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Abstract Cities are complex systems where social, ecological, and technological
processes are deeply coupled. This coupling complicates urban planning and land
use development, as changing one facet of the urban fabric will likely impact the
others. As cities grapple with climate change, there is a growing need to envision
urban futures that not only address more frequent and intense severe weather events
but also improve day-to-day livability. Here we examine climate risks as functions of
the local land use with numerical models. These models leverage a wide array of data
sources, from satellite imagery to tax assessments and land cover. We then present a
machine-learning cellular automata approach to combine historical land use change
with local coproduced urban future scenarios. The cellular automata model uses
historical and ancillary data like existing road systems and natural features to develop
a set of probabilistic land use change rules, which are then modified according to
stakeholder priorities. The resulting land use scenarios are evaluated against histor-
ical flood hazards, showcasing how they perform against stakeholder expectations.
Our work shows that coproduced scenarios, when grounded with historical and
emerging data, can provide paths that increase resilience to weather hazards as well
as enhancing ecosystem services provided to citizens.
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9.1 Data-Driven Models of Urban Land Use and Climate
Hazards

Often, urban development scenarios focus on global climate change impacts on
existing infrastructure (Ortiz et al. 2019). Although some studies have explored the
impacts of projected urban expansion, traditional approaches are often based on
planning documents (Krayenhoff et al. 2018) or negative frameworks of the future
(Coumou and Robinson 2013). As cities become more aware of the climate-related
challenges ahead, spatially explicit models of heat risk, flooding, and other hazards
are developed to address present and expected challenges. This chapter explores
applications of data-driven approaches to estimate present and future risks related
to weather hazards. The modeling efforts detailed in upcoming sections focus on
land cover as a driver of heat and local flood hazards. By leveraging a wide array
of data sources, from satellite imagery to tax assessments and land cover, models of
present and future risk can be developed based on statistical and physical relationships
between the land surface and climatological processes. Finally, land use/cover (LUC)
models are introduced as a tool to develop future development scenarios. With LUC
as adriver of weather hazard frequency and intensity, the combination of these models
can provide stakeholders a tool to not just explore envisioned landscapes but also
show their impacts on these risks across spatial and temporal domains.

The sections that follow introduce a modeling framework, detailed through a
series of case studies focusing on two sites: San Juan, Puerto Rico and New York,
New York. As coastal cities, San Juan and New York are exposed to similar hazards,
such as flooding and sea-level rise. Each case study city, however, features vastly
different infrastructure and socioeconomic conditions, highlighting the versatility of
modeling approaches.

9.2 Land Surface Temperature Projections in Cities

Extreme heat is one of the most hazardous weather events, impacting human health,
energy use, and ecosystems. Moreover, global climate models project that climate
conditions associated with severe heat will become more intense, more frequent, and
longer lasting (Meehl and Tebaldi 2004). By concentrating large populations and
infrastructure in relatively small geographical areas, cities are particularly vulnerable
to extreme heat. This vulnerability is exacerbated by warmer temperatures observed
in cities, a phenomenon known as the urban heat island (UHI).

UHIs are a function of urban modification of the land surface, in turn altering
its energy balance (Oke 1982). These modifications include reductions in natural
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cooling mechanisms like evapotranspiration and radiative cooling, along with the
addition of heat sources like air conditioning and traffic. UHIs have also been shown
to intensify during periods of extreme heat due to synergies between the surface and
atmosphere (Li and Bou-Zeid 2013).

Traditionally, future climate is projected at continental to global scales using
General Circulation Models (GCMs). GCMs are physical mathematical models that
solve the equations of fluid motion and thermodynamics over the entire planet.
However, computing resources limit the spatial resolution of GCMs to the order
10? km (km). Their coarse spatial resolution makes the use of GCMs problematic as
a source of information on future climate hazards in cities, where physical features
exist at less than 1 km scales. In addition, physical processes that occur at finer
spatial scales than GCM grid resolution are often heavily parameterized (i.e., esti-
mated using bulk or empirical relationships) or not present at all. Many of these
processes are particularly important in urban settings, such as the effect buildings
have on temperature and winds, as well as infrastructure (e.g., sewage and slopes)
on flood extents. Two broad sets of techniques have been developed to address these
shortcomings: dynamical and statistical downscaling.

Dynamical downscaling involves models that solve a similar set of equations
as GCMs over a limited area, using GCM output data itself as initial and boundary
conditions. In addition to employing higher resolution grids, dynamical downscaling
can often represent smaller scale processes explicitly, such as convection, land surface
dynamics, and clouds. However, availability of computing resources has traditionally
limited this approach to simulations in the order of 1-10 km (i.e., neighborhood to
city scales) for a limited number of regions (Kong et al. 2019).

On the other hand, statistical downscaling methods map observations to coarse
GCM data to increase spatial resolution by use of additional data (e.g., land cover and
weather station data). The main benefit of this approach lies in its low computational
cost, with spatial resolution being limited by data availability of observations. With
modern satellite imagery, observations often exist at the 0.01 to 0.1 km scale, where
signals related to individual buildings can be explicitly resolved.

9.2.1 Surface Temperature Projections at City Scales: New
York City Case Study

New York City (NYC), the most populous in the USA, faces challenges related
to extreme summer heat. Studies have shown that the geographic distribution of
temperatures is not uniform throughout the city (Ortiz et al. 2018). Assessment of
heatrisks is further complicated by the spatial variability of vulnerable groupsinNYC
(Rosenthal et al. 2014; Madrigano et al. 2015). This spatial variability necessitates
the use of models of heat at fine spatial scales, accounting for the geography of the
factors driving both temperature and vulnerability.
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Fig. 9.1 60-m grid used to generate STURLA classes from land cover and building data in New
York City

A statistical downscaling approach to derive urban surface temperature futures is
to map satellite-derived surface temperatures to urban landscapes. Hamstead et al.
(2016) show that by combining land cover with detailed building morphology data,
urban landscapes could be classified into statistically separable composite classes
with distinct surface temperature distributions. These Structure of Urban Landscape
(STURLA) classes are derived by sampling land cover data within adjacent square
grids, with each composite class made up of the contained land categories. (For more
information about STURLA, see Chap. 4 on vulnerability mapping.) Fig. 9.1 shows a
60 m (m) by 60 m grid over 1 m resolution land cover data in New York City using the
2010 LiDAR-derived land cover dataset. Present-day land surface temperature (LST)
is estimated from Landsat 8 thermal imagery as described in Avdan and Jovanovska
(2016).

The median LST for each class is then assigned to all cells of that class, so that
there is a single LST value mapped to each. Once surface temperatures are mapped
to present day imagery, a GCM ensemble is used to project future values. Rather
than rely on a single global model as the source of future projections, a common
approach is to use a group of simulations from different models. This approach
addresses the uncertainty in the assumptions used in GCM formulations and their
initial and boundary conditions. Here, an eight-member ensemble is used from the
fifth Climate Model Intercomparison Project (CMIPS5, Taylor et al. 2012) for an end
of century (2070 to 2100) high emissions scenario (Representative concentration
pathway 8.5, or RCP 8.5, Riahi et al. 2011). To project future LST, the composite
land class-mapped LST is scaled using statistical standardization:

LST; — LST

OLST

LSTstandard =
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where LST ;corresponds to the composite class-mapped temperature values and LST
is the mean value, and oy g7 is the LST standard deviation. LST is then rescaled
to using the GCM ensemble’s 25th, 50th, and 75th quantiles to show the range of
projections available:

ALST Gem

ALST = ALST gem + <
oGecMm

) * LST‘vmndurd

Results (Fig. 9.2) provide insights into how the various composite urban land-
scapes may drive temperature change locally as global temperatures increase. For
example, LST in relatively flat locations with little vegetation, such as airports, may
warm more than in tree-lined areas with few to no buildings (e.g., Central Park).
These fine-scale projections can be used to map future heat-related risk and vulner-
ability, as they provide information at spatial scales close to the size of housing
units.

One limitation of this method is that physical processes at the land surface are
not explicitly modeled, and thus nonlinear interactions between them may be under-
estimated or not accounted for at all. For example, droughts and dry soil condi-
tions have been shown to greatly increase the intensity and frequency of heat waves
(Fischer et al. 2007). Another limitation is that no temporal land use dynamics are
considered. However, as LST change is mapped to specific classes, this method
can be coupled with land cover models to explore their impacts on LST. With that
approach, specific adaptations to increasing temperatures may be explored, offering
stakeholders a measure of how adaptation measures may modify surface conditions
and thus impact exposure to heat. These kinds of methods enable analysis of urban
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Fig. 9.2 End of century (2070-2100) landscape-mapped surface temperature projections based on
the eight-member General Circulation Model RCP8.5 emissions scenario ensemble median values



134 L. Ortiz et al.

heat. By tying landscapes to surface temperatures, impacts of urban transformations
may be explored, either in the form of heat adaptation or urban development.

9.3 Urban Flooding

Flooding poses an increasing threat worldwide, causing disruption, economic
damages and loss of life (Jha et al. 2012). Contemporary cities face risk from multiple
types and combinations of meteorologically driven flooding (Moftakhari et al. 2017).
These include types that have been well studied, such as fluvial and coastal flooding,
along with flooding types that have only recently begun to receive attention, such as
pluvial and groundwater flooding (Box 9.1).

Box 9.1 Types of flooding events and their definitions

Flooding types

Fluvial/Lakeshore Flooding: Flooding that occurs when the stage of rivers,
streams or other freshwater bodies rises above bankfull elevations and/or the
height of levees or flood protection infrastructure.

Coastal Flooding: Flooding that occurs when tide levels exceed an eleva-
tion threshold that results in the inundation of infrastructure or disruption of
socioeconomic activities.

Pluvial Flooding: Flooding that occurs when precipitation rates exceed the
rate of natural or engineered drainage, resulting in overland inundation and/or
flow.

Groundwater Flooding: Flooding that occurs when groundwater tables
rise above a threshold level that results in the inundation of infrastructure or
disruption of socioeconomic activities.

Due to global climate change, the frequency and intensity of all of these flooding
mechanisms are projected to increase in many regions of the world (Rotzoll and
Fletcher 2013; Arnell and Gosling 2016; Vitousek et al. 2017; Rosenzweig et al.
2018). However, climatic drivers will interplay dynamically with land use pathways
to dynamically determine flood risk. LUC models can be used to enhance under-
standing of how land use changes can impact all three components of flood risk,
outlined below (Crichton 1999; Koks et al. 2015).

e Exposure: The population, property and assets located in inundated areas.

e Social vulnerability: The sensitivity of social, ecological and infrastructure
systems to the impacts of inundation when and where it occurs

e Hazard: The probability that inundation will occur.

Many studies have used LUC models to assess flooding exposure. This is typi-
cally done using a decoupled approach, where future land use and inundated area are
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simulated independently and the results then compared (Barredo and Engelen 2010;
Cammerer et al. 2013; Beckers et al. 2013; Song et al. 2017). While these decoupled
approaches can provide valuable information to support urban planning, it is impor-
tant to consider that cities are integrated social-ecological-technological systems
and that “social” land-use planning decisions will determine not just who is living
in potentially inundated areas but will also affect the area inundated in response to
a meteorological or climatological hazard. For example, the dense encroachment of
buildings onto the floodplain can affect exposure during a flooding event (Fig. 9.3).

LUC models can also be used to enhance understanding of social vulnerability to
flooding under different scenarios. For any given population or settlement exposed to
flooding, the severity of impact is associated with social parameters such as wealth,
type of infrastructure, and/or the availability of insurance or other social instruments
that support recovery from inundation. For example, informal settlements are known
to be highly vulnerable to flooding in the absence of specialized mitigation efforts
(Jiusto and Kenney 2016). LUC models can be used to assess the effectiveness of
policies to disincentivize the expansion of informal settlements in the floodplain,
thus reducing future social vulnerability to flooding (Inouye et al. 2015).

Fig. 9.3 New York City’s East Harlem/Randalls Island community with the event of 1.9 m (75
inches) of sea-level rise. In this scenario, 11% of this community would be inundated during a
typical daily high tide (Mean Highest High Water, or MHHW). Through the Urban Resilience to
Extremes Sustainability Research Network (URExSRN), researchers are using cellular automata
to investigate exposure under alternative land use scenarios
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Finally, several studies have identified the potential impact of urban land use
development on local meteorological hazards, those of which may result in urban
flooding. Conventionally, meteorological hazards were seen as external, independent
drivers of flooding. However, recent studies have found that urban canopy and heat
island (Lin et al. 2011; Han et al. 2014) effects can impact the evolution and rainfall
of both thunderstorms and longer duration extreme rain events, such as Hurricane
Harvey in 2018 (Zhang et al. 2018). LUC models can be used to better understand
these feedbacks and the integrated dynamics of land use and climate change that can
determine future flood risk.

9.4 Modeling Future Land Use/Cover Change Scenarios

Recently, envisioning positive futures has gained traction as a method of designing
desirable outcomes in cities (see Chap. 6; McPhearson et al. 2016). This visioning
process gives stakeholders, policymakers, and communities an opportunity to set
goals and transitions that not only make urban growth more sustainable and resilient
to climate hazards but also improve the services they provide. One way to make the
visioning processes spatially explicit is through spatially explicit mathematical land
use models.

LUC models seek to understand the drivers of LUC dynamics (Mustafa et al.
2018b) and/or simulate possible future scenarios (Hyandye and Martz 2017). Several
modeling approaches have been proposed to analyze land change patterns. Broadly,
these approaches are cellular automata (CA), agent-based (AB), and statistical
models. Among these, CA has been widely used due to its simplicity, explanatory
power, and ability to represent LUC evolution (Troisi 2015). The CA framework
(Basse et al. 2014; Hyandye and Martz 2017; Mustafa et al. 2018a) is a spatially
explicit model in which the change from one land use to another (e.g., from forest to
urban) is controlled by the states of neighboring locations (called cells in this context).
Although pure CA models cannot account for important global LUC change drivers
(e.g., distance to roads and slope angles), newer approaches have coupled them to
statistical models (e.g., logistic regression) in order to include their influence. AB
models (Zhuge et al. 2016; Mustafa et al. 2017) allow the exploration of interactions
between different spatial scales (e.g., urban developers and the environment, Mialhe
et al. 2012). These models incorporate individuals’ behavior and their interactions
in the land change process.

Subsequent subsections detail a case study of the use of CA models as a tool to
coproduce spatially explicit visions of the future for the Caribbean city of San Juan,
Puerto Rico. In this study, we employ the Dinamica Environment for Geoprocessing
Objects (EGO), a CA-based model, to simulate possible future land use scenarios
of San Juan, Puerto Rico. Unlike typical CA models that use descriptive logistic
regression or other static methods to calibrate the relationship between land use
change process and its drivers, Dinamica uses the weight of evidence (WoE) method,
which has been shown to offer more flexibility in modeling these relationships (Kolb
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et al. 2013; Pathirana et al. 2014; Gago-Silva et al. 2017). WoE methods use the
concept of conditional probability to estimate the weight given to all driving variables
as they occur (or not) in historical datasets. This has the effect of modifying the direct
impact of each dataset on LUC change, with this weighting being updated with new
data. As reproducing these relationships is crucial to simulate LUC change dynamics,
Dinamica has been widely employed in this domain.

9.4.1 Land Use/Cover Scenarios Modeling: San Juan, Puerto
Rico Case Study

Following the coproduction framework detailed in Chap. 6, we developed three
distinct, long-term future (2080) visions of the coastal city of San Juan, Puerto
Rico: Food & Energy Security, Coastal and Flooding, and Connected Cities. Each
scenario’s objectives and priorities were used to modify the conversion rates of
respective land cover types using a CA model trained on historical data, as detailed
in Table 9.1. These objectives and goals were developed via a series of activities,
which included participatory mapping and development of timelines and milestones
for each scenario.

In the San Juan case study, the CA model is trained on two LUC datasets:
1991 and 2000. The LUC data, at 10 m spatial resolution, have been reclassified

Table 9.1 Coproduced future scenarios for San Juan, Puerto Rico with their objectives and
corresponding cellular automata model rule modifications

Scenario name Objectives Modeling transition rules

Food and energy security | Ecotone restoration (wetland Increase conversion to wetlands
and riverine) near coast by 10%
Use of vacant land for urban and | Increase conversion to forest near
periurban agriculture water land use cells

Generate small agriculture
patches within urban areas

Flooding Reforestation Increase conversion to forest
Relocation of coastal throughout entire domain
communities to inland locations | From 2050 onward, decrease
to strengthen coastal ecosystems | urban areas near coast

and reduce flood risk, starting Increase conversion rates from

from 2050 bare soil to forests

Connected cities Increase connectivity of Increase conversion to forest
transportation infrastructure throughout entire domain
Rivers and lakes as part of From 2050 onward, decrease
transportation system development of urban areas near
Reforestation near coast and coast
other water bodies to restore Increase conversion to forest near
watershed inland water bodies

Reduced development near coast
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into 10 categories: Sea, High-density urban, Low-density urban, Cultivated lands,
Pasture, Forests, Wetlands, Coastal sand, Bare soil, and Inland water. In addition,
several global drivers of LUC change are included in the model: distances to barrios,
road network, airport, vial, lakes, ports, and rivers, as well as protected zones and
floodplains.

The change rate from one LUC to another per time step, representing 1 year,
is obtained in the CA model by a cross-tabulation between the two LUC maps.
Transition rules used to allocate LUC change consists of two components. The first
is calculated using the LUC change global drivers. The second component is based
on the local neighbors of each cell. Dinamica calculates the transition probability
based on global drivers using the WoE method.

After calculating the transition probabilities based on the explanatory variables,
Dinamica uses CA model to calculate transition probabilities according to the imme-
diate neighbors for each cell. This is done using two complementary functions:
Expander and Patcher. Along with mimicking local neighborhood influence, these
functions allow for controlling the geometry of the simulated patches by estimating
the mean size, size variance, and isometry of the patches.

9.4.2 San Juan Simulation Results

Simulation results reveal significant differences between the scenarios (Fig. 9.4),
consistent with their corresponding stakeholder-stated objectives. In addition to the
three coproduced future scenarios, a “business-as-usual” (BAU) scenario was also
generated. Development of BAU followed the same modeling approach detailed
above, but without any modification of land transition rules, representing a projection
of future San Juan based entirely on historical LUC change.

In the Food and Energy Security scenario, green corridors appear along rivers
(forest and cultivated patches), with wetland increasing near riverbeds and coastal
areas by 2080. In addition, urban development is characterized by a low rather than
high density urban fabric, which is predominant in the BAU scenario.

The flooding scenario shows massive reforestation and a relocation of coastal
communities. This relocation is coupled with development of catchments to reduce
flooding vulnerability, one of the stated scenario goals. This reduced flooding expo-
sure is evident when overlaying the modeled LUC scenarios with the FEMA 500-year
floodplain. Total urban area exposed to flooding by the year 2080 is lowest in the
Flooding scenario.

The 2080 Connected City simulation is mainly characterized by a pattern of
urbanization (including high-density urban) integrated with an increase in green
space. The outcome is largely urbanized, but with many corridors and patches of
green cover, wetlands and riverine forest (Fig. 9.5).
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Fig. 9.5 Total and flooded area for selected land use/cover categories in the business as usual and
three coproduced land use/cover scenarios

9.5 Conclusion

Weather hazards—projected to become more frequent and intense—pose a large
threat to cities and the people in them. The complexity and scale of these threats will
require adaptation strategies of commensurate scale. As cities grapple with these
challenges, land development will need to account for not just how land use affects
services, but how it may also drive future hazards. In this chapter, we showed data-
driven approaches to estimate the impacts of LUC on heat and flood risks. These
approaches, coupled with the use of CA models, can provide urban planners and
policymakers with the tools to not just develop LUC plans, but to also fully explore
their impacts on heat and flood risks.

Coupled with participatory production of future visions, these models can provide
tools needed to explicitly identify goal tradeoffs. For example, relocating coastal
communities may protect them from flood risk, but may also expose them to



9 Modeling Urban Futures: Data-Driven Scenarios of Climate Change ... 141

higher temperatures. Explicitly modeling LUC change can also form an iterative co-
production process, where potential scenarios and associated impacts are modified
to minimize negative impacts while optimizing positive outcomes.

As data collection efforts increase, so will the utility of these models. Future
models may include risks to urban infrastructure such as exposure of electric substa-
tions to flood plains in present and future scenarios, or extreme heat in under-
ground subway stations. More elaborate models might include risks of combined
hazards (e.g., heat waves followed by power failure due to a flood event), and allow
stakeholders to build resilience to them into planning efforts.

With global climate change increasing the severity and frequency of many types
of weather hazards, tools to study risks related to the spatial features of cities will be
of increasing necessity. Spatially explicit mapping of these hazards will allow policy
to address impacts across populations and account for vulnerability in new ways.
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