Skip to main content

Calcium, Phosphate, and Renal Osteodystrophy

CKD: Mineral and Bone Disorder

  • Reference work entry
  • First Online:
Nolph and Gokal's Textbook of Peritoneal Dialysis
  • 454 Accesses

Abstract

Chronic kidney disease (CKD) and peritoneal dialysis dependent end-stage kidney disease are almost invariably associated with deranged mineral and bone metabolism, which is evident either as abnormal calcium, phosphate, parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23) and vitamin D metabolism; abnormal bone turnover, mineralization, volume, growth, and strength; or the presence of extraskeletal calcification. These abnormalities often appear together in combination with varying degrees of involvement and are associated with high mortality rates, primarily from cardiovascular complications.

Since 2006 following the recommendation from KDIGO (Kidney Disease: Improving Global Outcomes) disorders of divalent ion metabolism and resulting renal osteodystrophy have been referred to as chronic kidney disease-mineral and bone disorder (CKD-MBD), a term that encompasses the wider spectrum of disorders associated with this metabolic state.

This chapter attempts to outline the manifestations of mineral and bone disorder in the context of CKD with a focus on PD dependent end-stage kidney disease including the recent advances and consensus guidance on its management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lucas R. On a form of late rickets associated with albuminuria, rickets of adolescence. Lancet. 1883;i:993–4.

    Article  Google Scholar 

  2. Fletcher H. Case of infantilism with polyuria and chronic renal disease. Proc R Soc Med Lond. 1911;4(Sect Study Dis Child):95–7.

    CAS  Google Scholar 

  3. Barber H. The bone deformities of renal dwarfism. Lancet. 1920;i:18–20.

    Article  Google Scholar 

  4. Follis R, Jackson D. Renal osteomalacia and osteitis fibrosa. Bull Johns Hopkins Hosp. 1943;72:232–4.

    Google Scholar 

  5. Liu S, Chu H. Studies of calcium and phosphorus metabolism with special reference to pathogenesis and effects of dihydrotachysterol (A.T. 10) and iron. Medicine. 1943;22:103–7.

    Article  CAS  Google Scholar 

  6. Garner A, Ball J. Quantitative observations on mineralised and unmineralised bone in chronic renal azotaemia and intestinal malabsorption syndrome. J Pathol Bacteriol. 1966;91:545–9.

    Article  CAS  PubMed  Google Scholar 

  7. Stanbury SW, Lumb GA. Metabolic studies of renal osteodystrophy. I. Calcium, phosphorus and nitrogen metabolism in rickets, osteomalacia and hyperparathyroidism complicating chronic uremia and in the osteomalacia of the adult Fanconi syndrome. Medicine (Baltimore). 1962;41:1–34.

    Article  CAS  PubMed  Google Scholar 

  8. Stanbury SW, Lumb GA. Parathyroid function in chronic renal failure. A statistical survey of the plasma biochemistry in azotaemic renal osteodystrophy. Q J Med. 1966;35:1–23.

    CAS  PubMed  Google Scholar 

  9. Malluche HH, Monier-Faugere MC. Risk of adynamic bone disease in dialyzed patients. Kidney Int Suppl. 1992;38:S62–7.

    CAS  PubMed  Google Scholar 

  10. Sherrard DJ, Hercz G, Pei Y, et al. The spectrum of bone disease in end-stage renal failure – an evolving disorder. Kidney Int. 1993;43:436–42.

    Article  CAS  PubMed  Google Scholar 

  11. Drueke TB, Massy ZA. Changing bone patterns with progression of chronic kidney disease. Kidney Int. 2016;89(2):289–302. https://doi.org/10.1016/j.kint.2015.12.004.

    Article  PubMed  Google Scholar 

  12. Coburn JW. Mineral metabolism and renal bone disease: effects of CAPD versus hemodialysis. Kidney Int Suppl. 1993;40:S92–S100.

    CAS  PubMed  Google Scholar 

  13. Anwar N, Hutchison AJ, Gokal R. Comparison of renal osteodystrophy in patients undergoing continuous ambulatory peritoneal dialysis and hemodialysis. Perit Dial Int. 1993;13(Suppl 2):S451–3.

    Article  PubMed  Google Scholar 

  14. Gal-Moscovici A, Popovtzer MM. New worldwide trends in presentation of renal osteodystrophy and its relationship to parathyroid hormone levels. Clin Nephrol. 2005;63:284–9.

    Article  CAS  PubMed  Google Scholar 

  15. Ward MK, Feest TG, Ellis HA, Parkinson IS, Kerr DN. Osteomalacic dialysis osteodystrophy: evidence for a water-borne aetiological agent, probably aluminium. Lancet. 1978;1(8069):841–5. https://doi.org/10.1016/S0140-6736(78)90191-5.

    Article  CAS  PubMed  Google Scholar 

  16. Moe S, Drüeke T, Cunningham J, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kindey Int. 2006;69:1945.

    Article  CAS  Google Scholar 

  17. Llach F, Massry SG, Singer FR, Kurokawa K, Kaye JH, Coburn JW. Skeletal resistance to endogenous parathyroid hormone in patients with early renal failure. A possible cause for secondary hyperparathyroidism. J Clin Endocrinol Metab. 1975;41:339–45.

    Article  CAS  PubMed  Google Scholar 

  18. Avioli LV. The renal osteodystrophies. In: Brenner B, Rector FC, editors. The kidney. Philadelphia: Saunders; 1986. p. 1542–80.

    Google Scholar 

  19. Malluche H, Faugere MC. Renal bone disease 1990: an unmet challenge for the nephrologist. Kidney Int. 1990;38:193–211.

    Article  CAS  PubMed  Google Scholar 

  20. Baker LR, Abrams L, Roe CJ, et al. 1,25(OH)2D3 administration in moderate renal failure: a prospective double-blind trial. Kidney Int. 1989;35:661–9.

    Article  CAS  PubMed  Google Scholar 

  21. Hutchison AJ, Whitehouse RW, Boulton HF, et al. Correlation of bone histology with parathyroid hormone, vitamin D3, and radiology in end-stage renal disease. Kidney Int. 1993;44:1071–7.

    Article  CAS  PubMed  Google Scholar 

  22. Cournot-Witmer G, Plachot JJ, Bourdeau A, et al. Effect of aluminum on bone and cell localization. Kidney Int Suppl. 1986;18:S37–40.

    CAS  PubMed  Google Scholar 

  23. Ott SM, Maloney NA, Coburn JW, Alfrey AC, Sherrard DJ. The prevalence of bone aluminum deposition in renal osteodystrophy and its relation to the response to calcitriol therapy. N Engl J Med. 1982;307:709–13.

    Article  CAS  PubMed  Google Scholar 

  24. Posner AS, Blumenthal NC, Boskey AL. Model of aluminum-induced osteomalacia: inhibition of apatite formation and growth. Kidney Int Suppl. 1986;18:S17–9.

    CAS  PubMed  Google Scholar 

  25. Cannata Andia JB. Adynamic bone and chronic renal failure: an overview. Am J Med Sci. 2000;320:81–4.

    Article  CAS  PubMed  Google Scholar 

  26. Heaf J. Adynamic bone disease and malnutrition-inflammation-cachexia syndrome. Kidney Int. 2007;71:1326.

    Article  CAS  PubMed  Google Scholar 

  27. Heaf J. Causes and consequences of adynamic bone disease. Nephron. 2001;88:97–106.

    Article  CAS  PubMed  Google Scholar 

  28. Weinreich T, Zapf J, Schmidt-Gayk H, Ritzel H, Delling G, Reichel H. Insulin-like growth factor 1 and 2 serum concentrations in dialysis patients with secondary hyperparathyroidism and adynamic bone disease. Clin Nephrol. 1999;51:27–33.

    CAS  PubMed  Google Scholar 

  29. Sanchez CP. Adynamic bone revisited: is there progress? Perit Dial Int. 2006;26:43–8.

    Article  CAS  PubMed  Google Scholar 

  30. Mucsi I, Hercz G. Adynamic bone disease: pathogenesis, diagnosis and clinical relevance. Curr Opin Nephrol Hypertens. 1997;6:356–61.

    Article  CAS  PubMed  Google Scholar 

  31. Rocha LA, Higa A, Barreto FC, et al. Variant of adynamic bone disease in hemodialysis patients: fact or fiction? Am J Kidney Dis. 2006;48:430–6.

    Article  PubMed  Google Scholar 

  32. Stehman-Breen C. Osteoporosis and chronic kidney disease. Semin Nephrol. 2004;24:78–81.

    Article  PubMed  Google Scholar 

  33. Coburn JW. Renal osteodystrophy. Kidney Int. 1980;17:677–23.

    Article  CAS  PubMed  Google Scholar 

  34. Malberti F, Marcelli D, Conte F, Limido A, Spotti D, Locatelli F. Parathyroidectomy in patients on renal replacement therapy: an epidemiologic study. J Am Soc Nephrol. 2001;12:1242–8.

