Skip to main content

Nutraceuticals for Cardiovascular Risk Factors Management in Children: An Evidence Based Approach

  • Chapter
  • First Online:
Nutraceuticals and Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 313 Accesses

Abstract

The cardiovascular prevention represents a hot topic in particular when referred to children or adolescents. Indeed it is demonstrated that atherosclerosis starts early in childhood in the presence of cardiovascular risks factors such as dyslipidemia. It arises precociously when inherited lipoprotein disorders occur as in familial hypercholesterolemia, but not only, or in the presence of a cluster of metabolic changes leading to metabolic syndrome. In these conditions it is mandatory to apply all measures aimed to improve the lipid profile as recommended by international guidelines. Lifestyle is recognized the main basic approach while hypolipidemic drugs should be limited to very high risk children since 8–10 years of age. To comply with the expected LDL-Cholesterol (LDL-C) goal some limitations occur at times then nutraceuticals have been considered in children, as demonstrated beneficial in reducing LDL-C in most of adults. The experience in children is so far very poor since limited randomized controlled trials have been performed including a limited number of subjects. Studies mainly concern Fibre and Phytosterols/stanols and the majority improved lipid profile resulting safe and well tolerated. In this review we synthetize these results including other nutraceuticals as Red Yeast Rice, Omega-3/−6 PUFAs, Probiotic, Soy derivative and Nut.

In conclusion Nutraceuticals represent an option to be considered to improve lipid profile in children affected by dyslipidemia but it is important to underline the dietary complementary role as should not be considered as an alternative to drugs when required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guardamagna O, Baracco V, Abello F, et al. Identification and management of dyslipidemic children. Minerva Pediatr. 2009;61:391–8.

    CAS  PubMed  Google Scholar 

  2. American Academy of Pediatrics Committee on Nutrition. Cholesterol in childhood. Pediatrics. 1998;101:141–7.

    Article  Google Scholar 

  3. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents, National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and ado- lescents: summary report. Pediatrics 2011;128(Suppl 5):S213e56.

    Google Scholar 

  4. Kwiterovich PO. Recognition and management of dyslipidemia in children and adolescents. J Clin Endocrinol Metab. 2008;93:4200–9.

    Article  CAS  PubMed  Google Scholar 

  5. Slavin JL. Carbohydrates, dietary fiber, and resistant starch in white vegetables: links to health outcomes. Adv Nutr. 2013;4:351S–5S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Giacco R, Clemente G, Cipriano D, Luongo D, Viscovo D, Patti L, et al. Effects of the regular consumption of wholemeal wheat foods on cardiovascular risk factors in healthy people. Nutr Metab Cardiovasc Dis. 2010;20:186–94.

    Article  CAS  PubMed  Google Scholar 

  7. Anderson JW, Story L, Sieling B, et al. Hypercholesterolemic effects of oat-bran or bean intake for hypercholesterolemic men. Am J Clin Nutr. 1984;40:1146–55.

    Article  CAS  PubMed  Google Scholar 

  8. Bell LP, Hectorne K, Reynolds H, et al. Cholesterol lowering effects of psyllium hydrophilic mucilloid: adjunct therapy to a prudent diet for patient with mild to moderate hypercholesterolemia. JAMA. 1989;261:3419–23.

    Article  CAS  PubMed  Google Scholar 

  9. European Food Safety Authority: scientific opinion on dietary reference values for carbohydrates and dietary fiber. EFSA J. 2010;8:1462.

    Google Scholar 

  10. Food and Drug Administration. Food Labeling: health claims; oats and coronary heart disease. Maryland: Health and Human Services; 1997.

    Google Scholar 

  11. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) (2011) Scientific opinion on the substantiation of health claims related to beta-glucans from oats and barley and maintenance of normal blood LDL-cholesterol concentrations (ID 1236, 1299), increase in satiety leading to a reduction in energy intake (ID 851, 852), reduction of post-prandial glycaemic responses (ID 821, 824), and ‘digestive function’ (ID 850) pursuant to Article 13(1) of Regulation (EC) No 1924/ 2006. EFSA J 9, 2207.

    Google Scholar 

  12. Dwyer JT. Dietary fiber for children: how much? Pediatrics. 1995;96:1019–22.

    CAS  PubMed  Google Scholar 

  13. Kranz S, Brauchla M, Slavin JL, Miller KB. What do we know about dietary fiber intake in children and health? The effects of fiber intake on constipation, obesity, and diabetes in children. Adv Nutr. 2012;3:47–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Edwards CA, Xie C, Garcia AL. Dietary fibre and health in children and adolescents. Proc Nutr Soc. 2015;74:292–302.

    Article  CAS  PubMed  Google Scholar 

  15. Daniels SR, Greer FR, the Committee on Nutrition. Lipid screening and cardiovascular health in childhood. Pediatrics. 2008;122:198–208.

    Article  PubMed  Google Scholar 

  16. Institute of Medicine 2000. Dietary reference intakes: applications in dietary assessment. Washington, DC: National Academy Press pp 306.

    Google Scholar 

  17. Bollella M, Williams CL, Strobino B, Brotanek J. Dietary predictors of cardiovascular risk factors among children in a 5-year health tracking study: healthy start. Presented at the American Dietetic Association, Food & Nutrition Conference & Expo, San Antonio, TX, October 25–28, 2003

    Google Scholar 

  18. Singh B. Psyllium as therapeutic and drug delivery agent. Int J Pharm. 2007;334:1–14.

    Article  CAS  PubMed  Google Scholar 

  19. Gonzalez Canga A, Fernandez Martınez N, Sahagun AM, Garcıa Vieitez JJ, Dıez Liebana MJ, Calle Pardo AP, et al. Glucomannan: properties and therapeutic applications. Nutr Hosp. 2004;19:45–50.

    CAS  PubMed  Google Scholar 

  20. Butt MS, Tahir-Nadeem M, Khan MKI, Shabir R, Butt MS. Oat: unique among the cereals. Eurn J Nutr. 2008;47:68–97.

    Article  CAS  Google Scholar 

  21. Zavoral JH, Hannan P, Fields DJ, Hanson MN, Frantz ID, Kuba K, Elmer P, Jacobs D. R. the hypolipidemic effect of locust bean gum food products in familial hypercholesterolemic adults and children. Am J Clin Nutr. 1983;38:285–94.

    Article  CAS  PubMed  Google Scholar 

  22. Vuksan V, Jenkins AL, Rogovik AL, Fairgrieve CD, Jovanovski E, Leiter LA. Viscosity rather than quantity of dietary fibre predicts cholesterol-lowering effect in healthy individuals. Br J Nutr. 2011;106:1349–52.

    Article  CAS  PubMed  Google Scholar 

  23. Jane M, McKay J, Pal S. Effects of daily consumption of psyllium,oat bran and polyGlycopleX on obesity-related disease risk factors: a critical review. Nutrition. 2019;57:84–91.

    Article  CAS  PubMed  Google Scholar 

  24. Gunness P, Gidley MJ. Mechanisms underlying the cholesterol lowering properties of soluble dietary fibre polysaccharides. Food Function. 2010;1:149–55.

    Article  CAS  PubMed  Google Scholar 

  25. Shinozaki K, Okuda M, Sasaki S, Kunitsugu I, Shigeta M. Dietary fiber consumption decreases the risks of overweight and hypercholesterolemia in Japanese children. Ann Nutr Metab. 2015;67:58–64.

    Article  CAS  PubMed  Google Scholar 

  26. Davidson MH, Dugan LD, Burns JH, Sugimoto D, Story K, Drennan K. A psyllium-enriched cereal for the treatment of hypercholesterolemia in children: a controlled, double-blind, crossover study. Am J Clin Nutr. 1996;63:96–102.

    Article  CAS  PubMed  Google Scholar 

  27. Sanchez-Bayle M, Gonzalez-Requejo A, Asensio-Anton J, Ruiz-Jarabo C, Fernandez-Ruiz ML, Baeza J. The effect of fiber supplementation on lipid profile in children with hypercholesterolemia. Clin Pediatr (Phila). 2001;40:291–4.

    Article  CAS  Google Scholar 

  28. Martino F, Martino E, Morrone F, Carnevali E, Forcone R, Niglio T. Effect of dietary supplementation with glucomannan on plasma total cholesterol and low density lipoprotein cholesterol in hypercholesterolemic children. Nutr Metab Cardiovasc Dis. 2005;15:174–80.

    Article  PubMed  Google Scholar 

  29. Gold K, Wong N, Tong A, Bassin S, Iftner C, Nguyen T, et al. Serum apolipoprotein and lipid profile effects of an oat-bran-supplemented, low-fat diet in children with elevated serum cholesterol. Ann N Y Acad Sci. 1991;623:429–31.

    Article  CAS  PubMed  Google Scholar 

  30. Williams CL, Bollella MC, Strobino BA, Boccia L, Campanaro L. Plant stanol ester and bran fiber in childhood: effects on lipids, stool weight and stool frequency in preschool children. J Am Coll Nutr. 1999;18:572–81.

