
ABECTO: An ABox Evaluation
and Comparison Tool for Ontologies

Jan Martin Keil(B)

Heinz Nixdorf Chair for Distributed Information Systems,
Institute for Computer Science, Friedrich Schiller University Jena, Jena, Germany

jan-martin.keil@uni-jena.de

Abstract. Correctness and completeness of ontologies on the schema
and the instance level are important quality criteria in their selection for
an application. Due to the general lack of gold standard data sources, the
determination of these criteria, especially on the instance level, is chal-
lenging. The direct comparison of candidate data sources enables the
approximation of these criteria. We introduce ABECTO, an ABox eval-
uation and comparison tool for ontologies. ABECTO provides a frame-
work for the comparison of different semantic data sources in the same
domain on the instance level.

Keywords: Ontology ABox · Ontology comparison · Ontology
evaluation · Ontology quality · Ontology selection

1 Introduction

Ontologies can be valuable sources of domain knowledge for various applica-
tions. However, the selection of appropriate ontologies requires particular atten-
tion. The ontologies must provide a sufficient degree of entity coverage (popula-
tion completeness in [1,2]) and a sufficient level of detail (schema completeness
in [1,2]) [3]. Besides that, the faultless operation of applications also relies on
the correctness (accuracy in [1,2]) and sufficient value coverage (property com-
pleteness and interlinking completeness in [1] or column completeness in [2])
of the ontologies. To verify the correctness and completeness of a candidate
ontology, modeled facts must be compared to actual facts. These actual facts
would be contained in a gold standard data source. Classical ontology engi-
neering methodologies use competency questions to specify requirements and
to verify requirement compliance. Expected answers to competency questions
for the verification of correctness or completeness of facts in ontologies would
implicitly also represent a gold standard data source. However, the existence of
a gold standard data source for real world data is almost impossible. Due to this
general lack of gold standard data sources, we proposed the direct comparison
of multiple independent candidate ontologies to approximate their correctness

The original version of this chapter was revised: this chapter was previously published
non-open access. The correction to this chapter is available at
https://doi.org/10.1007/978-3-030-62327-2 48

c© The Author(s) 2020, corrected publication 2023
A. Harth et al. (Eds.): ESWC 2020 Satellite Events, LNCS 12124, pp. 140–145, 2020.
https://doi.org/10.1007/978-3-030-62327-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62327-2_24&domain=pdf
http://orcid.org/0000-0002-7733-0193
https://doi.org/10.1007/978-3-030-62327-2_48
https://doi.org/10.1007/978-3-030-62327-2_24


ABECTO: An ABox Evaluation and Comparison Tool for Ontologies 141

and completeness [4]. Measures of the correctness and completeness could then
support the selection of appropriate ontologies that fulfill the requirements of
a certain project. As an example, consider two candidate ontologies containing
100 and 150 relevant entities respectively for a text annotation service. The first
contains 100 English and 100 Spanish labels, the second 140 English and 130
Spanish labels. A comparison reveals that 90 of the entities are contained in both
ontologies and detects deviations between the ontologies in 40 Spanish labels,
caused by errors in the second ontology. Depending on the focused languages,
this allows a more profound choice of the ontology.

The term ontology comparison is used with different meanings in the lit-
erature: (a) The comparison of entire ontologies regarding certain aspects to
evaluate or select ontologies, (b) the comparison of different versions of one
ontology to highlight changes, (c) the comparison of single entities or sets of
entities to calculate recommendations of entities, or (d) the calculation of the
similarity of single or a few entities from different ontologies to match or merge
these ontologies [4]. In this paper, we focus on Variant (a), only.

We introduce ABECTO, an ABox evaluation and comparison tool for ontolo-
gies. ABECTO implements a framework for comparing multiple ontologies in the
same domain. To the best of our knowledge, this is the first software tool for
the comparison of ontologies on ABox level to approximate their correctness and
completeness. In the remainder of this article, we will introduce the function-
ality of ABECTO in Sect. 2, explain our strategy to handle different modeling
approaches in Sect. 3, describe the implementation of ABECTO in Sect. 4, and
describe the demonstration in Sect. 5.

2 System Overview

ABECTO implements our framework for ontology ABox comparison described
in [4]. The framework consists of five components, as shown in Fig. 1: (a) A
source component to load ontologies, (b) a transformation component to add
deduced axioms to the ontologies in preparation of further processing, (c) a
mapping component to map the resources of the ontologies, (d) a comparison
component to provide measurements of the ontologies, and (e) an evaluation
component to identify potential mistakes in the ontologies.

(c) Mapping

(b) Transformation (e) Evaluation(d) Comparison(a) Source Report

Fig. 1. Schematic of the comparison framework implemented in ABECTO. The order
of the transformation and mapping processes is up to the user.

For each component, ABECTO provides a couple of processors, which provide
a specific functionality. These processors can be arranged by the users into a
processing pipeline to define the comparison process.



