Skip to main content

Fundamentals and Advances of the Oxidant Peroxo Method (OPM) for the Synthesis of Transition Metal Oxides

  • Chapter
  • First Online:
Functional Properties of Advanced Engineering Materials and Biomolecules

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 698 Accesses

Abstract

The ability to produce phase pure and compositionally controlled nanomaterials at temperatures lower than the ones required by solid state reaction methods is one of the most important features in a solution-chemistry synthetic method. The sol–gel based methods usually use many of organic compounds throughout the synthetic process, which can be detrimental to certain applications, as high quantities of residual carbon can be found along the final product. The Oxidant Peroxo Method, usually known by the acronym OPM, is a solution-chemistry method based on the production of peroxo complexes with hydrogen peroxide and different transition metal ions at alkaline pH. The production of these peroxo complexes leads to an amorphous material that upon calcination produces phase pure transition metal oxides with controlled composition. One special feature of the OPM method is the total absence of the organic compounds during the synthesis, which avoids the presence of undesired pyrolyzed organic molecules mixed with the metal oxide product. Additionally, the absence of organic compounds produces an oxidizing atmosphere during the synthesis, yielding very reactive powders, facilitating the production highly dense ceramic pellets for electronic applications. The production of powders with surface containing peroxo groups, also, has been beneficial for increasing the photocatalytic activity of titanium-based compounds and for use as a precursor in the solid-state reactions, which considerably decreases the processing temperature. Since its inception and first publication, back in 2001, the OPM method has been successfully applied by different research groups worldwide to produce binary oxides, i.e. TiO2, tertiary oxides, PbTiO3, BaZrO3, and doped tertiary oxides Pb1−xLaTiO3. The variety of different metal oxides produced confirms the versatility of OPM method on yielding not only different compositions, but also different crystalline structures, like anatase, perovskite, sillenite, and spinel. Furthermore, the OPM method has yield metal oxides for many different applications, such as dielectric, optical, and photocatalytic. For instance, undoped Bi12TiO20 and Nb-doped Bi12(Ti1−xNbx)O20 were used as efficient photocatalysts for degradation of rhodamine B under ultraviolet and visible lights, presenting better activity than TiO2. In this chapter, the chemistry underlying the OPM method and the oxides most commonly prepared by this technique will be described, focusing how the method contributed to the advance of the synthetic, structural, and application aspects related to each one of these compounds. The future goals and applications of the method will be critically discussed. The authors hope this chapter can provide enough information to motivate a continuous dissemination of the OPM method, in view of its confirmed successful features and potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Camargo, E.R., Kakihana, M.: Peroxide-based route free from halides for the synthesis of lead titanate powder. Chem. Mater. 13, 1181–1184 (2001). https://doi.org/10.1021/cm000363y

    Article  CAS  Google Scholar 

  2. Wang, Y., He, Y., Lai, Q., Fan, M.: Review of the progress in preparing nano TiO2: An important environmental engineering material. J. Environ. Sci. (China) 26, 2139–2177 (2014). https://doi.org/10.1016/j.jes.2014.09.023

    Article  Google Scholar 

  3. Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., Pillai, S.C.: Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. J. Photochem. Photobiol. C Photochem. Rev. 25, 1–29 (2015). https://doi.org/10.1016/j.jphotochemrev.2015.08.003

    Article  CAS  Google Scholar 

  4. Zhang, J., Zhou, P., Liu, J., Yu, J.: New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 16, 20382–20386 (2014). https://doi.org/10.1039/c4cp02201g

    Article  CAS  Google Scholar 

  5. Kumar, S.G., Devi, L.G.: Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A. 115, 13211–13241 (2011). https://doi.org/10.1021/jp204364a

    Article  CAS  Google Scholar 

  6. Ribeiro, C., Barrado, C.M., De Camargo, E.R., Longo, E., Leite, E.R.: Phase transformation in titania nanocrystals by the oriented attachment mechanism: the role of the pH value. Chem. A Eur. J. 15, 2217–2222 (2009). https://doi.org/10.1002/chem.200801019

    Article  CAS  Google Scholar 

  7. De Mendonça, V.R., Ribeiro, C.: Influence of TiO2 morphological parameters in dye photodegradation: a comparative study in peroxo-based synthesis. Appl. Catal. B Environ. 105, 298–305 (2011). https://doi.org/10.1016/j.apcatb.2011.04.018

    Article  CAS  Google Scholar 

  8. Gao, Y., Masuda, Y., Peng, Z., Yonezawa, T., Koumoto, K.: Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution. J. Mater. Chem. 13, 608–613 (2003). https://doi.org/10.1039/b208681f

    Article  CAS  Google Scholar 

  9. Garcia, A.P., Rocha, I.C.L., Dos Santos, P.H.F., Basegio, T.M., Pereira, M.B., Clemens, F.J., Alves, A.K., Bergmann, C.P.: Low energy consumption synthesis of nanostructured TiO2 particles by combining oxidant peroxide method and microwave-assisted hydrothermal treatment. J. Nanomater. 2016 (2016). https://doi.org/10.1155/2016/4910536.

  10. de Mendonça, V.R., Lopes, O.F., Avansi, W., Arenal, R., Ribeiro, C.: Insights into formation of anatase TiO2 nanoparticles from peroxo titanium complex degradation under microwave-assisted hydrothermal treatment. Ceram. Int. 45, 22998–23006 (2019). https://doi.org/10.1016/j.ceramint.2019.07.345

    Article  CAS  Google Scholar 

  11. Zaleska, A.: Doped-TiO2: a review. Recent Patents Eng. 2, 157–164 (2008). https://doi.org/10.2174/187221208786306289

    Article  CAS  Google Scholar 

  12. Byrne, C., Subramanian, G., Pillai, S.C.: Recent advances in photocatalysis for environmental applications. J. Environ. Chem. Eng. 6, 3531–3555 (2018). https://doi.org/10.1016/j.jece.2017.07.080

    Article  CAS  Google Scholar 

  13. Bakar, S.A., Byzynski, G., Ribeiro, C.: Synergistic effect on the photocatalytic activity of N-doped TiO2 nanorods synthesised by novel route with exposed (110) facet. J. Alloys Compd. 666, 38–49 (2016). https://doi.org/10.1016/j.jallcom.2016.01.112

    Article  CAS  Google Scholar 

  14. Bakar, S.A., Ribeiro, C.: Low temperature synthesis of N-doped TiO2 with rice-like morphology through peroxo assisted hydrothermal route: Materials characterization and photocatalytic properties. Appl. Surf. Sci. 377, 121–133 (2016). https://doi.org/10.1016/j.apsusc.2016.03.137

    Article  CAS  Google Scholar 

  15. Bakar, S.A., Ribeiro, C.: Rapid and morphology controlled synthesis of anionic S-doped TiO2 photocatalysts for the visible-light-driven photodegradation of organic pollutants. RSC Adv. 6, 36516–36527 (2016). https://doi.org/10.1039/c6ra03819k

    Article  CAS  Google Scholar 

  16. Bakar, S.A., Ribeiro, C.: A comparative run for visible-light-driven photocatalytic activity of anionic and cationic S-doped TiO2 photocatalysts: a case study of possible sulfur doping through chemical protocol. J. Mol. Catal. A Chem. 421, 1–15 (2016). https://doi.org/10.1016/j.molcata.2016.05.003

    Article  CAS  Google Scholar 

  17. Fagan, R., McCormack, D.E., Dionysiou, D.D., Pillai, S.C.: A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mater. Sci. Semicond. Process. 42, 2–14 (2016). https://doi.org/10.1016/j.mssp.2015.07.052

    Article  CAS  Google Scholar 

  18. De Mendonҫa, V.R., Dalmaschio, C.J., Leite, E.R., Niederberger, M., Ribeiro, C.: Heterostructure formation from hydrothermal annealing of preformed nanocrystals. J. Mater. Chem. A. 3, 2216–2225 (2015). https://doi.org/10.1039/c4ta05926c

    Article  CAS  Google Scholar 

  19. de Mendonça, V.R., Avansi, W., Arenal, R., Ribeiro, C.: A building blocks strategy for preparing photocatalytically active anatase TiO2/rutile SnO2 heterostructures by hydrothermal annealing. J. Colloid Interface Sci. 505, 454–459 (2017). https://doi.org/10.1016/j.jcis.2017.06.024

    Article  CAS  Google Scholar 

  20. Avansi, W., Catto, A.C., Da Silva, L.F., Fiorido, T., Bernardini, S., Mastelaro, V.R., Aguir, K., Arenal, R.: One-dimensional V2O5/TiO2 heterostructures for chemiresistive ozone sensors. ACS Appl. Nano Mater. 2, 4756–4764 (2019). https://doi.org/10.1021/acsanm.9b00578

    Article  CAS  Google Scholar 

  21. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010). https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

  22. He, H., Riedl, T., Lerf, A., Klinowski, J.: Solid-state NMR studies of the structure of graphite oxide. J. Phys. Chem. 100, 19954–19958 (1996). https://doi.org/10.1021/jp961563t

    Article  CAS  Google Scholar 

  23. Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.T., Ruoff, R.S.: Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 16, 155–158 (2006). https://doi.org/10.1039/B512799H

    Article  CAS  Google Scholar 

  24. W. Zhang, V. Carravetta, Z. Li, Y. Luo, J. Yang, Oxidation states of graphene: insights from computational spectroscopy. J. Chem. Phys. 131 (2009). https://doi.org/10.1063/1.3276339

  25. Dimiev, A.M., Tour, J.M.: Mechanism of graphene oxide formation. ACS Nano 8, 3060–3068 (2014). https://doi.org/10.1021/nn500606a

    Article  CAS  Google Scholar 

  26. Mahmood, N., De Castro, I.A., Pramoda, K., Khoshmanesh, K., Bhargava, S.K., Kalantar-Zadeh, K.: Atomically thin two-dimensional metal oxide nanosheets and their heterostructures for energy storage. Energy Storage Mater. 16, 455–480 (2019). https://doi.org/10.1016/j.ensm.2018.10.013

    Article  Google Scholar 

  27. Li, Y., Wang, S., He, Y.B., Tang, L., Kaneti, Y.V., Lv, W., Lin, Z., Li, B., Yang, Q.H., Kang, F.: Li-ion and Na-ion transportation and storage properties in various sized TiO2 spheres with hierarchical pores and high tap density. J. Mater. Chem. A. 5, 4359–4367 (2017). https://doi.org/10.1039/c6ta08611j

    Article  CAS  Google Scholar 

  28. Naguib, M., Mochalin, V.N., Barsoum, M.W., Gogotsi, Y.: 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138

    Article  CAS  Google Scholar 

  29. Zhang, C.J., Pinilla, S., McEvoy, N., Cullen, C.P., Anasori, B., Long, E., Park, S.H., Seral-Ascaso, A., Shmeliov, A., Krishnan, D., Morant, C., Liu, X., Duesberg, G.S., Gogotsi, Y., Nicolosi, V.: Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29, 4848–4856 (2017). https://doi.org/10.1021/acs.chemmater.7b00745

    Article  CAS  Google Scholar 

  30. Naguib, M., Unocic, R.R., Armstrong, B.L., Nanda, J.: Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes.” Dalt. Trans. 44, 9353–9358 (2015). https://doi.org/10.1039/C5DT01247C

    Article  CAS  Google Scholar 

  31. Anasori, B., Xie, Y., Beidaghi, M., Lu, J., Hosler, B.C., Hultman, L., Kent, P.R.C., Gogotsi, Y., Barsoum, M.W.: Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015). https://doi.org/10.1021/acsnano.5b03591

    Article  CAS  Google Scholar 

  32. Wang, R., Wang, S., Zhang, Y., Jin, D., Tao, X., Zhang, L.: Graphene-coupled Ti 3 C 2 MXenes-derived TiO2 mesostructure: promising sodium-ion capacitor anode with fast ion storage and long-term cycling. J. Mater. Chem. A. 6, 1017–1027 (2018). https://doi.org/10.1039/c7ta09153b

    Article  CAS  Google Scholar 

  33. Goh, K.H., Lim, T.T., Dong, Z.: Application of layered double hydroxides for removal of oxyanions: a review. Water Res. 42, 1343–1368 (2008). https://doi.org/10.1016/j.watres.2007.10.043

    Article  CAS  Google Scholar 

  34. Zubair, M., Daud, M., McKay, G., Shehzad, F., Al-Harthi, M.A.: Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Appl. Clay Sci. 143, 279–292 (2017). https://doi.org/10.1016/j.clay.2017.04.002

    Article  CAS  Google Scholar 

  35. He, J., Shi, H., Shu, X., Li, M.: On the nature of Ti(IV)-pillared layered metal hydroxides prepared from green, water-soluble Ti-peroxide, AIChE J. 61 (2009). https://doi.org/10.1002/aic.12029

  36. Camargo, E.R., Popa, M., Frantti, J., Kakihana, M.: Wet-chemical route for the preparation of lead zirconate: an amorphous carbon- and halide-free precursor synthesized by the hydrogen peroxide based route. Chem. Mater. 13, 3943–3948 (2001). https://doi.org/10.1021/cm010326m

    Article  CAS  Google Scholar 

  37. Woodward, D.I., Knudsen, J., Reaney, I.M.: Review of crystal and domain structures in the PbZrxTi1-xO3 solid solution. Phys. Rev. B Condens. Matter Mater. Phys. 72, 1–8 (2005). https://doi.org/10.1103/PhysRevB.72.104110

    Article  CAS  Google Scholar 

  38. Camargo, E.R., Frantti, J., Kakihana, M.: Low-temperature chemical synthesis of lead zirconate titanate (PZT) powders free from halides and organics. J. Mater. Chem. 11, 1875–1879 (2001). https://doi.org/10.1039/b009096o

    Article  CAS  Google Scholar 

  39. Camargo, E.R., Souza, F.L., Leite, E.R., Kakihana, M.: Structural and electrical characterization of dense lead zirconate titanate ceramics synthesized by the oxidant-peroxo wet-chemical route. J. Appl. Phys. 96, 2169–2172 (2004). https://doi.org/10.1063/1.1765854

    Article  CAS  Google Scholar 

  40. Gonçalves, M.D., Souza, F.L., Longo, E., Leite, E.R., Camargo, E.R.: Dielectric characterization of microwave sintered lead zirconate titanate ceramics. Ceram. Int. 42, 14423–14430 (2016). https://doi.org/10.1016/j.ceramint.2016.06.035

    Article  CAS  Google Scholar 

  41. Yamada, L.K.: Cerâmicas de PZT modificadas com terras raras sintetizadas usando o método dos complexos oxidantes de peróxidos (OPM) e sinterizadas por micro-ondas (2013)

    Google Scholar 

  42. Camargo, E.R., Kakihana, M.: Lead Hafnate (PbHfO3) Perovskite powders synthesized by the oxidant peroxo method. J. Am. Ceram. Soc. 85, 2107–2109 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00412.x

    Article  CAS  Google Scholar 

  43. Camargo, E.R., Barrado, C.M., Ribeiro, C., Longo, E., Leite, E.R.: Nanosized lead lanthanum titanate (PLT) ceramic powders synthesized by the oxidant peroxo method. J. Alloys Compd. 475, 817–821 (2009). https://doi.org/10.1016/j.jallcom.2008.08.035

    Article  CAS  Google Scholar 

  44. Erdem, E., Semmelhack, H.C., Böttcher, R., Rumpf, H., Banys, J., Matthes, A., Gläsel, H.J., Hirsch, D., Hartmann, E.: Study of the tetragonal-to-cubic phase transition in PbTiO3 nanopowders. J. Phys. Condens. Matter. 18, 3861–3874 (2006). https://doi.org/10.1088/0953-8984/18/15/028

    Article  CAS  Google Scholar 

  45. Pinto, A.H., Souza, F.L., Chiquito, A.J., Longo, E., Leite, E.R., Camargo, E.R.: Characterization of dense lead lanthanum titanate ceramics prepared from powders synthesized by the oxidant peroxo method. Mater. Chem. Phys. 124 (2010). https://doi.org/10.1016/j.matchemphys.2010.08.030

  46. Pinto, A.H., Souza, F.L., Longo, E., Leite, E.R., Camargo, E.R.: Structural and dielectric characterization of praseodymium-modified lead titanate ceramics synthesized by the OPM route, Mater. Chem. Phys. 130 (2011). https://doi.org/10.1016/j.matchemphys.2011.06.040

  47. Chen, T.Y., Chu, S.Y.: The piezoelectric and dielectric properties of Ca-additive Sm-modified PbTiO3 ceramics intended for surface acoustic wave devices. J. Eur. Ceram. Soc. 23, 2171–2176 (2003). https://doi.org/10.1016/S0955-2219(03)00017-7

    Article  CAS  Google Scholar 

  48. Cho, S.B., Noh, J.S., Lencka, M.M., Riman, R.E.: Low temperature hydrothermal synthesis and formation mechanisms of lead titanate (PbTiO3) particles using tetramethylammonium hydroxide: yhermodynamic modelling and experimental verification. J. Eur. Ceram. Soc. 23, 2323–2335 (2003). https://doi.org/10.1016/S0955-2219(03)00085-2

    Article  CAS  Google Scholar 

  49. Esquivel-Elizondo, J.R., Hinojosa, B.B., Nino, J.C.: Bi2Ti2O7: It is not what you have read. Chem. Mater. 23, 4965–4974 (2011). https://doi.org/10.1021/cm202154c

    Article  CAS  Google Scholar 

  50. Long, C., Du, T., Ren, W.: Significant ion conduction in Cu acceptor-substituted bismuth titanate polycrystalline ceramics. J. Mater. Sci. 55, 5715–5729 (2020). https://doi.org/10.1007/s10853-020-04431-x

    Article  CAS  Google Scholar 

  51. Nogueira, A.E., Longo, E., Leite, E.R., Camargo, E.R.: Synthesis and photocatalytic properties of bismuth titanate with different structures via oxidant peroxo method (OPM). J. Colloid Interface Sci. 415, 89–94 (2014). https://doi.org/10.1016/j.jcis.2013.10.010

    Article  CAS  Google Scholar 

  52. Zhang, Y., Chen, Z., Lu, Z.: A facile method for the preparation of colored Bi4Ti3O12–x nanosheets with enhanced visible-light photocatalytic hydrogen evolution activity, Nanomaterials 8 (2018). https://doi.org/10.3390/nano8040261

  53. Chon, U., Jang, H.M., Shin, N.S., Kim, J.S., Ahn, D.C., Kim, Y.S., No, K.: Gd-substituted bismuth titanate film capacitors having ferroelectric reliability and large non-volatile charges. Phys. B Condens. Matter. 388, 190–194 (2007). https://doi.org/10.1016/j.physb.2006.05.434

    Article  CAS  Google Scholar 

  54. Megriche, A., Lebrun, L., Troccaz, M.: Materials of Bi4Ti3O12 type for high temperature acoustic piezo-sensors. Sens Actuators Phys 78, 88–91 (1999). https://doi.org/10.1016/S0924-4247(99)00223-X

    Article  CAS  Google Scholar 

  55. Ranieri, M.G.A., Aguiar, E.C., Cilense, M., Simões, A.Z., Varela, J.A.: Syntheses of bismuth titanate templates obtained by the molten salt method. Ceram. Int. 39, 7291–7296 (2013). https://doi.org/10.1016/j.ceramint.2013.02.091

    Article  CAS  Google Scholar 

  56. Badge, S.K., Deshpande, A.V.: La3+ modified bismuth titanate (BLT) prepared by sol–gel synthesis: structural, dielectric, impedance and ferroelectric studies. Solid State Ionics 347 (2020). https://doi.org/10.1016/j.ssi.2020.115270

  57. Anu, K.Y.: Optical and dielectric properties of Bi2Ti2O7/Bi4Ti3O12 nanocomposite, Mater. Today Proc. 28, 153–157 (2020). https://doi.org/10.1016/j.matpr.2020.01.467

  58. Sun, X., Xu, G., Bai, H., Zhao, Y., Tian, H., Wang, J., Li, X., Han, G.: Hydrothermal synthesis and formation mechanism of single-crystal Auivillius Bi4Ti3O12 nanosheets with ammonium bismuth citrate (C6H10BiNO8) as Bi sources. J. Cryst. Growth. 476, 31–37 (2017). https://doi.org/10.1016/j.jcrysgro.2017.05.010

    Article  CAS  Google Scholar 

  59. Nogueira, A.E., Longo, E., Leite, E.R., Camargo, E.R.: Visible-light photocatalysis with bismuth titanate (Bi12TiO20) particles synthesized by the oxidant peroxide method (OPM). Ceram. Int. 41, 12073–12080 (2015). https://doi.org/10.1016/j.ceramint.2015.06.024

    Article  CAS  Google Scholar 

  60. Wang, L., Li, H., Zhang, S., Long, Y., Li, L., Zheng, Z., Wu, S., Zhou, L., Hei, Y., Luo, L., Jiang, F.: One-step synthesis of Bi4Ti3O12/Bi2O3/Bi12TiO20 spherical ternary heterojunctions with enhanced photocatalytic properties via sol-gel method. Solid State Sci. 100, 106098 (2020). https://doi.org/10.1016/j.solidstatesciences.2019.106098

    Article  CAS  Google Scholar 

  61. Hu, D., Kong, X., Mori, K., Tanaka, Y., Shinagawa, K., Feng, Q.: Ferroelectric mesocrystals of bismuth sodium titanate: formation mechanism, nanostructure, and application to piezoelectric materials. Inorg. Chem. 52, 10542–10551 (2013). https://doi.org/10.1021/ic4015256

    Article  CAS  Google Scholar 

  62. Badge, S.K., Deshpande, A.V.: Study of dielectric and ferroelectric properties of bismuth titanate (Bi4 Ti3O12) ceramic prepared by sol-gel synthesis and solid state reaction method with varying sintering temperature. Solid State Ionics 334, 21–28 (2019). https://doi.org/10.1016/j.ssi.2019.01.028

    Article  CAS  Google Scholar 

  63. Hou, J., Qu, Y., Krsmanovic, D., Kumar, R.V.: Peroxide-based route assisted with inverse microemulsion process to well-dispersed Bi4Ti3O12 nanocrystals. J. Nanoparticle Res. 12, 1797–1805 (2010). https://doi.org/10.1007/s11051-009-9737-4

    Article  CAS  Google Scholar 

  64. Nogueira, A.E., Lima, A.R.F., Longo, E., Leite, E.R. E.R. Camargo, Structure and photocatalytic properties of Nb-doped Bi12TiO20 prepared by the oxidant peroxide method (OPM), J. Nanoparticle Res. 16 (2014). https://doi.org/10.1007/s11051-014-2653-2

  65. Nogueira, A.E., Lima, A.R.F., Longo, E., Leite, E.R., Camargo, E.R.: Effect of lanthanum and lead doping on the microstructure and visible light photocatalysis of bismuth titanate prepared by the oxidant peroxide method (OPM). J. Photochem. Photobiol. A Chem. 312, 55–63 (2015). https://doi.org/10.1016/j.jphotochem.2015.07.012

    Article  CAS  Google Scholar 

  66. Francatto, P., Souza Neto, F.N., Nogueira, A.E., Kubo, A.M., Ribeiro, L.S., Gonçalves, L.P., Gorup, L.F., Leite, E.R., Camargo, E.R.: Enhanced reactivity of peroxo-modified surface of titanium dioxide nanoparticles used to synthesize ultrafine bismuth titanate powders at lower temperatures, Ceram. Int. 42,15767–15772 (2016). https://doi.org/10.1016/j.ceramint.2016.07.039

  67. Nogueira, A.E., Ribeiro, L.S., Gorup, L.F, Silva, G.T.S.T., Silva, F.F.B., Ribeiro, C., Camargo, E.R.: New approach of the oxidant peroxo method (OPM) route to obtain Ti(OH)4 nanoparticles with high photocatalytic activity under visible radiation, Int. J. Photoenergy. 2018 (2018). https://doi.org/10.1155/2018/6098302

  68. Cardoso, F.P., Nogueira, A.E., Patrício, P.S.O., Oliveira, L.C.A.: Effect of tungsten doping on catalytic properties of niobium oxide. J. Braz. Chem. Soc. 23, 702–709 (2012). https://doi.org/10.1590/s0103-50532012000400016

    Article  CAS  Google Scholar 

  69. da Silva, G.T.S.T., Nogueira, A.E., Oliveira, J.A., Torres, J.A., Lopes, O.F., Ribeiro, C.: Acidic surface niobium pentoxide is catalytic active for CO2 photoreduction. Appl. Catal. B Environ. 242, 349–357 (2019). https://doi.org/10.1016/j.apcatb.2018.10.017

    Article  CAS  Google Scholar 

  70. Ribeiro, L.S., Nogueira, A.E., Aquino, J.M., Camargo, E.R.: A new strategy to obtain nano-scale particles of lithium titanate (Li4Ti5O12) by the oxidant peroxo method (OPM). Ceram. Int. 45, 23917–23923 (2019). https://doi.org/10.1016/j.ceramint.2019.07.274

    Article  CAS  Google Scholar 

  71. Balaya, P., Ahrens, M., Kienle, L., Maier, J., Rahmati, B., Lee, S.B., Sigle, W., Pashkin, A., Kuntscher, C., Dressel, M.: Synthesis and characterization of nanocrystalline SrTiO3. J. Am. Ceram. Soc. 89, 2804–2811 (2006). https://doi.org/10.1111/j.1551-2916.2006.01133.x

    Article  CAS  Google Scholar 

  72. Wang, T.X., Chen, W.W.: Solid phase preparation of submicron-sized SrTiO3 crystallites from SrO2 nanoparticles and TiO2 powders. Mater. Lett. 62, 2865–2867 (2008). https://doi.org/10.1016/j.matlet.2008.01.062

    Article  CAS  Google Scholar 

  73. Buscaglia, M.T., Buscaglia, V., Alessio, R.: Coating of BaCO3 crystals with TiO2: Versatile approach to the synthesis of BaTiO3 tetragonal nanoparticles. Chem. Mater. 19, 711–718 (2007). https://doi.org/10.1021/cm061823b

    Article  CAS  Google Scholar 

  74. Nikolenko, N.V., Kalashnykova, A.N., Solovov, V.A., Kostyniuk, A.O., Bayahia, H., Goutenoire, F.: Peroxide-based route for the synthesis of zinc titanate powder. Arab. J. Chem. 11, 1044–1052 (2018). https://doi.org/10.1016/j.arabjc.2016.06.018

    Article  CAS  Google Scholar 

  75. Wanjun, T., Donghua, C.: Photoluminescent properties of (Ca, Zn)TiO3:Pr, B particles synthesized by the peroxide-based route method. J. Am. Ceram. Soc. 90, 3156–3159 (2007). https://doi.org/10.1111/j.1551-2916.2007.01929.x

    Article  CAS  Google Scholar 

  76. Robert, R., Logvinovich, D., Aguirre, M.H., Ebbinghaus, S.G., Bocher, L., Tomeš, P., Weidenkaff, A.: Crystal structure, morphology and physical properties of LaCo1-xTixO3±δ perovskites prepared by a citric acid assisted soft chemistry synthesis. Acta Mater. 58, 680–691 (2010). https://doi.org/10.1016/j.actamat.2009.09.046

    Article  CAS  Google Scholar 

  77. Wang, C., Wang, S., Tang, L., He, Y.B., Gan, L., Li, J., Du, H., Li, B., Lin, Z., Kang, F.: A robust strategy for crafting monodisperse Li4Ti5O12 nanospheres as superior rate anode for lithium ion batteries. Nano Energy. 21, 133–144 (2016). https://doi.org/10.1016/j.nanoen.2016.01.005

    Article  CAS  Google Scholar 

  78. Yamazaki, Y., Hernandez-Sanchez, R., Haile, S.M.: High total proton conductivity in large-grained yttrium-doped barium zirconate. Chem. Mater. 21, 2755–2762 (2009). https://doi.org/10.1021/cm900208w

    Article  CAS  Google Scholar 

  79. Guo, Y., Ran, R., Shao, Z.: A novel way to improve performance of proton-conducting solid-oxide fuel cells through enhanced chemical interaction of anode components. Int. J. Hydrogen Energy. 36, 1683–1691 (2011). https://doi.org/10.1016/j.ijhydene.2010.10.081

    Article  CAS  Google Scholar 

  80. Haile, S.M.: Fuel cell materials and components. Acta Mater. 51, 5981–6000 (2003). https://doi.org/10.1016/j.actamat.2003.08.004

    Article  CAS  Google Scholar 

  81. Orera, A., Slater, P.R.: New chemical systems for solid oxide fuel cells. Chem. Mater. 22, 675–690 (2010). https://doi.org/10.1021/cm902687z

    Article  CAS  Google Scholar 

  82. Ding, H., Ge, J., Xue, X.: A ceramic-anode supported low temperature solid oxide fuel cell. Electrochem. Solid-State Lett. 15, 15–19 (2012). https://doi.org/10.1149/2.019206esl

    Article  CAS  Google Scholar 

  83. Steele, B.C.H., Heinzel, A.: Materials for fuel-cell technologies. Mater. Sustain. Energy. 414, 224–231 (2010). https://doi.org/10.1142/9789814317665_0031

    Article  Google Scholar 

  84. Iwahara, H., Asakura, Y., Katahira, K., Tanaka, M.: Prospect of hydrogen technology using proton-conducting ceramics. Solid State Ionics 168, 299–310 (2004). https://doi.org/10.1016/j.ssi.2003.03.001

    Article  CAS  Google Scholar 

  85. Xie, K., Yan, R., Xu, X., Liu, X., Meng, G.: The chemical stability and conductivity of BaCe0.9-xYxNb0.1O3-σ proton-conductive electrolyte for SOFC, Mater. Res. Bull. 44, 1474–1480 (2009). https://doi.org/10.1016/j.materresbull.2009.02.015

  86. Kreuer, K.D.: Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333–359 (2003). https://doi.org/10.1146/annurev.matsci.33.022802.091825

    Article  CAS  Google Scholar 

  87. Haile, S.M., Pintauro, P.N.: Editorial: Proton transport for fuel cells. J. Mater. Chem. 20, 6211–6213 (2010). https://doi.org/10.1039/c0jm90035d

    Article  CAS  Google Scholar 

  88. Bohn, H.G., Schober, T.: Electrical conductivity of the high-temperature proton conductor BaZr0.9Y0.1O2.95. J. Am. Ceram. Soc. 83, 768–772 (2004). https://doi.org/10.1111/j.1151-2916.2000.tb01272.x

  89. de Souza, E.C.C., Muccillo, R.: Properties and applications of perovskite proton conductors. Mater. Res. 13, 385–394 (2010). https://doi.org/10.1590/S1516-14392010000300018

    Article  Google Scholar 

  90. Babilo, P., Haile, S.M.: Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO. J. Am. Ceram. Soc. 88, 2362–2368 (2005). https://doi.org/10.1111/j.1551-2916.2005.00449.x

    Article  CAS  Google Scholar 

  91. Kreuer, K.D., Adams, S., Münch, W., Fuchs, A., Klock, U., Maier, J.: Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ionics 145, 295–306 (2001). https://doi.org/10.1016/S0167-2738(01)00953-5

    Article  CAS  Google Scholar 

  92. Yamazaki, Y., Hernandez-Sanchez, R., Haile, S.M.: Cation non-stoichiometry in yttrium-doped barium zirconate: phase behavior, microstructure, and proton conductivity. J. Mater. Chem. 20, 8158–8166 (2010). https://doi.org/10.1039/c0jm02013c

    Article  CAS  Google Scholar 

  93. Gonçalves, M.D., Muccillo, R.: Properties of yttrium-doped barium zirconate ceramics synthesized by the oxidant-peroxo method. Ceram. Int. 40, 911–917 (2014). https://doi.org/10.1016/j.ceramint.2013.06.086

    Article  CAS  Google Scholar 

  94. Gonçalves, M.D., Maram, P.S., Muccillo, R., Navrotsky, A.: Enthalpy of formation and thermodynamic insights into yttrium doped BaZrO3. J. Mater. Chem. A. 2, 17840–17847 (2014). https://doi.org/10.1039/c4ta03487b

    Article  Google Scholar 

  95. Gonçalves, M.D., Maram, P.S., Navrotsky, A., Muccillo, R.: Effect of synthesis atmosphere on the proton conductivity of Y-doped barium zirconate solid electrolytes. Ceram. Int. 42, 13689–13696 (2016). https://doi.org/10.1016/j.ceramint.2016.05.167

    Article  CAS  Google Scholar 

  96. Sahraoui, D.Z., Mineva, T.: Structural properties of Y-doped BaZrO3 as a function of dopant concentration and position: a density functional study. Solid State Ionics 232, 1–12 (2013). https://doi.org/10.1016/j.ssi.2012.11.011

    Article  CAS  Google Scholar 

  97. Ishihara, T.: Development of new fast oxide ion conductor and application for intermediate temperature solid oxide fuel cells. Bull. Chem. Soc. Jpn. 79, 1155–1166 (2006). https://doi.org/10.1246/bcsj.79.1155

    Article  CAS  Google Scholar 

  98. Magrez, A., Schober, T.: Preparation, sintering, and water incorporation of proton conducting Ba0.99Zr0.8Y0.2O3-δ: comparison between three different synthesis techniques. Solid State Ionics 175, 585–588 (2004). https://doi.org/10.1016/j.ssi.2004.03.045

  99. Navrotsky, A.: Progress and new directions in high temperature calorimetry. Phys. Chem. Miner. 2, 89–104 (1977). https://doi.org/10.1007/BF00307526

    Article  CAS  Google Scholar 

  100. Navrotsky, A., Simoncic, P., Yokokawa, H., Chen, W., Lee, T.: Calorimetric measurements of energetics of defect interactions in fluorite oxides. Faraday Discuss. 134, 171–180 (2007). https://doi.org/10.1039/b604014b

    Article  CAS  Google Scholar 

  101. Navrotsky, A.: Thermodynamics of solid electrolytes and related oxide ceramics based on the fluorite structure. J. Mater. Chem. 20, 10577–10587 (2010). https://doi.org/10.1039/c0jm01521k

    Article  CAS  Google Scholar 

  102. Cheng, J., Navrotsky, A.: Energetics of magnesium, strontium, and barium doped lanthanum gallate perovskites. J. Solid State Chem. 177, 126–133 (2004). https://doi.org/10.1016/S0022-4596(03)00337-2

    Article  CAS  Google Scholar 

  103. Buyukkilic, S., Shvareva, T., Navrotsky, A.: Enthalpies of formation and insights into defect association in ceria singly and doubly doped with neodymia and samaria. Solid State Ionics 227, 17–22 (2012). https://doi.org/10.1016/j.ssi.2012.08.017

    Article  CAS  Google Scholar 

  104. Aizenshtein, M., Shvareva, T.Y., Navrotsky, A.: Thermochemistry of lanthana- and yttria-doped thoria. J. Am. Ceram. Soc. 93, 4142–4147 (2010). https://doi.org/10.1111/j.1551-2916.2010.04001.x

    Article  CAS  Google Scholar 

  105. Avila-Paredes, H.J., Shvareva, T., Chen, W., Navrotsky, A., Kim, S.: A correlation between the ionic conductivities and the formation enthalpies of trivalent-doped ceria at relatively low temperatures. Phys. Chem. Chem. Phys. 11, 8580–8585 (2009). https://doi.org/10.1039/b821982f

    Article  CAS  Google Scholar 

  106. Ushakov, S.V., Navrotsky, A.: Direct measurements of water adsorption enthalpy on hafnia and zirconia. Appl. Phys. Lett. 87, 1–3 (2005). https://doi.org/10.1063/1.2108113

    Article  CAS  Google Scholar 

  107. Radha, A.V., Bomati-Miguel, O., Ushakov, S.V., Navrotsky, A., Tartaj, P.: Surface enthalpy, enthalpy of water adsorption, and phase stability in nanocrystalline monoclinic zirconia. J. Am. Ceram. Soc. 92, 133–140 (2009). https://doi.org/10.1111/j.1551-2916.2008.02796.x

    Article  CAS  Google Scholar 

  108. Gonçalves, M.D., Mielewczyk-Gryń, A., Maram, P.S., Kryścio, Ł, Gazda, M., Navrotsky, A.: Systematic water uptake energetics of yttrium-doped barium zirconate—a high resolution thermochemical study. J. Phys. Chem. C. (2020). https://doi.org/10.1021/acs.jpcc.0c01049

    Article  Google Scholar 

  109. Conte, V., Bortolini, O., Carraro, M., Moro, S.: Models for the active site of vanadium-dependent haloperoxidases: insight into the solution structure of peroxo vanadium compounds. J. Inorg. Biochem. 80, 41–49 (2000). https://doi.org/10.1016/S0162-0134(00)00038-6

    Article  CAS  Google Scholar 

  110. Tan, H.L., Amal, R., Ng, Y.H.: Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: a review. J. Mater. Chem. A. 5, 16498–16521 (2017). https://doi.org/10.1039/c7ta04441k

    Article  CAS  Google Scholar 

  111. Lopes, O.F., Carvalho, K.T.G., Macedo, G.K., De Mendonça, V.R., Avansi, W., Ribeiro, C.: Synthesis of BiVO4 via oxidant peroxo-method: insights into the photocatalytic performance and degradation mechanism of pollutants. New J. Chem. 39, 6231–6237 (2015). https://doi.org/10.1039/c5nj00984g

    Article  CAS  Google Scholar 

  112. Lopes, O.F., Carvalho, K.T.G., Nogueira, A.E., Avansi, W., Ribeiro, C.: Controlled synthesis of BiVO4 photocatalysts: evidence of the role of heterojunctions in their catalytic performance driven by visible-light. Appl. Catal. B Environ. 188, 87–97 (2016). https://doi.org/10.1016/j.apcatb.2016.01.065

    Article  CAS  Google Scholar 

  113. Lopes, O.F., Carvalho, K.T.G., Avansi, W., Ribeiro, C.: Growth of BiVO4 Nanoparticles on a Bi2O3 surface: effect of heterojunction formation on visible irradiation-driven catalytic performance. J. Phys. Chem. C. 121, 13747–13756 (2017). https://doi.org/10.1021/acs.jpcc.7b03340

    Article  CAS  Google Scholar 

  114. Nico, C., Monteiro, T., Graça, M.P.F.: Niobium oxides and niobates physical properties: review and prospects. Prog. Mater. Sci. 80, 1–37 (2016). https://doi.org/10.1016/j.pmatsci.2016.02.001

    Article  CAS  Google Scholar 

  115. Katsumata, K.I., Cordonier, C.E.J., Shichi, T., Fujishima, A.: Photocatalytic activity of naNbO3 thin films. J. Am. Chem. Soc. 131, 3856–3857 (2009). https://doi.org/10.1021/ja900394x

    Article  CAS  Google Scholar 

  116. Li, P., Ouyang, S., Xi, G., Kako, T., Ye, J.: The effects of crystal structure and electronic structure on photocatalytic H2 evolution and CO2 reduction over two phases of perovskite-structured NaNbO3. J. Phys. Chem. C. 116, 7621–7628 (2012). https://doi.org/10.1021/jp210106b

    Article  CAS  Google Scholar 

  117. Ge, H., Hou, Y., Xia, C., Zhu, M., Wang, H., Yan, H.: Preparation and piezoelectricity of NaNbO3 high-density ceramics by molten salt synthesis. J. Am. Ceram. Soc. 94, 4329–4334 (2011). https://doi.org/10.1111/j.1551-2916.2011.04685.x

    Article  CAS  Google Scholar 

  118. Dey, D., Petrykin, V., Sasaki, S., Kakihana, M.: Water soluble Na[Nb(O2)3] 2H2O as a new molecular precursor for synthesis of sodium niobate. J. Ceram. Soc. Japan 115, 808–812 (2007). https://doi.org/10.2109/jcersj2.115.808

    Article  CAS  Google Scholar 

  119. Benítez, E., Castañeda-Guzmán, R., López-Juárez, R., Depablos-Rivera, O., Gervacio-Arciniega, J.J.: Ferroelectric properties and phase transitions of high performance vertically aligned KNN nanowire-arrays grown by pulsed laser deposition. Phys. E Low-Dimensional Syst. Nanostructures 123 (2020). https://doi.org/10.1016/j.physe.2020.114143

  120. Oh, Y., Noh, J., Yoo, J., Kang, J., Hwang, L., Hong, J.: Dielectric and piezoelectric properties device applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 58, 1860–1866 (2011)