    Article  PubMed  Google Scholar 

  35. Kestenbaum B, Andress DL, Schwartz SM, et al. Survival following parathyroidectomy among United States dialysis patients. Kidney Int. 2004;66:2010–6.

    Article  PubMed  Google Scholar 

  36. Cohen-Solal ME, Sebert JL, Boudailliez B, et al. Non-aluminic adynamic bone disease in non-dialyzed uremic patients: a new type of osteopathy due to overtreatment? Bone. 1992;13:1–5.

    Article  CAS  PubMed  Google Scholar 

  37. Fournier A, Moriniere P, Cohen Solal ME, et al. Adynamic bone disease in uremia: may it be idiopathic? Is it an actual disease? Nephron. 1991;58:1–12.

    Article  CAS  PubMed  Google Scholar 

  38. Hutchison AJ, Whitehouse RW, Freemont AJ, Adams JE, Mawer EB, Gokal R. Histological, radiological, and biochemical features of the adynamic bone lesion in continuous ambulatory peritoneal dialysis patients. Am J Nephrol. 1994;14:19–29.

    Article  CAS  PubMed  Google Scholar 

  39. Dunstan CR, Evans RA, Hills E, Wong SY, Alfrey AC. Effect of aluminum and parathyroid hormone on osteoblasts and bone mineralization in chronic renal failure. Calcif Tissue Int. 1984;36:133–8.

    Article  CAS  PubMed  Google Scholar 

  40. Charhon SA, Chavassieux PM, Chapuy MC, Boivin GY, Meunier PJ. Low rate of bone formation with or without histologic appearance of osteomalacia in patients with aluminum intoxication. J Lab Clin Med. 1985;106:123–31.

    CAS  PubMed  Google Scholar 

  41. Hercz G, Pei Y, Greenwood C, et al. Aplastic osteodystrophy without aluminum: the role of ‘suppressed’ parathyroid function. Kidney Int. 1993;44:860–6.

    Article  CAS  PubMed  Google Scholar 

  42. London GM, Marty C, Marchais SJ, Guerin AP, Metivier F, de Vernejoul MC. Arterial calcifications and bone histomorphometry in end-stage renal disease. J Am Soc Nephrol. 2004;15:1943–51.

    Article  PubMed  Google Scholar 

  43. Cunningham J, Locatelli F, Rodriguez M. Secondary hyperparathyroidism: pathogenesis, disease progression, and therapeutic options. Clin J Am Soc Nephrol. 2011;6:913.

    Article  CAS  PubMed  Google Scholar 

  44. Keutmann HT, Sauer MM, Hendy GN, O’Riordan LH, Potts JT Jr. Complete amino acid sequence of human parathyroid hormone. Biochemistry. 1978;17:5723–9.

    Article  CAS  PubMed  Google Scholar 

  45. Chu LL, MacGregor RR, Hamilton JW, Cohn DV. Conversion of proparathyroid hormone to parathyroid hormone: the use of amines as specific inhibitors. Endocrinology. 1974;95:1431–8.

    Article  CAS  PubMed  Google Scholar 

  46. Arnaud CD. Hyperparathyroidism and renal failure. Kidney Int. 1973;4:89–95.

    Article  CAS  PubMed  Google Scholar 

  47. Slatopolsky E, Lopez-Hilker S, Dusso A, Morrissey JJ, Martin KJ. Parathyroid hormone secretion: perturbations in chronic renal failure. Contrib Nephrol. 1988;64:16–24.

    Article  CAS  PubMed  Google Scholar 

  48. Isakova T, Wolf MS. FGF23 or PTH: which comes first in CKD? Kidney Int. 2010 Nov;78(10):947–9. https://doi.org/10.1038/ki.2010.281.

    Article  CAS  PubMed  Google Scholar 

  49. Sherwood LM, Mayer GP, Ramberg CF Jr, Kronfeld DS, Aurbach GD, Potts JT Jr. Regulation of parathyroid hormone secretion: proportional control by calcium, lack of effect of phosphate. Endocrinology. 1968;83:1043–51.

    Article  CAS  PubMed  Google Scholar 

  50. Slatopolsky E, Lopez-Hilker S, Dusso A. The interrelationship between vitamin D and parathyroid hormone secretion in health and disease. In: Davidson AM, editor. Nephrology. Proceedings of the International Congress of Nephrology. London: Balliere Tindall; 1988. p. 1067–75.

    Google Scholar 

  51. Felsenfeld AJ, Ross D, Rodriguez M. Hysteresis of the parathyroid hormone response to hypocalcemia in hemodialysis patients with low turnover aluminum bone disease. J Am Soc Nephrol. 1991;2:1136–43.

    Article  CAS  PubMed  Google Scholar 

  52. Dunlay R, Rodriguez M, Felsenfeld AJ, Llach F. Direct inhibitory effect of calcitriol on parathyroid function (sigmoidal curve) in dialysis. Kidney Int. 1989;36:1093–8.

    Article  CAS  PubMed  Google Scholar 

  53. Cunningham J, Altmann P, Gleed JH, Butter KC, Marsh FP, O’Riordan JL. Effect of direction and rate of change of calcium on parathyroid hormone secretion in uraemia. Nephrol Dial Transplant. 1989;4:339–44.

    Article  CAS  PubMed  Google Scholar 

  54. Brown EM, Gardner DG, Windeck RA, Hurwitz S, Brennan MF, Aurbach GD. Beta-adrenergically stimulated adenosine 3′,5′-monophosphate accumulation in and parathyroid hormone release from dispersed human parathyroid cells. J Clin Endocrinol Metab. 1979;48:618–26.

    Article  CAS  PubMed  Google Scholar 

  55. Fukagawa M, Kitaoka M, Yi H, et al. Serial evaluation of parathyroid size by ultrasonography is another useful marker for the long-term prognosis of calcitriol pulse therapy in chronic dialysis patients. Nephron. 1994;68:221–8.

    Article  CAS  PubMed  Google Scholar 

  56. Fukagawa M, Kaname S, Igarashi T, Ogata E, Kurokawa K. Regulation of parathyroid hormone synthesis in chronic renal failure in rats. Kidney Int. 1991;39:874–81.

    Article  CAS  PubMed  Google Scholar 

  57. Slatopolsky E, Weerts C, Thielan J, Horst R, Harter H, Martin KJ. Marked suppression of secondary hyperparathyroidism by intravenous administration of 1,25-dihydroxy-cholecalciferol in uremic patients. J Clin Invest. 1984;74:2136–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jones CL, Vieth R, Spino M, et al. Comparisons between oral and intraperitoneal 1,25-dihydroxyvitamin D3 therapy in children treated with peritoneal dialysis. Clin Nephrol. 1994;42:44–9.

    CAS  PubMed  Google Scholar 

  59. Delmez JA, Dougan CS, Gearing BK, et al. The effects of intraperitoneal calcitriol on calcium and parathyroid hormone. Kidney Int. 1987;31:795–9.

    Article  CAS  PubMed  Google Scholar 

  60. Chase LR, Slatopolsky E. Secretion and metabolic efficacy of parathyroid hormone in patients with severe hypomagnesemia. J Clin Endocrinol Metab. 1974;38:363–71.

    Article  CAS  PubMed  Google Scholar 

  61. Torres PU. The need for reliable serum parathyroid hormone measurements. Kidney Int. 2006;70:240–3.

    Article  CAS  PubMed  Google Scholar 

  62. Souberbielle JC, Boutten A, Carlier MC, et al. Inter-method variability in PTH measurement: implication for the care of CKD patients. Kidney Int. 2006;70:345–50.

    Article  CAS  PubMed  Google Scholar 

  63. Cohen-Solal ME, Sebert JL, Boudailliez B, et al. Comparison of intact, midregion, and carboxy terminal assays of parathyroid hormone for the diagnosis of bone disease in hemodialyzed patients. J Clin Endocrinol Metab. 1991;73:516–24.

    Article  Google Scholar 

  64. Boudou P, Ibrahim F, Cormier C, Chabas A, Sarfati E, Souberbielle JC. Third- or second-generation parathyroid hormone assays: a remaining debate in the diagnosis of primary hyperparathyroidism. J Clin Endocrinol Metab. 2005;90:6370–2.

    Article  CAS  PubMed  Google Scholar 

  65. Hocher B, Yin L. Why current PTH assays mislead clinical decision making in patients with secondary hyperparathyroidism. Nephron. 2017;136(2):137–42.

    Article  CAS  PubMed  Google Scholar 

  66. Saito H, Kusano K, Kinosaki M, Ito H, Hirata M, Segawa H, Miyamoto K, Fukushima N. Human fibroblast growth factor-23 mutants suppress Na+−dependent phosphate co-transport activity and 1alpha,25-dihydroxyvitamin D3 production. J Biol Chem. 2003;278(4):2206–11. https://doi.org/10.1074/jbc.M207872200. Epub 2002 Nov 4. PMID: 12419819.

