
13© The Author(s) 2021
J. B. Vermorken et al. (eds.), Critical Issues in Head and Neck Oncology, 
https://doi.org/10.1007/978-3-030-63234-2_2

Chapter 2
Biomarkers for Hypoxia, HPVness, 
and Proliferation from Imaging 
Perspective

Sebastian Sanduleanu, Simon Keek, Lars Hoezen, and Philippe Lambin

�Introduction

Advances in imaging and treatment technology over the last few decades have 
brought an improvement in locoregional control among head and neck squamous 
cell carcinoma (HNSCC). Despite advances in treatment, from robotic surgery to 
new systemic therapies such as immuno-radiation and programmed cell death pro-
tein-1/programmed cell death ligand-1 (PD-1/PD-L1) blockers for metastatic dis-
ease, the overall survival rates are still poor with around 50% 5-year survival. This 
is mainly caused by treatment resistance, recurrence and distant metastasis, which 
in turn can be caused by hypoxia, resistance due to clonogenic cell populations, and 
inadequate immune response [1, 2].

Adequate staging and tumor delineation through molecular imaging and imaging 
biomarkers based on routine clinical images could improve the precision of radio-
therapy and surgery, which may lead to a reduction of recurrences.

Radiomics and deep learning are machine learning techniques that have the 
potential to infer quantitative information from routine medical images in HNSCC 
[3] (Fig. 2.1). Imaging biomarkers derived from such techniques can be predictive 
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and/or prognostic. A prognostic biomarker provides information about the trajec-
tory/outcome of a patient with cancer, regardless of therapy. Meanwhile, a predic-
tive biomarker is a biomarker that can represent a subgroup of patients who are most 
likely to respond to the therapy in question. In order to distinguish these two terms, 
the biomarker-positive and -negative subgroups and experimental and control sub-
groups are needed. So, when the experimental group shows a difference in survival 
when tested positive and negative and the survival of the negative response is higher 
than the control group, this is a prognostic biomarker. If the control group shows no 
differences in survival when tested positive and negative this is a predictive bio-
marker. These can also be combined; this means a biomarker can be both prognostic 
and predictive.

The aim in this chapter is to discuss current trends in head and neck oncology 
imaging, from imaging biomarkers for HPV-status and hypoxia to recent advances 
in artificial intelligence (AI) in head and neck oncology.

�Imaging Biomarkers for the Assessment of HPV-ness

Human papilloma virus (HPV) positive oropharyngeal squamous cell carcinoma 
(OSCC) is a rapidly increasing group of patients worldwide (from 16% to 73% in 
the last 20 years) which responds much better to therapy, whether this is surgery, 
radiation, or chemotherapy [4, 5]. HPV positive patients have therefore been con-
sidered extensively for de-escalation trials [6] in order to decrease toxicity while 
achieving similar control rates. In 2018, the HPV status of the patient was imple-
mented in the 8th edition of the American Joint Committee on Cancer (AJCC) stag-
ing of OSCC [7]. In this staging method, p16 immunohistochemistry (IHC) is used 
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Fig. 2.1  The radiomics and deep learning workflow. Medical images are acquired, pre-processed, 
and are provided to the deep learning/radiomics workflow. Region of interest (ROI) segmentation 
is required for radiomics analysis and can be done manually or with automatic segmentation (deep 
learning). The radiomic features and deep features can be combined using a feature merge layer on 
which predictions are based. The feature merge layer can comprise a neural network layer but also 
a machine learning model in which only the most salient features from both pipelines are fed. 
Eventually the model performance for a specific learning task is assessed
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as a surrogate marker for high-risk HPV [8]. However, p16 IHC is not a perfect 
surrogate marker for HPV, and consensus on the best way to determine HPV status 
has currently not been reached [9]. An example of a standard method to determine 
HPV is polymerase chain reaction (PCR) on paraffin-embedded tissue. However, 
this method is expensive and time-consuming, and requires the invasive procedure 
to acquire a biopsy. A study by Molony et al. [10] shows tumor morphology, classi-
fied as keratinizing or non-keratinizing, is a significant predictor of HPV status and 
performs better in determining HPV status in combination with p16 IHC compared 
to p16 IHC alone. Previous studies have suggested computed tomography (CT) 
readouts of the tumor showed phenotypical differences between HPV-positive  
and -negative tumors [11], suggesting an alternative method to determine HPV-
status. Indeed, Leijenaar et al. [12] developed a signature based on radiomic fea-
tures to predict HPV status on routine clinical CT images, showing potential for the 
determination of HPVness through different methods.

�Imaging Biomarkers for Tumor Hypoxia

Tumor hypoxia, also known as the occurrence of oxygen-deficient areas within the 
tumor, is a known prognostic factor in head and neck cancer. One way to look at 
both diffusion and perfusion-limited hypoxia is to look at vascular density, vascular 
permeability, blood volume, and blood flow within the tumor with dynamic contrast 
enhanced (DCE)-magnetic resonance imaging (MRI)/CT. Although perfusion CT 
has a dedicated FDA-cleared analysis software and displays greater resolution when 
compared to DCE-MRI, the required dose of ionizing radiation limits its ability to 
be used in trials with repeated scanning. In DCE-MRI, moving artifacts from breath-
ing and swallowing and the susceptibility artifacts from interface air-tissue are fre-
quent when scanning the head and neck region with this method, which could 
substantially affect the tumor-segmentation accuracy and the quantitative imaging 
biomarker (radiomics) feature extraction. Therefore, at this moment, the data 
obtained from pre-treatment DCE-MRI seems to be insufficient to allow translation 
to clinical practice. To our knowledge there is not a single DCE-MRI imaging bio-
marker study in head and neck looking specifically into association with (histo-
pathologically confirmed) tumor hypoxia, though there are e.g. multiparametric 
MRI-based prognostic signatures for e.g. advanced nasopharyngeal carcinoma.

Hypoxia imaging PET radiotracers such as 18F-FMISO and 18F-HX4 are promis-
ing but not widely available. Hypoxia PET imaging is nevertheless difficult to imple-
ment in clinical practice since these PET-agents generally tend to generate smaller 
signal-to-background ratios compared to e.g. [18F]-FDG (and consequently lower 
target-background image contrast), imaging is labor intensive (instructions of mul-
tiple bed positions and acquisitions at multiple time points), costly (chemical process 
to produce the radioligand is slightly more expensive), and lacking standard 
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calibration procedures and inconvenient for the patient due to the time-consuming 
acquisition protocols. Another way would be to infer quantitative imaging biomark-
ers from routine 18F-FDG PET and (contrast enhanced) CT images using hypoxia 
PET tracers as gold standard for training these models.

The aim of the study by Crispin-Ortuzar et al. [13] for instance was to design a 
surrogate biomarker for 18F-FMISO maximum tumor-to-blood uptake ratio (TBRmax) 
based on pre-treatment 18F-FDG PET and contrast-enhanced CT imaging features. 
The level of hypoxia of a lesion was defined in terms of its TBRmax on the last static 
scan. In particular, in this study a lesion was considered to be hypoxic if TBRmax > 1.4. 
The further aim was to study its performance in the context of hypoxia-based patient 
stratification. In her study, 121 lesions from 75 head and neck cancer patients were 
used in the analysis. Patients received both pre-treatment 18F-FDG and 18F-FMISO 
PET/CT scans. In total, 79 lesions were used to train a cross-validated least absolute 
shrinkage and selection operator (LASSO) regression model based on quantitative 
imaging features, while the remaining 42 were held out for internal testing. The best 
performance on the unseen test subset in this study was obtained from the combined 
CT and 18F-FDG PET signature, with an area under the receiver operating charac-
teristic curve (AUC) of 0.833, while the model based on the 90th percentile of 18F-
FDG uptake alone had a test AUC of 0.756.

Such imaging biomarkers, when improved to accurately detect hypoxia, could be 
used to stratify patients for hypoxia-modifying therapy.

�Evaluation Treatment Response with RECIST 1.1

Objective assessment of both tumor shrinkage as well as time to development of 
disease progression after (non-)cytotoxic systemic therapy are important endpoints 
both in clinical trials as well as on patient-level. The revised response evaluation 
criteria in solid tumors (RECIST) 1.1 in 2009 [14] sought to improve the accuracy 
and efficacy of this assessment by (1) reducing the maximum of lesions for longest 
diameter measurement from 10 to 5 (in maximum two organs) (2) disease progres-
sion (PD) not only requires 20% increase in the sum of measurements, but also a 
5 mm absolute increase (to guard against over calling PD when the total sum is very 
small) (3) inclusion of FDG-PET response assessment as an adjunct to determina-
tion of progression.

One of the key questions for debate by the RECIST Working group developing 
RECIST 1.1 was whether it is appropriate to move from anatomic unidimensional 
assessment of tumor burden to either a volumetric assessment or to a more func-
tional assessment with MRI and/or PET.  At that point the Working Group con-
cluded that there is not sufficient standardization or evidence to abandon the current 
unidimensional anatomical assessment of tumor burden and functional imaging 
with FDG-PET was only to be used as an adjunct for the determination of 
progression.
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�The Potential for Automatic Head and Neck Segmentation 
and Volumetric RECIST Assessment as Surrogate Imaging 
Marker for Tumor Proliferation

Treatment planning for high precision radiotherapy of head and neck cancer patients 
requires accurate delineation of many organs at risk for radiation induced injury as 
well as gross tumor volumes and (elective) lymph node regions. Manual contouring 
is a laborious task which suffers from large inter- and intra-rater variability. To 
reduce manual labor, several fully automated, atlas-based [15] as well as deep learn-
ing based [16] methods for head and neck CT image segmentation have been devel-
oped. Although these methods save a considerable amount of time as they do not 
require human input, they are also prone to errors [17].

Significant challenges arise currently using RECIST 1.1 endpoints, which could 
be mitigated by volumetric methods. First and most foremost, during treatment the 
longest diameter of the tumors may remain unchanged, while the irregularly shaped 
and morphologically complex tumors may still shrink in terms of absolute volume 
(Fig. 2.2).

Secondly, while the RECIST criteria were developed traditionally to assess the 
efficacy of cytostatic drugs, while other systemic therapies may not shrink tumor 
size but rather trigger a cytostatic response or alter the physiological properties of a 
tumor such as metabolism, cell proliferation, and angiogenesis. In the case of immu-
notherapy, initial tumor enlargement is common, which according to RECIST 
would be classified as progressive disease.

One of the ways to deal with these challenges is to quantify volumetric measures 
on CT, MRI, and PET as biomarkers for systemic treatment response is as addressed 
in the Quantitative Imaging Biomarker Alliance (QIBA) profile initiative in 2007 by 
the Radiological Society of North America (RSNA). The main purpose of this ini-
tiative was to unite researchers, healthcare professionals, and industry to advance 
quantitative imaging and the use of imaging biomarkers in clinical trials and clinical 

Treatment

Fig. 2.2  Traditional longest diameter measurement according to RECIST versus volume: longest 
diameter remains unchanged while overall volume shrinks
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practice. One of the QIBA committees is involved in establishing a process map 
(measurement accuracy, technical feasibility, and comparison with standard 
RECIST measurements) for qualifying volumetric measures on CT as a biomarker 
for treatment response as well as determining whether changes in volume are medi-
cally meaningful or just add to overall costs and complexity of care [18].

Early treatment response assessment allows the physician to stop an ineffective treat-
ment sooner and enable a transition to a more effective alternative. Generally, volumet-
ric tumor assessment is more costly and time-consuming to perform. Nevertheless, the 
greater sensitivity [18] associated with volumetric measurement can increase the statisti-
cal power per subject, resulting in fewer patient inclusions in clinical trials followed up 
over shorter periods of time and subsequently decreasing overall time and cost. 
Additionally, the question is whether volumetric imaging adds value to a clinical trial, in 
other words if it significantly impacts clinical decision-making. Although this issue still 
remains to be determined and validated, some preliminary findings find a role for volu-
metric imaging. In one retrospective study by Hayes et al. [19] on 42 lung cancer patients 
participating in an open-label phase 2 study, volumetric measurements (semi-automatic 
segmentation algorithm on CT) on first follow-up (4 weeks after start of treatment) were 
better able to predict overall survival than RECIST measurements. A second study by 
Kim et al. [20] found in a cohort of 135 non-small cell lung cancer patients that hyper-
progressive disease treated with immune checkpoint inhibitors on the basis of volumet-
ric measurement is more precise than is defining it on the basis of one-dimensional 
analysis in terms of overall survival. To our knowledge at the moment this chapter has 
been written there were no such volumetric versus RECIST comparison initiatives in 
head and neck cancer.

�Conclusions and Future Directions

In recent years, explainable AI (XAI), the implementation of transparency and 
traceability of statistical black-box machine learning methods [21], has been attract-
ing much interest in medicine. The reenactment of the machine decision-making 
process is necessary not only to comprehend and reproduce the learning and extrac-
tion process, but also because for medical decision support it is necessary to under-
stand the causality of learned representations [22–24]. Furthermore, the 
implementation of explainable AI would help to enhance the trust of medical pro-
fessionals in future AI-systems. Nevertheless, currently there is still an inherent 
tension between machine learning performance (predictive accuracy) and explain-
ability, as often the best-performing methods such as deep learning are the least 
transparent, and the ones providing a clear explanation (e.g. decision trees) are less 
accurate [25]. This still makes this very much an active area of research. Advanced 
functional imaging techniques to address the inherent limitations of the current 
RECIST, such as perfusion CT, dynamic contrast-enhanced MRI, and diffusion-
weighted MRI are currently only considered to be experimental endpoints because 
they have not yet completed the rigorous validation process needed to qualify as 
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true surrogate endpoints. With the advent and improvement of explainable auto-
matic segmentation algorithms, volumetric endpoints (perhaps with the aid of 
advanced functional imaging techniques) in the near future will offer increased sen-
sitivity to anatomical measurements and provide the necessary physiological infor-
mation to interpret response to highly selective, patient tailored therapies, 
particularly in the cases where RECIST falls short.
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