Chapter 2 ®)
Traffic Management in Networks e
with Programmable Data Planes

Davide Sanvito

2.1 Software-Defined Networks (SDN)

Traditional computer networks include vertically integrated devices running both the
control plane (CP) and the data plane (DP). The former computes the forwarding
decisions about how to handle the traffic, while the latter effectively process it.
The heterogeneity of low-level vendor-proprietary configuration interfaces, together
with the proliferation of specialized devices (middleboxes, e.g.. firewalls, network
address translators, load balancers and deep packet inspection boxes), made networks
complex and difficult to manage. The situation was further exacerbated by the need
of quickly respond to network dynamics such as failures and changes in the traffic
patterns, in the network topology and in the forwarding policies.

Software-Defined Networking (SDN) is a computer networking paradigm based
on the decoupling of the control plane from the data plane. The control plane is logi-
cally centralized in an external node (called the network controller) which configures
the network devices through a well-defined application programming interface (API).
Network devices (e.g.. switches) become simple elements running just the data plane
and forwarding the traffic according to the decisions taken by the external controller.
Network operators can now directly operate on the global network view offered on
top of the controller without designing complex distributed protocols to achieve a
desired global network-wide behaviour. SDN brings to the networking domains all
the software engineering best practices such as code modularity and reusability. SDN
enables the reconfiguration of the network at software speed by simply running a dif-
ferent application on top of the controller. The controller is in charge of maintaining
the global view of the network status and can even provide to the applications running
above an abstract view of the network by limiting or transforming the observable

D. Sanvito ()

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB),
Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
e-mail: davide.sanvito @polimi.it

© The Author(s) 2021 13
A. Geraci (ed.), Special Topics in Information Technology,
PoliMI SpringerBriefs, https://doi.org/10.1007/978-3-030-62476-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62476-7_2&domain=pdf
mailto:davide.sanvito@polimi.it
https://doi.org/10.1007/978-3-030-62476-7_2

14 D. Sanvito

topology in order to provide isolation to different applications. At the same time the
emergence of new network programming abstractions and high-level programming
languages simplifies the network management and facilitates the evolution of the
network. The augmented programmability brought by SDN enables a wide range of
network applications ranging from traditional network functions (e.g.. switching and
routing) to traffic engineering (e.g.. load balancing, QoS and fault tolerance), from
network monitoring to security domains (e.g.. firewall, network access control, DoS
attack mitigation).

OpenFlow [14] represents one of the most successful instances of the SDN prin-
ciples. Despite the efforts towards an augmented network programmability started
several years ago with Active Networks [10], the mainstream adoption of SDN prin-
ciples took place only with OpenFlow. Thanks to its pragmatic compromise between
the need for innovation from researchers and the need for closed platforms from
the vendors, it became the de-facto standard programming interface. OpenFlow is
nowadays supported by a large number of switches, both hardware and software,
and SDN controllers. An OpenFlow switch exposes to the controller a pipeline of
match-action tables. The match-action abstraction is a prominent example of pro-
gramming abstractions provided by SDN. All the packets belonging to the same
flow (defined by a set of packet field values, i.e. the match) are subject to the same
treatment (i.e. the action, for example the forwarding or dropping of the packet or
the modification of its header fields). The controller is in charge of configuring the
intended network behaviour by filling the match-action tables with a set of flow
entries. The match-action abstraction unifies different forwarding behaviours which
can be quickly reconfigured at software speed. A device, for example, can be config-
ured as a router if all the rules match on the IP destination address or as firewall if the
rules match on Ethernet type, IP addresses and TCP ports. The controller can proac-
tively provision the devices with flow rules and reactively add new ones whenever
a packet does not match any of the available rules. The OpenFlow specification [4]
defines the details of the format of the control channel messages exchanged among
the control plane and the data plane and the set of header fields and packet actions a
switch has to support.

Most recent advances in programmable network devices [8] take a step further
and enable the network operator to program the packet parser and to define custom
packet actions by combining primitives offered by the switching chip. Not only the
switches’ resources are more flexibly allocated and tailored to the traffic the network
will deal with in terms of protocols, but the format itself of protocols (i.e. the set of
header fields a switch can match on) is not fixed a priori from the chip vendor and
can be customized by the network operator. The impacting factor for the success of
these devices is that their increased flexibility does not come with penalties in the
performance, cost and power compared to fixed-function chips. These devices are
typically configured using an high-level language, such as P4 [7], and in principle a
P4 program can fully describe an OpenFlow-enabled switch.

2 Traffic Management in Networks with Programmable ... 15

2.2 Control Plane Programmability

One of the prominent use cases enabled by SDN is the execution of Traffic Engi-
neering (TE) algorithms on top of the controller. Traditional approaches from service
providers design the routing considering the worst case traffic scenario. However,
this leads to a network operating most of the time in sub-optimal conditions. SDN
provides the needed flexibility to update the network more frequently, enabling online
traffic optimization based on periodic traffic measurements and predictions in order
to improve the network performance, reduce the operational costs and balance the
utilization of network resources. The maximum achievable network reconfiguration
rate is however limited by two aspects.

First of all, the changing nature of the traffic affects the optimality of the computed
routing configuration. Despite the traffic pseudo-periodicity under some time scales
due to ordinary daily fluctuations, an accurate traffic estimation is hard to achieve and,
especially in case the traffic is significantly different from the expected scenarios,
computing routing configurations which are too tied to specific traffic scenarios
might lead to the congestion of the network or to unfeasible configurations. It is
thus desirable to take into account some robustness considerations, by computing
routing policies which are able to deal with multiple traffic scenarios under a same
configuration.

The second limiting aspect is instead related to the low speed of flow program-
ming in hardware. The transition across two network configurations is a critical
procedure which might lead to broken connectivity, forwarding loops or violations
of the forwarding policies. Ideally the network should be atomically updated, i.e.
traffic should be forwarded either using the old configuration or the new one, and not
some combination of the two. The decoupling of the control plane from the data plane
makes however the set of the controller and the switches a complex asynchronous
distributed system. Consistent network update mechanisms [15] are techniques able
to deal with this problem by computing a set of intermediate network configurations
to be sequentially scheduled to move the network from the current configuration state
to a target configuration. These techniques ensure that in each intermediate config-
uration the consistency properties are guaranteed (i.e. the connectivity is preserved
and either the old policy or the new one holds) while switch resources constraints
are not violated (i.e. the additional flow rules installed must not exceed the memory
available in the devices). Unluckily, these multi-steps mechanisms are not the only
responsible for making the update process not atomic. A recent analysis on com-
mercial SDN devices showed the existence of a mismatch between the switch-local
control plane status reported to the centralized controller and the actual status of the
data plane [13]. This discrepancy makes not completely trustworthy an information
which is instead essential for the consistent update mechanisms to correctly schedule
the various steps in the transition towards the final network configuration. Depending
on the level of utilization of the flow tables and on the current load of the data plane,

16 D. Sanvito

the state of the data plane might fall behind the control plane from seconds up to
several minutes. This means that the time required to properly complete each update
step increases and this contributes to further decrease the achievable rate of updates.