142 J. M. Keil

3 Handling of Different Modeling Approaches

The comparison of the ABoxes requires identifying corresponding facts of the
ontologies. However, different ontologies of the same domain might use different
approaches to model certain aspects of this domain. For example, there might
be (a) properties corresponding to a chain of properties, (b) anonymous individ-
uals corresponding to named individuals, (c) data properties corresponding to
annotation properties, or (d) classes corresponding to individuals [4].

To meet this challenge, the sets of resources and their comparable properties
are described with so-called categories. A category is defined by a SPARQL
GroupGraphPattern [5] (the WHERE clause) for each ontology. The variable
with the same name as the category represents the resource to compare. The
bindings of all other equally named variables will be compared. This enables the
definition of the facts to compare in a way that meets all mentioned cases: (a)
Resource and variables can be linked by properties as well as complex property
paths, (b) unambiguous IRIs can be created using key properties values, (c)
resource and variables can be linked by data properties as well as annotation
properties, and (d) the resource might represent a class as well as a individual.
In the further processing, these patterns will be used to obtain the facts for
ontology comparison.

4 Implementation

ABECTO is implemented as a Java HTTP REST service based on Apache Jena1

and Spring2 to provide a convenient interface for user interfaces or other applica-
tions. The size of compared ontologies is mainly limited by the memory required
to represent the ontologies. Therefore, we expect ABECTO to be able to pro-
cess large ontologies on appropriate hardware. A Python module provides handy
functions to use ABECTO inside a Jupyter notebook3, hiding the raw HTTP
requests. This allows an easy setup of reproducible ontology comparison projects.
However, the result presentation in the Jupyter Notebook interface for ABECTO
is only suitable for smaller ontologies. To support large ontologies, an indepen-
dent interface like a stand-alone web application would be needed. The sources
of ABECTO are publicly available under the Apache 2.0 license [6].

In ABECTO, the ontologies will be compared inside of a project. A project
consists of several ontologies and a processing pipeline. Each node of the pipeline
represents a processor with a particular configuration. A processor is a Java class
with specified methods to generate an output RDF model. The start nodes of
the pipeline are the nodes representing a source processor, which loads an RDF
model from an external source. To support modularized ontologies, multiple
source nodes might belong to one ontology. Nodes of other processors require at
least one input node. These processors can be divided into (a) transformation
1 https://jena.apache.org/.
2 https://spring.io/.
3 https://jupyter.org/.

https://jena.apache.org/
https://spring.io/
https://jupyter.org/


ABECTO: An ABox Evaluation and Comparison Tool for Ontologies 143

processors, which extend the input RDF model, (b) mapping processors, which
provide resource mappings of the input RDF models of different ontologies, and
(c) meta processors, which calculate comparative meta data from the input RDF
models. The comparative meta data include measurements, like resource counts,
identified deviations of mapped resources, issues, like an encountered literal when
a resource was expected, and categories, which define the sets of resources and
their properties to compare. The output RDF models of source and transforma-
tion processors belong to a certain ontology, whereas the output RDF models
mapping and meta processors do not belong to a certain ontology. Therefore,
they will be treated differently by the subsequent processors. The following pro-
cessors are already available in ABECTO:

RdfFileSourceProcessor: Loads an RDF document from the local file system.
JaroWinklerMappingProcessor: Provides mappings based on Jaro-Winkler

Similarity [7] of string property values using our implementation from [8].
ManualMappingProcessor: Enables users to manually adjust the mappings

by providing or suppressing mappings.
RelationalMappingProcessor: Provides mappings based on the mappings of

referenced resources.
OpenlletReasoningProcessor: Infers the logical consequences of the input

RDF models utilizing the Openllet Reasoner4 to generate additional triples.
SparqlConstructProcessor: Applies a given SPARQL Construct Query to

the input RDF models to generate additional triples.
CategoryCountProcessor: Measures the number of resources and property

values per category.
LiteralDeviationProcessor: Detects deviations between the property values

of mapped resources as defined in the categories.
ManualCategoryProcessor: Enables users to manually define resource cate-

gories and their properties.
ResourceDeviationProcessor: Detects deviations between the resource ref-

erences of mapped resources as defined in the categories.

We plan to add further processors in the near future, including:

– A mapping processor that employs the well known matching libraries using
the Alignment API [9].

– A mapping processor that reuses mappings contained in the ontologies.
– A mapping processor that provides transitive mappings based on results of

other mappings.
– A meta processor that utilizes mark and recapture techniques [10] to measure

the completeness of ontologies.
– A source processor that loads an RDF document from a URL.
– A source processor that imports triples of a specified scope from a SPARQL

endpoint.
– A source processor that utilizes SPARQL Generate [11] to load comparison

data from non-RDF documents.
4 https://github.com/Galigator/openllet.

https://github.com/Galigator/openllet


144 J. M. Keil

Fig. 2. Screenshot of an example report generated in a Jupyter Notebook. The report
shows one type of measurement (number of resources and property values per category),
encountered deviations, and encountered issue of a comparison of three ontologies.

The meta data models generated by the nodes can be used to generate
reports. These reports might contain the calculated measurements, deviations
and issues. Figure 2 shows an example report generated in a Jupyter Notebook.

5 Demonstration

We will demonstrate how users can utilize ABECTO to compare and evaluate
ontologies. We will provide sets of real world RDF documents with prepared
project definitions and category descriptions. The projects are managed inside
of Jupyter notebooks. A tutorial notebook is available and can be executed
online5 using Binder [12]. Users will be able to manipulate and execute the
project pipelines and examine the resulting comparison and evaluation reports.

Acknowledgments. Many thanks to the three anonymous reviewers, to my supervi-
sor Birgitta König-Ries, and to my colleagues Alsayed Algergawy, Felicitas Löffler, and
Samira Babalou for very helpful comments on earlier drafts of this manuscript.

5 https://mybinder.org/v2/zenodo/10.5281/zenodo.3786194/?filepath=abecto-
tutorial.ipynb (live preview loading might take a few minutes).

https://mybinder.org/v2/zenodo/10.5281/zenodo.3786194/?filepath=abecto-tutorial.ipynb
https://mybinder.org/v2/zenodo/10.5281/zenodo.3786194/?filepath=abecto-tutorial.ipynb


ABECTO: An ABox Evaluation and Comparison Tool for Ontologies 145

References

1. Zaveri, A., Rula, A., Maurino, A., et al.: Quality assessment for linked data: a
survey. Seman. Web 7(1), 63–93 (2016). https://doi.org/10.3233/SW-150175

2. Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked data quality of DBpe-
dia, Freebase, OpenCyc, Wikidata, and YAGO. Seman. Web 9(1), 77–129 (2018).
https://doi.org/10.3233/SW-170275

3. Heist, N., Hertling, S., Ringler, D., Paulheim, H.: Knowledge graphs on the web -
an overview. arXiv: 2003.00719v2 [cs.AI] 2 March 2020

4. Keil, J.M.: Ontology ABox comparison. In: Gangemi, A., et al. (eds.) ESWC 2018.
LNCS, vol. 11155, pp. 240–250. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-98192-5 43

5. SPARQL 1.1 Query Language. Recommendation. W3C, 21 March 2013. https://
www.w3.org/TR/2013/REC-sparql11-query-20130321/

6. Keil, J.M.: ABECTO. https://doi.org/10.5281/ZENODO.3786194
7. Winkler, W.E.: String comparator metrics and enhanced decision rules in the

Fellegi-Sunter model of record linkage. In: Proceedings of the Section on Survey
Research, pp. 354–359. American Statistical Association (1990). http://eric.ed.
gov/?id=ED325505

8. Keil, J.M.: Efficient bounded Jaro-Winkler similarity based search. In: Grust, T.,
Naumann, F., Böhm, A., et al. (eds.) BTW 2019. Gesellschaft für Informatik,
Bonn, pp. 205–214 (2019). https://doi.org/10.18420/btw2019-13

9. David, J., Euzenat, J., Scharffe, F., dos Santos, C.T.: The alignment API 4.0.
Seman. Web 2(1), 3–10 (2011). https://doi.org/10.3233/SW-2011-0028

10. Razniewski, S., Suchanek, F.M., Nutt, W.: But what dowe actually know? In:
Pujara, J., Rocktäschel, T., Chen, D., Singh, S. (eds.) Proceedings of the 5th
Workshop on Automated Knowledge Base Construction, AKBC@NAACL-HLT
2016. The Association for Computer Linguistics, pp. 40–44 (2016). https://doi.
org/10.18653/v1/W16-1308

11. Lefrançois, M., Zimmermann, A., Bakerally, N.: A SPARQL extension for generat-
ing RDF from heterogeneous formats. In: Blomqvist, E., Maynard, D., Gangemi,
A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp.
35–50. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58068-5 3

12. Project Jupyter, Bussonnier, M., Forde, J., et al.: Binder 2.0 - reproducible, interac-
tive, sharable environments for science at scale. In: Akici, F., Lippa, D., Niederhut,
D., Pacer, M. (eds.) Proceedings of the 17th Python in Science Conference 2018,
pp. 113–120. https://doi.org/10.25080/Majora-4af1f417-011

https://doi.org/10.3233/SW-150175
https://doi.org/10.3233/SW-170275
http://arxiv.org/abs/2003.00719v2
https://doi.org/10.1007/978-3-319-98192-5_43
https://doi.org/10.1007/978-3-319-98192-5_43
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://doi.org/10.5281/ZENODO.3786194
http://eric.ed.gov/?id=ED325505
http://eric.ed.gov/?id=ED325505
https://doi.org/10.18420/btw2019-13
https://doi.org/10.3233/SW-2011-0028
https://doi.org/10.18653/v1/W16-1308
https://doi.org/10.18653/v1/W16-1308
https://doi.org/10.1007/978-3-319-58068-5_3
https://doi.org/10.25080/Majora-4af1f417-011

	ABECTO: An ABox Evaluation and Comparison Tool for Ontologies
	1 Introduction
	2 System Overview
	3 Handling of Different Modeling Approaches
	4 Implementation
	5 Demonstration
	References




