Skip to main content

High-Throughput-Based Virtual Screening via Molecular Docking for Oxidative Stress Mediated by ROS Enzyme

  • Chapter
  • First Online:
Functional Properties of Advanced Engineering Materials and Biomolecules

Abstract

The regulation of redox homeostasis and the reduction of oxidative stress is one of several strategies used in the development of anticancer drugs. Understanding from in silico studies, how a particular molecule binds to the receptor, allows the selection of promising compounds that may be used in antineoplastic pharmacotherapy. Protein–ligand coupling can use the study and relationship between the protein–ligand complex or that is the origin of the ligand-target interaction. The docking algorithms used present a high complexity; however, currently, the systems used to perform such studies present a friendly interface. A comparative study of various coupling algorithms can provide us with useful information to select the appropriate algorithm for drug research, design, and selection using new computational techniques. Hence, from this perspective, the purpose of this chapter is to provide new information about how it is possible to study via docking molecular Reactive Oxygen Species (ROS) enzymes against antineoplastic agents and to associate them with antitumor pharmacotherapy. The performed molecular docking results will be shown both the lower binding affinity (∆G) values for the receptor-ligand, as well as interactions in the two enzymes, obtained after validation of the molecular docking protocols for the receptors: cytochrome P450 (CYP450) and NADPH oxidase (NOX).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silva, A.A., Gonçalves, R.C.: Espécies reativas de oxigênio e as doenças do trato respiratório de grandes animais. Ci ê ncia Rural 40, 994–1002 (2010). [CrossRef]

    Google Scholar 

  2. Yun, J., Mullarky, E., Lu, C., Bosch, K.N., Kavalier, A., Rivera, K., Roper, J., Chio, I.I., Giannopoulou, E.G., Rago, C. et al.: Vitamina C mata seletivamente kras e braf mutante colorretal células cancerosas, visandoGAPdh. Ciência 350, 1391–1396 (2015). [CrossRef] [PubMed]

    Google Scholar 

  3. Branco, P.A., Oliveira, R.C., Oliveira, A.P., Serafini, M.R., Araújo, A.A., Gelain, D.P., Moreira, J.C., Almeida, Jr. R., Quintans, J.S., Quintans-Junior, L.J., et al.: Atividade antioxidante e mecanismos de ação de compostos naturais isolados de líquens: Uma revisão sistemática. Moléculas 19, 14496–14527 (2014). [CrossRef][PubMed]

    Google Scholar 

  4. Reuter, S., Gupta, S.C., Chaturvedi, M.M., Aggarwal, B.B.: Estresse oxidativo, inflamação e câncer: Como eles estão ligados? Radic livre. Biol. Med. 49,1603–1616 (2010). [CrossRef] [PubMed]

    Google Scholar 

  5. Cadenas, E.: Mecanismos básicos de atividade antioxidante. BioFatores 6, 391–397 (1997). [CrossRef] [PubMed]

    Google Scholar 

  6. Dharmaraja, A.T.: Papel das espécies reativas de oxigênio (ROS) na terapêutica e resistência a medicamentos em câncer e bactérias. Química. 60, 3221–3240 (2017). [CrossRef] [PubMed]

    Google Scholar 

  7. Gupta, M., Sharma, R., Kumar, A.: Técnicas de acoplamento em farmacologia: Quanto promissor? Comp. Biol. Chem. 76, 210–217 (2018). [CrossRef] [PubMed]

    Google Scholar 

  8. Zheng, M., Liu, Z., Yan, X., Ding, Q., Gu, Q., Xu, J.: LBVS: an online platform for ligand-based virtual screening using publicly accessible databases. Mol. Diversity 18(4), 829–840 (2014). https://doi.org/10.1007/s11030-014-9545-3

    Article  CAS  Google Scholar 

  9. Bento, A.P., Gaulton, A., Hersey, A., Bellis, L.J., Chambers, J., Davies, M., Krüger, F.A., Light, Y., Mak, L., McGlinchey, S., Nowotka, M., Papadatos, G., Santos, R., Overington, J.P.: Nucleic Acids Res. 42, D1083 (2014)

    Article  CAS  Google Scholar 

  10. Sterling, T., Irwin, J. J., J. Chem. Inf. Model. 55, 2324 (2015)

    Google Scholar 

  11. Kim, S., Thiessen, P.A., Bolton, E.E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B.A., Wang, J., Yu, B., Zhang, J., Bryant, S.H.: Nucleic Acids Res. 44, D1202 (2016)

    Article  CAS  Google Scholar 

  12. Wang, R., Fang, X., Lu, Y., Wang, S., J. Med. Chem. 47, 2977 (2004)

    Google Scholar 

  13. Olah, M., Mracec, M., Ostopovici, L., Rad, R., Bora, A., Hadaruga, N., Olah, I., Banda, M., Simon, Z., Mracec, M., Oprea, T.I.: In: Oprea, T. I. (ed.) Em Chemoinformatics in Drug Discovery, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, cap. 9 (2005)

    Google Scholar 

  14. Wishart, D.S.: Nucleic Acids Res. 34, D668 (2006)

    Google Scholar 

  15. Weininger, D.J.: SMILES, a chemical language and information system. J. Chem. Inf. Comput. Sci. 28, 31–36 (1988)

    Article  CAS  Google Scholar 

  16. Dalby, A., Nourse, J.G., Hounshell, W.D., Gushurst, A.K.I., Grier, D.L., Leland, B.A., Laufer, J.: Description of several chemical structure file formats used by computer programs developed at molecular design limited. J. Chem. Inf. Model. 32(3), 244 (1992). https://doi.org/10.1021/ci00007a012

    Article  CAS  Google Scholar 

  17. Berman, H.M.: The protein data bank: a historical perspective. Acta Crystallogr. A 64(1), 88–95 (2007)

    Article  Google Scholar 

  18. Bajusz, D., Rácz, A., Héberger, K.: Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminf. 7(1), 20 (2015)

    Article  Google Scholar 

  19. Lipinski, C.A.: Drug-like properties andthe causes of poor solubility and poor permeability. J. Pharmacol Toxicol Methods 44(1), 235–249 (2000)

    Article  CAS  Google Scholar 

  20. Kim, S., Thiessen, P.A., Bolton, E.E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B.A., et al.: PubChem substance and compound databases. Nucleic Acids Res. 44, D1202–D1213 (2016)

    Article  CAS  Google Scholar 

  21. Wang, Y., Bryant, S.H., Cheng, T., Wang, J., Gindulyte, A., Shoemaker, B.A., Thiessen, P.A., He, S., Zhang, J.: PubChem bioAssay: 2017 update. Nucleic Acids Res. 45, D955–D963 (2017)

    Article  CAS  Google Scholar 

  22. Kim, S.: Getting the most out of PubChem for virtual screening. Expert Opin. Drug Discov. 11, 843–855 (2016)

    Article  Google Scholar 

  23. Hahnke, V.D., Kim, S., Bolton, E.E.: PubChem chemical ¨structure standardization. J. Cheminform. 10, 36 (2018)

    Article  Google Scholar 

  24. Kim, S., Thiessen, P.A., Cheng, T., Yu, B., Shoemaker, B.A., Wang, J.Y., Bolton, E.E., Wang, Y.L., Bryant, S.H.: Literature information in PubChem: associations between PubChem records and scientific articles. J. Cheminform. 8, 32 (2016)

    Article  Google Scholar 

  25. Wang, Y., Xiao, J., Suzek, T.O., Zhang, J., Wang, J., Zhou, Z., Han, L., Karapetyan, K., Dracheva, S., Shoemaker, B.A., Bolton, E., Gindulyte, A., Bryant, S.H.: PubChem’s bioassay database. Nucleic Acids Res. 40(Database issue): D400–D412 (2012). https://doi.org/10.1093/nar/gkr1132

  26. Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B.A., Thiessen, P.A., Yu, B., Zaslavsky, L., Zhang, J., Bolton, E.E.: PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 47(D1), D1102-1109 (2019). https://doi.org/10.1093/nar/gky1033. [PubMed PMID: 30371825]

    Article  Google Scholar 

  27. Gilson, M.K., Liu, T., Baitaluk, M., Nicola, G., Hwang, L., Chong, J.: BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res. 44(D1), D1045–D1053 (2016). https://doi.org/10.1093/nar/gkv1072

    Article  CAS  Google Scholar 

  28. Davies, M., Nowotka, M., Papadatos, G., Dedman, N., Gaulton, A., Atkinson, F., Bellis, L., Overington, J.P.: ChEMBL web services: streamlining access to drug discovery data and utilities. Nucleic Acids Res. 43(W1), W612–W620 (2015). https://doi.org/10.1093/nar/gkv352

    Article  CAS  Google Scholar 

  29. Liu, T., Lin, Y., Wen, X., Jorissen, R.N., Gilson, M.K.: BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic. Acids Res. 35(Database), D198–D201 (2007). https://doi.org/10.1093/nar/gkl999

  30. Gaulton, A., Hersey, A., Nowotka, M., Bento, A.P., Chambers, J., Mendez, D., Mutowo, P., Atkinson, F., Bellis, L.J., Cibrián-Uhalte, E., Davies, M., Dedman, N., Karlsson, A., Magariños, M.P., Overington, J.P., Papadatos, G., Smit, I., Leach, A.R.: The ChEMBL database in 2017. Nucleic Acids Res. 45(D1), D945–D954 (2016). https://doi.org/10.1093/nar/gkw1074

    Article  CAS  Google Scholar 

  31. Gilson, M.K., Liu, T., Baitaluk, M., Nicola, G., Hwang, L., Chong, J.: BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res. 44, D1045–D1063 (2016)

    Google Scholar 

  32. Liu, T., Lin, Y., Wen, X., Jorrisen, R.N., Gilson, M.K.: BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 35, D198-D201 (2007)

    Google Scholar 

  33. Chen,X., Lin,Y., Gilson, M.K.: The binding database: overview and user's guide. Biopolym. Nucleic Acid Sci. 61,127-141 (2002)

    Google Scholar 

  34. Chen, X., Lin, Y., Liu, M., Gilson, M.K.: The binding database: data management and interface design. Bioinformatics 18, 130–139 (2002)

    Article  CAS  Google Scholar 

  35. Chen, X., Liu, M., Gilson, M.K.: Binding DB: a web-accessible molecular recognition database. J. Combi. Chem. High-Throughput Screen 4, 719–725 (2001)

    Article  CAS  Google Scholar 

  36. Sterling and Irwin, J. Chem. Inf. Model, (2015). http://pubs.acs.org/doi/abs/https://doi.org/10.1021/acs.jcim.5b00559

  37. . Wishart, D.S., Feunang, Y.D., Guo, A.C., Lo, E.J., Marcu, A., Grant, J.R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., Pon, A., Knox, C., Wilson, M.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2017 Nov 8 (2017). https://doi.org/10.1093/nar/gkx1037

  38. Costa, J.S., Ramos, R.S., Costa, K.S.L., Brasil, D.S.B., Silva, C.H.T.P., Ferreira, E.F.B., Borges, R.S., Campos, J.M., Macêdo, W.J.C., Santos, C.B.R.: An In silico study of the antioxidant ability for two caffeine analogs using molecular docking and quantum chemical methods. Molecules 23(11), 2801 (2018)

    Article  Google Scholar 

  39. Gunes, A., Coskun, U., Boruban, C., Gunel, N., Babaoglu, M.O., Sencan, O., Bozkurt, A., Rane, A., Hassan, M., Zengil, H., et al.: Inhibitory effect of 5-fluorouracil on cytochrome P450 2C9 activity in cancer patients. Basic Clin. Pharmacol. Toxicol. 98, 197–200 (2006). [CrossRef] [PubMed]

    Google Scholar 

  40. Drugbank (2020). Available online: https://www.drugbank.ca/unearth/(accessed on 3 mach 2020)

  41. Liu, S.L., Li, Y.H., Shi, G.Y., Tang, S.H., Jiang, S.J., Huang, C.W., Liu, P.Y., Hong, J.S., Wu, H.L.: Dextromethorphan reduces oxidative stress and inhibits atherosclerosis and neointima formation in mice.Cardiovasc. Res. 82, 161–169 (2009). [CrossRef] [PubMed]

    Google Scholar 

  42. Wu, T.C., Chao, C.Y., Lin, S.J., Chen, J.W.: Low-dose dextromethorphan, a NADPH oxidase inhibitor, reduces blood pressure and enhances vascular protection in experimental hypertension. PLoS ONE 9, 1–12 (2012). [CrossRef] [PubMed]

    Google Scholar 

  43. Anzenbacher, P., Anzenbacherova, E.: Cytochromes P450 and metabolism of xenobiotics. Cell. Mol. Life Sci. 58, 737–747 (2001)

    Article  CAS  Google Scholar 

  44. Hodgson, J.: ADMET–turning chemicals into drugs. Nature Biotechnol. 19, 722–726 (2001)

    Article  CAS  Google Scholar 

  45. Takahashi, H., Echizen, H.: Pharmacogenetics of warfarin elimination and its clinical implications. Clin. Pharmacokinet. 40, 587–603 (2001)

    Article  CAS  Google Scholar 

  46. Kaminsky, L.S., Zhang, Z.Y.: Human P450 metabolism of warfarin. Pharmacol. Ther. 73, 67–74 (1997)

    Article  CAS  Google Scholar 

  47. Williams, P.A., Cosme, J., Ward, A., Angove, H.C., Matak Vinković, D., Jhoti, H.: Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424(6947), 464–468 (2003). https://doi.org/10.1038/nature01862

    Article  CAS  Google Scholar 

  48. Vlahos, R., Stambas, J., Bozinovski, S., Broughton, B.R.S., Drummond, G.R., Selemidis, S.: Inhibition of Nox2 oxidase activity ameliorates influenza A Virus-Induced Lung Inflammation. PLoS Pathog. 7(2), e1001271 (2011). https://doi.org/10.1371/journal.ppat.1001271

    Article  CAS  Google Scholar 

  49. Selemidis, S., Sobey, C.G., Wingler, K., Schmidt, H.H., Drummond, G.R.: NADPH oxidases in the vasculature: molecular features, roles in disease and pharmacological inhibition. Pharmacol Ther 120, 254–291 (2008)

    Article  CAS  Google Scholar 

  50. Bedard, K., Krause, K.H.: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87, 245–313 (2007)

    Article  CAS  Google Scholar 

  51. Lountos, G.T., Jiang, R., Wellborn, W.B., Thaler, T.L., Bommarius, A.S., Orville, A.M.: The crystal structure of NAD(P)H oxidase fromLactobacillus sanfranciscensis: insights into the conversion of O2into two water molecules by the flavoenzyme†,‡. Biochemistry 45(32), 9648–9659 (2006). https://doi.org/10.1021/bi060692p

    Article  CAS  Google Scholar 

  52. Dallakyan, S., Olson, A.J.: Small-molecule library screening by docking with PyRx. Methods Mol. Bio. 1263, 243–250 (2015)

    Article  CAS  Google Scholar 

  53. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comp. Chem. 19, 1639–1662 (1998). [CrossRef]

    Google Scholar 

  54. Trott, O., Olson, A.J.: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function efficient optimization and multithreading. J. Comput. Chem. 31, 455–461 (2010)

    CAS  Google Scholar 

  55. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J. (2009)

    Google Scholar 

  56. Dassault Systèmes BIOVIA, Discovery Studio Modeling Environment. Release 2017. Dassault Systèmes: San Diego, CA, USA, (2019)

    Google Scholar 

  57. Trott, O., Olson, A.J.: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function efficient optimization and multithreading. National Institute of Health 31(2), 455–461 (2010)

    CAS  Google Scholar 

  58. Wang, R., Lai, L., Wang, S.: Further development and validation of empirival scoring functions for structure-based binding affinity prediction. J. Comput. Aided Mol. Des. 16(1), 11–26 (2002)

    Article  CAS  Google Scholar 

  59. Aggarwal, R., Koes, D.R.: Learning RMSD to improve protein-ligand scoring and pose selection. ChemRxiv (2020). Preprint. https://doi.org/10.26434/chemrxiv.11910870.v2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Williams J. C. Macêdo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Macêdo, W.J.C. et al. (2021). High-Throughput-Based Virtual Screening via Molecular Docking for Oxidative Stress Mediated by ROS Enzyme. In: La Porta, F.A., Taft, C.A. (eds) Functional Properties of Advanced Engineering Materials and Biomolecules. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-62226-8_17

Download citation

Publish with us

Policies and ethics