2.2.1 Traffic Engineering Framework

The first contribution of the thesis is the design of a centralized SDN Traffic Engineer-
ing framework, CRR,! to decide whether, when and how to reconfigure the network.
Given a set of of measured Traffic Matrices (TMs) over a given period (e.g.. one day),
we defined an optimization model which computes a set of routing configurations
to be proactively applied during the following period. Traffic matrices are clustered
in the traffic, time and routing domains and we compute, for each cluster, a routing
configuration which is robust against variations within the corresponding discrete
traffic subspace defined by each cluster. First of all we take into consideration the
traffic domain, i.e. we look at the values of the demands over time. We also con-
sidered the time domain, i.e. we avoid clustering together TMs not adjacent in time
that would require too frequent network reconfigurations. Finally, we also took into
account the ultimate effect of the routing on the TMs in terms of network conges-
tion. We indeed include the same metric commonly adopted to optimize the routing
(the network congestion, in terms of Maximum Link Utilization) to also guide the
clustering logic. By tuning the size of clusters (i.e. the minimum number of mem-
bers) and their number, the optimization model can explore the trade-off between
static Traffic Engineering schemes (which compute a single routing configuration on
the whole TMs set) and dynamic Traffic Engineering schemes (which instead keep
reconfiguring the network each time a new TM measurement is available) while at
the same time coping with the practical constraint of limiting the number of network
reconfigurations and guaranteeing a minimum holding time for each configuration.
Since the transitions from a routing configurations to the next one are not instanta-
neous even in SDN, adjacent clusters are allowed to partially overlap close to their
boundaries (i.e. near routing transitions). This means that each routing configuration
will be reasonably good also for a small number of traffic scenarios expected to be
handled by the configuration of adjacent clusters. As a side effect, overlaps help the
potentially slow multi-step consistent network update mechanisms. The analysis of
the influence of errors in traffic predictions showed an interesting trade-off between
the cluster length and the prediction accuracy. If the quality of the prediction is good,
we can afford to have a larger number of short clusters whose routing is more tailored
to specific scenarios. As the prediction quality decreases, it is better to resort to less
and larger clusters which are able to better deal with a large variety of scenarios
(i.e. they are more robust to traffic uncertainty). This opens a promising research
direction where the controller plays an active role in measuring and predicting the

IClustered Robust Routing.

2 Traffic Management in Networks with Programmable ... 17

traffic evolution and in estimating a-posteriori the quality of the prediction in order
to consequently tune the level of robustness provided by the routing configurations
set. More details can be found in [16].

2.2.2 ONOS Intent Monitor and Reroute Service

We then evaluated how to integrate our Traffic Engineering framework, CRR, within
a SDN platform. Open Network Operating System (ONOS) [5] is a production-
ready open-source SDN network operating system built for Service Provider net-
works. ONOS provides high performance, scalability and availability thanks to its
distributed core and proper abstractions to configure the network. Among the pro-
gramming abstractions offered by ONOS, intents work at the highest level: developers
can express high-level policies (i.e. “intentions”) without worrying about how such
behaviour is implemented in the network. For example, users can use a Point-To-
Point intent to require the connectivity between a pair of nodes without providing
any information on the path to be used. Intents can be tied to a specific traffic subset
(providing a set of values for the packet header fields) and a treatment (a set of actions,
for example packet header modifications, to be applied to all the packets the intent
refers to). ONOS supports several types of intents and each one includes a compiler
which enables the Intent Framework, the ONOS component in charge of handling
intents, to translate the high-level policy described by the intent itself to the set of
low-level rules to be installed in the network devices. The Intent Framework is also
in charge of re-compiling the intents in case of topology changes (for example link
failures) to fulfill the high-level policy transparently to the application submitting
the intents.

Intents represent an interesting opportunity to integrate the CRR in ONOS because
we can decouple the connectivity endpoints from the paths implementing the com-
munication. An user can thus specify the sources and destinations of the traffic
(i.e. the traffic matrix pairs) independently from when and how the CRR updates
the corresponding paths in the network. The idea is to modify the low-level paths
implementing the intents not only as a consequence of topology changes, but also
considering changes in traffic statistics, according to the output of the CRR model.
Even if the Intent Framework is designed to be extensible with additional intents
and compilers, it individually compiles each intent based on its own information.
The CRR aims instead at compiling together multiple intents to optimize a global
network objective. In addition, integrating a computationally heavy component such
as an optimization tool within the same machine running the controller can have a
negative impact on ONOS’s high performance requirements. We thus developed a
new service, ONOS Intent Monitor and Reroute (IMR) service, which enhances the
ONOS Intent Framework with an external plug&play routing logic running as an off-
platform application (OPA), an application running in a separate process space with
respect to the ONOS controller and communicating through REST APIs or gRPC.
The IMR service, running within ONOS, is in charge of collecting from network

18 D. Sanvito

devices the statistics related to the flow rules implementing the intents and to export
them to the OPA by means of a REST API. In turns, the CRR will send back to the
IMR service the routing configurations as scheduled by the CRR model.

We envision the following scenario: (1) an ONOS application submits intents to
request connectivity (implicitly defining the endpoints of the TMs) and requires the
IMR service to monitor their statistics. (2) the ONOS Intent Framework initially
routes intents on their shortest paths while, at the same time, the IMR starts the
monitoring process. (3) the CRR module, running as an OPA, collects the statistics
of the intents to build the set of TMs to be fed to the CRR algorithm. After a given
period (e.g.. one day), the OPA solves the CRR, schedules the activation of the routing
configurations during the following period and at the same time keeps collecting the
statistics to be fed to the next optimization round.

In order to prevent IMR from limiting the Intent Framework in recovering from
failures, the routing paths provided by the OPA are treated as soft constraints: in case
the suggested paths are not available when requested or a failure happens afterwards,
the Intent Framework resorts to the standard shortest path computation for all the
intents affected by the failure.

The decoupling of the application submitting the intents from the routing logic
allows to re-use a same logic for different ONOS applications or to switch differ-
ent routing logics for a same ONOS application. The CRR indeed represents one
of the possible instances of a routing algorithm running as OPA and the IMR ser-
vice implements a more general framework to interconnect any ONOS intent-based
application to an external plug&play routing logic. This enables to re-use existing
Traffic Engineering tools or develop new schemes based either on optimization tools
or on Artificial Intelligence and Machine Learning. More details can be found in
[18]. Our IMR service has been integrated in ONOS Nightingale version 1.13 as an
official open-source contribution [3].

2.3 Data Plane Programmability

Despite the robust nature of each routing configuration, significant traffic deviations
from the expected scenarios, such as network failures and congestion, need a proper
handling to keep the network operating. Albeit the great speed in innovation and
flexibility enabled by SDN, one of the main limitations introduced by its two-tier
architecture is the strict decoupling of the data plane from the control plane. Network
devices are indeed dummy devices unable to modify their forwarding behaviour
without relying on the external controller, even if such changes depends entirely on
events which are locally observable. This rigid separation of concerns prevents a
priori the implementation of applications which require a prompt reaction, due to
the intrinsic control channel latency and the processing overhead at the controller.
Examples of such applications range from the security domain (e.g.. DDoS attacks
mitigation) to the network resiliency domain (e.g.. detection and recovery of network
failures) up to Traffic Engineering (e.g.. load balancing and congestion control). In

2 Traffic Management in Networks with Programmable ... 19

addition, most of the operations supported within the data plane are stateless: each
packet is forwarded according to the matching rule without any notion of the past
history of the flow it belongs to. Applications which need to keep per-flow states
(e.g.. load balancing, NAT or stateful firewall) have to rely on the external controller
to support a state-dependent forwarding.

Recent research efforts tried to deal with these limitations by delegating part of
the control back to network devices to enable a self-adaptation of the forwarding
behaviour. In the context of the European H2020 project BEBA [1], I've contributed
to the software prototyping of a stateful extension” to OpenFlow and to the design of
some use case applications. Open Packet Processor (OPP) [6] enables stateful packet
processing in the data plane with a programming abstraction based on Extended
Finite State Machines (EFSM). Flows are associated with a persistent context which
includes a state and few data variables. Packets are forwarded not only based on
their header but also on the persistent state of the flow they belongs to. Each state
determines a forwarding policy and transitions among states are triggered, directly in
the fast path, according to time-based or packet-based events and conditions evaluated
over the packet header and its context. The controller can configure the stateful packet
processing in the data plane by providing the set of header fields which defines the
flow, i.e. the entity for which an application needs to keep a state, and the architecture
of EFSM, in terms of its transitions and its state-dependent forwarding policies. In
turns the switch is able to autonomously instantiate at runtime per-flow instances of
the state machine without involving the external controller. For those applications
where the forwarding evolution depends only on local information, OPP can provide
a significantly more scalable and faster solution compared to centralized approaches.

