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Amir Shoarian Sattari, Patrick Schmidt, Wenqing Wang, and Keita Yoshioka

7.1 FFS—Forces on Fracture Surfaces

The FFS method (see Sect. 3.2.1) was developed to simulate direct shear tests. To
provide a tool for the projectwork and get things easier done a graphical user interface
(GUI) was also created. The GUI simply calls all necessary functions by letting the
user either fill form fields or choose input files from the working folder. The rock
parameters and the conditions of the direct shear test with the normal stress levels
and shear displacements have to be selected. If an experiment is simulated the lab
results can be selected as a text file so a visual comparison is possible. The geometry
has to be loaded as a point cloud or an artificial surface can be generated. With small
modifications the code can do multiple executions using artificial surfaces.

The GUI can be found at www.github.com/Poetschke/Ecodist/. At github an exe-
cutable is available which allows (after some installation) to test it without needing
a Matlab licence. The scheme of the FFS algorithm is illustrated in Fig. 7.1.
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Fig. 7.1 Scheme of the FFS code

7.2 LEM—Lattice-Element-Method

The lattice element method (LEM) is a well-known model for the simulation of the
fracture in the cemented geomaterial and concrete. In comparison to the discrete
element method (DEM), where the contact search and contact mechanics are imple-
mented, the LEM represents the medium with a series of spring or beam elements to
simulate the fracking process. The considered LEM in this study is fully developed
in Kiel University (CAU Kiel) and is implemented in various engineering applica-
tions. In earlier studies, the application of LEM was restricted to fracture simulation
in concrete, where the heterogeneity was introduced with defining the aggregates,
mortar and interface bond zone [1–3]. With the development of LEM its applica-
tion is extended to failure behavior of cemented geomaterials such as bio-cemented
granular material [4]. The LEM is also used to simulate the fracture under dynamic
loading for the foam concrete [5],masonrywalls [6] and cemented geomaterial [7, 8].
Figure 7.2 depicts the coupled THM processes and affected geomaterial parameters,
which are implemented in LEM algorithm.

In its recent application, the evaluation of effective properties in shallow crustal
rock is investigated [9]. The developed in-house LEM model is applied for the sim-
ulation of the heat transfer in modified granular material and assessment of effective
thermal conductivity [10–13] as well as the Nano geocomposites [14]. The thermo-
mechanicalLEMmodel is implemented to simulate the changeof the thermal conduc-
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Fig. 7.2 The simulation of the coupled THM processes with LEM

tivity of the rocks under mechanical and thermal loadings [15].With an integration of
the interface element, the LEM is able to simulate the fully coupled TM processes in
cemented geomaterial [16]. The application of LEM is extended to model the hydro-
mechanical processes [17, 18]. In these models, the dual lattice setup is considered,
where lattice elements transfer the mechanical loads between the nodes and conduct
elements only carry the fluid flow. Similar to DEMmodels [19], the LEM is extended
to simulate the shrinkage and swelling processes in rock material. In the scope of
this study, the LEM is also used for the simulation of pressurized percolation tests in
rock material. In this model, the mass conservation law is implemented and artificial
cavities for fluid or gas transport are defined. In CAUKiel, we are devoted to continue
the development of the LEM and overcome its application limitations. In this sense,
the parallel computing for computing efficiency is under process and development.
The ongoingwork incorporate the plasticity, visco-plasticity, flow, hardening, fatigue
and creep rules to establish a constitutive lattice model, which can be implemented
in the practical applications to simulate the geomaterial response under the coupled
THM processes.

7.3 SPH—Smoothed-Particle-Hydrodynamics

The (explicit) discrete nodal formulation of the Navier-Stokes equations basically
results in computations of loops over all considered particles and for each additional
nested loops over neighbouring particles. On the one hand, this circumstance renders
SPH a computationally demanding method, on the other hand, the parallelization of
this structure assembled from subroutines is quite generic on CPUs and even GPUs.
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Despite the Lagrangian character and the meshfree formulation, SPH codes can be
compared to collocation methods resulting in particle-particle interactions (linear
algebra operations) similar to explicit particle codes like Molecular Dynamics (MD)
or Discrete ElementMethods (DEM). Thus, they exhibit the same challenges as these
explicit particle codes: for the calculating of the particle interactions, data from neig-
bouring particles is needed, and memory access and load balancing is unstructured.
The neighbour search algorithm is most expensive and considerable communication
as well as data migration between processors is necessary. Therefore the presented
SPH formulation is implemented on top of the highly optimized andMPI-parallelized
HOOMD-blue library developed by the Glotzer group at the University of Michigan,
USA [20, 21]. This general purpose particle simulation toolkit, initially developed
for MD, comes with MPI-based spatial domain decomposition, demonstrated weak
and strong scalability for both, GPU- and CPU-accelerated HPC clusters, heuristic
load balancing, algorithms for neigbour search and sorting methods to ensure opti-
mal memory access patterns. The HOOMD-Blue software package is employed in
a large selection of research areas, cf. the mentioned homepage. It is open-source,
published under a BSD 3-clause license and a and comprehensive documentation
is available. Recently, weak and strong scaling tests of fluid flow through porous
media has been investigated on CPU- and GPU-HPC platforms, [22]. The imple-
mented SPH model [23] includes both, CUDA and MPI features and uses the above
mentioned advantages. Setup of the boundary value problem and initialisation of
the geometry and particle data is implemented as user-friendly Python scripts. The
main implementation are programmed in C++ and CUDA. This comprises among
other things the evaluation of the kernel, the computation of density rate, pressure
fields and particle accelerations as well as the time integration. Besides single-phase
flow models based on the Navier-Stokes equations [24], multi-phase flow models of
two immiscible fluids including surface tension has been investigated [25] as well as
suspension-flow of a Newtonian/non-Newtonian carrier fluid and solid non-colloidal
particles [26].

7.4 OpenGeoSys—Finite-Element-Method

OpenGeoSys (OGS) is a scientific open-source initiative for the numerical simulation
of thermo-hydro-mechanical/chemical (THMC) processes in porous and fractured
media, inspired by FEFLOW [27] and ROCKFLOW concepts and continuously
developed since the mid-eighties (Fig. 7.3), see e.g. [28–31]. Meanwhile, more than
50 PhD projects have been dedicated to the OGS development since the merger in
the nineties.

The OGS framework is targeting applications of various disciplines in environ-
mental geoscience, e.g., in the fields of regional [32], contaminant [33] and coastal
hydrology [34], fundamental geothermal processes [35] and geothermal energy sys-
tems [36, 37]. OGS is applied for energy storage applications in technical systems
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Fig. 7.3 OpenGeoSys
development history

such as concrete [38] or zeolite-based heat storage [39] and natural systems such
as salt caverns [40, 41]. OGS is also used in fundamental studies for nuclear waste
management [42].

The most recent version, OpenGeoSys-6 (OGS-6) [43, 44], is a complete re-
implementation of the multi-physics code OpenGeoSys-4/5 [45, 46] using advanced
methods in software engineering and architecture with a focus on code quality, mod-
ularity, performance and comprehensive documentation. The current release version
OpenGeoSys 6.2.0 [47] will be dedicated to analyze and predict the behaviour of
geosystems becoming more and more relevant in future like nuclear waste depo-
sition, geothermal use of subsurface resources for power and heat production, and
geological storage of various energy carriers. Particular emphasis is put on the imple-
mentation of advanced numerical methods for the propagation of discontinuities,
such as enriched finite element function spaces [48], non-local formulations [49]
and phase-field models for fracture [50] with the ability to utilize HPC platforms
[51, 52].

OpenGeoSys is participating in several international model development, valida-
tion and benchmarking initiatives, e.g., DEVOVALEX (with applications mainly in
the assessment of waste repositories, see [53]), CO2BENCH (geological CO2 stor-
age, see [54]), SeS Bench (reactive transport processes, see [55]) and HM-Intercomp
(coupled hydrosystems, see [56]). The OGS community provides an ongoing series
of benchmark books [57] and tutorials [58]. For more information please refer to the
OpenGeoSys webpage www.opengeosys.org.

VPF—Variational Phase-Field model

The variational phase-field model (V-pf) is increasingly becoming a popular numer-
ical method for fracture computation because of its ability to account for arbitrary
numbers of pre-existing or propagating cracks in terms of energy minimization,
without any a priori assumption on their geometry or restriction on the growth to
specific grid directions. The variational phase-field model applied in this study has
been based on the model proposed by [59, 60] where each process (e.g. mechanical
or hydraulic) is solved in a staggeredmanner as in Fig. 7.4 and has been implemented
in OGS utilizing its linear algebraic and finite element method platform.

www.opengeosys.org
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Fig. 7.4 Computation scheme with the variational phase-field model

The mechanical process solves the force equilibrium under the presence of the
crack (damage) field in which the damage is accounted differently depending on the
state of the load (e.g. compression or tension) in order to distinguish the material’s
response under different types of loading. Various approaches have been proposed
for the energy split strategy and the three of the most established approaches [61–63]
have been implemented. Though the process for the phase-field is an elliptic prob-
lem, the solution space is bounded in [0, 1] and is constrained by the irreversibility
(i.e. fracture is not allowed to heal). Therefore, its solution requires a variational
inequality solver and it is achieved through PETSc [64, 65]. Once the displacement
and the phase-field are solved, the crack opening displacement will be reconstructed
following an approximation proposed by [66] and the computation result will be
passed onto the hydro process where fluid flows both in porous medium and fracture
will be solved. These processes will be repeated in a staggered manner until the
convergence is met (currently its judgement is based on the phase-field process).

7.5 HDF—Hybrid-Dimensional-Formulation

The Hybrid-Dimensional-Formulation results in a numerically strongly coupled
system of governing equations. Different numerical strategies, namely the weak/
staggered and strong/monolithic coupling schemes have been implemented in course
of this project to solve the interaction between fluid flow and deformation of the sur-
rounding porous matrix. Dependent on the method different technical requirements
are demanded from the numerical framework. Hence for each one of the two cou-
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Fig. 7.5 Packages used to
develop Hybrid-Dimensional
Framework

pling strategies an individual numerical framework has been chosen to guarantee
numerical efficiency (Fig. 7.5).

For the strongly coupled scheme high performance has been ensured by choosing
the Distributed and Unified Numerics Environment (DUNE) [67] to monolithically
build and solve the global system of governing equations. The Dune implementation
is based onmodernC++ programming techniques to provide a unique combination of
highly efficient and flexible code by providing a common interface at a very low over-
head for various mesh based methods. Combined with the generalized discretization
module PDELab [68] the basis for Finite Element calculations of the implemented
solver has been built. Nevertheless, extensive work on the existing framework has
been performed in order to allow the integration of zero-thickness elements; a feature
which is not provided by default.

The staggered algorithm of the weak coupling scheme allows for calculations on
different numerical domains. Efficient numerical implementation combined with a
versatile way to handle continuously varying boundary conditions provided by the
FEniCS computing platform [69] form the basis of the developed solver. Since the
coupling between both domains is numerically strong an implicit coupling iteration
is required. The Precise Code Interaction Coupling Environment (preCICE) [70]
provides an easily accessible interface for parallel communication between exist-
ing solvers allowing for non-conformal discretization of computational domains in
combination with a highly developed Quasi-Newton method to guarantee numerical
stability.

Discretization for bothmethods, namely the construction of interface elements and
separation of fracture surfaces is a challenging task especially in three dimensions.
This challenge has been overcome by an in house meshing tool based on the Gmsh
meshing facility [71].
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