting differences between administrative boundaries and identification 
of gaps in service provision (WHO 2010). The technique is simple and does not 
necessarily require Geographic Information Systems (GIS) skills. However, it does 
not account for travel impedances (elevation, transport availability and distance) 
encountered when accessing health facilities (Neutens 2015).

Fig. 6.1  The multi-dimensional concept of health care access

6  Methods of Measuring Spatial Accessibility to Health Care in Uganda
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�Euclidean Distance

Euclidean distances are the simplest distance-based method for quantifying  
geographical access to care. The method assumes a straight line of travel from points 
of residence to the health service provider locations (Guagliardo 2004; Noor et al. 
2009). It is useful when specific recommendations on threshold distance exist espe-
cially in the in rural areas where access to motorized transport is limited and lack of 
health facilities are minimal. However, it assumes that travel occurs in a straight line 
and ignores the influence of transport services on accessibility and barriers of travel 
such as land use, road network and elevation (Guagliardo 2004; Neutens 2015).

�Gravity Models

The limitations of the facility to population ratio and Euclidean distance methods 
resulted in the development of the gravity methods (Luo 2004). The gravity model 
is a combination of availability and accessibility across defined spatial units. It 
controls for “capacity” of a facility, competition between facilities and ability to 
estimate gravity values using numerous methods (Neutens 2015). Capacity here 
refers to the number of patients a facility can handle, which can be a function of the 
staffing and equipment available. The incremental developments in the model have 
seen it evolve from simply using the supply and demand data to the inclusion of 
distance decay effects, multiple transport models and variable incorporation of 
catchment areas in the modified two-step floating catchment area methods (McGrail 
and Humphreys 2009; Wan et al. 2012; Hu et al. 2013; Mao and Nekorchuk 2013; 
Vora et al. 2015). As such, the models have evolved from simply defining two-step 
floating catchment area (2SFCA) to the more sophisticated modified two-step float-
ing catchment area (M2SFCA) method (Delamater 2013; Ni et al. 2015).

However, limitations still exist in the model, mainly its static nature and inability 
to allow for time varying relationships. Secondly, demand is normally defined at 
specific spatial units and the model would be affected by the Modifiable Areal Unit 
Problem (MAUP), a source of spatial bias which results from the aggregation of 
data. Its accuracy is therefore dependent on the ability to define population at fine 
geographic units and availability of data on service provider capacity. It is therefore 
not always suitable for use in resource limited settings where populations are nor-
mally defined at large spatial units.

�Kernel Density Method

The kernel density model is a variant of the gravity model, which operates by dis-
tributing a discrete point value in a surface that is continuous (Schuurman et al. 
2010). Kernel density is a non-parametric way of representing the distribution of a 
variable and allows estimation of a probability density function randomly. With 
regards to health service provision, a kernel density around a health service pro-
vider represents a ‘sphere of influence’ whose radius is the bandwidth of the kernel 
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density. This method is limited in several ways; it uses straight line distances ignor-
ing the road networks, which affect the ability to access a health facility. Secondly, 
its arbitrariness in choosing the kernel density in most cases leads to service densi-
ties that spill over from the study area (Guagliardo 2004). Thirdly, when modelling 
the population distribution, the method assumes a smooth distribution from a cen-
troid with density decreasing as distance from the centroid increases, an assump-
tion which is not realistic (Schuurman et al. 2010).

�Network Analysis

Network analysis entails the use of the actual transport/travel routes to compute 
either travel time or distance to the nearest service provider (Noor et al. 2006; Owen 
et al. 2010; Masoodi and Rahimzadeh 2015). It is superior to the Euclidean method 
in this regard (Tansley et al. 2015). Although it’s a more realistic method, its usabil-
ity in rural areas may be affected by the fact that transport does not always follow 
the road network (Nesbitt et al. 2014). Accurate data on transportation routes and 
populated locations is also difficult to obtain. The algorithm assumes travel can only 
occur along the roads and it is a more computationally intensive method which 
relies on the ability to define population locations (nodes), accurate transport infra-
structure and the routes likely to be used.

�Cost Distance Analysis

Cost distance techniques provide more intuitive methods of defining accessibility 
for policy makers (Guagliardo 2004; Noor et al. 2006; Wang 2012; Nesbitt et al. 
2014) because travel times are more realistic representations of access as people 
relate more to the time taken to get to a health facility than to distances. The avail-
ability of datasets that can be used to define travel times in recent time, makes it a 
more attractive choice of defining accessibility. It involves the development of a 
‘cost surface’ that defines travel speeds within different land covers, roads and ele-
vation. This surface is then used in combination with the location of health facilities 
in a ‘cost distance’ analysis to come up with a surface showing the least time needed 
to get to each health facility for every populated location (Ray and Ebener 2008; 
Huerta and Källestål 2012). Limitations of this method include the assumption that 
individuals use the nearest facility and its inability to account for competition 
(Neutens 2015). In addition, its accuracy is dependent on the spatial resolution used. 
However, it is very useful in SSA, because the influence of factors such as competi-
tion and choice are often overridden by distance (Neutens 2015).

Its development has gained significant traction with the development of the 
WHO AccessMod module for measuring physical accessibility (Ray and Ebener 
2008) and other open source modules used in computational platforms like 
R. AccessMod for example is a standalone module that is easy to use, requiring 
basic GIS knowledge and is freely available (www.accessmod.org). This method 
was used in this study to assess variation in geographical access to care in Uganda.

6  Methods of Measuring Spatial Accessibility to Health Care in Uganda
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�Spatial Access to Primary Health Care: A Case Study 
of Uganda

�Spatial Databases

Fundamental to estimating spatial access and marginalized population are spatially 
defined databases. We discuss the key datasets required.

�Health Facility List

To estimate spatial access to health care, an authoritative, complete facility list is 
required. Key variables needed are facility name, unique identifier, location, facility 
type, ownership and operational status. Only a handful of countries in SSA have 
updated facility list (Noor et al. 2004, 2009; Rose-Wood et al. 2014; MEASURE 
Evaluation 2018) and health facility lists in SSA remain fragmented (WHO 2012; 
USAID, WHO 2018). The first inventory of pan African public health facility list 
was assembled using a disparate list of sources from national and international orga-
nizations (Maina et al. 2019). This exercise involved triangulating between different 
sources to check and remove duplicates, geocode, confirm spatial locations and 
administrative boundaries while validating facility numbers with those reported in 
health sector strategic reports. The final list is publicly available (Maina et al. 2019) 
and provides the most comprehensive publicly available resource of health facilities 
in SSA and Uganda as shown in Fig. 6.2.

�Accessibility Covariates

To model spatial accessibility in a cost distance algorithm, additional covariates that 
define physical barriers of access are needed. Land cover data at 20 m spatial resolu-
tion was obtained from the RCMRD data portal (RCMRD 2017), that was produced 
by classifying remotely sensed data from the Sentinel-2 sensor. Publicly available 
road network data was obtained from the OpenStreetMaps and Google Map Maker 
projects. A digital elevation model raster surface (DEM) was downloaded from 
NASA’s Shuttle Radar Topography Mission at the USGS Land Processes Distributed 
Active Archive Center (LP DAAC) website at 30 m spatial resolution. Auxiliary 
data in the form of water bodies and rivers were assembled. The water bodies are 
considered non-traversable expect where road bridges are constructed and/or use 
boats and canals were applicable. These were downloaded from the Global Lakes 
and Wetlands Database (Lehner and Döll 2004).

P. Ouma et al.
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�Population Distribution

Spatial modelling techniques for the reallocation of populations within census units 
have been developed in an attempt to overcome the difficulties caused by input cen-
sus data of varying, and often low, spatial resolutions (Linard et al. 2012). A dasy-
metric modelling technique (Mennis 2009) was used to redistribute population 
counts within the 6255 spatially defined Parishes (sub national units representative 
of Administrative level 4 unit) used during the 2002 national census and land cover 
datasets derived from satellite imagery. Covariates used were land use, night time 
lights, water bodies, protected areas and elevation. A different population weight 
was assigned to each land cover class in order to shift populations away from 
unlikely populated areas and concentrate populations in built-up areas. The net 

Fig. 6.2  3771 public health facilities including Health Centre II (2217), Health Centre III (1242), 
Health Centre IV (191) and Hospitals (121)

6  Methods of Measuring Spatial Accessibility to Health Care in Uganda



84

result was a gridded dataset of population distribution at 0.1 × 0.1 km resolution. 
The population distribution datasets were projected to 2015 using UN national rural 
and urban growth rates and made to match the total national population estimates 
provided by the UN Population Division for 2015. The datasets were downloaded 
from the Worldpop portal accessible freely to the public.

�Computation of Spatial Access

�Model Parametrization

To quantify spatial accessibility to health facilities in Uganda we adopted a raster 
data model (Delamater et al. 2012) based on the geography, data availability and 
health-seeking behaviour of the study population (Nesbitt et al. 2014). Raster-based 
approach is more likely to represent the real world since barriers, elevation, land 
cover and roads can be incorporated with the different modes of transport (Rodrigue 
et al. 2013). A daunting task is usually to assign travel speeds to different modes of 
transport and different road types and land cover classes. With no empirical data as 
is the case of most SSA countries, we reviewed previous studies that had parameter-
ized spatial access models in SSA (Table 6.1).

�Accounting for the Effect of Rainfall Seasonality

In many African countries, during the dry season most unpaved roads are accessi-
ble, while during the rainy season most of these unpaved roads are impassable as 
previously demonstrated in Nigeria (Okafor et  al. 2009), Niger (Blanford et  al. 
2012) and Mozambique (Makanga et al. 2017). This is usually caused by substantial 
rainfall and flooding in the wet season. Similar analyses have been conducted in 
Mozambique (Makanga et al. 2017), where daily flood extent raster layers and pre-
cipitation data were used to mark inaccessible areas during wet seasons. Reduced 
speeds were recorded where the daily precipitation was above 1 mm. This allowed 
the effect of seasonal variation in spatial access to be viewed as continually varying 
as compared to a binomial coding of wet and dry season (Makanga et al. 2017). We 
demonstrate the effect of the wet and dry season, by running two models with dif-
ferent parametrization speeds based on the season. The speeds assigned to different 
road categories during the wet season were 80% of those assigned during the dry 
season (Makanga et al. 2017) as shown in Table 6.1.

P. Ouma et al.
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�Computation of Travel Time

A cost distance algorithm that modelled a composite of walking, bicycling and 
motorized travel time to the nearest public health service provider was used. A 
travel impedance surface was generated by assigning travel speeds in Table 6.1 for 
wet and dry seasons independently. We used the impedance surface and location of 
public health facilities to estimate time in minutes needed to travel to the nearest 
public health facility in AccessMod (version 5). The DEM was used to apply a cor-
rection for slope while walking using Tobler’s law (Tobler 1993). Tobler’s formula-
tion decreases the up-slope walking speed as the slope increases, while slightly 
increasing the speed for a slightly negative slope when walking down-slope. The 
bicycling power correction was applied for the bicycling mode of travel (Zorn 2008; 
Austin 2012). The lakes and rivers were treated as a barrier and considered impass-
able. The time needed to get to a facility was determined by cumulatively adding the 
time needed to cross contiguous pixels in the so-called least cost path from any 
location in Uganda to the nearest facility. We used 100 m spatial grids to capture 
finer heterogeneity in travel times since the algorithm converts roads to a raster 
surface thereby affecting the accuracy of the model.

Table 6.1  Travel speeds across different land cover sources

Category Class
Mode of 
travel

Speed in km/h (dry 
season)

Speed in km/h (wet 
season)

Land use land 
cover

Tree cover 
areas

Walking 2 1.6

Shrub cover 
areas

Walking 5 4

Grassland Walking 4 3.2
Cropland Walking 5 4
Regularly 
flooded

Walking 0.01 0.01

Sparse 
vegetation

Walking 4 3.2

Bare areas Walking 2 1.6
Built-up areas Walking 5 4
Open water Walking 0.01

Roads Major arterial Motorized 50 40
Minor arterial Motorized 30 24
Primary 
highway

Motorized 50 40

Secondary road Motorized 30 24
Terminal Bicycling 10 8

Source: Noor et  al. (2006), Alegana et  al. (2012), Blanford et  al. (2012), Dixit et  al. (2016), 
Macharia et al. (2017a, b), Makanga et al. (2017), Ouma et al. (2017, 2018)

6  Methods of Measuring Spatial Accessibility to Health Care in Uganda
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�Mapped Travel Time and Population Coverage

The result of computing travel time to the nearest public health facility during the dry 
and wet seasons are shown in Fig. 6.3. The southern part of the country relative to 
North had low travel time to the nearest facility. The gridded surfaces from the dry 
and wet seasons models showed a similar pattern of variability across the country.

The population within defined travel time thresholds were estimated by overlaying 
the population grids together with the travel surfaces for both wet and dry seasons by 
regions shown in Table 6.2. Over 84% and 96% of the country’s 2015 population live 
within 1 and 2 h of the nearest public health facility during the dry season respec-
tively. There exists great variability at the regional level ranging between 74.1% and 
91.9% in respect to the population within an hour of the nearest facility. Our models 
suggested that those who are not able to access health care within 1 and 2 h possibly 
due to the effect of the roads being affected by the rainfall was 2% and 0.6% respec-
tively at the national level and variable across the regions (Table 6.2).

�Conclusion

This chapter discussed accessibility methods and used a country case study in Uganda 
to illustrate some of the challenges involved in modelling spatial accessibility, using a 
procedure that relies on open source tools and datasets. The usefulness of this model 
is its ability to capture complexities in travel across different landscapes including the 
influence of weather, all which often act as barriers to transport in SSA. Results high-
light the widespread disparities in accessibility between regions, using the policy  
relevant threshold of ensuring people live within 1 h of the nearest health facility. 

Fig. 6.3  Maps of Uganda showing travel time (in minutes) from each grid (100 × 100 m) to the 
nearest public health facility for (a) dry season and (b) wet season. They show increasing from 
0 min (dark blue) to 100 min (dark red)

P. Ouma et al.
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Thus, the outputs can provide useful insights into where gaps in accessibility are, and 
decision makers can know where to narrow down to if service expansion is needed.

Results should however be interpreted in the context of some limitations. Other 
factors such as cost of transport, educational attainment, cultural factors and service 
acceptability are some of the factors that affect geographic access. Therefore including 
these variables is likely to provide a more complete picture of access to health services 
(Ouma et al. 2017). Traditionally, these factors have not been included in spatial acces-
sibility models, but with the increasing availability of data at fine spatial resolution 
(Graetz et al. 2018), the possibilities of exploring multivariable spatial access models 
increase. Other factors rarely implemented in spatial access models include competi-
tion between facilities, especially in urban areas where patients are faced with multiple 
choices of where to attend. These are commonly implemented in the gravity models 
(Wan et al. 2012), but its reliance on accurate data on service capacity and population 
data at fine geographical units makes it untenable in African settings.
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