    Article  CAS  PubMed  Google Scholar 

  67. Komaba H, Goto S, Fujii H, Hamada Y, Kobayashi A, Shibuya K, Tominaga Y, Otsuki N, Nibu K, Nakagawa K, Tsugawa N, Okano T, Kitazawa R, Fukagawa M, Kita T. Depressed expression of Klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients. Kidney Int. 2010;77(3):232–8. https://doi.org/10.1038/ki.2009.414. Epub 2009 Nov 4. Erratum in: Kidney Int. 2010 May;77(9):834. Kita, Tomoyuki [added]. PMID: 19890272.

    Article  CAS  PubMed  Google Scholar 

  68. Kuro-o M. Klotho as a regulator of fibroblast growth factor signaling and phosphate/calcium metabolism. Curr Opin Nephrol Hypertens. 2006 Jul;15(4):437–41. https://doi.org/10.1097/01.mnh.0000232885.81142.83. PMID: 16775459.

  69. Brunette MG, Chan M, Ferriere C, Roberts KD. Site of 1,25(OH)2 vitamin D3 synthesis in the kidney. Nature. 1978;276:287–9.

    Article  CAS  PubMed  Google Scholar 

  70. Mawer EB, Taylor CM, Backhouse J, Lumb GA, Stanbury SW. Failure of formation of 1,25-dihydroxycholecalciferol in chronic renal insufficiency. Lancet. 1973;1:626–8.

    Article  CAS  PubMed  Google Scholar 

  71. Rapoport J, Shany S, Chaimovitz C. Continuous ambulatory peritoneal dialysis and vitamin D. Nephron. 1988;48:1–3.

    Article  CAS  PubMed  Google Scholar 

  72. Hayes ME, O'Donoghue DJ, Ballardie FW, Mawer EB. Peritonitis induces the synthesis of 1 alpha,25-dihydroxyvitamin D3 in macrophages from CAPD patients. FEBS Lett. 1987;220:307–10.

    Article  CAS  PubMed  Google Scholar 

  73. Lind L, Wengle B, Wide L, Wrege U, Ljunghall S. Suppression of serum parathyroid hormone levels by intravenous alphacalcidol in uremic patients on maintenance hemodialysis. A pilot study. Nephron. 1988;48:296–9.

    Article  CAS  PubMed  Google Scholar 

  74. Ljunghall S, Althoff P, Fellstrom B, et al. Effects on serum parathyroid hormone of intravenous treatment with alphacalcidol in patients on chronic hemodialysis. Nephron. 1990;55:380–5.

    Article  CAS  PubMed  Google Scholar 

  75. Andress DL, Norris KC, Coburn JW, Slatopolsky EA, Sherrard DJ. Intravenous calcitriol in the treatment of refractory osteitis fibrosa of chronic renal failure. N Engl J Med. 1989;321:274–9.

    Article  CAS  PubMed  Google Scholar 

  76. Tsukamoto Y, Nomura M, Takahashi Y, et al. The ‘oral 1,25-dihydroxyvitamin D3 pulse therapy’ in hemodialysis patients with severe secondary hyperparathyroidism. Nephron. 1991;57:23–8.

    Article  CAS  PubMed  Google Scholar 

  77. Gallieni M, Brancaccio D, Padovese P, et al. Low-dose intravenous calcitriol treatment of secondary hyperparathyroidism in hemodialysis patients. Italian Group for the Study of Intravenous Calcitriol. Kidney Int. 1992;42:1191–8.

    Article  CAS  PubMed  Google Scholar 

  78. Moriniere P, Maurouard C, Boudailliez B, et al. Prevention of hyperparathyroidism in patients on maintenance dialysis by intravenous 1-alpha-hydroxyvitamin D3 in association with Mg(OH)2 as sole phosphate binder. A randomized comparative study with the association CaCO3 +/− Mg(OH)2. Nephron. 1992;60:154–63.

    Article  Google Scholar 

  79. Martin KJ, Ballal HS, Domoto DT, Blalock S, Weindel M. Pulse oral calcitriol for the treatment of hyperparathyroidism in patients on continuous ambulatory peritoneal dialysis: preliminary observations. Am J Kidney Dis. 1992;19:540–5.

    Article  CAS  PubMed  Google Scholar 

  80. Holick MF. Vitamin D and the kidney. Kidney Int. 1987;32:912–29.

    Article  CAS  PubMed  Google Scholar 

  81. Mak RH, Wong JH. The vitamin D/parathyroid hormone axis in the pathogenesis of hypertension and insulin resistance in uremia. Miner Electrolyte Metab. 1992;18:156–9.

    CAS  PubMed  Google Scholar 

  82. Bricker NS. On the pathogenesis of the uremic state. An exposition of the ‘trade-off hypothesis’. N Engl J Med. 1972;286:1093–9.

    Article  CAS  PubMed  Google Scholar 

  83. Faugere MC, Friedler R, Fanti P, Malluche H. Lack of histologic signs of Vit D deficiency in early development of renal osteodystrophy. J Bone Miner Res. 1988;3(Suppl 1):s95.

    Google Scholar 

  84. Lopez-Hilker S, Galceran T, Chan YL, Rapp N, Martin KJ, Slatopolsky E. Hypocalcemia may not be essential for the development of secondary hyperparathyroidism in chronic renal failure. J Clin Invest. 1986;78:1097–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nielsen PK, Feldt-Rasmussen U, Olgaard K. A direct effect in vitro of phosphate on PTH release from bovine parathyroid tissue slices but not from dispersed parathyroid cells. Nephrol Dial Transplant. 1996;11:1762–8.

    Article  CAS  PubMed  Google Scholar 

  86. Ritz E, Matthias S, Seidel A, Reichel H, Szabo A, Horl WH. Disturbed calcium metabolism in renal failure – pathogenesis and therapeutic strategies. Kidney Int Suppl. 1992;38:S37–42.

    CAS  PubMed  Google Scholar 

  87. Massry SG, Tuma S, Dua S, Goldstein DA. Reversal of skeletal resistance to parathyroid hormone in uremia by vitamin D metabolites: evidence for the requirement of 1,25(OH)2D3 and 24,25(OH)2D3. J Lab Clin Med. 1979;94:152–7.

    CAS  PubMed  Google Scholar 

  88. Randall RE Jr, Cohen MD, Spray CC Jr, Rossmeisl EC. Hypermagnesemia in renal failure. Etiology and toxic manifestations. Ann Intern Med. 1964;61:73–88.

    Article  CAS  PubMed  Google Scholar 

  89. Moriniere P, Vinatier I, Westeel PF, et al. Magnesium hydroxide as a complementary aluminium-free phosphate binder to moderate doses of oral calcium in uraemic patients on chronic haemodialysis: lack of deleterious effect on bone mineralisation. Nephrol Dial Transplant. 1988;3:651–6.

    Article  CAS  PubMed  Google Scholar 

  90. Alfrey AC, Solomons CC. Bone pyrophosphate in uremia and its association with extraosseous calcification. J Clin Invest. 1976;57:700–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Macintyre I, Davidsson D. The production of secondary potassium depletion, sodium retention, nephrocalcinosis and hypercalcaemia by magnesium deficiency. Biochem J. 1958;70:456–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kaehny WD, Hegg AP, Alfrey AC. Gastrointestinal absorption of aluminum from aluminum-containing antacids. N Engl J Med. 1977;296:1389–90.

    Article  CAS  PubMed  Google Scholar 

  93. Malluche HH. Aluminium and bone disease in chronic renal failure. Nephrol Dial Transplant. 2002;17(Suppl 2):21–4.

    Article  CAS  PubMed  Google Scholar 

  94. Litzow JR, Lemann J Jr, Lennon EJ. The effect of treatment of acidosis on calcium balance in patients with chronic azotemic renal disease. J Clin Invest. 1967;46:280–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kraut JA. The role of metabolic acidosis in the pathogenesis of renal osteodystrophy. Adv Ren Replace Ther. 1995;2:40–51.

    Article  CAS  PubMed  Google Scholar 

  96. Kraut JA, Kurtz I. Metabolic acidosis of CKD: diagnosis, clinical characteristics, and treatment. Am J Kidney Dis. 2005;45:978–93.

    Article  CAS  PubMed  Google Scholar 

  97. Chittal SM, Oreopoulos DG, DeVeber GA, et al. Plasma calcitonin in renal osteodystrophy. Can Med Assoc J. 1971;104:1098–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Opatrna S, Klaboch J, Opatrny K Jr, et al. Procalcitonin levels in peritoneal dialysis patients. Perit Dial Int. 2005;25:470–2.

    Article  CAS  PubMed  Google Scholar 

  99. Silva OL, Becker KL, Shalhoub RJ, Snider RH, Bivins LE, Moore CF. Calcitonin levels in chronic renal disease. Nephron. 1977;19:12–8.

    Article  CAS  PubMed  Google Scholar 

  100. Hirsch PF, Baruch H. Is calcitonin an important physiological substance? Endocrine. 2003;21:201–8.

    Article  CAS  PubMed  Google Scholar 

  101. Patel TS, Freedman BI, Yosipovitch G. An update on pruritus associated with CKD. Am J Kidney Dis. 2007;50:11–20.

    Article  PubMed  Google Scholar 

  102. Kalpakian MA, Mehrotra R. Vascular calcification and disordered mineral metabolism in dialysis patients. Semin Dial. 2007;20:139–43.

    Article  PubMed  Google Scholar 

  103. Caplin B, Wheeler DC. Arterial calcification in dialysis patients and transplant recipients. Semin Dial. 2007;20:144–9.

    Article  PubMed  Google Scholar 

  104. Stompor T, Rajzer M, Pasowicz M, et al. Coronary artery calcification, common carotid artery intima-media thickness and aortic pulse wave velocity in patients on peritoneal dialysis. Int J Artif Organs. 2006;29:736–44.

    Article  CAS  PubMed  Google Scholar 

  105. Moe SM. Vascular calcification and renal osteodystrophy relationship in chronic kidney disease. Eur J Clin Investig. 2006;36(Suppl 2):51–62.

    Article  CAS  Google Scholar 

  106. Mehrotra R. Disordered mineral metabolism and vascular calcification in nondialyzed chronic kidney disease patients. J Ren Nutr. 2006;16:100–18.

    Article  PubMed  Google Scholar 

  107. Goldsmith DJ, Covic A, Sambrook PA, Ackrill P. Vascular calcification in long-term haemodialysis patients in a single unit: a retrospective analysis. Nephron. 1997;77:37–43.

    Article  CAS  PubMed  Google Scholar 

  108. Davies MR, Hruska KA. Pathophysiological mechanisms of vascular calcification in end-stage renal disease. Kidney Int. 2001;60:472–9.

    Article  CAS  PubMed  Google Scholar 

  109. Block GA, Hulbert-Shearon TE, Levin NW, Port FK. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis. 1998;31:607–17.

    Article  CAS  PubMed  Google Scholar 

  110. Young EW, Albert JM, Satayathum S, et al. Predictors and consequences of altered mineral metabolism: the Dialysis Outcomes and Practice Patterns Study. Kidney Int. 2005;67:1179–87.

    Article  CAS  PubMed  Google Scholar 

  111. Kestenbaum B, Sampson JN, Rudser KD, et al. Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol. 2005;16:520–8.

    Article  CAS  PubMed  Google Scholar 

  112. Gokal R, Ramos JM, Ellis HA, et al. Histological renal osteodystrophy, and 25 hydroxycholecalciferol and aluminum levels in patients on continuous ambulatory peritoneal dialysis. Kidney Int. 1983;23:15–21.

    Article  CAS  PubMed  Google Scholar 

  113. Calderaro V, Oreopoulos DG, Meema HE, et al. The evolution of renal osteodystrophy in patients undergoing continuous ambulatory peritoneal dialysis (CAPD). Proc Eur Dial Transplant Assoc. 1980;17:533–42.

    CAS  PubMed  Google Scholar 

  114. Owen JP, Parnell AP, Keir MJ, et al. Critical analysis of the use of skeletal surveys in patients with chronic renal failure. Clin Radiol. 1988;39:578–82.

    Article  CAS  PubMed  Google Scholar 

  115. Couttenye MM, D'Haese PC, Verschoren WJ, Behets GJ, Schrooten I, De Broe ME. Low bone turnover in patients with renal failure. Kidney Int Suppl. 1999;73:S70–6.

    Article  CAS  PubMed  Google Scholar 

  116. Adams JE, Chen SZ, Adams PH, Isherwood I. Measurement of trabecular bone mineral by dual energy computed tomography. J Comput Assist Tomogr. 1982;6:601–7.

    Article  CAS  PubMed  Google Scholar 

  117. Genant HK, Block JE, Steiger P, Glueer CC, Ettinger B, Harris ST. Appropriate use of bone densitometry. Radiology. 1989;170:817–22.

    Article  CAS  PubMed  Google Scholar 

  118. Rahman R, Heaton A, Goodship THJ, et al. Renal osteodystrophy in patients on CAPD: a five year study. Perit Dial Int. 1987;7:20–6.

    Article  Google Scholar 

  119. Digenis G, Khanna R, Pierratos A, et al. Renal osteodystrophy in patients maintained on CAPD for more than three years. Perit Dial Int. 1983;3:81–6.

    Article  Google Scholar 

  120. Kurtz SB. Clinical parameters of renal bone disease: a comparison of CAPD and HD. Dial Transplant. 1985;14:30–7.

    Google Scholar 

  121. Buccianti G, Bianchi ML, Valenti G. Progress of renal osteodystrophy during continuous ambulatory peritoneal dialysis. Clin Nephrol. 1984;22:279–83.

    CAS  PubMed  Google Scholar 

  122. Pei Y, Hercz G, Greenwood C, et al. Renal osteodystrophy in diabetic patients. Kidney Int. 1993;44:159–64.

    Article  CAS  PubMed  Google Scholar 

  123. Cozzolino M, Gallieni M, Chiarelli G, Brancaccio D. Calcium and phosphate handling in peritoneal dialysis. Contrib Nephrol. 2006;150:214–25.

    Article  CAS  PubMed  Google Scholar 

  124. Recker RR, Saville PD. Calcium absorption in renal failure: its relationship to blood urea nitrogen, dietary calcium intake, time on dialysis, and other variables. J Lab Clin Med. 1971;78:380–8.

    CAS  PubMed  Google Scholar 

  125. Clarkson EM, Eastwood JB, Koutsaimanis KG, de Wardener HE. Net intestinal absorption of calcium in patients with chronic renal failure. Kidney Int. 1973;3:258–63.

    Article  CAS  PubMed  Google Scholar 

  126. Ramirez JA, Emmett M, White MG, et al. The absorption of dietary phosphorus and calcium in hemodialysis patients. Kidney Int. 1986;30:753–9.

    Article  CAS  PubMed  Google Scholar 

  127. Hutchison AJ, Boulton HF, Herman K, Day JP, Prescott M, Gokal R. Use of oral stable strontium to provide an index of intestinal calcium absorption in chronic ambulatory peritoneal dialysis patients. Miner Electrolyte Metab. 1992;18:160–5.

    CAS  PubMed  Google Scholar 

  128. Blumenkrantz MJ, Kopple JD, Moran JK, Coburn JW. Metabolic balance studies and dietary protein requirements in patients undergoing continuous ambulatory peritoneal dialysis. Kidney Int. 1982;21:849–61.

    Article  CAS  PubMed  Google Scholar 

  129. Lindholm B, Bergstrom J. Nutritional aspects on peritoneal dialysis. Kidney Int Suppl. 1992;38:S165–71.

    CAS  PubMed  Google Scholar 

  130. Nolph KD, Prowant B, Serkes KD, et al. Multicenter evaluation of a new peritoneal dialysis solution with a high lactate and a low magnesium concentration. Perit Dial Int. 1983;3:63–5.

    Article  Google Scholar 

  131. Hercz G, Coburn JW. Prevention of phosphate retention and hyperphosphatemia in uremia. Kidney Int Suppl. 1987;22:S215–20.

    CAS  PubMed  Google Scholar 

  132. Delmez JA, Fallon MD, Bergfeld MA, Gearing BK, Dougan CS, Teitelbaum SL. Continuous ambulatory peritoneal dialysis and bone. Kidney Int. 1986;30:379–84.

    Article  CAS  PubMed  Google Scholar 

  133. Martis L, Serkes KD, Nolph KD. Calcium carbonate as a phosphate binder: is there a need to adjust peritoneal dialysate calcium concentrations for patients using CaCO3? Perit Dial Int. 1989;9:325–8.

    Article  CAS  PubMed  Google Scholar 

  134. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis. 2003;42:1–202.

    Google Scholar 

  135. Bro S, Rasmussen RA, Handberg J, Olgaard K, Feldt-Rasmussen B. Randomized crossover study comparing the phosphate-binding efficacy of calcium ketoglutarate versus calcium carbonate in patients on chronic hemodialysis. Am J Kidney Dis. 1998;31:257–62.

    Article  CAS  PubMed  Google Scholar 

  136. Andreoli SP, Bergstein JM, Sherrard DJ. Aluminum intoxication from aluminum-containing phosphate binders in children with azotemia not undergoing dialysis. N Engl J Med. 1984;310:1079–84.

    Article  CAS  PubMed  Google Scholar 

  137. Salusky IB, Coburn JW, Foley J, Nelson P, Fine RN. Effects of oral calcium carbonate on control of serum phosphorus and changes in plasma aluminum levels after discontinuation of aluminum-containing gels in children receiving dialysis. J Pediatr. 1986;108:767–70.

    Article  CAS  PubMed  Google Scholar 

  138. Slatopolsky E, Weerts C, Lopez-Hilker S, et al. Calcium carbonate as a phosphate binder in patients with chronic renal failure undergoing dialysis. N Engl J Med. 1986;315:157–61.

    Article  CAS  PubMed  Google Scholar 

  139. Pflanz S, Henderson IS, McElduff N, Jones MC. Calcium acetate versus calcium carbonate as phosphate-binding agents in chronic haemodialysis. Nephrol Dial Transplant. 1994;9:1121–4.

    Article  CAS  PubMed  Google Scholar 

  140. Taylor JE, Henderson IS, Stewart WK, Mactier RA. Calcium carbonate 1250 mg/1260 mg: an effective phosphate binder. Scott Med J. 1990;35:45–7.

    Article  CAS  PubMed  Google Scholar 

  141. Lerner A, Kramer M, Goldstein S, Caruana R, Epstein S, Raja R, Calcium carbonate. A better phosphate binder than aluminum hydroxide. ASAIO Trans. 1986;32:315–8.

    CAS  PubMed  Google Scholar 

  142. Kobrin SM, Epstein SE, Goldstein SJ, Kramer MS, Raja RM. Calcium carbonate as a phosphate binder. One year’s experience. ASAIO Trans. 1987;33:518–20.

    CAS  PubMed  Google Scholar 

  143. Fournier A, Moriniere P, Hamida FB, Ghazali A. CaCO3: an inefficient and unsafe phosphate binder? Nephrol Dial Transplant. 1994;9:335–6.

    CAS  PubMed  Google Scholar 

  144. Ott SM. Aluminum accumulation in individuals with normal renal function. Am J Kidney Dis. 1985;6:297–301.

    Article  CAS  PubMed  Google Scholar 

  145. Joffe P, Olsen F, Heaf JG, Gammelgaard B, Podenphant J. Aluminum concentrations in serum, dialysate, urine and bone among patients undergoing continuous ambulatory peritoneal dialysis (CAPD). Clin Nephrol. 1989;32:133–8.

    CAS  PubMed  Google Scholar 

  146. Slatopolsky E, Weerts C, Norwood K, et al. Long-term effects of calcium carbonate and 2.5 mEq/L calcium dialysate on mineral metabolism. Kidney Int. 1989;36:897–903.

    Article  CAS  PubMed  Google Scholar 

  147. Van der Merwe WM, Rodger RS, Grant AC, et al. Low calcium dialysate and high-dose oral calcitriol in the treatment of secondary hyperparathyroidism in haemodialysis patients. Nephrol Dial Transplant. 1990;5:874–7.

    Article  PubMed  Google Scholar 

  148. Gokal R, Hutchison A. Calcium, phosphorus, aluminium and bone disease in continuous ambulatory peritoneal dialysis patients. In: Hatano M, editor. Nephrology. Tokyo: Springer; 1991. p. 1602–9.

    Chapter  Google Scholar 

  149. Hutchison AJ, Gokal R. Towards tailored dialysis fluids in CAPD – the role of reduced calcium and magnesium in dialysis fluids. Perit Dial Int. 1992;12:199–203.

    Article  CAS  PubMed  Google Scholar 

  150. Hutchison AJ, Were AJ, Boulton HF, Mawer EB, Laing I, Gokal R. Hypercalcaemia, hypermagnesaemia, hyperphosphataemia and hyperaluminaemia in CAPD: improvement in serum biochemistry by reduction in dialysate calcium and magnesium concentrations. Nephron. 1996;72:52–8.

    Article  CAS  PubMed  Google Scholar 

  151. Hutchison AJ, Freemont AJ, Boulton HF, Gokal R. Low-calcium dialysis fluid and oral calcium carbonate in CAPD. A method of controlling hyperphosphataemia whilst minimizing aluminium exposure and hypercalcaemia. Nephrol Dial Transplant. 1992;7:1219–25.

    Article  CAS  PubMed  Google Scholar 

  152. Hutchison AJ, Gokal R. Improved solutions for peritoneal dialysis: physiological calcium solutions, osmotic agents and buffers. Kidney Int Suppl. 1992;38:S153–9.

    CAS  PubMed  Google Scholar 

  153. Piraino B, Perlmutter JA, Holley JL, Johnston JR, Bernardini J. The use of dialysate containing 2.5 mEq/L calcium in peritoneal dialysis patients. Perit Dial Int. 1992;12:75–6.

    Article  CAS  PubMed  Google Scholar 

  154. Cunningham J, Beer J, Coldwell RD, Noonan K, Sawyer N, Makin HL. Dialysate calcium reduction in CAPD patients treated with calcium carbonate and alfacalcidol. Nephrol Dial Transplant. 1992;7:63–8.

    CAS  PubMed  Google Scholar 

  155. Kimata N, Albert JM, Akiba T, et al. Association of mineral metabolism factors with all-cause and cardiovascular mortality in hemodialysis patients: the Japan dialysis outcomes and practice patterns study. Hemodial Int. 2007;11:340–8.

    Article  PubMed  Google Scholar 

  156. White CA, Jaffey J, Magner P. Cost of applying the K/DOQI guidelines for bone metabolism and disease to a cohort of chronic hemodialysis patients. Kidney Int. 2007;71:312–7.

    Article  CAS  PubMed  Google Scholar 

  157. Lorenzo V, Martin-Malo A, Perez-Garcia R, et al. Prevalence, clinical correlates and therapy cost of mineral abnormalities among haemodialysis patients: a cross-sectional multicentre study. Nephrol Dial Transplant. 2006;21:459–65.

    Article  PubMed  Google Scholar 

  158. Manns B, Stevens L, Miskulin D, Owen WF Jr, Winkelmayer WC, Tonelli M. A systematic review of sevelamer in ESRD and an analysis of its potential economic impact in Canada and the United States. Kidney Int. 2004;66:1239–47.

    Article  CAS  PubMed  Google Scholar 

  159. McGary TJ, Nolph KD, Moore HL, Kartinos NJ. Polycation as an alternative osmotic agent and phosphate binder in peritoneal dialysis. Uremia Invest. 1984;8:79–84.

    Article  CAS  PubMed  Google Scholar 

  160. Hutchison AJ. Calcitriol, lanthanum carbonate, and other new phosphate binders in the management of renal osteodystrophy. Perit Dial Int. 1999;19(Suppl 2):S408–12.

    Article  PubMed  Google Scholar 

  161. Chertow GM, Burke SK, Lazarus JM, et al. Poly[allylamine hydrochloride] (RenaGel): a noncalcemic phosphate binder for the treatment of hyperphosphatemia in chronic renal failure. Am J Kidney Dis. 1997;29:66–71.

    Article  CAS  PubMed  Google Scholar 

  162. Graff L, Burnel D. A possible non-aluminum oral phosphate binder? A comparative study on dietary phosphorus absorption. Res Commun Mol Pathol Pharmacol. 1995;89:373–88.

    CAS  PubMed  Google Scholar 

  163. Albaaj F, Hutchison AJ. Lanthanum carbonate (Fosrenol): a novel agent for the treatment of hyperphosphataemia in renal failure and dialysis patients. Int J Clin Pract. 2005;59:1091–6.

    Article  CAS  PubMed  Google Scholar 

  164. Finn WF, Joy MS. A long-term, open-label extension study on the safety of treatment with lanthanum carbonate, a new phosphate binder, in patients receiving hemodialysis. Curr Med Res Opin. 2005;21:657–64.

    Article  CAS  PubMed  Google Scholar 

  165. Hutchison AJ, Maes B, Vanwalleghem J, et al. Long-term efficacy and tolerability of lanthanum carbonate: results from a 3-year study. Nephron Clin Pract. 2006;102:c61–71.

    Article  CAS  PubMed  Google Scholar 

  166. Persy VP, Behets GJ, Bervoets AR, De Broe ME, D'Haese PC. Lanthanum: a safe phosphate binder. Semin Dial. 2006;19:195–9.

    Article  PubMed  Google Scholar 

  167. Hutchison AJ. Improving phosphate-binder therapy as a way forward. Nephrol Dial Transplant. 2004;19(Suppl 1):i19–24.

    Article  PubMed  Google Scholar 

  168. Drueke TB. Lanthanum carbonate as a first-line phosphate binder: the ‘cons’. Semin Dial. 2007;20:329–32.

    PubMed  Google Scholar 

  169. McIntyre CW. New developments in the management of hyperphosphatemia in chronic kidney disease. Semin Dial. 2007;20:337–41.

    Article  PubMed  Google Scholar 

  170. Parker A, Nolph KD. Magnesium and calcium mass transfer during continuous ambulatory peritoneal dialysis. Trans Am Soc Artif Intern Organs. 1980;26:194–6.

    CAS  PubMed  Google Scholar 

  171. Delmez JA, Slatopolsky E, Martin KJ, Gearing BN, Harter HR. Minerals, vitamin D, and parathyroid hormone in continuous ambulatory peritoneal dialysis. Kidney Int. 1982;21:862–7.

    Article  CAS  PubMed  Google Scholar 

  172. Kwong MBL, Lee JSK, Chan MK. Transperitoneal calcium and magnesium transfer during an 8-hour dialysis. Perit Dial Int. 1987;7:85–9.

    Article  Google Scholar 

  173. Hutchison AJ, Merchant M, Boulton HF, Hinchcliffe R, Gokal R. Calcium and magnesium mass transfer in peritoneal dialysis patients using 1.25 mmol/L calcium, 0.25 mmol/L magnesium dialysis fluid. Perit Dial Int. 1993;13:219–23.

    Article  CAS  PubMed  Google Scholar 

  174. Simonsen O, Venturoli D, Wieslander A, Carlsson O, Rippe B. Mass transfer of calcium across the peritoneum at three different peritoneal dialysis fluid Ca2+ and glucose concentrations. Kidney Int. 2003;64:208–15.

    Article  CAS  PubMed  Google Scholar 

  175. Hamdy NA, Brown CB, Boletis J, et al. Mineral metabolism in CAPD. Contrib Nephrol. 1990;85:100–10.

    Article  CAS  PubMed  Google Scholar 

  176. Haris A, Sherrard DJ, Hercz G. Reversal of adynamic bone disease by lowering of dialysate calcium. Kidney Int. 2006;70:931–7.

    Article  CAS  PubMed  Google Scholar 

  177. Meema HE, Oreopoulos DG, Rapoport A. Serum magnesium level and arterial calcification in end-stage renal disease. Kidney Int. 1987;32:388–94.

    Article  CAS  PubMed  Google Scholar 

  178. Gonella M, Ballanti P, Della RC, et al. Improved bone morphology by normalizing serum magnesium in chronically hemodialyzed patients. Miner Electrolyte Metab. 1988;14:240–5.

    CAS  PubMed  Google Scholar 

  179. Breuer J, Moniz C, Baldwin D, Parsons V. The effects of zero magnesium dialysate and magnesium supplements on ionised calcium concentration in patients on regular dialysis treatment. Nephrol Dial Transplant. 1987;2:347–50.

    CAS  PubMed  Google Scholar 

  180. Parsons V, Baldwin D, Moniz C, Marsden J, Ball E, Rifkin I. Successful control of hyperparathyroidism in patients on continuous ambulatory peritoneal dialysis using magnesium carbonate and calcium carbonate as phosphate binders. Nephron. 1993;63:379–83.

    Article  CAS  PubMed  Google Scholar 

  181. Shah GM, Winer RL, Cutler RE, et al. Effects of a magnesium-free dialysate on magnesium metabolism during continuous ambulatory peritoneal dialysis. Am J Kidney Dis. 1987;10:268–75.

    Article  CAS  PubMed  Google Scholar 

  182. Gastro-intestinal system; antacids and simeticone. In: Martin J, editor. British national formulary. London: BMJ Publishing Group & RPS Publishing; 2007. p. 37–9.

    Google Scholar 

  183. Seelig M. Cardiovascular consequences of magnesium deficiency and loss: pathogenesis, prevalence and manifestations–magnesium and chloride loss in refractory potassium repletion. Am J Cardiol. 1989;63:4G–21G.

    Article  CAS  PubMed  Google Scholar 

  184. Seelig MS. Interrelationship of magnesium and congestive heart failure. Wien Med Wochenschr. 2000;150:335–41.

    CAS  PubMed  Google Scholar 

  185. Lemann J Jr, Lennon EJ. Role of diet, gastrointestinal tract and bone in acid-base homeostasis. Kidney Int. 1972;1:275–9.

    Article  CAS  PubMed  Google Scholar 

  186. Kaye M, Frueh AJ, Silverman M, Henderson J, Thibault T. A study of vertebral bone powder from patients with chronic renal failure. J Clin Invest. 1970;49:442–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. De MS, Cecchin E. Severe metabolic acidosis and disturbances of calcium metabolism induced by acetazolamide in patients on haemodialysis. Clin Sci (Lond). 1990;78:295–302.

    Article  Google Scholar 

  188. Maren TH. Carbonic anhydrase. N Engl J Med. 1985;313:179–81.

    Article  CAS  PubMed  Google Scholar 

  189. Waite LC. Carbonic anhydrase inhibitors, parathyroid hormone and calcium metabolism. Endocrinology. 1972;91:1160–5.

    Article  CAS  PubMed  Google Scholar 

  190. Nolph KD, Sorkin M, Rubin J, et al. Continuous ambulatory peritoneal dialysis: three-year experience at one center. Ann Intern Med. 1980;92:609–13.

    Article  CAS  PubMed  Google Scholar 

  191. Fourtounas C, Savidaki E, Roumelioti M, et al. Acid-base profile and predictors of metabolic acidosis in patients undergoing peritoneal dialysis with lactate- and bicarbonate-buffered peritoneal dialysis solutions. Adv Perit Dial. 2006;22:187–91.

    CAS  PubMed  Google Scholar 

  192. Lefebvre A, de Vernejoul MC, Gueris J, Goldfarb B, Graulet AM, Morieux C. Optimal correction of acidosis changes progression of dialysis osteodystrophy. Kidney Int. 1989;36:1112–8.

    Article  CAS  PubMed  Google Scholar 

  193. Fassbinder W, Brunner FP, Brynger H, et al. Combined report on regular dialysis and transplantation in Europe, XX, 1989. Nephrol Dial Transplant. 1991;6(Suppl 1):5–35.

    PubMed  Google Scholar 

  194. Loschiavo C, Fabris A, Adami S, et al. Effects of continuous ambulatory peritoneal dialysis (CAPD) on renal osteodystrophy. Perit Dial Int. 1985;5:53–5.

    Article  Google Scholar 

  195. Heaf JG, Lokkegard H. Parathyroid hormone during maintenance dialysis: influence of low calcium dialysate, plasma albumin and age. J Nephrol. 1998;11:203–10.

    CAS  PubMed  Google Scholar 

  196. Avram MM, Mittman N, Myint MM, Fein P. Importance of low serum intact parathyroid hormone as a predictor of mortality in hemodialysis and peritoneal dialysis patients: 14 years of prospective observation. Am J Kidney Dis. 2001;38:1351–7.

    Article  CAS  PubMed  Google Scholar 

  197. Dimkovic NB, Bargman J, Vas S, Oreopoulos DG. Normal or low initial PTH levels are not a predictor of morbidity/mortality in patients undergoing chronic peritoneal dialysis. Perit Dial Int. 2002;22:204–10.

    Article  CAS  PubMed  Google Scholar 

  198. Aloni Y, Shany S, Chaimovitz C. Losses of 25-hydroxyvitamin D in peritoneal fluid: possible mechanism for bone disease in uremic patients treated with chronic ambulatory peritoneal dialysis. Miner Electrolyte Metab. 1983;9:82–6.

    CAS  PubMed  Google Scholar 

  199. Cassidy MJ, Owen JP, Ellis HA, et al. Renal osteodystrophy and metastatic calcification in long-term continuous ambulatory peritoneal dialysis. Q J Med. 1985;54:29–48.

    CAS  PubMed  Google Scholar 

  200. Dunstan CR, Hills E, Norman AW, et al. Treatment of hemodialysis bone disease with 24,25-(OH)2D3 and 1,25-(OH)2D3 alone or in combination. Miner Electrolyte Metab. 1985;11:358–68.

    CAS  PubMed  Google Scholar 

  201. Baskin E, Ozen S, Karcaaltincaba M, et al. Beneficial role of intravenous calcitriol on bone mineral density in children with severe secondary hyperparathyroidism. Int Urol Nephrol. 2004;36:113–8.

    Article  CAS  PubMed  Google Scholar 

  202. Greenbaum LA, Grenda R, Qiu P, et al. Intravenous calcitriol for treatment of hyperparathyroidism in children on hemodialysis. Pediatr Nephrol. 2005;20:622–30.

    Article  PubMed  Google Scholar 

  203. Schaefer K, Umlauf E, von Herrath D. Reduced risk of hypercalcemia for hemodialysis patients by administering calcitriol at night. Am J Kidney Dis. 1992;19:460–4.

    Article  CAS  PubMed  Google Scholar 

  204. Korkor AB. Reduced binding of [3H]1,25-dihydroxyvitamin D3 in the parathyroid glands of patients with renal failure. N Engl J Med. 1987;316:1573–7.

    Article  CAS  PubMed  Google Scholar 

  205. Merke J, Hugel U, Zlotkowski A, et al. Diminished parathyroid 1,25(OH)2D3 receptors in experimental uremia. Kidney Int. 1987;32:350–3.

    Article  CAS  PubMed  Google Scholar 

  206. Brown AJ, Dusso A, Lopez-Hilker S, Lewis-Finch J, Grooms P, Slatopolsky E. 1,25-(OH)2D receptors are decreased in parathyroid glands from chronically uremic dogs. Kidney Int. 1989;35:19–23.

    Article  CAS  PubMed  Google Scholar 

  207. Pedrozo HA, Schwartz Z, Rimes S, et al. Physiological importance of the 1,25(OH)2D3 membrane receptor and evidence for a membrane receptor specific for 24,25(OH)2D3. J Bone Miner Res. 1999;14:856–67.

    Article  CAS  PubMed  Google Scholar 

  208. Teng M, Wolf M, Lowrie E, Ofsthun N, Lazarus JM, Thadhani R. Survival of patients undergoing hemodialysis with paricalcitol or calcitriol therapy. N Engl J Med. 2003;349:446–56.

    Article  CAS  PubMed  Google Scholar 

  209. Shoji S, Nishizawa Y, Tabata T, et al. Influence of serum phosphate on the efficacy of oral 1,25-dihydroxyvitamin D3 pulse therapy. Miner Electrolyte Metab. 1995;21:223–8.

    CAS  PubMed  Google Scholar 

  210. Kubota M, Iwanaga Y, Ishiguro N. The effect of intraperitoneal 22-oxacalcitriol on secondary hyperparathyroidism in continuous ambulatory peritoneal dialysis patients (IPOX study). Adv Perit Dial. 2003;19:227–30.

    CAS  PubMed  Google Scholar 

  211. Murakami K, Miyachi H, Watanabe A, et al. Suppression of parathyroid hormone secretion in CAPD patients by intraperitoneal administration of Maxacalcitol. Clin Exp Nephrol. 2004;8:134–8.

    Article  CAS  PubMed  Google Scholar 

  212. Brown AJ, Ritter CR, Finch JL, et al. The noncalcemic analogue of vitamin D, 22-oxacalcitriol, suppresses parathyroid hormone synthesis and secretion. J Clin Invest. 1989;84:728–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Brown AJ, Finch JL, Lopez-Hilker S, et al. New active analogues of vitamin D with low calcemic activity. Kidney Int Suppl. 1990;29:S22–7.

    CAS  PubMed  Google Scholar 

  214. Kubrusly M, Gagne ER, Urena P, et al. Effect of 22-oxa-calcitriol on calcium metabolism in rats with severe secondary hyperparathyroidism. Kidney Int. 1993;44:551–6.

    Article  CAS  PubMed  Google Scholar 

  215. Posner GH. New vitamin D analogues. Nephrol Dial Transplant. 1996;11(Suppl 3):32–6.

    Article  CAS  PubMed  Google Scholar 

  216. Nemeth EF, Bennett SA. Tricking the parathyroid gland with novel calcimimetic agents. Nephrol Dial Transplant. 1998;13:1923–5.

    Article  CAS  PubMed  Google Scholar 

  217. Moe SM, Chertow GM, Coburn JW, et al. Achieving NKF-K/DOQI bone metabolism and disease treatment goals with cinacalcet HCl. Kidney Int. 2005;67:760–71.

    Article  CAS  PubMed  Google Scholar 

  218. Cunningham J, Danese M, Olson K, Klassen P, Chertow GM. Effects of the calcimimetic cinacalcet HCl on cardiovascular disease, fracture, and health-related quality of life in secondary hyperparathyroidism. Kidney Int. 2005;68:1793–800.

    Article  CAS  PubMed  Google Scholar 

  219. Moe SM, Cunningham J, Bommer J, et al. Long-term treatment of secondary hyperparathyroidism with the calcimimetic cinacalcet HCl. Nephrol Dial Transplant. 2005;20:2186–93.

    Article  CAS  PubMed  Google Scholar 

  220. Lindberg JS, Culleton B, Wong G, et al. Cinacalcet HCl, an oral calcimimetic agent for the treatment of secondary hyperparathyroidism in hemodialysis and peritoneal dialysis: a randomized, double-blind, multicenter study. J Am Soc Nephrol. 2005;16:800–7.

    Article  CAS  PubMed  Google Scholar 

  221. Block GA, Martin KJ, de Francisco AL, et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med. 2004;350:1516–25.

    Article  CAS  PubMed  Google Scholar 

  222. EVOLVE Trial Investigators, Chertow GM, Block GA, Correa-Rotter R, Drüeke TB, Floege J, Goodman WG, Herzog CA, Kubo Y, London GM, Mahaffey KW, Mix TC, Moe SM, Trotman ML, Wheeler DC, Parfrey PS. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med. 2012;367(26):2482–94. https://doi.org/10.1056/NEJMoa1205624. Epub 2012 Nov 3.

    Article  Google Scholar 

  223. Andress DL, Hercz G, Kopp JB, et al. Bone histomorphometry of renal osteodystrophy in diabetic patients. J Bone Miner Res. 1987;2:525–31.

    Article  CAS  PubMed  Google Scholar 

  224. McNair P, Christensen MS, Madsbad S, Christiansen C, Transbol I. Hypoparathyroidism in diabetes mellitus. Acta Endocrinol (Copenh). 1981;96:81–6.

    CAS  PubMed  Google Scholar 

  225. Heidbreder E, Gotz R, Schafferhans K, Heidland A. Diminished parathyroid gland responsiveness to hypocalcemia in diabetic patients with uremia. Nephron. 1986;42:285–9.

    Article  CAS  PubMed  Google Scholar 

  226. Ballanti P, Wedard BM, Bonucci E. Frequency of adynamic bone disease and aluminum storage in Italian uraemic patients – retrospective analysis of 1429 iliac crest biopsies. Nephrol Dial Transplant. 1996;11:663–7.

    Article  CAS  PubMed  Google Scholar 

  227. Torres A, Lorenzo V, Hernandez D, et al. Bone disease in predialysis, hemodialysis, and CAPD patients: evidence of a better bone response to PTH. Kidney Int. 1995;47:1434–42.

    Article  CAS  PubMed  Google Scholar 

  228. Fournier A, Moriniere P, Ben HF, et al. Use of alkaline calcium salts as phosphate binder in uremic patients. Kidney Int Suppl. 1992;38:S50–61.

    CAS  PubMed  Google Scholar 

  229. Kurz P, Monier-Faugere MC, Bognar B, et al. Evidence for abnormal calcium homeostasis in patients with adynamic bone disease. Kidney Int. 1994;46:855–61.

    Article  CAS  PubMed  Google Scholar 

  230. Mucsi I, Hercz G. Relative hypoparathyroidism and adynamic bone disease. Am J Med Sci. 1999;317:405–9.

    Article  CAS  PubMed  Google Scholar 

  231. Miller PD. Treatment of osteoporosis in chronic kidney disease and end-stage renal disease. Curr Osteoporos Rep. 2005;3:5–12.

    Article  PubMed  Google Scholar 

  232. Ott SM. Long-term safety of bisphosphonates. J Clin Endocrinol Metab. 2005;90:1897–9.

    Article  CAS  PubMed  Google Scholar 

  233. Fan SL, Cunningham J. Bisphosphonates in renal osteodystrophy. Curr Opin Nephrol Hypertens. 2001;10:581–8.

    Article  CAS  PubMed  Google Scholar 

  234. Geng Z, Monier-Faugere MC, Bauss F, Malluche HH. Short-term administration of the bisphosphonate ibandronate increases bone volume and prevents hyperparathyroid bone changes in mild experimental renal failure. Clin Nephrol. 2000;54:45–53.

    CAS  PubMed  Google Scholar 

  235. Mazzaferro S, Coen G, Ballanti P, et al. Osteocalcin, iPTH, alkaline phosphatase and hand X-ray scores as predictive indices of histomorphometric parameters in renal osteodystrophy. Nephron. 1990;56:261–6.

    Article  CAS  PubMed  Google Scholar 

  236. Chu P, Chao TY, Lin YF, Janckila AJ, Yam LT. Correlation between histomorphometric parameters of bone resorption and serum type 5b tartrate-resistant acid phosphatase in uremic patients on maintenance hemodialysis. Am J Kidney Dis. 2003;41:1052–9.

    Article  CAS  PubMed  Google Scholar 

  237. Mohini R, Dumler F, Rao DS. Skeletal surveys in renal osteodystrophy. ASAIO Trans. 1991;37:635–7.

    CAS  PubMed  Google Scholar 

  238. DeVita MV, Rasenas LL, Bansal M, et al. Assessment of renal osteodystrophy in hemodialysis patients. Medicine (Baltimore). 1992;71:284–90.

    Article  CAS  PubMed  Google Scholar 

  239. Kaida H, Ishibashi M, Nishida H, et al. Assessment of therapeutic effect in patients with secondary hyperparathyroidism using bone scintigraphy. Ann Nucl Med. 2005;19:367–72.

    Article  PubMed  Google Scholar 

  240. Kurata S, Ishibashi M, Nishida H, Hiromatsu Y, Hayabuchi N. A clinical assessment of the relationship between bone scintigraphy and serum biochemical markers in hemodialysis patients. Ann Nucl Med. 2004;18:513–8.

    Article  PubMed  Google Scholar 

  241. Lindergard B, Johnell O, Nilsson BE, Wiklund PE. Studies of bone morphology, bone densitometry and laboratory data in patients on maintenance hemodialysis treatment. Nephron. 1985;39:122–9.

    Article  CAS  PubMed  Google Scholar 

  242. Piraino B, Chen T, Cooperstein L, Segre G, Puschett J. Fractures and vertebral bone mineral density in patients with renal osteodystrophy. Clin Nephrol. 1988;30:57–62.

    CAS  PubMed  Google Scholar 

  243. Funke M, Maurer J, Grabbe E, Scheler F. Comparative studies with quantitative computed tomography and dual-energy x-ray absorptiometry on bone density in renal osteopathy. Rofo. 1992;157:145–9.

    Article  CAS  PubMed  Google Scholar 

  244. Johnson DW, McIntyre HD, Brown A, Freeman J, Rigby RJ. The role of DEXA bone densitometry in evaluating renal osteodystrophy in continuous ambulatory peritoneal dialysis patients. Perit Dial Int. 1996;16:34–40.

    Article  CAS  PubMed  Google Scholar 

  245. Chesney RW. Bone mineral density in chronic renal insufficiency and end-stage renal disease: how to interpret the scans. J Pediatr Endocrinol Metab. 2004;17(Suppl 4):1327–32.

    PubMed  Google Scholar 

  246. Gerakis A, Hadjidakis D, Kokkinakis E, Apostolou T, Raptis S, Billis A. Correlation of bone mineral density with the histological findings of renal osteodystrophy in patients on hemodialysis. J Nephrol. 2000;13:437–43.

    CAS  PubMed  Google Scholar 

  247. KDIGO. Clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD-MBD). Kidney Int Suppl. 2017;7(1):1–59. ISSN 2157-1716. https://doi.org/10.1016/j.kisu.2017.04.001. https://www.sciencedirect.com/science/article/pii/S2157171617300011

  248. Floege J, Covic AC, Ketteler M, et al. A phase III study of the efficacy and safety of a novel iron-based phosphate binder in dialysis patients. Kidney Int. 2014;86(3):638–47. https://doi.org/10.1038/ki.2014.58101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Yang WC, Yang CS, Hou CC, et al. An open-label, crossover study of a new phosphate-binding agent in haemodialysis patients: ferric citrate. Nephrol Dial Transplant. 2002;17(2):265–70. https://doi.org/10.1093/ndt/17.2.265.

    Article  CAS  PubMed  Google Scholar 

  250. Wei M, Taskapan H, Esbaei K, Jassal SV, Bargman JM, Oreopoulos DG. K/DOQI guideline requirements for calcium, phosphate, calcium phosphate product, and parathyroid hormone control in dialysis patients: can we achieve them? Int Urol Nephrol. 2006;38:739–43.

    Article  CAS  PubMed  Google Scholar 

  251. Dyckner T, Wester PO. Relation between potassium, magnesium and cardiac arrhythmias. Acta Med Scand Suppl. 1981;647:163–9.

    CAS  PubMed  Google Scholar 

  252. Whang R. Clinical disorders of magnesium metabolism. Compr Ther. 1997;23:168–73.

    CAS  PubMed  Google Scholar 

  253. Hollifield JW. Thiazide treatment of systemic hypertension: effects on serum magnesium and ventricular ectopic activity. Am J Cardiol. 1989;63:22G–5G.

    Article  CAS  PubMed  Google Scholar 

  254. Ben-Ezer D, Shany S, Conforty A, et al. Oral administration of 24,25(OH)2D3 suppresses the serum parathyroid hormone levels of dialysis patients. Nephron. 1991;58:283–7.

    Article  CAS  PubMed  Google Scholar 

  255. Gal-Moscovici A, Rubinger D, Popovtzer MM. 24,25-dihydroxyvitamin D3 in combination with 1,25-dihydroxyvitamin D3 ameliorates renal osteodystrophy in rats with chronic renal failure. Clin Nephrol. 2000;53:362–71.

    CAS  PubMed  Google Scholar 

  256. Mortensen BM, Aarseth HP, Ganss R, Haug E, Gautvik KM, Gordeladze JO. 24,25-dihydroxy vitamin D3 treatment inhibits parathyroid-stimulated adenylate cyclase in iliac crest biopsies from uremic patients. Bone. 1993;14:125–31.

    Article  CAS  PubMed  Google Scholar 

  257. Muirhead N, Adami S, Sandler LM, et al. Long-term effects of 1,25–dihydroxy vitamin D3 and 24,25-dihydroxy vitamin D3 in renal osteodystrophy. Q J Med. 1982;51:427–44.

    CAS  PubMed  Google Scholar 

  258. Scanziani R, Dozio B, Bonforte G, Surian M. Effects of calcitriol pulse therapy per os in CAPD patients. Adv Perit Dial. 1994;10:270–4.

    CAS  PubMed  Google Scholar 

  259. Bechtel U, Mucke C, Feucht HE, Schiffl H, Sitter T, Held E. Limitations of pulse oral calcitriol therapy in continuous ambulatory peritoneal dialysis patients. Am J Kidney Dis. 1995;25:291–6.

    Article  CAS  PubMed  Google Scholar 

  260. Romanini D, Gazo A, Bellazzi R, de Vincenzi A, Nai M, Santagostino M. Long-term effect of oral calcitriol single weekly pulse in CAPD and in HD. Adv Perit Dial. 1994;10:267–9.

    CAS  PubMed  Google Scholar 

  261. Hirata M, Katsumata K, Masaki T, et al. 22-Oxacalcitriol ameliorates high-turnover bone and marked osteitis fibrosa in rats with slowly progressive nephritis. Kidney Int. 1999;56:2040–7.

    Article  CAS  PubMed  Google Scholar 

  262. Kurokawa K, Akizawa T, Suzuki M, Akiba T, Ogata E, Slatopolsky E. Effect of 22-oxacalcitriol on hyperparathyroidism of dialysis patients: results of a preliminary study. Nephrol Dial Transplant. 1996;11(Suppl 3):121–4.

    Article  CAS  PubMed  Google Scholar 

  263. Yasuda M, Akiba T, Nihei H. Multicenter clinical trial of 22-oxa-1,25-dihydroxyvitamin D3 for chronic dialysis patients. Am J Kidney Dis. 2003;41:S108–11.

    Article  CAS  PubMed  Google Scholar 

  264. Lindberg JS. Calcimimetics: a new tool for management of hyperparathyroidism and renal osteodystrophy in patients with chronic kidney disease. Kidney Int Suppl. 2005:S33–6.

    Google Scholar 

  265. Lindberg JS, Moe SM, Goodman WG, et al. The calcimimetic AMG 073 reduces parathyroid hormone and calcium x phosphorus in secondary hyperparathyroidism. Kidney Int. 2003;63:248–54.

    Article  CAS  PubMed  Google Scholar 

  266. Quarles LD, Sherrard DJ, Adler S, et al. The calcimimetic AMG 073 as a potential treatment for secondary hyperparathyroidism of end-stage renal disease. J Am Soc Nephrol. 2003;14:575–83.

    Article  CAS  PubMed  Google Scholar 

  267. Block GA. The impact of calcimimetics on mineral metabolism and secondary hyperparathyroidism in end-stage renal disease. Kidney Int Suppl. 2003:S131–6.

    Google Scholar 

  268. Maruyama Y, Arai K, Yoshida K, et al. Study of tartrate resistant acid phosphatase in patients with chronic renal failure on maintenance hemodialysis. Nippon Jinzo Gakkai Shi. 1991;33:397–402.

    CAS  PubMed  Google Scholar 

  269. Kaneko Y, Maruyama Y, Tunemi K, et al. Studies of serum bone Al-P isoenzyme and serum osteocalcin in patients on maintenance hemodialysis. Nippon Jinzo Gakkai Shi. 1990;32:345–51.

    CAS  PubMed  Google Scholar 

  270. Olgaard K, Madsen S, Heerfordt J, Hammer M, Jensen H. Scintigraphic skeletal changes in non-dialyzed patients with advanced renal failure. Clin Nephrol. 1979;12:273–8.

    CAS  PubMed  Google Scholar 

  271. Hodson EM, Howman-Giles RB, Evans RA, et al. The diagnosis of renal osteodystrophy: a comparison of Technetium-99m-pyrophosphate bone scintigraphy with other techniques. Clin Nephrol. 1981;16:24–8.

    CAS  PubMed  Google Scholar 

  272. Karsenty G, Vigneron N, Jorgetti V, et al. Value of the 99mTc-methylene diphosphonate bone scan in renal osteodystrophy. Kidney Int. 1986;29:1058–65.

    Article  CAS  PubMed  Google Scholar 

  273. Heaf JG, Nielsen LP, Mogensen NB. Use of bone mineral content determination in the evaluation of osteodystrophy among hemodialysis patients. Nephron. 1983;35:103–7.

    Article  CAS  PubMed  Google Scholar 

  274. Rickers H, Christensen M, Rodbro P. Bone mineral content in patients on prolonged maintenance hemodialysis: a three year follow-up study. Clin Nephrol. 1983;20:302–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vardhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vardhan, A., Hutchison, A.J. (2023). Calcium, Phosphate, and Renal Osteodystrophy. In: Khanna, R., Krediet, R.T. (eds) Nolph and Gokal's Textbook of Peritoneal Dialysis. Springer, Cham. https://doi.org/10.1007/978-3-030-62087-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62087-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62086-8

  • Online ISBN: 978-3-030-62087-5

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics