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Chapter 3
Geography of Disease Burden: Case 
Studies in Namibia and Eritrea

Victor A. Alegana and Peter M. Atkinson

Abstract  Africa continues to experience the highest infectious disease burden 
despite an increase in investments. These include investments in malaria, HIV/
AIDS, tuberculosis, as well as in communicable diseases. The global targets are to 
reduce the burden of these diseases through improved surveillance, prevention of 
outbreaks, effective case management, elimination and eventually, eradication. 
Achieving these targets, however, is limited by the poor geographic descriptions of 
the disease burden. Of the big five infectious disease burdens, malaria is the most 
advanced in terms of mapping its distribution. Malaria cartography has since formed 
the evidence-base for the design of many national malaria control programmes. This 
chapter focuses on malaria as an example, demonstrating its geographical descrip-
tions. The availability of georeferenced malaria case data whether based on preva-
lence or incidence indicators has been used extensively in the mapping of 
geographical extents at national and sub-national scales. However, routine surveil-
lance data is emerging as a valuable methodology of tracking burden in sub-Saharan 
Africa. A particular focus of this chapter is the use of routine national health sys-
tems surveillance data to describe, at a fine-scale, the distribution of malaria. 
However, routine data can be applied to the cartographic description of other dis-
eases beyond malaria. The methodological aspects of burden estimation from rou-
tine surveillance platforms and cartography are highlighted.
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�Introduction

Thegeography of disease mapping in Africa stems back to 1951 following publica-
tion of atlas of diseases in Africa after the Second World War (Simmons et al. 1951). 
Historical attempts to eradicate malaria in Africa started mid-1950s during the 
Global Malaria Eradication Programme (GMEP) era. In the 1950s to 1960s, many 
African colonial governments developed crude national-level maps of malaria based 
on ecological zones and seasonality as part of the GMEP planning, for example, in 
Kenya (Butler 1959), Madagascar (Joncour 1956), Senegal (Lariviere et al. 1961), 
and Uganda (Mccrae 1975). The Failure of GMEP in Africa led to the resurgence of 
malaria through the 1970s and 1980s. Efforts to describe the geographical extent of 
malaria in Africa were resurrected in the 1990s. In 1996, the Mapping Malaria Risk 
in Africa/Atlas du Risqué de la Malaria en Afrique (MARA/ARMA), a collabora-
tion between Africa research institutes, started to assemble data on malaria preva-
lence in sub-Saharan Africa (SSA) (Snow et al. 1996; Le Sueur et al. 1997). This 
was an initiative that started an assembly of data on malaria prevalence in Africa to 
used in malaria cartographic descriptions. Advances in computation and Geographic 
Information Systems (GIS) between the mid-1990s and 2000s has aided the devel-
opment of robust malaria cartography including statistical description at national 
and sub-regional levels independently (Craig et  al. 2007; Gemperli et  al. 2006; 
Kazembe 2007; Noor et al. 2008, 2009, 2013b, 2014), and through the inception of 
the Malaria Atlas Project in the mid-2000s (Hay et al. 2004, 2008; Snow et al. 2005; 
Hay and Snow 2006; Guerra et al. 2007; Snow 2014).

Prevalence or incidence are two common indices that are now used frequently in 
the mapping of malaria (Macdonald 1950, 1957; Ray and Beljaev 1984). These 
indices provide epidemiological evidence of the spatial distribution of disease in the 
population. Prevalence represents the number of cases or infections at a given time 
(cross-section measure), while incidence represents the number of new cases arising 
over a specified period in the population (dynamic measure) (Fig. 3.1). Prevalence 
is usually stated as a rate (i.e. per fixed number in the population) while incidence is 
commonly expressed as the number of cases per 1000 population per year (Swaroop 
et al. 1966; Pull 1972). There are many reasons for describing the geography of 
these two metrics. Maps are useful tools to visualise the extent of a public health 
problem and for planning interventions. Maps can also be used as measurement 
tools to assess the impact of public health investments providing evidence on the 
success or failure of health interventions (Hay et al. 2013).

Since the 1990s, with advances in computation and software, maps of malaria 
prevalence and incidence are increasingly available at global and national scales. 
These maps, however, are presented with varying degrees of precision due to the 
wide variety of approaches used in their production. Variation in the cartographic 
description of prevalence and incidence in sub-Saharan Africa is also driven by the 
quality and quantity of data available. For malaria, countries with good surveillance 
systems utilise routine data without the requirement for modelling, e.g. Comoros 
and Sao Tome and Principe (Alegana et  al. 2020). However, poor quality of the 
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routine data require modelling to adjust for the use of health services, inconsistent 
data reporting, and climatic drivers of transmission. As a result, complex statistical 
modelling schemes have been developed for mapping disease (Diggle et al. 1998; 
Giorgi et al. 2015).

Model-based geostatistical (MBG) approaches combined with environmental 
variables (predictors) that support dynamic transmission and incidence are now 
used commonly to produce a gridded, fine spatial resolution estimates (Diggle et al. 
1998). The advantage of MBG methods is the ability to harness the spatial and tem-
poral dependencies in the observed data and environmental predictors. MBG also 
estimates the uncertainty associated with the predicted maps which are often defined 
in space and time. In practice, the generalised linear mixed class of models is used 
to connect the observed data to environmental predictors (Dalrymple et al. 2015; 
Alegana et al. 2016). The precision and accuracy of predictions can be evaluated via 
internal model parameters, or via exceedance probabilities (Giorgi et al. 2018), and 
by comparing to out of sample data. One source of uncertainty in passive surveil-
lance systems such as the Health Management Information Systems (HMIS), is 
contributed by variation in health sector use by the population.

Several further issues impact our ability to describe the geography of disease 
burden. Firstly, as prevalence declines, increasingly large sampling at the commu-
nity level is required. Disease biomarkers are included in surveys conducted every 
3–4 years. The precision of various biomarkers in these community surveys there-
fore varies and may not always be optimal for monitoring and evaluation (Alegana 
et al. 2017). For malaria, as prevalence declines in sub-Saharan Africa, the use of 

Incidence
Total cases in specified period (n=14)

Time

Prevalence (n=3) Prevalence (n=2)

Fig. 3.1  Differences between prevalence and incidence of disease. Each horizontal red bar repre-
sents a case with the length of bar illustrating the duration of illness, e.g., fever
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surveillance through a combination of active case detection (ACD) and passive case 
detection (PCD) are now part of the Global Technical Strategy (WHO 2015). This 
method is currently used in Swaziland and a few countries in southern Africa 
(Hsiang et al. 2012; Dlamini et al. 2018). Reactive Case Detection (RACD) is also 
used during epidemics (Sturrock et al. 2013). In practice, PCD is labour intensive 
and is hampered by the high costs of tracking cases in the population. PCD should 
ideally complement the ACD approach. However, most data from PCD are unreli-
able and incomplete (Githinji et  al. 2017). Moreover, some case data reported 
through this system are based on clinical examination rather than parasitology. With 
declining burden, the ability to identify symptomatic and asymptomatic infections 
is critical for control and pre-elimination programmes.

This chapter reports on the highlighted data and methodological advances in 
disease mapping along with the advantages of using routine data. This contribution 
has important implications for future research on malaria in line with a declining 
burden for traditionally high malaria burden countries as well as for low-transmission 
settings. Furthermore, emphasise that routine surveillance remains the foundation 
for gathering evidence, tracking progress, identifying areas for rapid response and 
promoting the use of data for decision making.

�Disease Cartography from Routine Surveillance Systems

�Role of Surveillance for Geographies of Disease

Surveillance started in the 1950s as part of GMEP and was used as a means of pre-
venting re-emergence of disease (World Health Organization 2012a). According to 
the WHO, surveillance included the identification of infections, investigation, elim-
ination of transmission and prevention as well as cure. Surveillance is a recom-
mended intervention for tracking disease burden for targeting interventions. There 
are two broad areas concerned with determining the incidence of disease including 
the identification of cases (PCD) and elimination of the identified cases.

�Introduction to Using PCD for Mapping

Innovative approaches now exist to harness PCD and, thus, complement ACD which 
is not yet adopted by much of sub-Saharan Africa. To properly utilise routine data, 
there is a need to establish the denominator, i.e. population covered by the health 
system (the catchment population). The methods now exist for capturing the febrile 
population using the healthcare system and combining this with fine spatial resolu-
tion population maps (Tatem 2014) to estimate catchment populations. Secondly, 
alongside improvements in HMIS data, for example, through District Health 
Information Systems (DHIS 2) (Karuri et al. 2014; Dehnavieh et al. 2018) statistical 
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techniques can be used to model the spatial and temporal variability in incidence 
while at the same time accounting for the rate of health facility utilisation and 
incompleteness (Alegana et al. 2013). Such approaches incorporate ecological or 
environmental drivers to predict risk in receptive areas while at the same time quan-
tifying the uncertainty associated with disease predictions (Noor et al. 2012, 2013a).

�Overcoming Barriers in Mapping Using HMIS Data

Health facility data serve as indicators of the disease epidemiology amongst the 
populations they serve. As surveillance centres, health facilities are better barome-
ters of changing disease landscapes than modelled snapshots of prevalence.

Despite methodological advances, HMIS data have been previously ignored for 
burden estimation because of incomplete reporting and variation in the population 
using public health sectors across sub-Saharan Africa (Battle et al. 2016; Alegana 
et al. 2018). This implies that cases recorded at the health facility often indicate only 
the ‘tip of the iceberg’ of the actual burden. This variation in utilisation potentially 
introduces a bias in the estimation of disease burden. In addition, weak health sys-
tems in relation to the quality and quantity of data have in the past contributed to a 
general lack of confidence in the use of health facility data in sub-Saharan Africa.

HMIS, however, remain an important source of data for future disease mapping for 
several reasons. Firstly, the spatial distribution of health facilities is usually congruent to 
the population distribution (Fig. 3.2). Secondly, health facility case data are often col-
lected in an ongoing manner (e.g. daily, weekly and monthly) (Mueller et al. 2011). The 
implication is that data are likely to have a temporal signal useful in identifying the 
seasonal dynamics of the disease. Thirdly, the coverage of a health facility catchment 
population often encompasses several villages, communities and sometimes the whole 
administrative region (e.g. district). This implies a wider geographic coverage of a single 
health facility in an HMIS than of a single village in a cross-sectional prevalence survey.

�The Geography of the Denominator for Burden Estimation

Disease estimation based on health facility data requires a definition of the denomi-
nator (febrile population within the health facility catchment population). Thus, 
using health facility data for mapping incidence requires an adjustment for health-
care use, both in the public and private sectors. Utilisation has in the past been 
estimated from household surveys by quantifying the probability of public or pri-
vate sector use (Stekelenburg et al. 2005; Noor et al. 2006). Such an approach is 
potentially beneficial in identifying the population not covered by healthcare sys-
tems. Previously, this has been characterised in GIS by defining a distance metric 
(or travel times) (Apparicio and Seguin 2006; Noor et  al. 2006; Apparicio et  al. 
2008). At the second stage, the reported rates of use at the community level are 
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modelled as a function of travel time or distance to define a utilisation probability 
index (Alegana et al. 2012) (Fig. 3.3). The probabilistic estimate is useful for burden 
estimation because patients located far from a health facility are less likely to be 
treated in a formal care setting. It is then possible to estimate a population coverage 
indicator as well as hard catchment boundaries (e.g. for probability >40%). An 
example of this approach has been used in Namibia to zone catchment areas and 
estimate the age-structured catchment population (Alegana et al. 2016).

�Environmental Drivers of Geographical Risk

Disease burden mapping generally requires a statistical model with a suitable com-
bination of environmental variables (covariates) to predict incidence or prevalence. 
Several covariates have been shown to drive disease dynamics and transmission. It 
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Fig. 3.2  (a) Population density map of sub-Saharan Africa, (b) the spatial distribution of health facili-
ties superimposed on the population map (Maina et al. 2019), (c) an illustration of outpatient malaria 
cases from administrative areas in Namibia showing variation in the number and seasonal patterns 
(Alegana et al. 2013). These seasonal average trends have not been adjusted based on total facility 
reporting rate. In this case, the Namibia case reporting rate was greater than 90% at the regional level
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is important to select a biologically plausible set of covariates related to disease 
based on some criterion to achieve parsimony. This is because using many covari-
ates may result in over-fitting or introduce multicollinearity (Babyak 2004). Thus, 
preliminary selection of a set of covariates that best describes the response is a 
widely accepted exercise in statistical modelling of burden (Murtaugh 2009).

For malaria mapping, environmental variables affect the development and survival 
of the malaria parasite as well as the malaria vector (Molineaux et al. 1988). Examples 
of these include the monthly rate of precipitation, temperature, vegetation cover, arid-
ity and urbanisation (Craig et al. 1999; Guerra et al. 2008). Figure 3.4 shows an exam-
ple of satellite remotely sensed covariates plotted against PCD in Eritrea. These 
include precipitation, minimum temperature, maximum temperature and mean tem-
perature, the normalised difference vegetation index (NDVI) and the enhanced vegeta-
tion index (EVI). The vegetation indices are derived from MODerate-resolution 
Imaging Spectroradiometer (MODIS) sensor imagery; produced after removing heavy 
aerosols through atmospheric correction, elimination of shadows and clouds and cor-
recting to bidirectional reflectance (Huete et al. 2002). The mean monthly gridded 
temperature estimates were downloaded from the WorldClim repository at 
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Fig. 3.3  (a) Shows an example of malaria landscape showing transmission aspects (mosquito 
habitats). Often environmental suitability drives transmission and the location of a hotspot could 
be far from the nearest health facility. (b) A representation of the probability of seeking treatment 
at health facilities. Often probability of use within the health facility catchment area reduces with 
geographic distance as well as other socio-demographic factors. (Adopted from Alegana et al. 2016)
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approximately 1 km spatial resolution (0.000833° × 0.000833°). These gridded esti-
mates were produced from long-term climate observations for the period 1950–2000, 
interpolated using smoothing spline algorithms. Precipitation data were obtained from 
the Tropical Rainfall Measuring Mission sensor (TRMM 3B43 product) that com-
bines ground observations and satellite sensor data to generate gridded rainfall esti-
mates at approximately 0.25° × 0.25° spatial resolution (Huffman et al. 2007). TRMM 
3B43 is a gridded mean monthly average product of precipitation rate in mm h−1.

�Example of Mapping PCD from HMIS

Spatial regression models are common in disease mapping (Bernardinelli et  al. 
1997; Clements et  al. 2006; Schrödle and Held 2010, 2011). Two common 
approaches involve smoothing of disease rates in space applying small-area estima-
tion methods (conditional autoregressive (CAR)) and the interpolation via geosta-
tistical approaches (Banerjee et  al. 2004). The CAR framework involves spatial 
smoothing between administrative areas (e.g. districts) (Besag et  al. 1991). The 
level of smoothing is controlled via modelling parameters. A suitable smoothing 
approach should take into consideration the arrangement of spatial units to yield 
optimal spatial variation. A general problem common to this approach, however, 
relates to a change in the statistical outputs as a result of a change in the shape or 
size of the geographic unit, the modifiable areal unit problem (MAUP). Hierarchical 
modelling aims to mitigate some aspects of MAUP.

An example of the use of a hierarchical Bayesian model applied to smooth 
monthly malaria incidence at the district level for case data is shown based on data 
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Fig. 3.4  Seasonal monthly plot of the observed malaria cases (green bars) from 2010 to 2012 with 
the dark grey representing P. falciparum malaria cases and light grey the P. vivax cases. The mag-
nitude for the cases is shown on the primary vertical axis. Covariates (secondary vertical axis) are 
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in Fig. 3.4. The numerator is presented as the sum of cases recorded at the facility 
(include both confirmed case through parasitology diagnosis and clinical diagno-
sis). The denominator was derived from the population-weighted catchments repre-
senting all-age febrile case risk at each health facility. An adjustment is made to 
clinical case diagnosis using the slide positivity rate at the facility for the numerator. 
For the denominator, adjustment is necessary for reporting rate and health facility 
use (Fig.  3.5). This modelling example was conducted using facility-level data. 
Thus, a facility-level random effect was incorporated to allow for variation between 
facilities at the district level as well as a seasonal trend. Such an approach improves 
smoothing and estimation. To deal with incomplete reporting missing data months 
were imputed as ‘NAs’. Random effects were incorporated at the district and 
regional levels. Non-linear parametric smoothing functions were used for the 
covariates rather than an assumption of linearity (constant) (Fahrmeir and Knorr-
Held 2000) (Fig. 3.6).

Malaria cases
Suspected x Test

positivity rate
Confirmed

cases+ =

Denominator
(Expected cases)

Catchment population
using health facility

Reporting
ratex =

Hierarchical
Bayesian space-

time CAR
modelling

Standardised
incidence

Fig. 3.5  Schematic diagram showing the general modelling framework. The Test Positivity Rate 
(TPR) is defined based on the testing proportion at the health facility while the estimation of the 
catchment population is based on geographic access modelling

Fig. 3.6  An example of monthly maps of the incidence of P. falciparum per 1000 population in 
Eritrea using a Bayesian spatio-temporal Poisson model. Districts with low risk are classified as <5 
cases per 1000 population) and moderate risk with >5 cases per 1000 population. Data were from 
a 3-year time-series (2010–2012) of malaria cases from the HMIS

3  Geography of Disease Burden: Case Studies in Namibia and Eritrea



38

�Discussion

�Routine Surveillance for Mapping Disease Burden

The chapter aimed to highlight issues around the use of these data in SSA, chal-
lenges and examples of methods deployed to map routine surveillance data. HMIS 
coordinates the routine acquisition of data from health facilities (public and private) 
and compilation of these data (e.g. cases) through the district, regional and national 
levels (Abouzahr et al. 2007; Boerma and Stansfield 2007). Such data form an inte-
gral part of healthcare delivery and are useful for planning, resource allocation and 
disease monitoring. In reality, however, HMIS are often incomplete in many African 
countries as outlined in this chapter and the utilisation of health facilities is not uni-
form. Some of the factors contributing to low facility utilisation include the avail-
ability of health services, financial factors, geographic access and waiting times at 
facilities (Breman 2001). Studies carried out in Kenya suggested cost, distance and 
opening times as some of the main factors influencing choice and decisions to seek 
treatment in either the public or private sector (Chuma et al. 2010) impacting data 
on cases recorded at the health facility and within HMIS. Therefore, specific meth-
ods using surveillance data to produce disease cartography are necessary to smooth 
estimates of incidence and adjust for sporadic reporting and utilisation by the popu-
lation. These were demonstrated in this chapter alongside accounting for environ-
mental variables when estimating incidence. Mapping disease incidence is important 
to the various national health programmes for resource allocation and provides use-
ful insights in carrying out targeted surveillance.

�Geographies of Disease Burden in Low-Transmission Settings

The declining prevalence of disease presents several challenges. With low transmis-
sion, the disease tends to cluster in specific population ‘hotspots’ (Bousema et al. 
2012, 2016). The traditional household surveys become challenging to implement 
because of the requirement for large sampling and cross-sectional surveys fail to 
detect short-term changes in disease prevalence (at small temporal scales). This is 
because cases vary temporally, being susceptible to changes in climate, ecology and 
population movements (Erbach-Schoenberg et  al. 2016). The cartographic chal-
lenge is then to identify hotspots of transmission at fine spatial resolution based on 
the aggregated case data observed passively or combined with active case detection. 
Approaches to mapping disease based on cases aggregated at the district level and 
prediction of spatio-temporal maps at a fine spatial resolution can be used (Alegana 
et al. 2016) (Fig. 3.7). The approach improves the ability to characterise hotspots at 
the fine spatial resolution and can be used to target resources to specific local popu-
lations. This targeting can be cost-effective where the population distribution is 
sparse and further surveillance can be limited to specific local areas.
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�Challenges and Opportunities for Cartography for Elimination

Progress in identifying symptomatic cases within the population has important 
implications for asymptomatic case detection. Both PACD and RACD will benefit 
from the improved mapping of passively detected cases at fine spatial resolution. 
Improvement in routine data quality is likely to enhance malaria cartography. A dif-
ferent challenge exists in areas where multiple malaria parasites co-infect (Cotter 
et al. 2013). Most of the approaches outlined for disease cartography often focus on 
one parasite species. For example, there has been some progress in mapping other 
malaria parasites on the continent such as P. vivax (Battle et  al. 2019). There is 
increasing evidence of Pv distribution (Twohig et  al. 2019). More effective 
approaches need to be developed for mapping co-infections (Commons et al. 2019). 
The challenges posed by P. vivax are considerable due to the biological characteris-
tics (Mueller et al. 2009). P. vivax exhibits a dormant liver stage responsible for 
most relapses up to weeks or months after an initial attack (White 2011). This com-
plicates the ability to detect and apply suitable cartographic approaches to the 
asymptomatic Pf and Pv co-infections within the population.

�Conclusion

The last decade has seen a transformation in Health Management Information 
System (HMIS) data in Africa. Two key advances include data digitisation of data 
through DHIS2 and Firstly, the ability to define malaria-specific morbidity present-
ing to the health facilities through Test. Treat. Track (T3) initiative (World Health 
Organization 2012b). The potential benefit of this transformation cannot be 
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Fig. 3.7  Example of a fine-resolution map of incidence for Namibia based on the data in Fig. 3.2c. 
Map produced only for the endemic northern regions of Namibia
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over-stated since the data represent the entirety of the presenting cases in national 
public health systems in participating African countries. Moreover, most African 
nations now have operational digital and georeferenced HMIS, meaning that the 
ensemble of HMIS represents a powerful lens through which to assess the health of 
the people of Africa as a whole. The data are subject to some biases, most notably 
that the public health system is only a part of the full health system, albeit a major 
part and that under-utilisation of the health system can occur at alarming rates, par-
ticularly in rural areas. Nevertheless, Bayesian statistical approaches have been 
developed by the authors that allow for suppression of these biases when mapping 
disease incidence through space and time. With appropriate Bayesian statistical 
handling, including the use of environmental covariates, the HMIS data have great 
potential for monitoring the health of Africa over space and time and for targeting 
interventions in both space and time. They have a particular utility for low endemic-
ity settings, or in pre-elimination settings, where prevalence of disease is low and 
clustered in hotspots. In such settings, active case detection is extremely inefficient 
to the point of being unusable, and passive case detection, as afforded by the HMIS, 
can be invaluable for residual or emerging hotspot detection. We hope that this 
chapter will lead to greater awareness of the potential of African HMIS for and the 
space-time statistical techniques that allow their proper and principled use.
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