2.3.1 Network Failures

Asdiscussed in Sect. 2.2.2, the ONOS Intent Framework is able to re-actively recover
from failures transparently to the application which submits the intents. Even if
those unplanned failure scenarios are not taken into account by the CRR during the
optimization phase, the Intent Framework guarantees that connectivity is preserved,
although in a potentially unoptimized fashion. In order to improve on this situation,
it is possible to pre-compute backup path policies on top of each one of the Robust
Routing configurations for different failure scenarios and proactively configure them
in the network devices.

By exploiting, for example, the OpenFlow Fast-Failover mechanism it is possible
to define an alternative forwarding policy to be activated by the switch itself when it
detects a failure in the link associated to the current policy. This enables a more prompt
reaction thanks to the avoidance of the external controller. The failure detection

2Qur stateful extension to OpenFlow has been integrated as official open-source contribution [2]
to ofsoftswitchl3 [11], an user-space open-source software switch widely used in the research
community.

20 D. Sanvito

mechanism is however external to the OpenFlow specification without any guarantee
on the detection delay and many existing solutions are based on the slow path. In
addition, depending on the specific topology and on the computed backup policies,
the alternative path for a specific failure might not be available locally to the node
which detects the failure. These remote failure scenarios still require the intervention
of the controller making challenging achieving carrier-grade recovery times.

We designed a scheme, SPIDER,? based on the advanced capabilites of stateful
data planes, such as OPP, to offload to the data plane both the detection and the
recovery of network failures even in the case of remote failures. SPIDER is inspired
by Bidirectional Forwarding Detection (BFD) and MPLS Fast Reroute technologies
and provides an end-to-end proactive protection to failures independent from con-
troller reachability and with a guaranteed sub-milliseconds detection delay. SPIDER
guarantees zero losses after the detection regardless the availability of the controller
and for both local and remote failure scenarios. Schemes relying on the controller
to activate the backup policy would instead have non-zero losses also during the
recovery phase while waiting for its intervention.

Data packets are tagged with different values to select the proper forwarding
behaviour (i.e. primary path or designated backup path) and, at the same time, to
drive the evolution of the state machines. Tagged data packets are indeed used to
implement the two mechanisms for the detection of the failures and their recovery
(i.e. the activation of the alternative backup policies) with a fully configurable trade-
off between the overhead and failover responsiveness. In addition, in the remote
failure scenarios, tagged data packets are also used as an in-band signalling scheme
able to trigger a state transition for state machines stored in a device distinct from the
one detecting the failure itself. SPIDER is able to handle all the pre-planned single
failure scenarios from the data plane. Multiple failures involving a same demand
require instead the intervention of the external controller. More details can be found
in [9].

2.3.2 Network Congestion

The second network scenario which challenges the strict decoupling of the data plane
from the control plane is the network congestion. We focused here on data center
networks for their unique characteristics in terms of topology and traffic. Data center
networks typically present a multi-rooted tree topology such as Leaf-Spine or Fat-
Tree to provide high bandwidth among servers under different racks and a high degree
of resiliency. Inter-rack traffic is usually spread across a large pool of symmetric paths
using Equal-Cost Multi-Path (ECMP). ECMP selects a path by computing a hash
over the identifier of the flow (for example the transport-layer addresses and ports)
so that all the packets of a same transport-level flow are consistently sent on the
same path without creating out-of-order packets. The decision taken by ECMP is not

3Stateful Programmable Failure Detection and Recovery.

2 Traffic Management in Networks with Programmable ... 21

aware of the size of the flows and is agnostic to the congestion status of the paths,
thus ECMP exhibits an ideal behaviour only when there is a large number of flows
of comparable sizes with sufficient entropy across the headers [12]. In reality, traffic
in data centers presents often a mice-elephant distribution in terms of flow sizes:
there is a large number of small flows, but the largest quota of traffic, in terms of
transmitted bytes, comes from a limited set of flows (the elephant flows). This is a
problem for ECMP because it might happen that two or more large flows select the
same downstream path, creating congestion. This situation affects both categories of
flows: elephant flows do not get the bandwidth they might potentially achieve and
at the same time they block smaller flows. It is important to quickly react to this
condition especially to limit the impact on the mice flows which are typically latency
sensitive. Elephant flows are instead more sensitive to the available bandwidth.

Once again, advanced stateful dataplanes offer interesting opportunities for the
self-adapatation of the network, enabling a more scalable and prompt reaction com-
pared to approaches relying on the external controller. We designed and implemented
CEDRO,* an in-switch mechanism to detect and re-route large flows colliding on a
same downstream path based on the stateful capabilities of OPP. By default inter-rack
traffic is spread using standard ECMP. When CEDRO detects large flows experienc-
ing congestion (i.e. using a path whose utilization is above a predefined threshold)
it triggers their re-route on an alternative path by overriding the current choice of
ECMP and forcing ECMP to select a new path without considering the current one in
its pool. This new choice is permanently stored in the switch, just for those specific
flows, thanks to a transition in their state machines. CEDRO can handle both local and
remote congestion scenarios from the data plane without involving the external con-
troller. The congestion scenario is remote when the switch detecting the congestion
condition is not the same able to steer the traffic to an alternative path. For example
in a Leaf-Spine topology this happens when two large flows coming from different
Leaf switches are assigned to the same Spine switch and their traffic addresses the
same Spine switch. By bouncing back tagged data packets we can realize an in-band
signalling scheme to trigger a remote reaction in the Leaf switches from the Spine
switch.

In this application, the ability to handle the congestion directly from the data plane
is important for two reasons. The offloading of the detection improves the scalability
because we avoid having the controller orchestrate the monitoring of the flow sizes
and of the link utilizations. In addition, by offloading also the re-routing, CEDRO
enables a quicker reaction because we avoid paying the control channel delay and
processing at the controller which might constitute by themselves a non negligible
quota of the lifetime of mice flows.

In summary, the Leaf-to-Leaf macroflow aggregate (i.e. the set of all the transport-
layer microflows from a same Leaf switch to the other Leaf switches) is spread over
the paths using ECMP and the choice of ECMP is overridden for a selected number
of microflows. By paying a small penalty in the 99-th percentile and in the maximum
Flow Completion Time (FCT), CEDRO enables to improve the average and 95-th

4Congested Elephant Detection and Re-routing Offloading.

22 D. Sanvito

percentile of the FCT compared to standard ECMP. Given the high number of mice
flows, an improvement of the average metric is relevant for the latency-sensitive
nature of such category of flows.

By integrating in CEDRO the in-switch failure detection capabilities of SPIDER,
we can add a quick reaction to network failures which might be considered as an
extreme case of congestion scenario. The resulting system would provide two levels
of reaction. In case of network congestion the system re-routes to other paths just few
flows from the rack-to-rack aggregate, while in case of a network failure the entire
aggregate affected by the failure gets re-balanced over the remaining set of paths.
More details can be found in [17].

2.4 Conclusions

In conclusion, in this thesis work we analyzed the network programmability opportu-
nities for traffic management offered by the Software-Defined Networking paradigm
at different layers. We started from the programmability of the control plane and
exploited its global view to design a proactive and centralized Traffic Engineering
framework to enable online traffic optimization based on periodic traffic measure-
ments and predictions and showed how to integrate it in a production-ready SDN
platform. In order to handle the unexpected scenarios which challenge the strict
decoupling of the control plane from the data plane we designed and implemented
two applications based on stateful extensions to OpenFlow. These applications com-
plement the centralized and proactive approach based on the global state of the
network with reactive distributed logic based on a partial local view of the network
state and enabling a more prompt and scalable reaction compared to approaches
based on the centralized control plane.

References
1. BEBA project. http://www.beba-project.eu/
2. ofsoftswitch13 official contribution GitHub repository. https://github.com/CPqD/

ofsoftswitch13/tree/BEBA-EU

3. ONOS Wiki: IMR - Intent Monitor and Reroute service. https://wiki.onosproject.org/x/
hoQgAQ

4. OpenFlow 1.5 specification. https://www.opennetworking.org/wp-content/uploads/2014/10/
openflow-switch-v1.5.1.pdf

5. Berde P, GerolaM, HartJ, Higuchi Y, Kobayashi M, Koide T, Lantz B, O’ Connor B, Radoslavov
P, Snow W et al (2014) Onos: towards an open, distributed sdn os. In: Proceedings of the third
workshop on Hot topics in software defined networking

6. Bianchi G, Bonola M, Pontarelli S, Sanvito D, Capone A, Cascone C (2016) Open packet pro-
cessor: a programmable architecture for wire speed platform-independent stateful in-network
processing. CoRR arXiv:abs/1605.01977

http://www.beba-project.eu/
https://github.com/CPqD/ ofsoftswitch13/tree/BEBA- EU
https://github.com/CPqD/ ofsoftswitch13/tree/BEBA- EU
https://wiki.onosproject.org/x/hoQgAQ
https://wiki.onosproject.org/x/hoQgAQ
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
http://arxiv.org/abs/abs/1605.01977

2 Traffic Management in Networks with Programmable ... 23

7.

10.
11.

15.

16.

17.

18.

Bosshart P, Daly D, Gibb G, Izzard M, McKeown N, Rexford J, Schlesinger C, Talayco D,
Vahdat A, Varghese G et al (2014) P4: Programming protocol-independent packet processors.
ACM SIGCOMM Comput Commun Rev 44(3):87-95

Bosshart P, Gibb G, Kim H-S, Varghese G, McKeown N, Izzard M, Mujica F, Horowitz M
(2013) Forwarding metamorphosis: Fast programmable match-action processing in hardware
for sdn. ACM SIGCOMM Comput Commun Rev 43(4):99-110

Cascone C, Sanvito D, Pollini L, Capone A, Sanso B (2017) Fast failure detection and recovery
in sdn with stateful data plane. Int J] Netw Manag 27(2):e1957

Feamster N, Rexford J, Zegura E (2013) The road to sdn. Queue 11(12):20-40

Fernandes EL, Rojas E, Alvarez-Horcajo J, Kis ZL, Sanvito D, Bonelli N, Cascone C, Rothen-
berg CE (2020) The road to bofuss: the basic openflow userspace software switch. J Netw
Comput Appl, 102685

Kabbani A, Vamanan B, Hasan J, Duchene F (2014) Flowbender: flow-level adaptive routing
for improved latency and throughput in datacenter networks. In: Proceedings of the 10th ACM
international on conference on emerging Networking Experiments and Technologies, pp 149—
160

. Kuzniar M, Peresini P, Kosti¢ D, Canini M (2018) Methodology, measurement and analysis of

flow table update characteristics in hardware openflow switches. Comput Netw 136:22-36
McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker S,
Turner J (2008) Openflow: enabling innovation in campus networks. ACM SIGCOMM Comput
Commun Rev 38(2):69-74

Reitblatt M, Foster N, Rexford J, Schlesinger C, Walker D (2012) Abstractions for network
update. ACM SIGCOMM Computer Communication Review 42(4):323-334

Sanvito D, Filippini I, Capone A, Stefano P, Jérémie L (2019) Clustered robust routing for
traffic engineering in software-defined networks. Elsevier Comput. Commun. 144:175-187
Sanvito D, Marchini A, Filippini I, Capone A (2020) Cedro: an in-switch elephant flows
rescheduling scheme for data-centers. In: 2020 6th IEEE conference on network softwarization
and workshops (NetSoft). IEEE

Sanvito D, Moro D, Gulli M, Filippini I, Capone A, Campanella A (2018) Onos intent monitor
and reroute service: enabling plug&play routing logic. In: 2018 4th IEEE conference on network
softwarization and workshops (NetSoft). IEEE, pp 272-276

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	2 Traffic Management in Networks with Programmable Data Planes
	2.1 Software-Defined Networks (SDN)
	2.2 Control Plane Programmability
	2.2.1 Traffic Engineering Framework
	2.2.2 ONOS Intent Monitor and Reroute Service

	2.3 Data Plane Programmability
	2.3.1 Network Failures
	2.3.2 Network Congestion

	2.4 Conclusions
	References