    Article  CAS  PubMed  Google Scholar 

  31. Glassman M, Spark A, Berezin S, Schwartz S, Medow M, Newman LJ. Treatment of type IIa hyperlipidemia in childhood by a simplified American Heart Association diet and fiber supplementation. Am J Dis Child. 1990;144:193–7.

    Google Scholar 

  32. Taneja A, Bhat CM, Arora A, Kaur AP. Effect of incorporation of isabgol husk in a low fibre diet on faecal excretion and serum levels of lipids in adolescent girls. Eur J Clin Nutr. 1989;43:197–202.

    CAS  PubMed  Google Scholar 

  33. Dennison BA, Levine DM. Randomized, double-blind, placebo-controlled, two-period crossover clinical trial of psyllium fiber in children with hypercholesterolemia. J Pediatr. 1993;123:24–9.

    Article  CAS  PubMed  Google Scholar 

  34. Williams CL, Spark A, Haley N, Axelrad C, Strobino B. Effectiveness of a psyllium-enriched step I diet in hypercholesterolemic children. Circulation. 1991;84:II–6.

    Google Scholar 

  35. Clauss SB, Kwiterovich PO. Long-term safety and efficacy of low-fat diets in children and adolescents. Minerva Pediatr. 2002;54:305–13.

    CAS  PubMed  Google Scholar 

  36. The DISC Collaborative Research Group. The efficacy and safety of lowering dietary intake of total fat, saturated fat, and cholesterol in children with elevated LDL-C: the Dietary Intervention Study in Children (DISC). JAMA. 1995;273:1429–35.

    Article  Google Scholar 

  37. Williams CL, Bollella M, Spark A, Puder D. Soluble FIber enhances the hypercholesterolemic effect of the step I diet in childhood. J Am Coll Nutr. 1995;3(14):251–7.

    Article  Google Scholar 

  38. Ribas SA, Cunha DB, Sichieri R, Santana da Silva LC. Effects of psyllium on LDL-cholesterol concentrations in Brazilian children and adolescents: a randomised, placebo-controlled, parallel clinical trial. Br J Nutr. 2015;113:134–41.

    Article  CAS  PubMed  Google Scholar 

  39. EFSA Panel on Dietetic Products, Nutrition and Allergies. Scientific opinion on the substantiation of health claims related to konjac mannan (glucomannan) and reduction of body weight (ID 854, 1556, 3725), reduction of post-prandial glycaemic responses (ID 1559), maintenance of normal blood glucose concentrations (ID 835, 3724), maintenance of nor- mal (fasting) blood concentrations of triglycerides (ID 3217), maintenance of normal blood cholesterol concentrations (ID 3100, 3217), maintenance of normal bowel function (ID 834, 1557, 3901) and decreasing potentially pathogenic gastro-intestinal microorganisms (ID 1558) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 2010; 8(10):1798

    Google Scholar 

  40. Guardamagna O, Abello F, Cagliero P, Visioli F. Could dyslipidemic children benefit from glucomannan intake? Nutrition. 2013;29:1060–5.

    Article  CAS  PubMed  Google Scholar 

  41. Sood N, Baker WL, Coleman CI. Effect of glucomannan on plasma lipid and glucose concentrations, body weight, and blood pressure: systematic review and meta-analysis. Am J Clin Nutr. 2008;88:1167–75.

    Article  CAS  PubMed  Google Scholar 

  42. Livieri C, Novazi F, Lorini R. The use of highly purified glucomannan- based fibers in childhood obesity. Ped Med Chir. 1992;14:195–8.

    CAS  Google Scholar 

  43. Ho HVT, Jovanovski E, Zurbau A, Blanco Mejia S, Sievenpiper JL, Au-Yeung F, Jenkins AL, Duvnjak L, Leiter L, Vuksan V. A systematic review and meta-analysis of randomized controlled trials of the effect of konjac glucomannan, a viscous soluble fiber, on LDL cholesterol and the new lipid targets non-HDL cholesterol and apolipoprotein B. Am J Clin Nutr. 2017;105:1239–47.

    Article  CAS  PubMed  Google Scholar 

  44. Blumenschein S, Torres E, Kushmaul E, Crawford J, Fixler D. Effect of oat bran/ soy protein in hypercholesterolemic children. Ann N Y Acad Sci. 1991;623:413–5.

    Article  CAS  PubMed  Google Scholar 

  45. Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, Drexel H, Hoes AW, Jennings CS, Landmesser U, Pedersen TR, Reiner Z, Riccardi G, Taskinen MR, Tokgozoglu VWMM, Vlachopoulos C, Wood DA, Zamorano JL. 2016 ESC/EAS guidelines for the Management of Dyslipidaemias. Eur Heart J. 2016;37:2999–3058.

    Article  PubMed  Google Scholar 

  46. Vido L, Facchin P, Antonello I, Gobber D, Rigon F. Childhood obesity treatment: double blinded trial on dietary fibres (glucomannan) versus placebo. Padiatr Patol. 1993;28:133–6.

    Google Scholar 

  47. Maki CK, Davidson HM, Ingram AK, et al. Lipid responses to consumption of a beta-glucan containing ready- to-eat cereal in children and adolescents with mild- to-moderate primary hypercholesterolemia. Nutr Res. 2003;23:1527–35.

    Article  CAS  Google Scholar 

  48. Theuwissen E, Mensink RP. Water-soluble dietary fibers and cardiovascular disease. Physiol Behav. 2008;94:285–92.

    Article  CAS  PubMed  Google Scholar 

  49. Food and Drug Administration, F.D.A. Issues a Safety Warning On Imported Jelly Cup Candies., August 17, 2001.

    Google Scholar 

  50. Ho HVT, Sievenpiper JL, Zurbau A, Mejia SB, Jovanovski E, Au-Yeung F, Jenkins AL, Vuksan V. A systematic review and meta-analysis of ran- domized controlled trials of the effect of barley b-glucan on LDL-C, non-HDL-C and apoB for cardiovascular disease risk reduction (i-iv). Eur J Clin Nutr. 2016;70:1239–45.

    Article  CAS  PubMed  Google Scholar 

  51. Kwiterovich PO, Chen SC, Virgil DG, et al. Biochemical and clinical characterization of obligate heterozygotes for phytosterolemia and their response to a low-fat diet and to a plant sterol ester dietary challenge. J Lipid Res. 2003;44:1143–55.

    Article  CAS  PubMed  Google Scholar 

  52. Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treat- ment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–421.

    Google Scholar 

  53. Thompson G, Grundy MS. History and development of plant sterols and stanol esters for cholesterol lowering purposes. Am J Cardiol. 2005;96(1):3D–9D.

    Article  CAS  PubMed  Google Scholar 

  54. Clifton P, Noakes M, Sullivan D, Erichsen N, Ross D, Annison G, et al. Cholesterol-lowering effects of plant sterol esters differ in milk, yoghurt, bread and cereal. Eur J Clin Nutr. 2004;58(3):503e9.

    Article  CAS  Google Scholar 

  55. Gylling H, Miettinen TA. New biologically active lipids in food, health food and pharmaceuticals. Lipidforum; Scandinavian forum for lipid research and technology, 19th Nordic Lipid Symposium, Ronneby, Sweden, June 1997; 81–86.

    Google Scholar 

  56. Jones PJ, Raeini-Sarjaz M, Ntanios FY, Vanstone CA, Feng JY, Parsons WE. Modulation of plasma lipid levels and cholesterol kinetics by phytosterol versus phytostanol esters. J Lipid Res. 2000;41:697–705.

    Google Scholar 

  57. Tammi A, Rönnemaa T, Gylling H, Rask-Nissilä L, Viikari J, Tuominen J, et al. Plant stanol ester margarine lowers serum total and low-density lipoprotein cholesterol concentrations of healthy children: the STRIP project. J Pediatr. 2000;136:503–10.

    Article  CAS  PubMed  Google Scholar 

  58. Gylling H, Miettinen TA. Inheritance of cholesterol metabolism of probands with high or low cholesterol absorption. J Lipid Res. 2002;43:1472–6.

    Article  CAS  PubMed  Google Scholar 

  59. Miettinen TA, Tilvis RS, Kesäniemi YA. Serum plant sterols and cholesterol precursors reflect cholesterol synthesis and absorption in volunteers of a randomly selected male population. Am J Epidemiol. 1990;131:20–31.

    Article  CAS  PubMed  Google Scholar 

  60. Gylling H, Siimes MA, Miettinen TA. Sitostanol ester margarine in dietary treatment of children with familial hypercholesterolemia. J Lipid Res. 1995;36:1807–12.

    Article  CAS  PubMed  Google Scholar 

  61. Ribas SA, Sichieri R, Moreira ASB, Souza DO, Cabral CTF, Gianinni DT, Cunha DB. Phytosterol-enriched milk lowers LDL-cholesterol levels in Brazilian children and adolescents: double-blind, cross-over trial. Nutr Metabol Cardiovasc Dis. 2017;27:971–7.

    Article  CAS  Google Scholar 

  62. Tammi A, Rönnemaa T, Miettinen TA, Gylling H, Rask-Nissilä L, Viikari J, Tuominen J, Marniemi J, Simell O. Effects of gender, apolipoprotein E phenotype and cholesterol lowering by plant stanol esters in children: the STRIP study. Special Turku coronary risk factor intervention project. Acta Paediatr. 2002;91(11):1155–62.

    Article  CAS  PubMed  Google Scholar 

  63. Amundsen AL, Ose L, Nenseter MS, Ntanios FY. Plant sterol ester-enriched spread lowers plasma total and LDL cholesterol in children with familial hypercholesterolemia. Am J Clin Nutr. 2002;76:338–44.

    Article  CAS  PubMed  Google Scholar 

  64. Amundsen ÅL, Ntanios F, van der Put N, Ose L. Long-term compliance and changes in plasma lipids, plant sterols and carotenoids in children and parents with FH consuming plant sterol ester-enriched spread. Eur J Clin Nutr. 2004;58:1612–20. https://doi.org/10.1038/sj.ejcn.1602015.

    Article  CAS  PubMed  Google Scholar 

  65. Garoufi A, Vorre S, Soldatou A, Tsentidis C, Kossiva L, Drakatos AS, Marmarinos, Gourgiotis AD. Plant sterols–enriched diet decreases small, dense LDL-cholesterol levels in children with hypercholesterolemia: a prospective study. Ital J Pediatr. 2014;40:42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Ketomäki AM, Gylling H, Antikainen M, Siimes MA, Miettinen TA. Red cell and plasma plant sterols are related during consumption of plant stanol and sterol ester spreads in children with hypercholesterolemia. J Pediatr. 2003;142:524–31.

    Article  PubMed  CAS  Google Scholar 

  67. Guardamagna O, Abello F, Baracco V, Federici G, Bertucci P, Mozzi A, Mannucci L, Gnasso A, Cortese C. Primary hyperlipidemias in children: effect of plant sterol supplementation on plasma lipids and markers of cholesterol synthesis and absorption. Acta Diabetol. 2011;48:127–33.

    Article  CAS  PubMed  Google Scholar 

  68. Jakulj L, Vissers MN, Rodenburg J, Wiegman A, Trip MD, Kastelein John JP. Plant stanols do not restore endothelial function in prepubertal children with familial hypercholesterolemia despite reduction of low-density lipoprotein cholesterol levels. J Pediatr. 2006;148:495–500.

    Article  CAS  PubMed  Google Scholar 

  69. de Jongh S, Vissers MN, Rol P, Bakker HD, Kastelein JJP, Stroes ESG. Plant sterols lower LDL cholesterol without improving endothelial function in prepubertal children with familial hypercholesterolaemia. J Inherit Metab Dis. 2003;26:343–51.

    Article  PubMed  Google Scholar 

  70. Malhotra A, Shafiq N, Arora A, Singh M, Kumar R, Malhotra S. Dietary interventions (plant sterols, stanols, omega-3 fatty acids, soy protein and dietary fibers) for familial hypercholesterolaemia (Review). Cochrane Database Syst Rev. 2014;(6):Art. No.: CD001918.

    Google Scholar 

  71. Demonty I, Ras RT, Van der Knaap HCM, Meijer L, Zock PL, Geleijnse JM, et al. The effect of plant sterols on serum triglyceride concentrations is dependent on baseline concentrations: a pooled analysis of 12 randomised controlled trials. Eur J Nutr. 2013;52:153e60.

    Article  CAS  Google Scholar 

  72. Miettinen TA, Gylling H. Effect of statins on noncholesterol sterol levels: implications for use of plant stanols and sterols. Am J Cardiol. 2005;96:40–6.

    Article  CAS  Google Scholar 

  73. Vuorio A, Kovane PT. Decreasing the cholesterol burden in heterozygous familial hypercholesterolemia children by dietary plant stanol esters. Nutrients. 2018;10:1842.

    Article  PubMed Central  CAS  Google Scholar 

  74. Davidson MH, Maki KC, Umporowicz DM, Ingram KA, Dicklin MR, Schaefer E, et al. Safety and tolerability of esterified phytosterols administered in reduced-fat spread and salad dressing to healthy adult men and women. J Am Coll Nutr. 2001;20:307–19.

    Article  CAS  PubMed  Google Scholar 

  75. Brink EJ, Hendricks HFJ. Long-term follow-up study on the use of a spread enriched with plant sterols, TNO report, vol. 99. Zeist: TNO Nutrition and Food Research Institute Report; 2000. p. 869.

    Google Scholar 

  76. AbuMweis SS, Barake R, Jones PJH. Plant sterols/stanols as cholesterol lowering agents: a meta-analysis of randomized controlled trials. Food Nutr Res. 2008;52:1–17.

    Article  Google Scholar 

  77. Miettinen TA, Puska P, Gylling H, Vanhanen H, Vartiainen E. Reduction of serum cholesterol with sitostanol-ester margarine in a mildly hypercholesterolemic population. N Engl J Med. 1995;333:1308–12.

    Article  CAS  PubMed  Google Scholar 

  78. Hallikainen MA, Sarkkinen ES, Uusitupa MI. Plant stanol esters affect serum cholesterol concentrations of hypercholesterolemic men and women in a dose-dependent manner. J Nutr. 2000;130:767–76.

    Article  CAS  PubMed  Google Scholar 

  79. Katan MB, Grundy SM, Jones P, Law M, Miettinen T, Paoletti R. Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clin Proc. 2003;78:965–78.

    Article  CAS  PubMed  Google Scholar 

  80. Glueck CJ, Speirs J, Tracy T, Streicher P, Illig E, Vandergrift J. Relationships of serum plant sterols (phytosterols) and cholesterol in 595 hypercholesterolemic subjects, and familial aggregation of phytosterols, cholesterol, and premature coronary heart disease in hyperphytosterolemic probands and their first-degree relatives. Metabolism. 1991;40:842–8.

    Article  CAS  PubMed  Google Scholar 

  81. Assmann G, Cullen P, Erbey J, Ramey DR, Kannenberg F, Schulte H. Plasma sitosterol elevations are associated with an increased incidence of coronary events in men: results of a nested case- control analysis of the prospective cardiovascular Munster (PRO- CAM) study. Nutr Metab Cardiovasc Dis. 2006;16:13e21.

    Article  CAS  Google Scholar 

  82. Thiery J, Ceglarek U, Fiedler GM, Leichtle A, Baumann S, Teupser D, Lang O, Baumert J, Meisinger M, Loewell H, Doering A. Elevated campesterol serum levels—a significant predictor of incident myocardial infarction: results of the population-based MONICA/KORA follow-up study 1994–2005. Circulation. 2006;114:II–884.

    Google Scholar 

  83. Mannucci L, Guardamagna O, Bertucci P, Pisciotta L, Liberatoscioli L, Bertolini S, Irace C, Gnasso A, Federici G, Cortese C. Beta-sitosterolaemia: a new nonsense mutation in the ABCG5 gene. Eur J Clin Investig. 2007;37(12):997–1000.

    Article  CAS  Google Scholar 

  84. Wilund KR, Yu L, Xu F, Vega GL, Grundy SM, Cohen JC, Hobbs HH. No association between plasma levels of plant sterols and atherosclerosis in mice and men. Arterioscler Thromb Vasc Biol. 2004;24(12):2326–32.

    Article  CAS  PubMed  Google Scholar 

  85. Fassbender K, Lutjohann D, Dik MG, Bremmer M, Konig J, Walter S, Liu Y, Letie’mbre M, von Bergmann K, Jonker C. Moderately elevated plant sterol levels are associated with reduced cardiovascular risk–the LASA study. Atherosclerosis. 2008;96(1):283–8.

    Article  CAS  Google Scholar 

  86. Lutjohann D, Bjorkhem I, Ose L. Phytosterolaemia in a Norwegian family: diagnosis and characterization of the first Scandinavian case. Scand J Clin Lab Invest. 1996;56:229–40.

    Article  CAS  PubMed  Google Scholar 

  87. Ma J, Li Y, Ye Q, Li J, Hua Y, Ju D, Zhang D, Cooper R, Chang M. Constituents of red yeast rice, a traditional Chinese food and medicine. J Agric Food Chem. 2000;48:5220–5.

    Article  CAS  PubMed  Google Scholar 

  88. Journoud M, Jones PJ. Red yeast rice: a new hypolipidemic drug. Life Sci. 200474:2675–83.

    Google Scholar 

  89. Cicero A, Colletti A, Bajraktari G, Descamps O, Djuric DM, Ezhov M, Fras Z, Katsiki N, Langlois M, Latkovskis G, Panagiotakos DB, Paragh G, Mikhailidis DP, Mitchenko O, Paulweber B, Pella D, Pitsavos C, Reiner Z, Ray KK, Rizzo M, Sahebkar A, Serban MC, Sperling LS, Toth PP, Vinereanu D, Vrablík M, Wong ND, Banach M. Lipid lowering nutraceuticals in clinical practice: position paper from an International Lipid Expert Panel. Arch Med Sci. 2017;13(5):965–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pirro M, Vetrani C, Bianchi C, Mannarino MR, Bernini F, Rivellese AA. Joint position statement on “Nutraceuticals for the treatment of hypercholesterolemia” of the Italian Society of Diabetology (SID) and of the Italian Society for the Study of Arteriosclerosis (SISA). Nutr Metab Cardiovasc Dis. 2017;27:2–17.

    Article  CAS  PubMed  Google Scholar 

  91. Guardamagna O, Abello F, Baracco V, Stasiowska B, Martino F. The treatment of hypercholesterolemic children: efficacy and safety of a combination of red yeast rice extract and policosanols. Nutr Metab Cardiovasc Dis. 2011;21:424–9.

    Article  CAS  PubMed  Google Scholar 

  92. Lapi F, Gallo E, Bernasconi S, Vietri M, Menniti-Ippolito F, Raschetti R, et al. Myopathies associated with red yeast rice and liquorice: spontaneous reports from the Italian surveillance system of natural health products. Br J Clin Pharmacol. 2008;66:572–4.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Prasad GVR, Wong T, Meliton G, Bhaloo S. Rhabdomyolysis due to red yeast rice (Monascus purpureus) in a renal transplant recipient. Transplantation. 2002;74:1200e1.

    Google Scholar 

  94. European Food Safety Authority. EFSA J. 2012;10:2605–87.

    Google Scholar 

  95. Joint FAO/WHO Working Group. Guidelines for the evaluation of probiotics in food. London; 2002.

    Google Scholar 

  96. Jones ML, Tomaro-Duchesneau C, Martoni CJ, Prakash S. Cholesterol lowering with bile salt hydrolase-active probiotic bacteria, mechanism of action, clinical evidence, and future direction for heart health applications. Exp Opin Biol Ther. 2013;13:631–42.

    Article  CAS  Google Scholar 

  97. Bordoni A, Amaretti A, Leonardi A, Boschetti E, Danesi F, Matteuzzi D, et al. Cholesterol-lowering probiotics: in vitro selection and in vivo testing of bifidobacteria. Appl Microbiol Biotechnol. 2013;97:8273–81.

    Article  CAS  PubMed  Google Scholar 

  98. Dilzer A, Park Y. Implication of conjugated linoleic acid (CLA) in human health. Crit Rev Food Sci Nutr. 2012;52:488–513.

    Article  CAS  PubMed  Google Scholar 

  99. Jones ML, Martoni CJ, Parent M, Prakash S. Cholesterol-lowering efficacy of a microencapsu- lated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterol- aemic adults. Br J Nutr. 2011;107:1505–13.

    Article  PubMed  CAS  Google Scholar 

  100. Jones ML, Martoni CJ, Prakash S. Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial. Eur J Clin Nutr. 2012;66:1234–41.

    Article  CAS  PubMed  Google Scholar 

  101. Sun J, Buys N. Effects of probiotics consumption on lowering lipids and CVD risk factors: a systematic review and meta-analysis of randomized controlled trials. Ann Med. 2015;47:430–40.

    Article  PubMed  CAS  Google Scholar 

  102. Shimizu M, Hashiguchi M, Shiga T, Tamura HO, Mochizuki M. Meta-analysis: effects of probiotic supplementation on lipid profiles in normal to mildly hy- percholesterolemic individuals. PLoS One. 2015;10:e0139795.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Guardamagna O, Amaretti A, Puddu PE, Raimondi S, Abello F, Cagliero P, Rossi M. Bifidobacteria supplementation: effects on plasma lipid profiles in dyslipidemic children. Nutrition. 2014;30:831–6.

    Google Scholar 

  104. European Food Safety Authority (EFSA). Scientific opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2012 update). EFSJ. 2012;10:3020.

    Google Scholar 

  105. Schwab US, Callaway JC, Erkkilä AT, Gynther J, Uusitupa MI, Järvinen T. Effects of hempseed and flaxseed oils on the profile of serum lipids, serum total and lipoprotein lipid concentrations and haemostatic factors. Eur J Nutr. 2006;45:470–7.

    Article  CAS  PubMed  Google Scholar 

  106. Patch CS, Tapsell LC, Mori TA, et al. The use of novel foods enriched with longchain n-3 fatty acids to increase dietary intake: a comparison of methodologies assessing nutrient intake. J Am Diet Assoc. 2005;105:1918–26.

    Article  CAS  PubMed  Google Scholar 

  107. Jacobson TA, Glickstein SB, Rowe JD, Soni PN. Effects of eicosa- pentaenoic acid and docosahexaenoic acid on low-density lipoprotein cholesterol and other lipids: a review. J Clin Lipidol. 2012;6:5–18.

    Article  PubMed  Google Scholar 

  108. Calder PC. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr. 2006;83:1505–19.

    Article  Google Scholar 

  109. Romeo J, Wärnberg J, García-Mármol E, et al. Daily consumption of milk enriched with fish oil, oleic acid, minerals and vitamins reduces cell adhesion molecules in healthy children. Nutr Metab Cardiovasc Dis. 2009; https://doi.org/10.1016/j.numecd.2009.08.007.

  110. Rodriguez-Leyva D, Pierce GN. The cardiac and haemostatic effects of dietary hempseed. Nutr Metab (Lond). 2010;7:32.

    Article  CAS  Google Scholar 

  111. Del Bo’ C, Deon V, Abello F, Massini G, Porrini M, Riso P, Guardamagna O. Eight-week hempseed oil intervention improves the fatty acid composition of erythrocyte phospholipids and the omega-3 index, but does not affect the lipid profile in children and adolescents with primary hyperlipidemia. Food Res Int. 2019;119:469–76.

    Article  PubMed  CAS  Google Scholar 

  112. Tokede OA, Onabanjo TA, Yansane A, Gaziano JM, Djousse L. Soya products and serum lipids: a meta-analysis of randomised controlled trials. Br J Nutr. 2015;114(6):831–43.

    Article  CAS  PubMed  Google Scholar 

  113. Anderson JW, Johnstone BM, Cook-Newell ME. Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med. 1995;333(5):276–82.

    Article  CAS  PubMed  Google Scholar 

  114. Laurin D, Jacques H, Moorjani S, Steinke FH, Gagne C, Brun D, Lupien PJ. Effects of a soy-protein beverage on plasma lipoproteins in children with familial hypercholesterolemia. Am J Clin Nutr. 1991;54:98–103.

    Article  CAS  PubMed  Google Scholar 

  115. Weghuber D, Widhalm K. Effect of 3-month treatment of children and adolescents with familial and polygenic hypercholesterolaemia with a soya-substituted diet. Br J Nutr. 2008;99:281–6.

    Article  CAS  PubMed  Google Scholar 

  116. Rizzo G, Baroni L. Soy. Soy foods and their role in vegetarian diets. Nutrients. 2018;10:43.

    Google Scholar 

  117. Ros E. Health benefits of nut consumption. Nutrients. 2010;2:652–82.

    Google Scholar 

  118. Sanchez-Gonzalez C, Ciudad C, Noe V, Izquierdo-Pulido M. Health benefits of walnut polyphenols: an exploration beyond their lipid profile. Crit Rev Food Sci Nutr. 2017;57:3373–83.

    Google Scholar 

  119. Deon V, Del Bo’ C, Guaraldi F, Abello F, Belviso S, Porrini M, Riso P, Guardamagna O. Effect of hazelnut on serum lipid profile and fatty acid composition of erythrocyte phospholipids in children and adolescents with primary hyperlipidemia: a randomized controlled trial. Clin Nutr. 2018;37:1193–1201.

    Google Scholar 

  120. Guaraldi F, Deon V, Del Bo’ C, Vendrame S, Porrini M, Riso P, Guardamagna O. Effect of short-term hazelnut consumption on DNA damage and oxidized LDL in children and adolescents with primary hyperlipidemia: a randomized controlled trial. J Nutr Biochem. 2018;57:206–11.

    Article  CAS  PubMed  Google Scholar 

  121. Gargari G, Deon V, Taverniti V, Gardana C, Denina M, Riso P, Guardamagna O, Guglielmetti S. Evidence of dysbiosis in the intestinal microbial ecosystem of children and adolescents with primary hyperlipidemia and the potential role of regular hazelnut intake. FEMS Microbiol Ecol. 2018;94:fiy045.

    Article  CAS  Google Scholar 

  122. Gylling H, Plat J, Turley S, Ginsberg HN, Ellegård L, Jessup W, Jones PJ, Lütjohann D, Maerz W, Masana L, Silbernagel G, Staels B, Borén J, Catapano AL, De Backer G, Deanfield J, Descamps OS, Kovanen PT, Riccardi G, Tokgözoglu L, Chapman MJ; European Atherosclerosis Society Consensus Panel on Phytosterols. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease Atherosclerosis 2014;232:346–60.

    Google Scholar 

Download references

Acknowledgments

Authors thanks Elisabetta Bartoletti for kindly providing drawings.

Authours declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ornella Guardamagna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guardamagna, O., Massini, G. (2021). Nutraceuticals for Cardiovascular Risk Factors Management in Children: An Evidence Based Approach. In: Cicero, A.F., Rizzo, M. (eds) Nutraceuticals and Cardiovascular Disease. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-030-62632-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62632-7_13

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-62631-0

  • Online ISBN: 978-3-030-62632-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics