Skip to main content

Single-Molecule Magnets and Molecular Quantum Spintronics

  • Reference work entry
  • First Online:
Handbook of Magnetism and Magnetic Materials

Abstract

This chapter gives an overview of the main phenomenologies related to the magnetism of single-molecule magnets (SMMs) and covers some important achievements in the field of molecular spintronics. We start by discussing the dominant interactions at sub-Kelvin temperatures in the framework of spin Hamiltonian models. The application of the general formalism to mononuclear and polynuclear complexes allows us to illustrate the power of the spin models in explaining both static properties (e.g., magnetic bistability) and dynamic ones (e.g., quantum tunneling of magnetization). We show how SMMs were used as a vehicle to explore quantum phenomenologies like nonadiabatic spin transitions, spin parity effect, the Berry phase interference, and quantum coherence while covering milestone results that brought the field closer to providing basic components of quantum devices. The last section is devoted to recent achievements in the field of molecular spintronics with emphasis on basic experimental designs that allowed the implementation of Grover’s quantum algorithms at the single-molecule level. The successful transposition of the properties of the molecular magnets into functional devices is a proof of the deep understanding acquired in the two decades of scientific effort since the birth of this research field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caneschi, A., Gatteschi, D., Sessoli, R., Barra, A.L., Brunel, L.C., Guillot, M.: Alternating current susceptibility, high field magnetization, and millimeter band epr evidence for a ground s = 10 state in [Mn12O12(CH3COO)16(H2O)4].2CH3COOH.4H2O. J. Am. Chem. Soc. 113(15), 5873–5874 (1991)

    Google Scholar 

  2. Sessoli, R., Tsai, H.-L., Schake, A.R., Sheyi, W., Vincent, J.B., Folting, K., Gatteschi, D., Christou, G., Hendrickson, D.N.: High-spin molecules:[mn12o12 (o2cr) 16 (h2o) 4]. J. Am. Chem. Soc. 115(5), 1804–1816 (1993)

    Article  Google Scholar 

  3. Friedman, J.R., Sarachik, M., Tejada, J., Ziolo, R.: Macroscopic measurement of resonant magnetization tunneling in high-spin molecules. Phys. Rev. Lett. 76(20), 3830 (1996)

    Article  ADS  Google Scholar 

  4. Thomas, L., Lionti, F., Ballou, R., Gatteschi, D., et al.: Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature 383(6596), 145 (1996)

    Article  ADS  Google Scholar 

  5. Sangregorio, C., Ohm, T., Paulsen, C., Sessoli, R., Gatteschi, D.: Quantum tunneling of the magnetization in an iron cluster nanomagnet. Phys. Rev. Lett. 78(24), 4645 (1997)

    Article  ADS  Google Scholar 

  6. Wernsdorfer, W., Sessoli, R.: Quantum phase interference and parity effects in magnetic molecular clusters. Science 284(5411), 133–135 (1999)

    Article  ADS  Google Scholar 

  7. Friedman, J.R., Sarachik, M.P.: Single-molecule nanomagnets. Annu. Rev. Condens. Matter Phys. 1(1), 109–128 (2010)

    Article  ADS  Google Scholar 

  8. Lu, W., Lieber, C.M.: Nanoelectronics from the bottom up. Nature Mater. 6(11), 841–850 (2007)

    Article  ADS  Google Scholar 

  9. Wernsdorfer, W., Chakov, N., Christou, G.: Determination of the magnetic anisotropy axes of single-molecule magnets. Phys. Rev. B 70(13), 132413 (2004)

    Article  ADS  Google Scholar 

  10. Tasiopoulos, A.J., Vinslava, A., Wernsdorfer, W., Abboud, K.A., Christou, G.: Giant single-molecule magnets: a {Mn84} torus and its supramolecular nanotubes. Angewandte Chemie 116(16), 2169–2173 (2004)

    Article  ADS  Google Scholar 

  11. Stevens, K.: Matrix elements and operator equivalents connected with the magnetic properties of rare earth ions. Proc. Phys. Soc. Sect. A 65(3), 209 (1952)

    Article  ADS  MATH  Google Scholar 

  12. Abragam, A., Bleaney, B.: Electron paramagnetic resonance of transition ions. OUP, Oxford (2012)

    Google Scholar 

  13. Waldmann, O.: A criterion for the anisotropy barrier in single-molecule magnets. Inorg. Chem. 46(24), 10035–10037 (2007)

    Article  Google Scholar 

  14. Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S.-Y., Kaizu, Y.: Mononuclear lanthanide complexes with a long magnetization relaxation time at high temperatures: a new category of magnets at the single-molecular level. J. Phys. Chem. B 108(31), 11265–11271 (2004)

    Article  Google Scholar 

  15. Langley, S.K., Wielechowski, D.P., Moubaraki, B., Murray, K.S.: Enhancing the magnetic blocking temperature and magnetic coercivity of {Cr III2 Ln III2} single-molecule magnets via bridging ligand modification. Chem. Commun. 52(73), 10976–10979 (2016)

    Article  Google Scholar 

  16. Goodwin, C.A., Ortu, F., Reta, D., Chilton, N.F., Mills, D.P.: Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 548(7668), 439 (2017)

    Article  ADS  Google Scholar 

  17. Layfield, R., Guo, F.-S., Day, B., Chen, Y.-C., Tong, M.-L., Mansikamäkki, A.: A dysprosium metallocene single-molecule magnet functioning at the axial limit. Angew. Chem. Int. Ed. 56(38), 11445–11449 (2017)

    Article  Google Scholar 

  18. Ishikawa, N., Sugita, M., Okubo, T., Tanaka, N., Iino, T., Kaizu, Y.: Determination of ligand-field parameters and f-electronic structures of double-decker bis (phthalocyaninato) lanthanide complexes. Inorg. Chem. 42(7), 2440–2446 (2003)

    Article  Google Scholar 

  19. Ishikawa, N., Sugita, M., Wernsdorfer, W.: Quantum tunneling of magnetization in lanthanide single-molecule magnets: bis (phthalocyaninato) terbium and bis (phthalocyaninato) dysprosium anions. Angew. Chem. Int. Ed. 44(19), 2931–2935 (2005)

    Article  Google Scholar 

  20. Taran, G., Bonet, E., Wernsdorfer, W.: The role of the quadrupolar interaction in the tunneling dynamics of lanthanide molecular magnets. J. Appl. Phys. 125(14), 142903 (2019)

    Article  ADS  Google Scholar 

  21. Taran, G., Bonet, E., Wernsdorfer, W.: Decoherence measurements in crystals of molecular magnets. Phys. Rev. B 99(18), 180408 (2019)

    Article  ADS  Google Scholar 

  22. Zheng, Y.-Z., Zheng, Z., Chen, X.-M.: A symbol approach for classification of molecule-based magnetic materials exemplified by coordination polymers of metal carboxylates. Coord. Chem. Rev. 258, 1–15 (2014)

    Article  Google Scholar 

  23. Gatteschi, D., Sessoli, R., Villain, J.: Molecular Nanomagnets, vol. 5. Oxford University Press on Demand, Oxford (2006)

    Book  Google Scholar 

  24. Hill, S., Datta, S., Liu, J., Inglis, R., Milios, C.J., Feng, P.L., Henderson, J.J., del Barco, E., Brechin, E.K., Hendrickson, D.N.: Magnetic quantum tunneling: insights from simple molecule-based magnets. Dalton Trans. 39(20), 4693–4707 (2010)

    Article  Google Scholar 

  25. Gatteschi, D., Bencini, A.: Electron Paramagnetic Resonance of Exchange Coupled Systems. Springer, Berlin/Heidelberg (1990)

    Google Scholar 

  26. Tupitsyn, I., Barbara, B.: Quantum tunneling of magnetization in molecular complexes with large spins–effect of the environment. Magnetism: molecules to materials: 5 Volumes Set, pp. 109–168 (2001)

    Google Scholar 

  27. Barbara, B.: Quantum tunneling of the collective spins of single-molecule magnets: from early studies to quantum coherence. In: Molecular Magnets, pp. 17–60. Springer, Berlin/Heidelberg (2014)

    Google Scholar 

  28. Garg, A.: Topologically quenched tunnel splitting in spin systems without kramers’ degeneracy. EPL (Europhys. Lett.) 22(3), 205 (1993)

    Google Scholar 

  29. Schilling, R.: Quantum spin-tunneling: a path integral approach. In: Quantum Tunneling of Magnetization: QTM’94, pp. 59–76. Springer, Dordrecht (1995)

    Google Scholar 

  30. Garanin, D.: Spin tunnelling: a perturbative approach. J. Phys. A: Math. Gen. 24(2), L61 (1991)

    Article  ADS  Google Scholar 

  31. Hartmann-Boutron, F., Politi, P., Villain, J.: Tunneling and magnetic relaxation in mesoscopic molecules. Int. J. Modern Phys. B 10(21), 2577–2637 (1996)

    Article  ADS  Google Scholar 

  32. Wernsdorfer, W., Ohm, T., Sangregorio, C., Sessoli, R., Mailly, D., Paulsen, C.: Observation of the distribution of molecular spin states by resonant quantum tunneling of the magnetization. Phys. Rev. Lett. 82(19), 3903 (1999)

    Article  ADS  Google Scholar 

  33. Wernsdorfer, W., Caneschi, A., Sessoli, R., Gatteschi, D., Cornia, A., Villar, V., Paulsen, C.: Effects of nuclear spins on the quantum relaxation of the magnetization for the molecular nanomagnet fe 8. Phys. Rev. Lett. 84(13), 2965 (2000)

    Article  ADS  Google Scholar 

  34. Alonso, J.J., Fernández, J.F.: Tunnel window’s imprint on dipolar field distributions. Phys. Rev. Lett. 87(9), 097205 (2001)

    Article  ADS  Google Scholar 

  35. Tupitsyn, I., Stamp, P., Prokofev, N.: Hole digging in ensembles of tunneling molecular magnets. Phys. Rev. B 69(13), 132406 (2004)

    Article  ADS  Google Scholar 

  36. Landau, L.: Zur theorie der energieubertragung. II. Phys. Z. Sowjetunion 2(46), 1–13 (1932)

    MATH  Google Scholar 

  37. Zener, C.: Non-adiabatic crossing of energy levels. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 137, pp. 696–702. The Royal Society (1932)

    Google Scholar 

  38. Stueckelberg, E.: Theory of inelastic collisions between atoms(theory of inelastic collisions between atoms, using two simultaneous differential equations). Helv. Phys. Acta (Basel) 5, 369–422 (1932)

    Google Scholar 

  39. Miyashita, S.: Dynamics of the magnetization with an inversion of the magnetic field. J. Phys. Soc. Jpn. 64(9), 3207–3214 (1995)

    Article  ADS  Google Scholar 

  40. Miyashita, S.: Observation of the energy gap due to the quantum Tunneling making use of the landau-zener mechanism. J. Phys. Soc. Jpn. 65(8), 2734–2735 (1996)

    Article  ADS  Google Scholar 

  41. Thorwart, M., Grifoni, M., Hänggi, P.: Tunneling and vibrational relaxation in driven multi-level systems. Phys. Rev. Lett. 85, quant-ph/9912024, 860 (2000)

    Google Scholar 

  42. Leuenberger, M.N., Loss, D.: Incoherent zener tunneling and its application to molecular magnets. Phys. Rev. B 61(18), 12200 (2000)

    Article  ADS  Google Scholar 

  43. Wernsdorfer, W., Bhaduri, S., Vinslava, A., Christou, G.: Landau-zener tunneling in the presence of weak intermolecular interactions in a crystal of mn 4 single-molecule magnets. Phys. Rev. B 72(21), 214429 (2005)

    Article  ADS  Google Scholar 

  44. Wernsdorfer, W.: From micro-to nano-squids: applications to nanomagnetism. Superconductor Sci. Technol. 22(6), 064013 (2009)

    Article  ADS  Google Scholar 

  45. Ganzhorn, M., Wernsdorfer, W.: Molecular quantum spintronics using single-molecule magnets. In: Molecular Magnets, pp. 319–364. Springer, Berlin/Heidelberg (2014)

    Google Scholar 

  46. Bruno, P.: Berry phase, topology, and degeneracies in quantum nanomagnets. Phys. Rev. Lett. 96(11), 117208 (2006)

    Article  ADS  Google Scholar 

  47. Demkov, Y.N., Kurasov, P.B.: Von neumann-wigner theorem: Level repulsion and degenerate eigenvalues. Theor. Math. Phys. 153(1), 1407–1422 (2007)

    Article  MATH  Google Scholar 

  48. Henderson, J., Koo, C., Feng, P., Del Barco, E., Hill, S., Tupitsyn, I., Stamp, P., Hendrickson, D.: Manifestation of spin selection rules on the quantum tunneling of magnetization in a single-molecule magnet. Phys. Rev. Lett. 103(1), 017202 (2009)

    Article  ADS  Google Scholar 

  49. Wernsdorfer, W., Bhaduri, S., Boskovic, C., Christou, G., Hendrickson, D.: Spin-parity dependent tunneling of magnetization in single-molecule magnets. Phys. Rev. B 65(18), 180403 (2002)

    Article  ADS  Google Scholar 

  50. Del Barco, E., Kent, A.D., Hill, S., North, J., Dalal, N., Rumberger, E., Hendrickson, D., Chakov, N., Christou, G.: Magnetic quantum tunneling in the single-molecule magnet mn12-acetate,” J. Low Temp. Phys. 140(1–2), 119–174 (2005)

    Article  ADS  Google Scholar 

  51. De Raedt, H., Miyashita, S., Michielsen, K., Machida, M.: Dzyaloshinskii-moriya interactions and adiabatic magnetization dynamics in molecular magnets. Phys. Rev. B 70(6), 064401 (2004)

    Article  ADS  Google Scholar 

  52. Josephson, B.D.: Possible new effects in superconductive tunnelling. Phys. Lett. 1(7), 251–253 (1962)

    Article  ADS  MATH  Google Scholar 

  53. Koelle, D., Kleiner, R., Ludwig, F., Dantsker, E., Clarke, J.: High-transition-temperature superconducting quantum interference devices. Rev. Modern Phys. 71(3), 631 (1999)

    Article  ADS  Google Scholar 

  54. Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115(3), 485 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Barra, A.-L., Debrunner, P., Gatteschi, D., Schulz, C.E., Sessoli, R.: Superparamagnetic-like behavior in an octanuclear iron cluster. EPL (Europhys. Lett.) 35s(2), 133 (1996)

    Google Scholar 

  56. Wernsdorfer, W., Soler, M., Christou, G., Hendrickson, D.: Quantum phase interference (berry phase) in single-molecule magnets of [mn 12] 2-. J. Appl. Phys. 91(10), 7164–7166 (2002)

    Article  ADS  Google Scholar 

  57. Wernsdorfer, W., Chakov, N., Christou, G.: Quantum phase interference and spin-parity in mn 12 single-molecule magnets. Phys. Rev. Lett. 95(3), 037203 (2005)

    Article  ADS  Google Scholar 

  58. Adams, S., da Silva Neto, E.H., Datta, S., Ware, J., Lampropoulos, C., Christou, G., Myaesoedov, Y., Zeldov, E., Friedman, J.R.: Geometric-phase interference in a mn 12 single-molecule magnet with fourfold rotational symmetry. Phys. Rev. Lett. 110(8), 087205 (2013)

    Article  ADS  Google Scholar 

  59. Quddusi, H.M., Liu, J., Singh, S., Heroux, K., Del Barco, E., Hill, S., Hendrickson, D.: Asymmetric berry-phase interference patterns in a single-molecule magnet. Phys. Rev. Lett. 106(22), 227201 (2011)

    Article  ADS  Google Scholar 

  60. Ramsey, C.M., Del Barco, E., Hill, S., Shah, S.J., Beedle, C.C., Hendrickson, D.N.: Quantum interference of tunnel trajectories between states of different spin length in a dimeric molecular nanomagnet. Nat. Phys. 4(4), 277–281 (2008)

    Article  Google Scholar 

  61. Mossin, S., Stefan, M., ter Heerdt, P., Bouwen, A., Goovaerts, E., Weihe, H.: Fourth-order zero-field splitting parameters of [mn (cyclam) br2] br determined by single-crystal w-band epr. Appl. Magn. Reson. 21(3–4), 587–596 (2001)

    Article  Google Scholar 

  62. Bertaina, S., Gambarelli, S., Mitra, T., Tsukerblat, B., Müller, A., Barbara, B.: Quantum oscillations in a molecular magnet. Nature 453(7192), 203–206 (2008)

    Article  ADS  Google Scholar 

  63. Sorace, L., Wernsdorfer, W., Thirion, C., Barra, A.-L., Pacchioni, M., Mailly, D., Barbara, B.: Photon-assisted tunneling in a fe 8 single-molecule magnet. Phys. Rev. B 68(22), 220407 (2003)

    Article  ADS  Google Scholar 

  64. Bal, M., Friedman, J.R., Suzuki, Y., Mertes, K., Rumberger, E., Hendrickson, D., Myasoedov, Y., Shtrikman, H., Avraham, N., Zeldov, E.: Photon-induced magnetization reversal in the fe 8 single-molecule magnet. Phys. Rev. B 70(10), 100408 (2004)

    Article  ADS  Google Scholar 

  65. Wernsdorfer, W., Müller, A., Mailly, D., Barbara, B.: Resonant photon absorption in the low-spin molecule v15. EPL (Europhys. Lett.) 66(6), 861 (2004)

    Google Scholar 

  66. Petukhov, K., Wernsdorfer, W., Barra, A.-L., Mosser, V.: Resonant photon absorption in fe 8 single-molecule magnets detected via magnetization measurements. Phys. Rev. B 72(5), 052401 (2005)

    Article  ADS  Google Scholar 

  67. Moreno-Pineda, E., Godfrin, C., Balestro, F., Wernsdorfer, W., Ruben, M.: Molecular spin qudits for quantum algorithms. Chem. Soc. Rev. 47(2), 501–513 (2018)

    Article  Google Scholar 

  68. Rabi, I.I.: Space quantization in a gyrating magnetic field. Phys. Rev. 51(8), 652 (1937)

    Article  ADS  MATH  Google Scholar 

  69. Grifoni, M., Hänggi, P.: Driven quantum tunneling. Phys. Rep. 304(5), 229–354 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  70. Schweiger, A., Jeschke, G.: Principles of Pulse Electron Paramagnetic Resonance. Oxford University Press on Demand, Oxford (2001)

    Google Scholar 

  71. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Modern Phys. 75(3), 715 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Takahashi, S., Tupitsyn, I., Van Tol, J., Beedle, C., Hendrickson, D., Stamp, P.: Decoherence in crystals of quantum molecular magnets. Nature 476(7358), 76–79 (2011)

    Article  Google Scholar 

  73. Shim, J., Bertaina, S., Gambarelli, S., Mitra, T., Müller, A., Baibekov, E., Malkin, B., Tsukerblat, B., Barbara, B.: Decoherence window and electron-nuclear cross relaxation in the molecular magnet v 15. Phys. Rev. Lett. 109(5), 050401 (2012)

    Article  ADS  Google Scholar 

  74. Ardavan, A., Rival, O., Morton, J.J., Blundell, S.J., Tyryshkin, A.M., Timco, G.A., Winpenny, R.E.: Will spin-relaxation times in molecular magnets permit quantum information processing? Phys. Rev. Lett. 98(5), 057201 (2007)

    Article  ADS  Google Scholar 

  75. Zadrozny, J.M., Niklas, J., Poluektov, O.G., Freedman, D.E.: Millisecond coherence time in a tunable molecular electronic spin qubit. ACS Cent. Sci. 1(9), 488–492 (2015)

    Article  Google Scholar 

  76. Yang, J., Wang, Y., Wang, Z., Rong, X., Duan, C.-K., Su, J.-H., Du, J.: Observing quantum oscillation of ground states in single molecular magnet. Phys. Rev. Lett. 108(23), 230501 (2012)

    Article  ADS  Google Scholar 

  77. Takahashi, S., van Tol, J., Beedle, C.C., Hendrickson, D.N., Brunel, L.-C., Sherwin, M.S.: Coherent manipulation and decoherence of s = 10 single-molecule magnets. Phys. Rev. Lett. 102(8), 087603 (2009)

    Article  ADS  Google Scholar 

  78. Bader, K., Dengler, D., Lenz, S., Endeward, B., Jiang, S.-D., Neugebauer, P., van Slageren, J.: Room temperature quantum coherence in a potential molecular qubit. Nat. Commun. 5, 5304 (2014)

    Article  ADS  Google Scholar 

  79. Atzori, M., Tesi, L., Morra, E., Chiesa, M., Sorace, L., Sessoli, R.: Room-temperature quantum coherence and rabi oscillations in vanadyl phthalocyanine: toward multifunctional molecular spin qubits. J. Am. Chem. Soc. 138(7), 2154–2157 (2016)

    Article  Google Scholar 

  80. Cleuziou, J.-P., Wernsdorfer, W., Bouchiat, V., Ondarçuhu, T., Monthioux, M.: Carbon nanotube superconducting quantum interference device. Nat. Nanotechnol. 1(1), 53–59 (2006)

    Article  ADS  Google Scholar 

  81. Bogani, L., Wernsdorfer, W.: Molecular spintronics using single-molecule magnets. Nat. Mater. 7(3), 179–186 (2008)

    Article  ADS  Google Scholar 

  82. Roch, N., Florens, S., Bouchiat, V., Wernsdorfer, W., Balestro, F.: Quantum phase transition in a single-molecule quantum dot. Nature 453(7195), 633–637 (2008)

    Article  ADS  Google Scholar 

  83. Sanvito, S., Rocha, A.R.: Molecular-spintronics: the art of driving spin through molecules. J. Comput. Theor. Nanosci. 3(5), 624–642 (2006)

    Article  Google Scholar 

  84. Zyazin, A.S., van den Berg, J.W., Osorio, E.A., van der Zant, H.S., Konstantinidis, N.P., Leijnse, M., Wegewijs, M.R., May, F., Hofstetter, W., Danieli, C., et al.: Electric field controlled magnetic anisotropy in a single molecule. Nano Lett. 10(9), 3307–3311 (2010)

    Article  ADS  Google Scholar 

  85. Thiele, S., Vincent, R., Holzmann, M., Klyatskaya, S., Ruben, M., Balestro, F., Wernsdorfer, W.: Electrical readout of individual nuclear spin trajectories in a single-molecule magnet spin transistor. Phys. Rev. Lett. 111(3), 037203 (2013)

    Article  ADS  Google Scholar 

  86. Urdampilleta, M., Klyatskaya, S., Cleuziou, J.-P., Ruben, M., Wernsdorfer, W.: Supramolecular spin valves. Nat. Mater. 10(7), 502–506 (2011)

    Article  ADS  Google Scholar 

  87. Fu, Y.-S., Schwöbel, J., Hla, S.-W., Dilullo, A., Hoffmann, G., Klyatskaya, S., Ruben, M., Wiesendanger, R.: Reversible chiral switching of bis (phthalocyaninato) terbium (iii) on a metal surface. Nano Lett. 12(8), 3931–3935 (2012)

    Article  ADS  Google Scholar 

  88. Komeda, T., Isshiki, H., Liu, J., Zhang, Y.-F., Lorente, N., Katoh, K., Breedlove, B.K., Yamashita, M.: Observation and electric current control of a local spin in a single-molecule magnet. Nat. Commun. 2, 217 (2011)

    Article  ADS  Google Scholar 

  89. Schwöbel, J., Fu, Y., Brede, J., Dilullo, A., Hoffmann, G., Klyatskaya, S., Ruben, M., Wiesendanger, R.: Real-space observation of spin-split molecular orbitals of adsorbed single-molecule magnets. Nat. Commun. 3, 953 (2012)

    Article  ADS  Google Scholar 

  90. Heersche, H., De Groot, Z., Folk, J., Van Der Zant, H., Romeike, C., Wegewijs, M., Zobbi, L., Barreca, D., Tondello, E., Cornia, A.: Electron transport through single mn 12 molecular magnets. Phys. Rev. Lett. 96(20), 206801 (2006)

    Article  ADS  Google Scholar 

  91. Jo, M.-H., Grose, J.E., Baheti, K., Deshmukh, M.M., Sokol, J.J., Rumberger, E.M., Hendrickson, D.N., Long, J.R., Park, H., Ralph, D.: Signatures of molecular magnetism in single-molecule transport spectroscopy. Nano Lett. 6(9), 2014–2020 (2006)

    Article  ADS  Google Scholar 

  92. Mannini, M., Sainctavit, P., Sessoli, R., Cartier dit Moulin, C., Pineider, F., Arrio, M.-A., Cornia, A., Gatteschi, D.: Xas and xmcd investigation of mn12 monolayers on gold. Chem.–A Eur. J. 14(25), 7530–7535 (2008)

    Google Scholar 

  93. Burzurí, E., Zyazin, A., Cornia, A., Van der Zant, H.: Direct observation of magnetic anisotropy in an individual fe 4 single-molecule magnet. Phys. Rev. Lett. 109(14), 147203 (2012)

    Article  ADS  Google Scholar 

  94. Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W., Balestro, F.: Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488(7411), 357–360 (2012)

    Article  ADS  Google Scholar 

  95. Thiele, S., Balestro, F., Ballou, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W.: Electrically driven nuclear spin resonance in single-molecule magnets. Science 344(6188), 1135–1138 (2014)

    Article  ADS  Google Scholar 

  96. Godfrin, C., Ferhat, A., Ballou, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W., Balestro, F.: Operating quantum states in single magnetic molecules: implementation of grover’s quantum algorithm. Phys. Rev. Lett. 119(18), 187702 (2017)

    Article  ADS  Google Scholar 

  97. Charlier, J.-C., Blase, X., Roche, S.: Electronic and transport properties of nanotubes. Rev. Modern Phys. 79(2), 677 (2007)

    Article  ADS  Google Scholar 

  98. Nygård, J., Cobden, D.H., Lindelof, P.E.: Kondo physics in carbon nanotubes. Nature 408(6810), 342–346 (2000)

    Article  ADS  Google Scholar 

  99. Urdampilleta, M., Klyatskaya, S., Ruben, M., Wernsdorfer, W.: Landau-zener tunneling of a single tb 3+ magnetic moment allowing the electronic read-out of a nuclear spin. Phys. Rev. B 87(19), 195412 (2013)

    Article  ADS  Google Scholar 

  100. Leuenberger, M.N., Loss, D.: Quantum computing in molecular magnets. Nature 410(6830), 789–793 (2001)

    Article  ADS  Google Scholar 

  101. Leuenberger, M.N., Loss, D.: Grover algorithm for large nuclear spins in semiconductors. Phys. Rev. B 68(16), 165317 (2003)

    Article  ADS  Google Scholar 

  102. Meier, F., Levy, J., Loss, D.: Quantum computing with spin cluster qubits. Phys. Rev. Lett. 90(4), 047901 (2003)

    Article  ADS  Google Scholar 

  103. Troiani, F., Ghirri, A., Affronte, M., Carretta, S., Santini, P., Amoretti, G., Piligkos, S., Timco, G., Winpenny, R.: Molecular engineering of antiferromagnetic rings for quantum computation. Phys. Rev. Lett. 94(20), 207208 (2005)

    Article  ADS  Google Scholar 

  104. Carretta, S., Santini, P., Amoretti, G., Troiani, F., Affronte, M.: Spin triangles as optimal units for molecule-based quantum gates. Phys. Rev. B 76(2), 024408 (2007)

    Article  ADS  Google Scholar 

  105. Troiani, F., Affronte, M.: Molecular spins for quantum information technologies. Chem. Soc. Rev. 40(6), 3119–3129 (2011)

    Article  Google Scholar 

  106. Lehmann, J., Gaita-Arino, A., Coronado, E., Loss, D.: Spin qubits with electrically gated polyoxometalate molecules. Nat. Nanotechnol. 2(5), 312–317 (2007)

    Article  ADS  Google Scholar 

  107. Bartolomé, J., Luis, F., Fernández, J.F.: Molecular magnets. Phys. Appl. Springer (2014)

    Book  Google Scholar 

  108. DiVincenzo, D.P., et al.: The physical implementation of quantum computation. arXiv preprint quant-ph/0002077 (2000)

    Google Scholar 

  109. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 439, pp. 553–558. The Royal Society (1992)

    Google Scholar 

  110. Steane, A.: Quantum computing. Rep. Progress Phys. 61(2), 117 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  111. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM (1996)

    Google Scholar 

  112. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  113. Abe, E., Wu, H., Ardavan, A., Morton, J.J.: Electron spin ensemble strongly coupled to a three-dimensional microwave cavity. Appl. Phys. Lett. 98(25), 251108 (2011)

    Article  ADS  Google Scholar 

  114. Chiorescu, I., Groll, N., Bertaina, S., Mori, T., Miyashita, S.: Magnetic strong coupling in a spin-photon system and transition to classical regime. Phys. Rev. B 82(2), 024413 (2010)

    Article  ADS  Google Scholar 

  115. Clauss, C., Bothner, D., Koelle, D., Kleiner, R., Bogani, L., Scheffler, M., Dressel, M.: Broadband electron spin resonance from 500 mhz to 40 ghz using superconducting coplanar waveguides. Appl. Phys. Lett. 102(16), 162601 (2013)

    Article  ADS  Google Scholar 

  116. Jenkins, M., Hümmer, T., Martínez-Pérez, M.J., García-Ripoll, J., Zueco, D., Luis, F.: Coupling single-molecule magnets to quantum circuits. New J. Phys. 15(9), 095007 (2013)

    Article  ADS  Google Scholar 

  117. Carretta, S., Chiesa, A., Troiani, F., Gerace, D., Amoretti, G., Santini, P.: Quantum information processing with hybrid spin-photon qubit encoding. Phys. Rev. Lett. 111(11), 110501 (2013)

    Article  ADS  Google Scholar 

  118. Trif, M., Troiani, F., Stepanenko, D., Loss, D.: Spin electric effects in molecular antiferromagnets. Phys. Rev. B 82(4), 045429 (2010)

    Article  ADS  Google Scholar 

  119. Troiani, F., Bellini, V., Candini, A., Lorusso, G., Affronte, M.: Spin entanglement in supramolecular structures. Nanotechnology 21(27), 274009 (2010)

    Article  ADS  Google Scholar 

  120. Nossa, J., Islam, M., Canali, C.M., Pederson, M.: First-principles studies of spin-orbit and dzyaloshinskii-moriya interactions in the {Cu 3} single-molecule magnet. Phys. Rev. B 85(8), 085427 (2012)

    Article  ADS  Google Scholar 

  121. Graham, M.J., Zadrozny, J.M., Shiddiq, M., Anderson, J.S., Fataftah, M.S., Hill, S., Freedman, D.E.: Influence of electronic spin and spin–orbit coupling on decoherence in mononuclear transition metal complexes. J. Am. Chem. Soc. 136(21), 7623–7626 (2014)

    Article  Google Scholar 

  122. Timco, G.A., Carretta, S., Troiani, F., Tuna, F., Pritchard, R.J., Muryn, C.A., McInnes, E.J., Ghirri, A., Candini, A., Santini, P., et al.: Engineering the coupling between molecular spin qubits by coordination chemistry. Nat. Nanotechnol. 4(3), 173–178 (2009)

    Article  ADS  Google Scholar 

  123. Ferrando-Soria, J., Pineda, E.M., Chiesa, A., Fernandez, A., Magee, S.A., Carretta, S., Santini, P., Vitorica-Yrezabal, I.J., Tuna, F., Timco, G.A., et al.: A modular design of molecular qubits to implement universal quantum gates. Nat. Commun. 7, 11377 (2016)

    Article  ADS  Google Scholar 

  124. Ardavan, A., Bowen, A.M., Fernandez, A., Fielding, A.J., Kaminski, D., Moro, F., Muryn, C.A., Wise, M.D., Ruggi, A., McInnes, E.J., et al.: Engineering coherent interactions in molecular nanomagnet dimers. arXiv preprint arXiv:1510.01694 (2015)

    Google Scholar 

  125. Zadrozny, J.M., Niklas, J., Poluektov, O.G., Freedman, D.E.: Multiple quantum coherences from hyperfine transitions in a vanadium (iv) complex. J. Am. Chem. Soc. 136(45), 15841–15844 (2014)

    Article  Google Scholar 

  126. Tesi, L., Lucaccini, E., Cimatti, I., Perfetti, M., Mannini, M., Atzori, M., Morra, E., Chiesa, M., Caneschi, A., Sorace, L., et al.: Quantum coherence in a processable vanadyl complex: new tools for the search of molecular spin qubits. Chem. Sci. 7(3), 2074–2083 (2016)

    Article  Google Scholar 

  127. Gómez-Coca, S., Urtizberea, A., Cremades, E., Alonso, P.J., Camón, A., Ruiz, E., Luis, F.: Origin of slow magnetic relaxation in kramers ions with non-uniaxial anisotropy. Nat. Commun. 5 4300 (2014)

    Article  ADS  Google Scholar 

  128. Shiddiq, M., Komijani, D., Duan, Y., Gaita-Ariño, A., Coronado, E., Hill, S.: Enhancing coherence in molecular spin qubits via atomic clock transitions. Nature 531(7594), 348–351 (2016)

    Article  ADS  Google Scholar 

  129. Hodges, J.S., Yang, J.C., Ramanathan, C., Cory, D.G.: Universal control of nuclear spins via anisotropic hyperfine interactions. Phys. Rev. A 78(1), 010303 (2008)

    Article  ADS  Google Scholar 

  130. Santini, P., Carretta, S., Troiani, F., Amoretti, G.: Molecular nanomagnets as quantum simulators. Phys. Rev. Lett. 107(23), 230502 (2011)

    Article  ADS  Google Scholar 

  131. Zhang, Y., Ryan, C.A., Laflamme, R., Baugh, J.: Coherent control of two nuclear spins using the anisotropic hyperfine interaction. Phys. Rev. Lett. 107(17), 170503 (2011)

    Article  ADS  Google Scholar 

  132. Whitehead, G.F., Cross, B., Carthy, L., Milway, V.A., Rath, H., Fernandez, A., Heath, S.L., Muryn, C.A., Pritchard, R.G., Teat, S.J., et al.: Rings and threads as linkers in metal–organic frameworks and poly-rotaxanes. Chem. Commun. 49(65), 7195–7197 (2013)

    Article  Google Scholar 

  133. Ueda, A., Suzuki, S., Yoshida, K., Fukui, K., Sato, K., Takui, T., Nakasuji, K., Morita, Y.: Hexamethoxyphenalenyl as a possible quantum spin simulator: an electronically stabilized neutral π radical with novel quantum coherence owing to extremely high nuclear spin degeneracy. Angew. Chem. Int. Ed. 52(18), 4795–4799 (2013)

    Article  Google Scholar 

  134. Candini, A., Klyatskaya, S., Ruben, M., Wernsdorfer, W., Affronte, M.: Graphene spintronic devices with molecular nanomagnets. Nano Lett. 11(7), 2634–2639 (2011)

    Article  ADS  Google Scholar 

  135. Urdampilleta, M., Klayatskaya, S., Ruben, M., Wernsdorfer, W.: Magnetic interaction between a radical spin and a single-molecule magnet in a molecular spin-valve. ACS Nano 9(4), 4458–4464 (2015)

    Article  Google Scholar 

  136. Ghirri, A., Troiani, F., Affronte, M.: Quantum computation with molecular nanomagnets: achievements, challenges, and new trends. In: Molecular Nanomagnets and Related Phenomena, pp. 383–430. Springer (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Wernsdorfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Taran, G., Bonet, E., Wernsdorfer, W. (2021). Single-Molecule Magnets and Molecular Quantum Spintronics. In: Coey, J.M.D., Parkin, S.S. (eds) Handbook of Magnetism and Magnetic Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-63210-6_18

Download citation

Publish with us

Policies and ethics