Skip to main content

In Silico Methods to Predict Relevant Toxicological Endpoints of Bioactive Substances

  • Chapter
  • First Online:
Functional Properties of Advanced Engineering Materials and Biomolecules

Abstract

Toxicity assessment is an essential step in the development of drugs, agrochemicals and other bioactive substances. In silico toxicity prediction, or computational toxicology, has been growing fast during the last years mainly due to advantageous cost and labor reduction, and avoidance of experiments using animals. Considering the vast number of software available for toxicity prediction, one should be aware to pick up the right software for the right task. Herein, we aim to describe the main software as well as corresponding methodologies behind them, that are able to provide reliable and accurate results for diverse toxicological endpoints. We give special emphasis to software based on quantitative structure–activity relationships, expert systems and machine learning methodologies. With this in mind, we hope that this chapter content may serve as a valuable guide to select toxicity prediction software, and also to reinforce their usefulness towards researches concerning the development of bioactive substances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reisfeld, B., Mayeno, A.N.: What is computational toxicology? in 3–7 (2012). https://doi.org/10.1007/978-1-62703-050-2_1

  2. Helma, C., King, R.D., Kramer, S., Srinivasan, A.: The predictive toxicology challenge 2000–2001. Bioinformatics 17, 107–108 (2001)

    Article  Google Scholar 

  3. Alberga, D., Trisciuzzi, D., Mansouri, K., Mangiatordi, G.F., Nicolotti, O.: Prediction of acute oral systemic toxicity using a multifingerprint similarity approach. Toxicol. Sci. 167, 484–495 (2019)

    Article  CAS  Google Scholar 

  4. Gombar, V.K., Mattioni, B.E., Zwickl, C., Deahl, J.T.: Computational approaches for assessment of toxicity: a historical perspective and current status. In: Computational Toxicology, pp. 183–215. Wiley (2006). https://doi.org/10.1002/9780470145890.ch7

  5. Steger-Hartmann, T., Pognan, F.: Improving the safety assessment of chemicals and drug candidates by the integration of bioinformatics and chemoinformatics data. Basic Clin. Pharmacol. Toxicol. 123, 29–36 (2018)

    Article  CAS  Google Scholar 

  6. Combs, A. B., Acosta, D. An Introduction to Toxicology and Its Methodologies. In: Computational Toxicology, pp. 1–20. Wiley (2006). https://doi.org/10.1002/9780470145890.ch1

  7. Greene, N., Pennie, W.: Computational toxicology, friend or foe? Toxicol. Res. (2015). https://doi.org/10.1039/c5tx00055f

    Article  Google Scholar 

  8. Goldsmith, M.R. et al.: Informing mechanistic toxicology with computational molecular models. in 139–165 (2012). https://doi.org/10.1007/978-1-62703-050-2_7

  9. Schuster, D., Laggner, C., Langer, T.: Why drugs fail—a study on side effects in new chemical entities. Curr. Pharm. Des. 11, 3545–3559 (2005)

    Article  CAS  Google Scholar 

  10. Pollard, C.E., et al.: An introduction to QT interval prolongation and non-clinical approaches to assessing and reducing risk. Br. J. Pharmacol. (2010). https://doi.org/10.1111/j.1476-5381.2009.00207.x

    Article  Google Scholar 

  11. Kar, S., Sanderson, H., Roy, K., Benfenati, E., Leszczynski, J.: Ecotoxicological assessment of pharmaceuticals and personal care products using predictive toxicology approaches. Green Chem. (2020). https://doi.org/10.1039/c9gc03265g

    Article  Google Scholar 

  12. Sánchez-Bayo, F., Tennekes, H.A.: Environmental risk assessment of agrochemicals—a critical appraisal of current approaches. In: Toxicity and Hazard of Agrochemicals (InTech, 2015). https://doi.org/10.5772/60739

  13. Insel, P.A., Amara, S.G., Blaschke, T.F., Meyer, U.A.: Introduction to the theme new methods and novel therapeutic approaches in pharmacology and toxicology. Annu. Rev. Pharmacol. Toxicol. 57, 13–17 (2017)

    Article  CAS  Google Scholar 

  14. Balls, M. et al.: Development and validation of non-animal tests and testing strategies: The identification of a coordinated response to the challenge and the opportunity presented by the sixth amendment to the cosmetics directive (76/768/EEC). The Report and Recommendatio. In: ATLA Alternatives to Laboratory Animals (1995)

    Google Scholar 

  15. Mangiatordi, G.F., et al.: Mind the gap! a journey towards computational toxicology. Mol. Inf. (2016). https://doi.org/10.1002/minf.201501017

    Article  Google Scholar 

  16. Manibusan, M., Paterson, J., Kent, R., Chen, J.: (Quantitative) structure activity relationship [(Q)SAR] guidance document. US EPA Archive Document—NAFTA—TWG 186 (2012). Available at: https://www.epa.gov/sites/production/files/2016-01/documents/qsar-guidance.pdf. (Accessed: 30th May 2020)

  17. US EPA.: Computational Toxicology Communities of Practice. US EPA (2020). Available at: https://www.epa.gov/chemical-research/computational-toxicology-communities-practice. Accessed 30 May 2020

  18. Vian, M., Raitano, G., Roncaglioni, A., Benfenati, E.: In silico model for mutagenicity (Ames test), taking into account metabolism. Mutagenesis 34, 41–48 (2019)

    Article  CAS  Google Scholar 

  19. Kovacic, P., Somanathan, R.: Nitroaromatic compounds: Environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism. J. Appl. Toxicol. (2014). https://doi.org/10.1002/jat.2980

    Article  Google Scholar 

  20. Kazius, J., McGuire, R., Bursi, R.: Derivation and validation of toxicophores for mutagenicity prediction. J. Med. Chem. 48, 312–320 (2005)

    Article  CAS  Google Scholar 

  21. Debnath, A.: The importance of the hydrophobic interaction in the mutagenicity of organic compounds. Mutat. Res. Mol. Mech. Mutagen. 305, 63–72 (1994)

    Article  CAS  Google Scholar 

  22. Valencia, A., Prous, J., Mora, O., Sadrieh, N., Valerio, L.G.: A novel QSAR model of Salmonella mutagenicity and its application in the safety assessment of drug impurities. Toxicol. Appl. Pharmacol. (2013). https://doi.org/10.1016/j.taap.2013.09.015

    Article  Google Scholar 

  23. Villemin, D., Cherqaoui, D., Cense, J.: Neural networks studies: quantitative structure-activity relationship of mutagenic aromatic nitro compounds. J. Chim. Phys. 90, 1505–1519 (1993)

    Article  CAS  Google Scholar 

  24. do Amaral, A. et al.: Physicochemical parameters involved in the lethal toxicity of N, N--4-substituted benzoate hydrochlorides: a QSAR study. Eur. J. 32, 433–443 (1997)

    Google Scholar 

  25. Fan, T., Sun, G., Zhao, L., Cui, X., Zhong, R.: QSAR and Classification study on prediction of acute oral toxicity of N-nitroso compounds. Int. J. Mol. Sci. 19, 3015 (2018)

    Article  CAS  Google Scholar 

  26. Gissi, A.: Alternative acute oral toxicity assessment under REACH based on sub-acute toxicity values. ALTEX 353–361 (2017). https://doi.org/10.14573/altex.1609121

  27. Russo, D.P., et al.: Nonanimal models for acute toxicity evaluations: Applying data-driven profiling and read-across. Environ. Health Perspect. (2019). https://doi.org/10.1289/EHP3614

    Article  Google Scholar 

  28. Ballabio, D., Grisoni, F., Consonni, V., Todeschini, R.: Integrated QSAR models to predict acute oral systemic toxicity. Mol. Inform. 38, 1800124 (2019)

    Article  CAS  Google Scholar 

  29. Roy, P.P., Banjare, P., Verma, S., Singh, J.: Acute rat and mouse oral toxicity determination of anticholinesterase inhibitor carbamate pesticides: a QSTR approach. Mol. Inform. 38, 1800151 (2019)

    Article  CAS  Google Scholar 

  30. Hoffmann, S., et al.: Acute oral toxicity: Variability, reliability, relevance and interspecies comparison of rodent LD50 data from literature surveyed for the ACuteTox project. Regul. Toxicol. Pharmacol. 58, 395–407 (2010)

    Article  CAS  Google Scholar 

  31. Strigari, L., et al.: A new model for predicting acute mucosal toxicity in head-and-neck cancer patients undergoing radiotherapy with altered schedules. Int. J. Radiat. Oncol. Biol. Phys. (2012). https://doi.org/10.1016/j.ijrobp.2012.02.004

    Article  Google Scholar 

  32. Vainio, H., Coleman, M., Wilbourn, J.: Carcinogenicity evaluations and ongoing studies: the IARC databases. Environ. Health Perspect. 96, 5–9 (1991)

    Article  CAS  Google Scholar 

  33. Petrescu, A.-M., Ilia, G.: Potential carcinogenicity predicted by computational toxicity evaluation of thiophosphate pesticides using QSTR/QSCarciAR model. Drug Chem. Toxicol. 40, 263–272 (2017)

    Article  CAS  Google Scholar 

  34. Zhang, L., et al.: CarcinoPred-EL: novel models for predicting the carcinogenicity of chemicals using molecular fingerprints and ensemble learning methods. Sci. Rep. 7, 2118 (2017)

    Article  CAS  Google Scholar 

  35. Niculescu-duvâz, I., Craescu, T., Tugulea, M., Croisy, A., Jacquignon, P.C.: A quantitative structure-activity analysis of the mutagenic and carcinogenic action of 43 structurally related heterocyclic compounds. Carcinogenesis (1981). https://doi.org/10.1093/carcin/2.4.269

    Article  Google Scholar 

  36. Richard, A.M., Benigni, R.: AI and SAR approaches for predicting chemical carcinogenicity: survey and status report. SAR QSAR Environ. Res. 13, 1–19 (2002)

    Article  CAS  Google Scholar 

  37. Kar, S., Roy, K.: Development and validation of a robust QSAR model for prediction of carcinogenicity of drugs. Indian J. Biochem, Biophys (2011)

    Google Scholar 

  38. Li, Z.: Risk-based principles and incompleteness theorems for linear dose-response extrapolation for carcinogenic chemicals. Chemosphere 247, 125934 (2020)

    Article  CAS  Google Scholar 

  39. Braga, R.C., et al.: Pred-hERG: a novel web-accessible computational tool for predicting cardiac toxicity. Mol. Inform. 34, 698–701 (2015)

    Article  CAS  Google Scholar 

  40. Magdy, T., Burmeister, B.T., Burridge, P.W.: Validating the pharmacogenomics of chemotherapy-induced cardiotoxicity: what is missing? Pharmacol. Ther. (2016). https://doi.org/10.1016/j.pharmthera.2016.09.009

    Article  Google Scholar 

  41. Cavalli, A., Poluzzi, E., De Ponti, F., Recanatini, M.: Toward a pharmacophore for drugs inducing the long QT syndrome: insights from a CoMFA study of HERG K+ channel blockers. J. Med. Chem. (2002). https://doi.org/10.1021/jm0208875

    Article  Google Scholar 

  42. Keserü, G.M.: Prediction of hERG potassium channel affinity by traditional and hologram qSAR methods. Bioorg. Med. Chem. Lett. 13, 2773–2775 (2003)

    Article  CAS  Google Scholar 

  43. Ekins, S., Balakin, K.V., Savchuk, N., Ivanenkov, Y.: Insights for human ether-a-Go-Go-related gene potassium channel inhibition using recursive partitioning and kohonen and sammon mapping techniques. J. Med. Chem. 49, 5059–5071 (2006)

    Article  CAS  Google Scholar 

  44. Xu, J.J.: In vitro Toxicology: bringing the In silico and in vivo worlds closer. In: Computational Toxicology, pp. 21–32. Wiley (2006). https://doi.org/10.1002/9780470145890.ch2

  45. Mortelmans, K., & Zeiger, E. The Ames Salmonella/microsome mutagenicity assay. Mutat. Res. Fundam. Mol. Mech. Mutagen. (2000). https://doi.org/10.1016/S0027-5107(00)00064-6

  46. Gadaleta, D., Manganelli, S., Manganaro, A., Porta, N., Benfenati, E.: A knowledge-based expert rule system for predicting mutagenicity (Ames test) of aromatic amines and azo compounds. Toxicology (2016). https://doi.org/10.1016/j.tox.2016.09.008

    Article  Google Scholar 

  47. Ames, B.N., McCann, J., Yamasaki, E.: Methods for detecting carcinogens and mutagens with the salmonella/mammalian-microsome mutagenicity test. Mutat. Res. Mutagen. Relat. Subj. 31, 347–363 (1975)

    CAS  Google Scholar 

  48. Fourches, D., Muratov, E., Tropsha, A.: Curation of chemogenomics data. Nat. Chem. Biol. 11, 535–535 (2015)

    Article  CAS  Google Scholar 

  49. Fourches, D., Muratov, E., Tropsha, A.: Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J. Chem. Inf. Model. 50, 1189–1204 (2010)

    Article  CAS  Google Scholar 

  50. Worth, A., Fuart‐Gatnik, M., Lapenna, S., Serafimova, R.: SCIENTIFIC REPORT submitted to EFSA applicability of QSAR analysis in the evaluation of developmental and neurotoxicity effects for the assessment of the toxicological relevance of metabolites and degradates of pesticide active substances for dietary risk 174 (2011)

    Google Scholar 

  51. Andrews, P.R., Craik, D.J., Martin, J.L.: Functional group contributions to drug-receptor interactions. J. Med. Chem. 27, 1648–1657 (1984)

    Article  CAS  Google Scholar 

  52. Vukovic, K., Gadaleta, D., Benfenati, E.: Methodology of AiQSAr: a group-specific approach to QSAR modelling. J. Cheminform. (2019). https://doi.org/10.1186/s13321-019-0350-y

    Article  Google Scholar 

  53. Kubinyi, H. QSAR: Hansch Analysis and Related Approaches. Wiley (1993)

    Google Scholar 

  54. Rusyn, I., Sedykh, A., Low, Y., Guyton, K.Z., Tropsha, A.: Predictive modeling of chemical hazard by integrating numerical descriptors of chemical structures and short-term toxicity assay data. Toxicol. Sci. 127, 1–9 (2012)

    Article  CAS  Google Scholar 

  55. Baumann, D., Baumann, K.: Reliable estimation of prediction errors for QSAR models under model uncertainty using double cross-validation. J. Cheminform. 6, 1–19 (2014)

    Article  CAS  Google Scholar 

  56. Hansch, C., Leo, A.: Exploring QSAR: Fundamentals and Applications in Chemistry and Biology. American Chemical Society—ACS (1995)

    Google Scholar 

  57. C. Hansch, T.F.: p-sigma-pi analysis. A Method for the Correlation of Biological Activity and Chemical Structure. Correl. Biol. Act. Chem. Struct. 86, 1616–1626 (1964)

    Google Scholar 

  58. Gertzen, C.G.W., Gohlke, H.: From Hansch-Fujita analysis to AFMoC: a road to structure-based QSAR. Mol. Inform. 31, 698–704 (2012)

    Article  CAS  Google Scholar 

  59. Hansch, C., Maloney, P., Fujita, T., Muir, R.: Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 194, 178–180 (1962)

    Article  CAS  Google Scholar 

  60. Alexander, D.L.J., Tropsha, A., Winkler, D.A.: Beware of R2: simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. J. Chem. Inf. Model. 55, 1316–1322 (2015)

    Article  CAS  Google Scholar 

  61. Willett, P.: Chemoinformatics: a history. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1, 46–56 (2011)

    Article  CAS  Google Scholar 

  62. Cherkasov, A., et al.: Perspective QSAR modeling: where have you been ? Where are you going to? QSAR modeling: where have you been? Where are you going to? J. Med. Chem. 57, 4977–5010 (2014)

    Article  CAS  Google Scholar 

  63. Kubinyi, H.: The changing landscape in drug discovery. In: Discovery, pp. 24–46 (2007). https://doi.org/10.1039/9781847557964-00024

  64. Hansch, C.: The advent and evolution of QSAR at Pomona College. J. Comput. Aided. Mol. Des. 25, 495–507 (2011)

    Article  CAS  Google Scholar 

  65. Gramatica, P.: Principles of QSAR modeling. Int. J. Quant. Struct. Relationships 5, 1–37 (2020)

    Google Scholar 

  66. Muratov, E.N., et al.: QSAR without borders. Chem. Soc. Rev. (2020). https://doi.org/10.1039/D0CS00098A

    Article  Google Scholar 

  67. Sliwoski, G., Mendenhall, J., Meiler, J.: Autocorrelation descriptor improvements for QSAR: 2DA-Sign and 3DA-Sign. J. Comput. Aided. Mol. Des. 30, 209–217 (2016)

    Article  CAS  Google Scholar 

  68. Tropsha, A., Golbraikh, A.: Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr. Pharm. Des. 13, 3494–3504 (2007)

    Article  CAS  Google Scholar 

  69. Kausar, S., Falcao, A.O.: An automated framework for QSAR model building. J. Cheminform. 10, 1–23 (2018)

    Article  Google Scholar 

  70. Tetko, I.V., Tanchuk, V.Y.: Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J. Chem. Inf. Comput. Sci. 42, 1136–1145 (2002)

    Google Scholar 

  71. Schwab, C.H.: Conformations and 3D pharmacophore searching. Drug Discov. Today Technol. 7, e245–e253 (2010)

    Article  CAS  Google Scholar 

  72. Yap, C.W.: PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. (2011). https://doi.org/10.1002/jcc.21707

    Article  Google Scholar 

  73. Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors. Wiley (2000). https://doi.org/10.1002/9783527613106

  74. Scotti, M.T., et al.: Variable-selection approaches to generate QSAR models for a set of antichagasic semicarbazones and analogues. Chemom. Intell. Lab. Syst. 154, 137–149 (2016)

    Article  CAS  Google Scholar 

  75. OECD.: Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models. 69, OECD, (2007)

    Google Scholar 

  76. Martin, T.M., Lilavois, C.R., Barron, M.G.: Prediction of pesticide acute toxicity using two-dimensional chemical descriptors and target species classification. SAR QSAR Environ. Res. (2017). https://doi.org/10.1080/1062936X.2017.1343204

    Article  Google Scholar 

  77. Enslein, K., Craig, P.N.: A toxicity estimation model. J. Environ. Pathol. Toxicol. (1978)

    Google Scholar 

  78. Lei, T. et al.: ADMET evaluation in drug discovery: 15. Accurate prediction of rat oral acute toxicity using relevance vector machine and consensus modeling. J. Cheminform. (2016). https://doi.org/10.1186/s13321-016-0117-7

  79. Sazonovas, A., Japertas, P., Didziapetris, R.: Estimation of reliability of predictions and model applicability domain evaluation in the analysis of acute toxicity (LD50). SAR QSAR Environ. Res. (2010). https://doi.org/10.1080/10629360903568671

    Article  Google Scholar 

  80. Hamadache, M., et al.: A quantitative structure activity relationship for acute oral toxicity of pesticides on rats: validation, domain of application and prediction. J. Hazard. Mater. (2016). https://doi.org/10.1016/j.jhazmat.2015.09.021

    Article  Google Scholar 

  81. Roy, K., Kar, S., Das, R.N.: Statistical methods in QSAR/QSPR. In: A Primer on QSAR/QSPR Modeling, pp. 37–59. Springer (2015). https://doi.org/10.1007/978-3-319-17281-1_2

  82. Fujita, T., Winkler, D.A.: Understanding the roles of the ‘two QSARs.’ J. Chem. Inf. Model. (2016). https://doi.org/10.1021/acs.jcim.5b00229

    Article  Google Scholar 

  83. Gramatica, P.: Principles of QSAR models validation: internal and external. QSAR Comb. Sci. 26, 694–701 (2007)

    Article  CAS  Google Scholar 

  84. Tropsha, A.: Best practices for QSAR model development, validation, and exploitation. Mol. Inform. 29, 476–488 (2010)

    Article  CAS  Google Scholar 

  85. Dearden, J.C., Cronin, M.T.D., Kaiser, K.L.E.: How not to develop a quantitative structure–activity or structure–property relationship (QSAR/QSPR). SAR QSAR Environ. Res. 20, 241–266 (2009)

    Article  CAS  Google Scholar 

  86. Young, D., Martin, T., Venkatapathy, R., Harten, P.: Are the chemical structures in your QSAR correct? QSAR Comb. Sci. 27, 1337–1345 (2008)

    Article  CAS  Google Scholar 

  87. Castillo-González, D., et al.: Harmonization of QSAR best practices and molecular docking provides an efficient virtual screening tool for discovering new G-quadruplex ligands. J. Chem. Inf. Model. 55, 2094–2110 (2015)

    Article  CAS  Google Scholar 

  88. Golbraikh, A., Shen, M., Xiao, Z., Xiao, Y., Lee, K.: Rational selection of training and test sets for the development of validated QSAR models. J. Comput. Aided. Mol. Des. 17, 241–253 (2003)

    Article  CAS  Google Scholar 

  89. Tropsha, A., Gramatica, P., Gombar, V.K.: The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb. Sci. 22, 69–77 (2003)

    Article  CAS  Google Scholar 

  90. Kubinyi, H.: From narcosis to hyperspace: the history of QSAR. Quant. Struct. Act. Relat. (2002). https://doi.org/10.1002/1521-3838(200210)21:4%3c348::AID-QSAR348%3e3.0.CO;2-D

    Article  Google Scholar 

  91. Gramatica, P., Sangion, A.: A historical excursus on the statistical validation parameters for QSAR models: a clarification concerning metrics and terminology. J. Chem. Inf. Model. 56, 1127–1131 (2016)

    Article  CAS  Google Scholar 

  92. Cramer, R.D., Patterson, D.E., Bunce, J.D.: Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. (1988). https://doi.org/10.1021/ja00226a005

  93. Doweyko, A.M.: 3D-QSAR illusions. J. Comput. Aided. Mol. Des. 18, 587–596 (2004)

    Article  CAS  Google Scholar 

  94. Klebe, G., Abraham, U., Mietzner, T.: Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem. 37, 4130–4146 (1994)

    Article  CAS  Google Scholar 

  95. Verma, J., Khedkar, V., Coutinho, E.: 3D-QSAR in drug design—a review. Curr. Top. Med. Chem. 10, 95–115 (2010)

    Article  CAS  Google Scholar 

  96. Lowis, D.R.: HQSAR: a new, highly predictive QSAR technique. Tripos Tech. Notes 1, 1–17 (1997)

    Google Scholar 

  97. Vedani, A., Briem, H., Dobler, M., Dollinger, H., McMasters, D.R.: Multiple-conformation and protonation-state representation in 4D-QSAR: the neurokinin-1 receptor system. J. Med. Chem. (2000). https://doi.org/10.1021/jm000986n

    Article  Google Scholar 

  98. Vedani, A., Dobler, M.: Multidimensional QSAR: moving from three- to five-dimensional concepts. Quant. Struct. Relationships 21, 382–390 (2002)

    Article  CAS  Google Scholar 

  99. Prado-Prado, F.J. et al.: Unified QSAR approach to antimicrobials. 4. Multi-target QSAR modeling and comparative multi-distance study of the giant components of antiviral drug–drug complex networks. Bioorg. Med. Chem. 17, 569–575 (2009)

    Google Scholar 

  100. Lambrinidis, G., Tsantili-Kakoulidou, A.: Challenges with multi-objective QSAR in drug discovery. Expert Opin. Drug Discov. 13, 851–859 (2018)

    Article  Google Scholar 

  101. Schultz, T.W., Cronin, M.T.D., Walker, J.D., Aptula, A.O.: Quantitative structure–activity relationships (QSARs) in toxicology: a historical perspective. J. Mol. Struct. THEOCHEM 622, 1–22 (2003)

    Article  CAS  Google Scholar 

  102. Roy, K., Ghosh, G.: QSTR with extended topochemical atom indices. 2. Fish toxicity of substituted benzenes. J. Chem. Inf. Comput. Sci. (2004). https://doi.org/10.1021/ci0342066

  103. He, L., et al.: Insights into pesticide toxicity against aquatic organism: QSTR models on Daphnia Magna. Ecotoxicol. Environ. Saf. (2019). https://doi.org/10.1016/j.ecoenv.2019.02.014

    Article  Google Scholar 

  104. Fuart Gatnik, M., Worth, A.P.: Review of software tools for toxicity prediction. JRC Sci. Tech. Rep. (2010). https://doi.org/10.2788/60101

    Article  Google Scholar 

  105. Sild, S., Piir, G., Neagu, D., Maran, U.: Storing and using qualitative and quantitative structure–activity relationships in the era of toxicological and chemical data expansion. In: Issues in Toxicology, pp. 185–213 (2019). https://doi.org/10.1039/9781782623656-00185

  106. Zhu, H., et al.: Combinatorial QSAR Modeling of chemical toxicants tested against tetrahymena pyriformis. J. Chem. Inf. Model. 48, 766–784 (2008)

    Article  CAS  Google Scholar 

  107. Matthews, E., Kruhlak, N., Benz, R., Contrera, J.: Assessment of the health effects of chemicals in humans: I. QSAR estimation of the maximum recommended therapeutic dose (MRTD) and no effect level (NOEL) of organic chemicals based on clinical trial data1. Curr. Drug Discov. Technol. 1, 61–76 (2004)

    Google Scholar 

  108. Cassani, S., et al.: Daphnia and fish toxicity of (benzo)triazoles: validated QSAR models, and interspecies quantitative activity-activity modelling. J. Hazard. Mater. (2013). https://doi.org/10.1016/j.jhazmat.2013.04.025

    Article  Google Scholar 

  109. Gramatica, P., Cassani, S., Chirico, N.: QSARINS-chem: insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. J. Comput. Chem. (2014). https://doi.org/10.1002/jcc.23576

    Article  Google Scholar 

  110. Li, J., Gramatica, P.: The importance of molecular structures, endpoints’ values, and predictivity parameters in QSAR research: QSAR analysis of a series of estrogen receptor binders. Mol. Divers. (2010). https://doi.org/10.1007/s11030-009-9212-2

    Article  Google Scholar 

  111. Gramatica, P., Papa, E.: Screening and ranking of POPs for global half-life: QSAR approaches for prioritization based on molecular structure. Environ. Sci. Technol. (2007). https://doi.org/10.1021/es061773b

    Article  Google Scholar 

  112. Papa, E., Sangion, A., Arnot, J.A., Gramatica, P.: Development of human biotransformation QSARs and application for PBT assessment refinement. Food Chem. Toxicol. 112, 535–543 (2018)

    Article  CAS  Google Scholar 

  113. Gramatica, P., Cassani, S., Sangion, A.: Aquatic ecotoxicity of personal care products: QSAR models and ranking for prioritization and safer alternatives’ design. Green Chem. (2016). https://doi.org/10.1039/c5gc02818c

    Article  Google Scholar 

  114. Gramatica, P., Giani, E., Papa, E.: Statistical external validation and consensus modeling: a QSPR case study for Koc prediction. J. Mol. Graph. Model. (2007). https://doi.org/10.1016/j.jmgm.2006.06.005

    Article  Google Scholar 

  115. Gramatica, P., Pilutti, P., Papa, E.: Approaches for externally validated QSAR modelling of nitrated polycyclic aromatic hydrocarbon mutagenicity. SAR QSAR Environ. Res. (2007). https://doi.org/10.1080/10629360601054388

    Article  Google Scholar 

  116. Papa, E., Gramatica, P.: QSPR as a support for the EU REACH regulation and rational design of environmentally safer chemicals: PBT identification from molecular structure. Green Chem. (2010). https://doi.org/10.1039/b923843c

    Article  Google Scholar 

  117. Bhhatarai, B., Gramatica, P.: Per-and polyfluoro toxicity (LC50 inhalation) study in rat and mouse using QSAR modeling. Chem. Res. Toxicol. (2010). https://doi.org/10.1021/tx900252h

    Article  Google Scholar 

  118. Sangion, A., Gramatica, P.: Ecotoxicity interspecies QAAR models from Daphnia toxicity of pharmaceuticals and personal care products $. SAR QSAR Environ. Res. 27, 781–798 (2016)

    Article  CAS  Google Scholar 

  119. US EPA.: User’s Guide for T.E.S.T. (version 4.2) (Toxicity Estimation Software Tool): A Program to Estimate Toxicity from Molecular Structure. US EPA (2016). Available at: https://www.epa.gov/chemical-research/users-guide-test-version-42-toxicity-estimation-software-tool-program-estimate. Accessed 30 May 2020

  120. Zhu, H., et al.: Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure. Chem. Res. Toxicol. (2009). https://doi.org/10.1021/tx900189p

    Article  Google Scholar 

  121. Martin, T.M., Harten, P., Venkatapathy, R., Das, S., Young, D.M.: A hierarchical clustering methodology for the estimation of toxicity. Toxicol. Mech. Methods (2008). https://doi.org/10.1080/15376510701857353

    Article  Google Scholar 

  122. US EPA. EPI SuiteTM-Estimation Program Interface. US EPA (2020). Available at: https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface. Accessed 30 May 2020

  123. US EPA.: OPERATION MANUAL for the ECOlogical structure-activity relationship model (ECOSAR) class program. US EPA (2020). Available at: https://www.epa.gov/sites/production/files/2017-11/documents/operationmanual_v2.0.pdf. Accessed 30 May 2020

  124. Helma, C.: Lazy structure-activity relationships (lazar) for the prediction of rodent carcinogenicity and Salmonella mutagenicity. Mol. Divers. (2006). https://doi.org/10.1007/s11030-005-9001-5

    Article  Google Scholar 

  125. Maunz, A., Helma, C.: Prediction of chemical toxicity with local support vector regression and activity-specific kernels. SAR QSAR Environ. Res. 19, 413–431 (2008)

    Article  CAS  Google Scholar 

  126. Maunz, A. et al. lazar: a modular predictive toxicology framework. Front. Pharmacol. 4 (2013)

    Google Scholar 

  127. Chakravarti, S.K., Saiakhov, R.D., Klopman, G.: Optimizing predictive performance of CASE ultra expert system models using the applicability domains of individual toxicity alerts. J. Chem. Inf. Model. 52, 2609–2618 (2012)

    Article  CAS  Google Scholar 

  128. Saiakhov, R., Chakravarti, S., Klopman, G.: Effectiveness of CASE ultra expert system in evaluating adverse effects of drugs. Mol. Inform. (2013). https://doi.org/10.1002/minf.201200081

    Article  Google Scholar 

  129. Chakravarti, S.K., Alla, S.R.M.: Descriptor free QSAR modeling using deep learning with long short-term memory neural networks. Front. Artif. Intell. (2019). https://doi.org/10.3389/frai.2019.00017

    Article  Google Scholar 

  130. Dearden, J.C. et al.: The Development and Validation of Expert Systems for Predicting Toxicity. In: The report and recommendations of an ECVAM/ECB workshop (ECVAM workshop 24). ATLA (1997)

    Google Scholar 

  131. Judson, P.: Knowledge-Based Expert Systems in Chemistry. The Royal Society of Chemistry. Royal Society of Chemistry (2009). https://doi.org/10.1039/9781847559807

  132. Judson, P.N.: Expert systems. In: Computational Toxicology, pp. 521–543. Wiley, (2006). https://doi.org/10.1002/9780470145890.ch18

  133. Van Bossuyt, M., et al.: (Q)SAR tools for priority setting: a case study with printed paper and board food contact material substances. Food Chem. Toxicol. (2017). https://doi.org/10.1016/j.fct.2017.02.002

    Article  Google Scholar 

  134. Cronin, M.T.D.: Evaluation of categories and read-across for toxicity prediction allowing for regulatory acceptance. Issues Toxicol. (2013)

    Google Scholar 

  135. Alves, V.M., et al.: Alarms about structural alerts. Green Chem. 18, 4348–4360 (2016)

    Article  CAS  Google Scholar 

  136. Sanderson, D.M., Earnshaw, C.G.: Computer prediction of possible toxic action from chemical structure; the DEREK system. Hum. Exp. Toxicol. (1991). https://doi.org/10.1177/096032719101000405

    Article  Google Scholar 

  137. Worth, A. et al.: The Use of Computational Methods in the Toxicological Assessment of Chemicals in Food: Current Status and Future Prospects (2011). https://doi.org/10.2788/6234

  138. Barratt, M.D.: Prediction of toxicity from chemical structure. Cell Biol. Toxicol. (2000). https://doi.org/10.1023/A:1007676602908

    Article  Google Scholar 

  139. Smithing, M.P.: Hazard expert: an expert system for predicting chemical toxicity. In: Food Safety Assessment (1992). https://doi.org/10.1021/bk-1992-0484.ch019

  140. Patlewicz, G., Jeliazkova, N., Safford, R.J., Worth, A.P., Aleksiev, B.: An evaluation of the implementation of the Cramer classification scheme in the Toxtree software. SAR QSAR Environ. Res. 19, 495–524 (2008)

    Article  CAS  Google Scholar 

  141. Woo, Y.T., Lai, D.Y.: Oncologic: a mechanism-based expert system for predicting the carcinogenic potential of chemicals. In: Predictive Toxicology (2005)

    Google Scholar 

  142. US EPA. OncoLogicTM—A Computer System to Evaluate the Carcinogenic Potential of Chemicals. US EPA (2005). Available at: https://www.epa.gov/tsca-screening-tools/oncologictm-computer-system-evaluate-carcinogenic-potential-chemicals. Accessed: 30 May 2020

  143. Vienna BioCenter. News—ToxPHACTS.: (2020). Available at: https://www.viennabiocenter.org/about/news/toxphacts-available-for-purchase/. Accessed 30 May 2020

  144. Tetko, I. V, Engkvist, O., Chen, H.: Does ‘Big Data’ exist in medicinal chemistry, and if so, how can it be harnessed? Future Med. Chem. 8, 1801–1806 (2016)

    Google Scholar 

  145. Fourches, D.: Cheminformatics: at the crossroad of eras. In: Gorb, L., Kuz’min, V., Muratov, E. (eds.) Application of Computational Techniques in Pharmacy and Medicine, pp. 539–546. Springer, Netherlands, (2014). doi:https://doi.org/10.1007/978-94-017-9257-8

  146. Downs, G.M., Barnard, J.M.: Clustering methods and their uses in computational chemistry. In: Lipkowitz, K.B., Boyd, D.B. (eds.) Reviews in Computational Chemistry, vol. 18, pp. 1–40. Wiley (2003)

    Google Scholar 

  147. Mercier, D.: Clustering large datasets. Electronic review—Linacre College (2003)

    Google Scholar 

  148. Miller, J.N., Miller, J.C.: Statistics and Chemometrics for Analytical Chemistry. Ashford Colour Press Ltd. (2010)

    Google Scholar 

  149. Welling, M.: A First Encounter with Machine Learning. University of California (2011)

    Google Scholar 

  150. Breiman, L.E.O.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  151. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    Article  Google Scholar 

  152. Dreiseitl, S., Ohno-Machado, L.: Logistic regression and artificial neural network classification models: a methodology review. J. Biomed. Inform. 35, 352–359 (2002)

    Article  Google Scholar 

  153. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  CAS  Google Scholar 

  154. Kuz’min, V.E., Polishchuk, P.G., Artemenko, A.G., Andronati, S.A.: Interpretation of QSAR models based on random forest methods. Mol. Inform. 30, 593–603 (2011)

    Google Scholar 

  155. Smith, J.S., Roitberg, A.E., Isayev, O.: Transforming computational drug discovery with machine learning and AI. ACS Med. Chem. Lett. 9, 1065–1069 (2018)

    Article  CAS  Google Scholar 

  156. Mansouri, K., et al.: CERAPP: collaborative estrogen receptor activity prediction project. Environ. Health Perspect. 124, 1023–1033 (2016)

    Article  CAS  Google Scholar 

  157. Mansouri, K., et al.: CoMPARA: collaborative modeling project for androgen receptor activity. Environ. Health Perspect. 128, 027002 (2020)

    Article  CAS  Google Scholar 

  158. Mansouri, K., Grulke, C.M., Judson, R.S., Williams, A.J.: OPERA models for predicting physicochemical properties and environmental fate endpoints. J. Cheminform. 10, 10 (2018)

    Article  CAS  Google Scholar 

  159. Luechtefeld, T., Marsh, D., Rowlands, C., Hartung, T.: Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility. Toxicol. Sci. 165, 198–212 (2018)

    Article  CAS  Google Scholar 

  160. Alves, V.M., et al.: Oy Vey! a comment on machine learning of toxicological big data enables read-across structure activity relationships outperforming animal test reproducibility. Toxicol. Sci. 167, 3–4 (2019)

    Article  CAS  Google Scholar 

  161. Braga, R.C., et al.: Pred-Skin: a fast and reliable web application to assess skin sensitization effect of chemicals. J. Chem. Inf. Model. 57, 1013–1017 (2017)

    Article  CAS  Google Scholar 

  162. Gaulton, A., et al.: The ChEMBL database in 2017. Nucleic Acids Res. 45, D945–D954 (2017)

    Article  CAS  Google Scholar 

  163. Cheng, F., et al.: admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model. 52, 3099–3105 (2012)

    Article  CAS  Google Scholar 

  164. Banerjee, P., Eckert, A.O., Schrey, A.K., Preissner, R.: ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 46, W257–W263 (2018)

    Article  CAS  Google Scholar 

  165. Montanari, F., et al.: Vienna livertox workspace—a set of machine learning models for prediction of interactions profiles of small molecules with transporters relevant for regulatory agencies. Front. Chem. 7, 899 (2020)

    Article  CAS  Google Scholar 

  166. Salahinejad, M., Ghasemi, J.B.: 3D-QSAR studies on the toxicity of substituted benzenes to tetrahymena pyriformis: CoMFA, CoMSIA and VolSurf approaches. Ecotoxicol. Environ. Saf. 105, 128–134 (2014)

    Article  CAS  Google Scholar 

  167. Gu, W., Li, Q., Li, Y.: Law and mechanism analysis of biodegradability of polychlorinated naphthalenes based on principal component analysis, QSAR models, molecular docking and molecular dynamics simulation. Chemosphere 243, 125427 (2020)

    Article  CAS  Google Scholar 

  168. Rabinowitz, J.R., Little, S.B., Laws, S.C., Goldsmith, M.R.: Molecular modeling for screening environmental chemicals for estrogenicity: use of the toxicant-target approach. Chem. Res. Toxicol. (2009). https://doi.org/10.1021/tx900135x

    Article  Google Scholar 

  169. OpenEye. FRED (2009)

    Google Scholar 

  170. Blaney, F.E., Tehan, B.G.: Crystal structures of toxicology targets. In: Computational Toxicology, pp. 469–519. Wiley (2006). https://doi.org/10.1002/9780470145890.ch17

  171. Hirst, W.D., et al.: Differences in the central nervous system distribution and pharmacology of the mouse 5-hydroxytryptamine-6 receptor compared with rat and human receptors investigated by radioligand binding, site-directed mutagenesis, and molecular modeling. Mol. Pharmacol. (2003). https://doi.org/10.1124/mol.64.6.1295

    Article  Google Scholar 

  172. Aureli, L., et al.: Predicting human serum albumin affinity of interleukin-8 (CXCL8) inhibitors by 3D-QSPR approach. J. Med. Chem. (2005). https://doi.org/10.1021/jm049227l

    Article  Google Scholar 

  173. Ekins, S., et al.: Three-dimensional quantitative structure-activity relationships of inhibitors of P-glycoprotein. Mol. Pharmacol. (2002). https://doi.org/10.1124/mol.61.5.964

    Article  Google Scholar 

  174. Lewis, D.F.V.: Molecular modeling of human cytochrome P450–substrate interactions. Drug Metab. Rev. 34, 55–67 (2002)

    Article  CAS  Google Scholar 

  175. Thorsteinson, N., et al.: In silico identification of anthropogenic chemicals as ligands of zebrafish sex hormone binding globulin. Toxicol. Appl. Pharmacol. (2009). https://doi.org/10.1016/j.taap.2008.07.014

    Article  Google Scholar 

  176. Cheng, X., Ivanov, I.: Molecular dynamics. In: Reisfeld, B., Mayeno, A.N. (eds.) Computational Toxicology: Volume I, Methods in Molecular Biology, vol. 929, pp. 243–285. Springer, LLC (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Henrique Tomich de Paula da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silva, G.M., Federico, L.B., Alves, V.M., de Paula da Silva, C.H.T. (2021). In Silico Methods to Predict Relevant Toxicological Endpoints of Bioactive Substances. In: La Porta, F.A., Taft, C.A. (eds) Functional Properties of Advanced Engineering Materials and Biomolecules. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-62226-8_22

Download citation

Publish with us

Policies and ethics