    Article  Google Scholar 

  121. G. Stavber, B. Malič, M. Kosec, A road to environmentally friendly materials chemistry: Low-temperature synthesis of nanosized K0.5Na0.5NbO3 powders through peroxide intermediates in water. Green Chem. 13, 1303–1310 (2011). https://doi.org/10.1039/c0gc00750a

  122. Kato, H., Shimizu, K., Nakajima, K., Kobayashi, M., Kakihana, M.: Synthesis of rare earth niobate and tantalate powders via a peroxo complex route. Chem. Lett. 46, 1515–1517 (2017). https://doi.org/10.1246/cl.170652

    Article  CAS  Google Scholar 

  123. Sergienko, V.S.: Structural characteristics of peroxo complexes of group IV and V transition metals. Rev. Crystallogr. Rep. 49, 907–929 (2004). https://doi.org/10.1134/1.1828134

  124. Sergienko, V.S.: Structural chemistry of peroxo compounds of group VI transition metals: II. Peroxo complexes of molybdenum and tungsten: a review. Crystallogr. Reports. 53, 18–46 (2008). https://doi.org/10.1134/S1063774508010045

  125. Ding, Y., Wan, Y., Min, Y.L., Zhang, W., Yu, S.H.: General synthesis and phase control of metal molybdate hydrates MMoO4·nH2O (M = Co, Ni, Mn, n = 0, 3/4, 1) nano/microcrystals by a hydrothermal approach: magnetic, photocatalytic, and electrochemical properties. Inorg. Chem. 47, 7813–7823 (2008). https://doi.org/10.1021/ic8007975

    Article  CAS  Google Scholar 

  126. Cavalcante, L.S., Longo, V.M., Sczancoski, J.C., Almeida, M.A.P., Batista, A.A., Varela, J.A., Orlandi, M.O., Longo, E., Li, M.S.: Electronic structure, growth mechanism and photoluminescence of CaWO4 crystals. CrystEngComm 14, 853–868 (2012). https://doi.org/10.1039/c1ce05977g

    Article  CAS  Google Scholar 

  127. Errandonea, D., Ruiz-Fuertes, J.: A brief review of the effects of pressure on wolframite-type oxides. Crystals 8, 1–19 (2018). https://doi.org/10.3390/cryst8020071

    Article  CAS  Google Scholar 

  128. Tablero, C.: Optical absorption and applications of the ABO4 (A = Ca, Pb and B = Mo, W) semiconductors. Chem. Phys. Lett. 635, 190–195 (2015). https://doi.org/10.1016/j.cplett.2015.06.074

    Article  CAS  Google Scholar 

  129. Dey, S., Ricciardo, R.A., Cuthbert, H.L., Woodward, P.M.: Metal-to-metal charge transfer in AWO4 (A = Mg, Mn Co, Ni, Cu, or Zn) compounds with the wolframite structure. Inorg. Chem. 53, 4394–4399 (2014). https://doi.org/10.1021/ic4031798

    Article  CAS  Google Scholar 

  130. Ryu, J.H., Yoon, J.W., Shim, K.B.: Blue-luminescence of nanocrystalline MWO4 (M = Ca, Sr, Ba, Pb) phosphors synthesized via a citrate complex route assisted by microwave irradiation, Electrochem. Solid-State Lett. 8 (2005). https://doi.org/10.1149/1.1891626

  131. Kaczmarek, A.M., Van Deun, R.: Rare earth tungstate and molybdate compounds-from 0D to 3D architectures. Chem. Soc. Rev. 42, 8835–8848 (2013). https://doi.org/10.1039/c3cs60166h

    Article  CAS  Google Scholar 

  132. Leyzerovich, N.N., Bramnik, K.G., Buhrmester, T., Ehrenberg, H., Fuess, H.: Electrochemical intercalation of lithium in ternary metal molybdates MMoO4 (M: Cu, Zn, Ni and Fe). J. Power Sources. 127, 76–84 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.010

    Article  CAS  Google Scholar 

  133. Rideal VI., S.: The action of ammonia on some tungsten compounds, J. Chem. Soc. Trans. 55, 41–45(1889). https://doi.org/10.1039/CT8895500041

  134. Shariat, M.H., Setoodeh, N., Dehghan, R.A.: Optimizing conditions for hydrometallurgical production of purified molybdenum trioxide from roasted molybdenite of sarcheshmeh. Miner. Eng. 14, 815–820 (2001). https://doi.org/10.1016/S0892-6875(99)00000-X

    Article  CAS  Google Scholar 

  135. Camargo, E.R., Leite, E.R., Longo, E.: Synthesis and characterization of lead zirconate titanate powders obtained by the oxidant peroxo method. J. Alloys Compd. 469, 523–528 (2009). https://doi.org/10.1016/j.jallcom.2008.02.008

    Article  CAS  Google Scholar 

  136. Gonçalves, M.D., Camargo, E.R.: Lanthanum-doped PZT synthesized by the oxidant peroxide method and sintered by conventional and microwave routes. Ceram. Int. 43, 3004–3009 (2017). https://doi.org/10.1016/j.ceramint.2016.11.088

    Article  CAS  Google Scholar 

  137. Xie, Y., Kocaefe, D., Chen, C., Kocaefe, Y.: Review of research on template methods in preparation of nanomaterials. J. Nanomater. 2016(2016). https://doi.org/10.1155/2016/2302595

Download references

Acknowledgements

The authors would like to thank Manhattan College for support through startup funds and Faculty Summer Grant, the Functional Materials Development Center from Federal University of Sao Carlos (UFSCar), and the Department of Chemistry from Federal Universiy of Ouro Preto (UFOP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emerson R. Camargo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pinto, A.H., Nogueira, A.E., Gonçalves, M.D., Camargo, E.R. (2021). Fundamentals and Advances of the Oxidant Peroxo Method (OPM) for the Synthesis of Transition Metal Oxides. In: La Porta, F.A., Taft, C.A. (eds) Functional Properties of Advanced Engineering Materials and Biomolecules. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-62226-8_4

Download citation

Publish with us

Policies and ethics