Skip to main content

Magnetic Fields and Measurements

  • Living reference work entry
  • First Online:
Handbook of Magnetism and Magnetic Materials

Abstract

Magnetic fields play a crucial role in manipulating and characterizing the electronic and magnetic properties of matter. In the present chapter, we discuss the generation of magnetic fields in a laboratory environment, their measurement, and the measurement of magnetic properties. As part of the magnet section, we explain fundamental limitations for generating high magnetic fields, the principal technical strategies to cope with them, and the implementation of different concepts in state-of-the-art high-field facilities. The measurement section starts with a brief review of physical phenomena that can be used to measure a magnetic field, followed by general technical considerations regarding noise, signal treatment, and basic sensor requirements. A detailed presentation of individual sensor types, their operating principle, performance, and application is given afterward. The subsequent discussion of techniques to measure magnetic properties essentially refers to the same sensors integrated in dedicated setups. Stray field methods and questions concerning metrology and calibration are briefly mentioned at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. A. Abragam. The principles of nuclear magnetism. Clarendon Press, Oxford, 1983.

    Google Scholar 

  2. B. Albertazzi, J. Béard, A. Ciardi, T. Vinci, J. Albrecht, J. Billette, T. Burris-Mog, S.N. Chen, D. Da Silva, S. Dittrich, T. Herrmannsdörfer, B. Hirardin, F. Kroll, M. Nakatsutsumi, S. Nitsche, C. Riconda, L. Romagnagni, H.-P. Schlenvoigt, S. Simond, E. Veuillot, T.E. Cowan, O. Portugall, H. Pépin, and J. Fuchs. Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields. Rev. Sci. Instrum., 84:043505, 2013.

    Article  ADS  Google Scholar 

  3. M.N. Ali, J. Xiong, S. Flynn, J. Tao, Q.D. Gibson, L.M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N.P. Ong, and R.J. Cava. Large, non-saturating magnetoresistance in WTe2. Nature, 514:205–208, 2014.

    Article  ADS  Google Scholar 

  4. Y. Allain, J. de Gunzbourg, J.P. Krebs, and A. Miedan-Gros. Pulsed field magnetization measurements up to 500 kOe. Rev. Sci. Instr., 39(9):1360–1365, 1968.

    Article  ADS  Google Scholar 

  5. G. Aubert. High magnetic fields: physical limits in magnet design. Phys. Scr., T35:168–171, 1991.

    Article  ADS  Google Scholar 

  6. G. Aubert, L. van Bockstal, E. Fernandez, W. Joss, V. Kuchinski, R. Kurtz, N. Mikhailov, and Ph. Sala. Quasi-stationary magnetic fields of 60 T using inductive energy storage. IEEE Trans. Appl. Supercond., 12(1):703–706, 2002.

    Article  ADS  Google Scholar 

  7. S. Batut, J. Mauchain, R. Battesti, C. Robilliard, M. Fouché, and O. Portugall. A transportable pulsed magnet system for fundamental investigations in quantum electrodynamics and particle physics. IEEE Trans. Appl. Supercond., 18(2):600–603, 2008.

    Article  ADS  Google Scholar 

  8. M.D. Bird. Resistive magnet technology for hybrid inserts. Supercond. Sci. Technol., 17(8):R19–R33, 2004.

    Article  ADS  Google Scholar 

  9. M.D. Bird, S. Bole, Y.M. Eyssa, B.J. Gao, and H.J. Schneider-Muntau. Design of a poly-bitter magnet at the NHMFL. IEEE Trans. Magn., 32(4):2542–2545, 1996.

    Article  ADS  Google Scholar 

  10. M.D. Bird, I.R. Dixon, and J. Toth. Design of the next generation of florida-bitter magnets at the NHMFL. IEEE Trans. Appl. Supercond., 14(2):1253–1256, 2004.

    Article  ADS  Google Scholar 

  11. M.D. Bird, I.R. Dixon, and J. Toth. Large, high-field magnet projects at the NHMFL. IEEE Trans. Appl. Supercond., 25(3):1–6, 2015.

    Article  Google Scholar 

  12. F. Bitter. On inhomogeneities in the magnetization of ferromagnetic materials. Phys. Rev., 38(10):1903–1905, 1931.

    Article  ADS  Google Scholar 

  13. F. Bitter. The design of powerful electromagnets part I. the use of iron. Rev. Sci. Instr., 7(12):479–481, 1936.

    Google Scholar 

  14. F. Bitter. The design of powerful electromagnets part III. the use of iron. Rev. Sci. Instr., 8(9):318–319, 1937.

    Google Scholar 

  15. F. Bitter. Water cooled magnets. Rev. Sci. Instrum., 33(3):342, 1962.

    Google Scholar 

  16. R.C. Black, F.C. Wellstood, E. Dantsker, A.H. Miklich, D. Koelle, F. Ludwig, and J. Clarke. High-frequency magnetic microscopy using a high-Tc SQUID. IEEE Trans. Appl. Supercond., 5(2):2137–2141, 1995.

    Article  ADS  Google Scholar 

  17. L. Van Bockstal, G. Heremans, and F. Herlach. Coils with fibre composite reinforcement for pulsed magnetic fields in the 50-70 T range. Meas. Sci. Technol., 2:1159–1164, 1991.

    Article  ADS  Google Scholar 

  18. G.J. Bowden. Detection coil systems for vibrating sample magnetometers. J. Phys. E: Sci. Instrum., 5(11):1115, 1972.

    Google Scholar 

  19. B.A. Boyko, A.I. Bykov, M.I. Dolotenko, N.P. Kolokol’chikov, I.M. Markevtsev, O.M. Tatsenko, and A.M. Shuvalov. More than 20 MG magnetic field generation in the cascade magnetocumulative MC-1 generator. In H.J. Schneider-Muntau, editor, Proc. 8th Int. Conf. Megagauss Magnetic Field Generation and Related Topics, pages 61–66. World Scientific, Singapore, 1999.

    Google Scholar 

  20. J. Chavanne and G. Le Bec. Prospects for the use of Permanent Magnets in Future Accelerator Facilities. In Proceedings, 5th International Particle Accelerator Conference (IPAC 2014), page TUZB01, 2014.

    Google Scholar 

  21. W.G. Chen, Y.F. Tan, Z.M. Chen, J.W. Zhu, Z.Y. Chen, Y.N. Pan, F.T. Wang, P.C. Huang, and G.L. Kuang. Final design of the 40 T hybrid magnet superconducting outsert. IEEE Trans. Appl. Supercond., 23(3):4300404–4300404, 2013.

    Article  ADS  Google Scholar 

  22. D. Ciudad, C. Aroca, M.C. Sánchez, E. Lopez, and P. Sánchez. Modeling and fabrication of a MEMS magnetostatic magnetic sensor. Sens. Actuators A Phys., 115:408–416, 2004.

    Article  Google Scholar 

  23. W.G. Clark, T.W. Hijmans, and W.H. Wong. Multiple coil pulsed NMR method for measuring the multipole moments of particle accelerator bending magnets. J. Appl. Phys., 63(8):4185, 1988.

    Google Scholar 

  24. J. Clarke. Squids: Principles, noise, and applications. In S.T. Ruggiero and D.A. Rudman, editors, Superconducting Devices, pages 51 – 99. Academic Press, 1990.

    Google Scholar 

  25. J. Clarke and A.I. Braginski (Eds.). The SQUID handbook, volume 1. Wiley-Vch, 2004.

    Google Scholar 

  26. E.C. Cnare. Magnetic flux compression by magnetically imploded metallic foils. J. Appl. Phys., 37(10):3812, 1966.

    Google Scholar 

  27. J.M.D. Coey. Permanent magnet applications. J. Magn. Magn. Mater., 248(3):441–456, 2002.

    Article  ADS  Google Scholar 

  28. J.M.D. Coey. Magnetism and Magnetic Materials, page 355. Cambridge University Press (CUP), 2009.

    Google Scholar 

  29. C. Coillot and P. Leroy. Induction magnetometers principle, modeling and ways of improvement. In Magnetic Sensors - Principles and Applications. InTech, 2012.

    Google Scholar 

  30. F.C.S. da Silva, W.C. Uhlig, A.B. Kos, S. Schima, J. Aumentado, J. Unguris, and D.P. Pappas. Zigzag-shaped magnetic sensors. Appl. Phys. Lett., 85(24):6022–6024, 2004.

    Article  ADS  Google Scholar 

  31. E. Danieli, J. Mauler, J. Perlo, B. Blümich, and F. Casanova. Mobile sensor for high resolution NMR spectroscopy and imaging. J. Magn. Reson., 198(1):80–87, 2009.

    Article  ADS  Google Scholar 

  32. B.S. Deaver and W.M. Fairbank. Experimental Evidence for Quantized Flux in Superconducting Cyclinders. Phys. Rev. Lett., 7:43–46, 1961.

    Article  ADS  Google Scholar 

  33. F. Debray and P. Frings. State of the art and developments of high field magnets at the “laboratoire national des champs magnétiques intenses”. C. R. Phys., 14(1):2–14, 2013.

    Article  ADS  Google Scholar 

  34. C.L. Degen, M. Poggio, H.J. Mamin, C.T. Rettner, and D. Rugar. Nanoscale magnetic resonance imaging. Proc. Natl. Acad. Sci. U.S.A., 106(5):1313–1317, 2009.

    Article  ADS  Google Scholar 

  35. D. DiLella, L.J. Whitman, R.J. Colton, T.W. Kenny, W.J. Kaiser, E.C. Vote, J.A. Podosek, and L.M. Miller. A micromachined magnetic-field sensor based on an electron tunneling displacement transducer. Sens. Actuators A Phys., 86:8–20, 2000.

    Article  Google Scholar 

  36. I.R. Dixon, T.A. Adkins, M.D. Bird, S.T. Bole, J.Toth, H.Ehmler, M.Hoffman, and P.Smeibidl. Final assembly of the Helmholtz-Zentrum Berlin series-connected hybrid magnet system. IEEE Trans. Appl. Supercond., 25(3):1–4, 2015.

    Article  Google Scholar 

  37. E. Dormann, G. Sachs, W. Stöcklein, B. Bail, and M. Schwoerer. Gaussmeter application of an organic conductor. Appl. Phys. A, 30(4):227–231, 1983.

    Article  ADS  Google Scholar 

  38. V. Druzhinin, O.M. Tatsenko, A.I. Bykov, M.I. Dolotenko, N.P. Kolokol’chikov, Y.B. Kudasov, V.M. Platonov, C.M. Fowler, B.L. Freeman, J.D. Goettee, J.C. King, W. Lewis, B.R. Marshall, B.J. Papatheofanis, P.J. Rodriguez, L.R. Veeser, and W.D. Zerwekh. Nonlinear Faraday effect in CdS semiconductor in an ultrahigh magnetic field. Physica B, 211:392–395, 1995.

    Article  ADS  Google Scholar 

  39. E. du Trémolet de Lacheisserie, D. Gignoux, and M. Schlenker. Permanent magnets. In Magnetism, pages 3–88. Springer Science + Business Media, 2002.

    Google Scholar 

  40. F. Duc, X. Fabrèges, T. Roth, C. Detlefs, P. Frings, M. Nardone, J. Billette, M. Lesourd, L. Zhang, A. Zitouni, P. Delescluse, J. Béard, J. P. Nicolin, and G.L.J.A. Rikken. A 31 T split-pair pulsed magnet for single crystal x-ray diffraction at low temperature. Rev. Sci. Instrum., 85:053905, 2014.

    Article  ADS  Google Scholar 

  41. D. Dufeu, E. Eyraud, and P. Lethuillier. An efficient 8 T extraction vector magnetometer with sample rotation for routine operation. Rev. Sci. Instrum., 71(2):458, 2000.

    Google Scholar 

  42. H.B. Dwight and C.F. Abt. The shape of core for laboratory electromagnets. Rev. Sci. Instr., 7(3):144–146, 1936.

    Article  ADS  Google Scholar 

  43. A.S. Edelstein. Advances in magnetometry. J. Phys. Condens. Matter, 19:165217, 2007.

    Article  ADS  Google Scholar 

  44. A.S. Edelstein, G.A. Fischer, M. Pedersen, E.R. Nowak, Shu Fan Cheng, and C.A. Nordman. Progress toward a thousandfold reduction in 1/f noise in magnetic sensors using an ac microelectromechanical system flux concentrator. J. Appl. Phys., 99:08B317, 2006.

    Google Scholar 

  45. U. Essmann and H. Träuble. The direct observation of individual flux lines in type II superconductors. Phys. Lett. A, 24(10):526–527, 1967.

    Article  ADS  Google Scholar 

  46. K.P. Estola and J. Malmivuo. Air-core induction-coil magnetometer design. J. Phys. E: Sci. Instrum., 15:1110–1113, 1982.

    Article  ADS  Google Scholar 

  47. D.F. Evans. A new type of magnetic balance. J. Phys. E: Sci. Instrum., 7(4):247, 1974.

    Google Scholar 

  48. J.A. Ewing and W. Low. On the magnetisation of iron and other magnetic metals in very strong fields. Philos. Trans. A: Math. Phys. Eng. Sci., 180(0):221–244, 1889.

    ADS  Google Scholar 

  49. P. Fazilleau, C. Berriaud, R. Berthier, F. Debray, B. Hervieu, W. Joss, F.P. Juster, M. Massinger, C. Mayri, Y. Queinec, C. Pes, R. Pfister, P. Pugnat, L. Ronayette, and C. Trophime. Final design of the new Grenoble hybrid magnet. IEEE Trans. Appl. Supercond., 22(3):4300904–4300904, 2012.

    Article  Google Scholar 

  50. P.J. Flanders. A vertical force alternating-gradient magnetometer. Rev. Sci. Instr., 61(2):839–847, 1990.

    Article  ADS  Google Scholar 

  51. S. Foner. Versatile and sensitive vibrating-sample magnetometer. Rev. Sci. Instrum., 30(7):548, 1959.

    Google Scholar 

  52. P. Frings, J. Vanacken, C. Detlefs, F. Duc, J.E. Lorenzo, M. Nardone, J. Billette, A. Zitouni, W. Bras, and G.L.J.A. Rikken. Synchrotron x-ray powder diffraction studies in pulsed magnetic fields. Rev. Sci. Instrum., 77:063903, 2006.

    Article  ADS  Google Scholar 

  53. P. Frings, H. Witte, H. Jones, J. Béard, and Thomas Hermannsdörfer. Rapid cooling methods for pulsed magnets. IEEE Trans. Appl. Supercond., 18(2):612–615, 2008.

    Google Scholar 

  54. E. Fukushima and S. Roeder. Experimental pulse NMR : a nuts and bolts approach. Addison-Wesley Pub. Co., Advanced Book Program, Reading, Mass, 1981.

    Google Scholar 

  55. Zhehong Gan, I. Hung, Xiaoling Wang, J. Paulino, Gang Wu, I.M. Litvak, P.L. Gor'kov, W.W. Brey, P. Lendi, J.L. Schiano, M.D. Bird, I.R. Dixon, J. Toth, G.S. Boebinger, and T.A. Cross. NMR spectroscopy up to 35.2 T using a series-connected hybrid magnet. J. Magn. Reson., 284:125–136, 2017.

    ADS  Google Scholar 

  56. M.W. Garrett. Calculation of fields, forces, and mutual inductances of current systems by elliptic integrals. J. Appl. Phys., 34(9):2567–2573, 1963.

    Article  ADS  MATH  Google Scholar 

  57. M.W. Garrett and S. Pissanetzky. Polygonal coil systems for magnetic fields with homogeneity of the fourth to the eighth order. Rev. Sci. Instr., 42(6):840–857, 1971.

    Article  ADS  Google Scholar 

  58. H. H. Gatzen, E. Andreeva, and H. Iswahjudi. Eddy-current microsensor based on thin-film technology. IEEE Trans. Magn., 38:3368–3370, 2002.

    Article  ADS  Google Scholar 

  59. C. Gemmel, W. Heil, S. Karpuk, K. Lenz, Ch. Ludwig, Yu. Sobolev, K. Tullney, M. Burghoff, W. Kilian, S. Knappe-Grüneberg, W. Müller, A. Schnabel, F. Seifert, L. Trahms, and St. Baeßler. Ultra-sensitive magnetometry based on free precession of nuclear spins. Eur. Phys. J. D, 57(3):303–320, 2010.

    Article  ADS  Google Scholar 

  60. R. Griessen. A capacitance torquemeter for de Haas-van Alphen measurements. Cryogenics, 13(6):375–377, 1973.

    Article  ADS  Google Scholar 

  61. M. Grisi, G.M. Conley, P. Sommer, J. Tinembart, and G. Boero. A single-chip integrated transceiver for high field NMR magnetometry. Rev. Sci. Instrum., 90(1):015001, 2019.

    Google Scholar 

  62. Seungyong Hahn, Kwanglok Kim, Kwangmin Kim, Xinbo Hu, T Painter, I Dixon, Seokho Kim, KR. Bhattarai, S Noguchi, J Jaroszynski, and D.C. Larbalestier. 45.5-Tesla direct-current magnetic field generated with a high-temperature superconducting magnet. Nature, 570(7762):496–499, 2019.

    Google Scholar 

  63. Hyung-Suk Han and Dong-Sung Kim. Magnetic Levitation. Springer Netherlands, 2016.

    Book  Google Scholar 

  64. R.K. Harris, E.D. Becker, S.M. Cabral de Menezes, P.Granger, R.E. Hoffman, and K.W. Zilm. Further conventions for NMR shielding and chemical shifts (IUPAC recommendations 2008). Pure Appl. Chem., 80(1), 2008.

    Google Scholar 

  65. U. Hartmann. Magnetic force microscopy. Annu. Rev. Mater. Sci., 29(1):53–87, 1999.

    Article  ADS  Google Scholar 

  66. K. Hashi, S. Ohki, S. Matsumoto, G. Nishijima, A. Goto, K. Deguchi, K. Yamada, T. Noguchi, S. Sakai, M. Takahashi, Y. Yanagisawa, S. Iguchi, T. Yamazaki, H. Maeda, R. Tanaka, T. Nemoto, H. Suematsu, T. Miki, K. Saito, and T. Shimizu. Achievement of 1020 MHz NMR. J. Magn. Reson., 256:30–33, 2015.

    Article  ADS  Google Scholar 

  67. F. Herlach. Pulsed magnets. Rep. Prog. Phys., 62:859–920, 1999.

    Article  ADS  Google Scholar 

  68. F. Herlach and R. McBroom. Megagauss fields in single turn coils. J. Phys. E: Sci. Instrum., 6:652–654, 1973.

    Article  ADS  Google Scholar 

  69. A.L. Herrera-May, L.A. Aguilera-Cortés, P.J. García-Ramírez, and E. Manjarrez. Resonant magnetic field sensors based on MEMS technology. Sensors, 9:7785–7713, 2009.

    Article  ADS  Google Scholar 

  70. High Field Magnet Laboratory (HFML), Radboud University (RU), Nijmegen, The Netherlands. http://www.ru.nl/hfml.

  71. High Magnetic Field laboratory (HMFL), Chinese Academy of Science (CAS), Hefei, China. http://english.hf.cas.cn/r/ResearchDivisions/HFML.

  72. D.R. Hines, S.A. Solin, T. Thio, and T. Zhou. Extraordinary magnetoresistance at room temperature in inhomogeneous narrow-gap semiconductors, 2004. US Patent 6,707,122.

    Google Scholar 

  73. Hochfeld-Magnetlabor (HLD), Helmholtz Zentrum Dresden Rossendorf (HZDR), Dresden, Germany. http://www.hzdr.de/hld.

  74. Y. Honkura. Development of amorphous wire type MI sensors for automobile use. J. Magn. Magn. Mater., 249(1-2):375–381, 2002.

    Article  ADS  Google Scholar 

  75. S.R. Hoon and S.N.M. Willcock. The design and operation of an automated double-crank vibrating sample magnetometer. J. Phys. E: Sci. Instrum., 21(8):772, 1988.

    Google Scholar 

  76. D.I. Hoult and R.E. Richards. The signal-to-noise ratio of the nuclear magnetic resonance experiment. J. Magn. Reson., 213(2):329–343, 2011.

    Article  ADS  Google Scholar 

  77. D.I Hoult, R.E Richards, and P Styles. A novel field-frequency lock for a superconducting spectrometer. J. Magn. Reson., 30(2):351–365, 1978.

    Google Scholar 

  78. N. Ida. Engineering Electromagnetics. Springer New York, New York, 2000.

    Book  Google Scholar 

  79. G.T. Noe II, H. Nojiri, J. Lee, G.L. Woods, J. Léotin, and J. Kono. A table-top, repetitive pulsed magnet for nonlinear and ultrafast spectroscopy in high magnetic fields up to 30 T. Rev. Sci. Instrum., 84:123906, 2013.

    Article  ADS  Google Scholar 

  80. International Megagauss Science Laboratory (IMGSL), Institute for Solid State Physics (ISSP), Chiba, Japan. http://issp.u-tokyo.ac.jp/labs/mgsl.

  81. Z. Islam, J.P.C. Ruff, H. Nojiri, Y.H. Matsuda, K.A. Ross, B.D. Gaulin, Zhe Qu, , and J.C. Lang. A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies. Rev. Sci. Instrum., 80:113902, 2009.

    Google Scholar 

  82. J.H. Iwamiya and S.W. Sinton. Stray-field magnetic resonance imaging of solid materials. Solid State Nucl. Magn. Reson., 6(4):333–345, 1996.

    Article  Google Scholar 

  83. R. Jahns, R. Knöchel, H. Greve, E. Woltermann, E. Lage, and E. Quandt. Magnetoelectric sensors for biomagnetic measurements. In 2011 IEEE International Symposium on Medical Measurements and Applications, page 107. Institute of Electrical and Electronics Engineers (IEEE), 2011.

    Google Scholar 

  84. J.T. Jeng, C.Y. Chiang, C.H. Chang, and C.C. Lu. Vector magnetometer with dual-bridge GMR sensors. IEEE Trans. Magn., 50(1):1–4, 2014.

    Article  ADS  Google Scholar 

  85. F. Jiang, T. Peng, H. Xiao, J. Zhao, Y. Pan, F. Herlach, and L. Li. Design and test of a flat-top magnetic field system driven by capacitor banks. Rev. Sci. Instrum., 85:045106, 2014.

    Article  ADS  Google Scholar 

  86. L. Jogschies, D. Klaas, R. Kruppe, J. Rittinger, P. Taptimthong, A. Wienecke, L. Rissing, and M. Wurz. Recent developments of magnetoresistive sensors for industrial applications. Sensors, 15(11):28665–28689, 2015.

    Article  ADS  Google Scholar 

  87. B.D. Josephson. The discovery of tunnelling supercurrents. Rev. mod. Phys., 46:251–254, 1974.

    Article  ADS  Google Scholar 

  88. F. Keplinger, S. Kvasnica, A. Jachimowicz, F. Kohl, J. Steurer, and H. Hauser. Lorentz force based magnetic field sensor with optical readout. Sens. Actuators A Phys., 110:112–118, 2004.

    Article  Google Scholar 

  89. K. Kindo. New pulsed-magnets for 100 T, long-pulse and diffraction measurements. J. Phys. Conf. Ser., 51:118, 2006.

    Article  Google Scholar 

  90. K. Kindo, S. Takeyama, M. Tokunaga, Y.H. Matsuda, E. Kojima, A. Matsuo, K. Kawaguchi, and H. Sawabe. The International MegaGauss Laboratory at ISSP, The University of Tokyo. J. Low. Temp. Phys., 159:381–388, 2010.

    Article  ADS  Google Scholar 

  91. K.H. Knoepfel. Magnetic Fields. John Wiley & Sons, New York, 2000.

    Book  Google Scholar 

  92. Laboratoire National des Champs Magnétiques Intenses (LNCMI), Centre National de la Recherche Scientifique (CNRS), Toulouse & Grenoble, France. http://www.lncmi.cnrs.fr.

  93. P.J. Lee. Engineering critical current density vs. applied field for superconductors available in long lengths. https://nationalmaglab.org/magnet-development/applied-superconductivity-center/plots, 2018. This link contains actual values of critical currents of superconductors and their bibliographic references.

  94. J. Lenz and A.S. Edelstein. Magnetic sensors and their applications. IEEE Sens. J., 6(3):631–649, 2006.

    Article  ADS  Google Scholar 

  95. S.H. Liou, X. Yin, S.E. Russek, R. Heindl, F.C.S. Da Silva, J. Moreland, D.P. Pappas, L. Yuan, and J. Shen. Picotesla magnetic sensors for low-frequency applications. IEEE Trans. Magn., 47(10):3740–3743, 2011.

    Article  ADS  Google Scholar 

  96. K. Mackay, M. Bonfim, D. Givord, and A. Fontaine. 50 T pulsed magnetic fields in microcoils. J. Appl. Phys., 87:1996, 2000.

    Article  ADS  Google Scholar 

  97. D.J. Mapps. Magnetoresistive sensors. Sens. Actuators A Phys., 59(1-3):9–19, 1997.

    Article  Google Scholar 

  98. S. Marauska, R. Jahns, H. Greve, E. Quandt, R. Knöchel, and B. Wagner. MEMS magnetic field sensor based on magnetoelectric composites. J. Micromech. Microeng., 22:065024–065030, 2012.

    Article  ADS  Google Scholar 

  99. Y.H. Matsuda, F. Herlach, S. Ikeda, and N. Miura. Generation of 600 T by electromagnetic flux compression with improved implosion symmetry. Rev. Sci. Instrum., 73:4288–4294, 2002.

    Article  ADS  Google Scholar 

  100. A. McCollam, P.G. van Rhee, J. Rook, E. Kampert, U. Zeitler, and J.C. Maan. High sensitivity magnetometer for measuring the isotropic and anisotropic magnetisation of small samples. Rev. Sci. Instr., 82(5):053909, 2011.

    Google Scholar 

  101. T. McGuire and R. Potter. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn., 11(4):1018–1038, 1975.

    Article  ADS  Google Scholar 

  102. B. Meier, S. Greiser, J. Haase, T. Herrmannsdörfer, F. Wolff-Fabris, and J. Wosnitza. NMR signal averaging in 62 T pulsed fields. J. Magn. Reson., 210(1):1–6, 2011.

    Article  ADS  Google Scholar 

  103. C.H. Mielke and R.D. McDonald. Single turn multi-megagauss system at the nhmfl-los alamos to study plutonium. In 2006 IEEE Int. Conf. on Megagauss Magnetic Field Generation and Related Topics, pages 227–231. IEEE, 2008.

    Google Scholar 

  104. J.R. Miller. The NHMFL 45-T hybrid magnet system: past, present, and future. IEEE Trans. Appl. Supercond., 13(2):1385–1390, 2003.

    Article  ADS  Google Scholar 

  105. N. Mitchell, D. Bessette, R. Gallix, C. Jong, J. Knaster, P. Libeyre, C. Sborchia, and F. Simon. The ITER magnet system. IEEE Trans. Appl. Supercond., 18(2):435–440, 2008.

    Article  ADS  Google Scholar 

  106. P.J. Mohr, D.B. Newell, and B.N. Taylor. CODATA recommended values of the fundamental physical constants: 2014. J. Phys. Chem. Ref. Data, 45(4):043102, 2016.

    Google Scholar 

  107. J. Moreland. Micromechanical instruments for ferromagnetic measurements. J. Phys. D: Appl. Phys., 36(5):R39, 2003.

    Google Scholar 

  108. D. Nakamura, A. Ikeda, H. Sawabe, Y. H. Matsuda, and S. Takeyama. Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression. Rev. Sci. Instr., 89(9):095106, 2018.

    Google Scholar 

  109. K. Nakao, F. Herlach, T. Goto, S. Takeyama, T. Sakakibara, and N. Miura. A laboratory instrument for generating magnetic fields over 200 T with single turn coils. J. Phys. E: Sci. Instrum., 18:1018, 1985.

    Article  ADS  Google Scholar 

  110. National High Magnetic Field Laboratory (NHMFL), Tallahassee, Gainesville & Los Alamos, USA. https://nationalmaglab.org.

  111. National High Magnetic Field Laboratory (NHMFL). 32 Tesla All-Superconducting Magnet. https://nationalmaglab.org/magnet-development/magnet-science-technology/magnet-projects/32-tesla-scm, 2017.

  112. A. Nikiel, P. Blümler, W. Heil, M. Hehn, S. Karpuk, A. Maul, E. Otten, L.M. Schreiber, and M. Terekhov. Ultrasensitive 3He magnetometer for measurements of high magnetic fields. Eur. Phys. J. D, 68(11), 2014.

    Google Scholar 

  113. S. Nimori. Present status of the Tsukuba magnet laboratory. J. Low Temp. Phys., 177(1-2):80–89, 2012.

    Article  ADS  Google Scholar 

  114. S. Nimori and G. Kido. Current status of the Tsukuba magnet laboratory. J. Low Temp. Phys., 159(1-2):358–365, 2010.

    Article  ADS  Google Scholar 

  115. E. Ohmichi and T. Osada. Torque magnetometry in pulsed magnetic fields with use of a commercial microcantilever. Rev. Sci. Instr., 73(8):3022, 2002.

    Google Scholar 

  116. F. Ono, Y. Ohtsu, and O. Yamada. Determination of magnetic anisotropy constants from unsaturated torque curves in Nd2Fe14B. J. Phys. Soc. Jpn., 55(11):4014–4019, 1986.

    Article  ADS  Google Scholar 

  117. Y. Otani, H. Miyajima, and S. Chikazumi. High field torque magnetometer for superconducting magnets. Jpn. J. Appl. Phys., 26(4R):623, 1987.

    Google Scholar 

  118. P. Park, Y. Kim, and V. Shifrin. Maintenance of magnetic flux density standards on the basis of proton gyromagnetic ratio at KRJSS. In 2004 Conference on Precision Electromagnetic Measurements, page 504. Institute of Electrical and Electronics Engineers (IEEE), 2004.

    Google Scholar 

  119. M.A. Paun, J.M. Sallese, and M. Kayal. Hall effect sensors design, integration and behavior analysis. J. Sens. Actuator Netw., 2(1):85–97, 2013.

    Article  Google Scholar 

  120. J. Perlo, F. Casanova, and B. Blümich. Ex situ NMR in highly homogeneous fields: 1H spectroscopy. Science, 315(5815):1110–1112, 2007.

    Article  ADS  Google Scholar 

  121. L. Petersson and A. Ehrenberg. Highly sensitive Faraday balance for magnetic susceptibility studies of dilute protein solutions. Rev. Sci. Instr., 56(4):575–580, 1985.

    Article  ADS  Google Scholar 

  122. M.H. Phan and H.X. Peng. Giant magnetoimpedance materials: Fundamentals and applications. Prog. Mater. Sci., 53(2):323–420, 2008.

    Article  Google Scholar 

  123. T. Polenova and T.F. Budinger. Ultrahigh field NMR and MRI: Science at a crossroads. report on a jointly-funded NSF, NIH and DOE workshop, held on november 12–13, 2015 in bethesda, maryland, USA. J. Magn. Reson., 266:81–86, 2016.

    Google Scholar 

  124. R.S. Popovic. High resolution Hall magnetic sensors. In 2014 29th International Conference on Microelectronics Proceedings - MIEL 2014, pages 69–74. Institute of Electrical & Electronics Engineers (IEEE), 2014.

    Google Scholar 

  125. O. Portugall, N. Puhlmann, H.U. Müller, M. Barczewski, I. Stolpe, and M. von Ortenberg. Megagauss magnetic field generation in single-turn coils: new frontiers for scientific experiments. J. Phys. D: Appl. Phys., 32:2354–2366, 1999.

    Article  ADS  Google Scholar 

  126. H. Primas and H.H. Günthard. Field stabilizer for high-resolution nuclear magnetic resonance. Rev. Sci. Instrum., 28(7):510, 1957.

    Google Scholar 

  127. F. Primdahl. The fluxgate magnetometer. J. Phys. E: Sci. Instrum., 12:241–253, 1979.

    Article  ADS  Google Scholar 

  128. P. Pugnat and H. J. Schneider-Muntau. Conceptual design optimization of a 60 T hybrid magnet. IEEE Trans. Appl. Supercond., 30(4):1–7, 2020.

    Google Scholar 

  129. P. Pugnat and H.J. Schneider-Muntau. Hybrid magnets: Past, present, and future. IEEE Trans. Appl. Supercond., 24(3):1–6, 2014.

    Google Scholar 

  130. N. Puhlmann, O. Portugall, H.U. Müller, M. Barczewski, I. Stolpe, and M. von Ortenberg. Solid state applications of a transportable low-cost megagauss generator. J. Phys. D: Appl. Phys., 30:1861–1866, 1997.

    Article  ADS  Google Scholar 

  131. Quantum Design, Inc., 6325 Lusk Boulevard, San Diego, USA. PPMS, ACMS option.

    Google Scholar 

  132. M. Rahm, J. Raabe, R. Pulwey, J. Biberger, W. Wegscheider, D. Weiss, and C. Meier. Planar Hall sensors for micro-Hall magnetometry. J. Appl. Phys., 91(10):7980, 2002.

    Google Scholar 

  133. H. Raich and P. Blümler. Design and construction of a dipolar halbach array with a homogeneous field from identical bar magnets: NMR mandhalas. Concepts Magn. Reson. Part B: Magn. Reson. Eng., 23B(1):16–25, 2004.

    Article  Google Scholar 

  134. A.P. Ramirez. Colossal magnetoresistance. J. Phys.: Condens. Matter, 9(39):8171–8199, 1997.

    ADS  Google Scholar 

  135. E.I. Rau and G.V. Spivak. Scanning electron microscopy of two-dimensional magnetic stray fields. Scanning, 3(1):27–34, 1980.

    Article  Google Scholar 

  136. L. Reimer. Scanning Electron Microscopy. Springer Science + Business Media, 1985.

    Book  Google Scholar 

  137. C. Reymond. Magnetic resonance techniques. https://doi.org/10.5170/CERN-1998-005.219, 1998.

  138. H.J. Richter, K.A. Hempel, and J. Pfeiffer. Improvement of sensitivity of the vibrating reed magnetometer. Rev. Sci. Instr., 59(8):1388–1393, 1988.

    Article  ADS  Google Scholar 

  139. P. Ripka. Review of fluxgate sensors. Sens. Actuators A Phys., 33(3):129–141, 1992.

    Article  Google Scholar 

  140. P. Ripka. Induction sensors. In P. Ripka, editor, Magnetic sensors and magnetometers, chapter 2, pages 47–73. Artech House, 2001.

    Google Scholar 

  141. P. Ripka, editor. Magnetic sensors and magnetometers. Artech House, Norwood, MA, 2001.

    Google Scholar 

  142. P. Ripka. Advances in fluxgate sensors. Sens. Actuators A Phys., 106(1-3):8–14, 2003.

    Article  Google Scholar 

  143. P. Ripka and M. Janošek. Advances in magnetic field sensors. IEEE Sens. J., 10(6):1108–1116, 2010.

    Article  ADS  Google Scholar 

  144. L.G. Rubin, B.L. Brandt, R.J. Weggel, S. Foner, and E.J. McNiff. 33.6 T DC magnetic field produced in a hybrid magnet with Ho pole pieces. Appl. Phys. Lett., 49(1):49–51, 1986.

    Google Scholar 

  145. D. Rugar, R. Budakian, H.J. Mamin, and B.W. Chui. Single spin detection by magnetic resonance force microscopy. Nature, 430(6997):329–332, 2004.

    Article  ADS  Google Scholar 

  146. A.A. Samoilenko, D.Yu Artemow, and L.A. Sibel’dina. Formation of sensitive layer in experiments on NMR subsurface imaging of solids. JETP Letters, 47:417, 1988.

    ADS  Google Scholar 

  147. J.B. Schillig, H.J. Boenig, J.D. Rogers, and J.R. Sims. Design of a 400 MW power supply for a 60 T pulsed magnet. IEEE Trans. Magn., 30(4):1170–1173, 1994.

    Article  Google Scholar 

  148. R. Schirhagl, K. Chang, M. Loretz, and C.L. Degen. Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem., 65(1):83–105, 2014.

    Article  ADS  Google Scholar 

  149. H.J. Schneider-Muntau. Polyhelix magnets. IEEE Trans. Magn., 17(5):1775–1778, 1981.

    Article  ADS  Google Scholar 

  150. H.J. Schneider-Muntau, J.C. Picoche, P. Rub, and J.C. Vallier. The generation of high magnetic fields in Grenoble — installations and magnets. In Application of High Magnetic Fields in Semiconductor Physics, pages 531–541. Springer Science + Business Media, 1982.

    Google Scholar 

  151. H.J. Schneider-Muntau and S. Prestemon. Poly-bitter magnets. IEEE Trans. Magn., 28(1):486–488, 1992.

    Article  ADS  Google Scholar 

  152. H Schwalbe. Editorial: New 1.2 GHz NMR spectrometers- new horizons? Angewandte Chemie International Edition, 56(35):10252–10253, 2017.

    Google Scholar 

  153. B. Seeber. Handbook of applied superconductivity, chapter 2, page 1195. Institute of Physics Pub, Bristol Philadelphia, 1998.

    Google Scholar 

  154. J.W. Shearer. Interaction of capacitor-bank-produced megagauss magnetic field with small single-turn coil. J. Appl. Phys., 40(11):4490–4497, 1969.

    Article  ADS  Google Scholar 

  155. J.A. Sidles. Noninductive detection of single-proton magnetic resonance. Appl. Phys. Lett., 58(24):2854, 1991.

    Google Scholar 

  156. R. Skomski. Permanent magnets: History, current research, and outlook. In Novel Functional Magnetic Materials, pages 359–395. Springer Science + Business Media, 2016.

    Google Scholar 

  157. C. Slichter. Principles of magnetic resonance. Springer-Verlag, Berlin, New York, 1990.

    Book  Google Scholar 

  158. D.O. Smith. Development of a vibrating-coil magnetometer. Rev. Sci. Instrum., 27(5):261, 1956.

    Google Scholar 

  159. S.A. Solin, T. Thio, D. R. Hines, and J.J. Heremans. Enhanced room-temperature geometric magnetoresistance in inhomogeneous narrow-gap semiconductors. Science, 289(5484):1530–1532, 2000.

    Article  ADS  Google Scholar 

  160. Jung-Bin Song, X. Chaud, B. Borgnic, F. Debray, P. Fazilleau, and T. Lecrevisse. Construction and test of a 7 T metal-as-insulation HTS insert under a 20 T high background magnetic field at 4.2 K. IEEE Trans. Appl. Supercond., 29(5):1–5, 2019.

    Google Scholar 

  161. Jung-Bin Song, X. Chaud, F. Debray, P. Fazilleau, and T. Lécrevisse. The high field HTS insert NOUGAT reached a record field of 32.5 T. https://emfl.eu/the-high-field-hts-insert-nougat-reached-a-record-field-of-32-5-t/, 2019.

  162. K. Spencer, F. Lecouturier, L. Thilly, and J.D. Embury. Established and emerging materials for use as high-field magnet conductors. Adv. Eng. Mater., 6(5):290–297, 2004.

    Article  Google Scholar 

  163. J. Stratton. Electromagnetic theory. McGraw-Hill Book Company, New york, 1941.

    MATH  Google Scholar 

  164. W. F. Stuart. Earth’s field magnetometry. Rep. Prog. Phys., 35:803–881, 1972.

    Article  ADS  Google Scholar 

  165. N.A. Stutzke, S.E. Russek, D.P. Pappas, and M. Tondra. Low-frequency noise measurements on commercial magnetoresistive magnetic field sensors. J. Appl. Phys., 97(10):10Q107, 2005.

    Google Scholar 

  166. L. Sun, S. Jiang, and J.R. Marciante. All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber. Optics Express, 18(5):5407–5412, 2010.

    Article  ADS  Google Scholar 

  167. S.M. Thompson. The discovery, development and future of GMR: The Nobel Prize 2007. J. Phys. D: Appl. Phys., 41(9):093001, 2008.

    Google Scholar 

  168. M. Tinkham. Introduction to Superconductivity: Second Edition. Dover Books on Physics. Dover Publications, 2004.

    Google Scholar 

  169. M.T. Todaro, L. Sileo, and M. De Vittorio. Magnetic field sensors based on microelectromechanical systems (MEMS) technology. In Magnetic Sensors - Principles and Applications. InTech, 2012.

    Google Scholar 

  170. Tristan Technologies Inc. http://tristantech.com/sensors.

  171. C. Trophime, K. Egorov, F. Debray, W. Joss, and G. Aubert. Magnet calculations at the Grenoble High Magnetic Field Laboratory. IEEE Trans. Appl. Supercond., 12(1):1483–1487, 2002.

    Article  ADS  Google Scholar 

  172. C. Trophime, S. Kramer, and G. Aubert. Magnetic field homogeneity optimization of the giga-NMR resistive insert. IEEE Trans. Appl. Supercond., 16(2):1509–1512, 2006.

    Article  ADS  Google Scholar 

  173. Tsukuba Magnet Laboratory (TML), National Institute for Materials Science (NIMS), Tsukuba, Japan. http://www.nims.go.jp/TML/english/.

  174. S. Tumanski. Induction coil sensors - a review. Meas. Sci. Technol., 18:R31–R46, 2007.

    Article  ADS  Google Scholar 

  175. S. Tumanski. Handbook of magnetic measurements. CRC Press, Boca raton, FL, 2011.

    Google Scholar 

  176. S. Tumanski. Modern magnetic field sensors - a review. Przeglad Elektrotechniczny, ISSN 0033-2097, 10:R 89, 2013. (http://pe.org.pl/articles/2013/10/1.pdf).

  177. A. Balbin Villaverde, D.A. Donatti, and D.G. Bozinis. Terbium gallium garnet verdet constant measurements with pulsed magnetic field. J. Phys. C: Solid State Phys., 11:L495–L498, 1978.

    Article  Google Scholar 

  178. M. von Ortenberg, N. Puhlmann, I. Stolpe, H.U. Müller, A. Kirste, and O. Portugall. The Humboldt High Magnetic Field Center at Berlin. Physica B, 294-295:568–573, 2001.

    Article  Google Scholar 

  179. Y. Wang, J. Li, and D. Viehland. Magnetoelectrics for magnetic sensor applications: status, challenges and perspectives. Mater. Today, 17(6):269–275, 2014.

    Article  Google Scholar 

  180. H. Weber, H.J. Schneider-Muntau, and G. Landwehr. Optimization calculations of polyhelix coils for hybrid magnets. Appl. Phys., 20(2):163–169, 1979.

    Article  ADS  Google Scholar 

  181. H.W. Weijers, W.D. Markiewicz, A.J. Voran, S.R. Gundlach, W.R. Sheppard, B. Jarvis, Z.L. Johnson, P.D. Noyes, J. Lu, H. Kandel, H. Bai, A.V. Gavrilin, Y.L. Viouchkov, D.C. Larbalestier, and D.V. Abraimov. Progress in the development of a superconducting 32 T magnet with REBCO high field coils. IEEE Trans. Appl. Supercond., 24(3):1–5, 2014.

    Article  Google Scholar 

  182. W. Wernsdorfer. From micro- to nano-SQUIDs: applications to nanomagnetism. Supercond. Sci. Technol., 22(6):064013, 2009.

    Google Scholar 

  183. K. Weyand. Maintenance and dissemination of the magnetic field unit at PTB. IEEE Trans. Instrum. Meas., 50(2):470–473, 2001.

    Article  Google Scholar 

  184. K. Weyand, E. Simon, L. Henderson, J. Bartholomew, G.M. Teunisse, I. Blanc, G. Crotti, J. Kupec, A. Jeglic, G. Gersak, J. Humar, and L. Puranen. Final report (draft b) on EUROMET project no. 446: International comparison of magnetic flux density by means of field coil transfer standards. Metrologia, 38(2):187–191, 2001.

    Google Scholar 

  185. S.A.J. Wiegers, A. den Ouden, J. Rook, J.A.A.J. Perenboom, H.H.J. ten Kate, M.D. Bird, A. Bonito-Oliva, and J.C. Maan. Conceptual design of the 45 T hybrid magnet at the nijmegen high field magnet laboratory. IEEE Trans. Appl. Supercond., 20(3):688–691, 2010.

    Article  ADS  Google Scholar 

  186. M. Willemin, C. Rossel, J. Brugger, M.H. Despont, H. Rothuizen, P. Vettiger, J. Hofer, and H. Keller. Piezoresistive cantilever designed for torque magnetometry. J. Appl. Phys., 83(3):1163, 1998.

    Google Scholar 

  187. M. Wilson. Superconducting magnets. Clarendon Press, Oxford, 1983.

    Google Scholar 

  188. Wuhan High Magnetic Field Center (WHMFC), Huazhong University of Science and Technology (HUST), Wuhan, China. http://whmfc.hust.edu.cn/english.

  189. H.H. Yang, N.V. Myung, J. Yee, D.Y. Park, B.Y. Yoo, M. Schwartz, K. Nobe, and J.W. Judy. Ferromagnetic micromechanical magnetometer. Sens. Actuators A Phys., 97-98:88–97, 2002.

    Article  Google Scholar 

  190. L. Yin, J.S. Xia, N.S. Sullivan, V.S. Zapf, and A. Paduan-Filho. Magnetic susceptibility measurements at ultra-low temperatures. J. Low Temp. Phys., 158(3-4):710–715, 2009.

    Article  ADS  Google Scholar 

  191. Sangwon Yoon, Jaemin Kim, Hunju Lee, Seungyong Hahn, and Seung-Hyun Moon. 26 T 35 mm all-GdBa2Cu3O7−x multi-width no-insulation superconducting magnet. Supercond. Sci. Technol., 29(4):04LT04, 2016.

    Google Scholar 

  192. J. Zhai, Z. Xing, S. Dong, J. Li, and D. Viehland. Magnetoelectric laminate composites: An overview. J. Am. Ceram. Soc., 91(2):351, 2008.

    Google Scholar 

  193. H. Zijlstra. Experimental Methods in Magnetism: Measurement of magnetic quantities. Number 9. 2 in Series of monographs on selected topics in solid state physics. North-Holland Publishing Company, 1967.

    Google Scholar 

  194. H. Zijlstra. A vibrating reed magnetometer for microscopic particles. Rev. Sci. Instr., 41(8):1241–1243, 1970.

    Article  ADS  Google Scholar 

  195. O. Züger and D. Rugar. First images from a magnetic resonance force microscope. Appl. Phys. Lett., 63(18):2496, 1993.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Carlo Rizzo for helpful discussions on metrology issues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Portugall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Portugall, O., Krämer, S., Skourski, Y. (2021). Magnetic Fields and Measurements. In: Coey, M., Parkin, S. (eds) Handbook of Magnetism and Magnetic Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-63101-7_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63101-7_24-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63101-7

  • Online ISBN: 978-3-030-63101-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics