
Chapter 3
Numerical Platform

Keita Yoshioka, Mathias Nest, Daniel Pötschke, Amir Shoarian Sattari,
Patrick Schmidt, and David Krach

An essential scientific goal of the GeomInt project is the analysis of potentials and
limitations of different numerical approaches for the modelling of discontinuities in
the rocks under consideration in order to improve the understanding of methods and
their synergies with regard to theoretical and numerical fundamentals. As numeri-
cal methods, the “Lattice Element Method” (LEM), the non-continuous discontin-
uum methods “Discrete Element Method” (DEM), the “Smoothed Particle Hydro-
dynamics” (SPH), the “Forces on Fracture Surfaces” (FFS) as well as the continuum
approaches “Phase-Field Method” (PFM), “Lower-Interface-Method” (LIE), “Non-
Local Deformation” (NLD) and the “Hybrid-Dimensional Finite-Element-Method”
(HDF)will be systematically investigated and appropriately extendedbased on exper-
imental results (Fig. 3.1).

The numerical methods in Fig. 3.1 are displayed in accordance to the scale-ability,
i.e. increasing temporal and spatial scales from right to left.
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Fig. 3.1 Overview of the Numerical Platform (left) as part of the GeomInt research concept (right),
see Sect. 1.2

3.1 State-of-the-Art

3.1.1 THM Simulations and Open Source Development

Process-oriented numerical simulation programmes are necessary for predicting pos-
sible environmental impacts as well as for the macroeconomic and safety design of
geosystems for underground use with, if necessary, different or even multiple man-
agement. These programmes must be able to represent the running processes and
their interactions. Already in the mid-eighties of the last century, specific models
were developed in theUSA and partly implemented in scientific simulation platforms
in order to describe THM processes taking place in the geological subsoil which are
connected with the thermal use of the subsoil as energy source (geothermics) or
energy storage. However, these investigations primarily had a basic character. In
addition, the numerical calculation tools are often oriented towards the description
of special processes and only partially consider couplings of different physical pro-
cesses. Geotechnical applications can also be simulated with a number of established
commercial program systems. For hydraulic processes such as multiphase flow in
porous media are simulators from the oil and gas industry available (e.g. ECLIPSE,
STARS), for the description of mechanical processes as well (FLAC3D). All men-
tioned codes can only cover a part of the necessary process spectrum. Therefore,
simulation programs are required which can represent thermal, hydraulic, mechani-
cal, and chemical (THMC) processes coupled, such as TOUGH [78], HYTEC [113],
DuMuX [33] or OpenGeoSys [52]. In order to be able to represent the foreseeable
impact area of underground use in realistic simulation areas, efforts have been made
to parallelise these codes (e.g. OpenGeoSys [125], TOUGH [135]). In particular, the
simulation of systems subject to discontinuity requires high performance comput-
ing. A major limitation of commercially available numerical simulation programs
is that their source codes are not accessible and therefore not transparent and that a

http://dx.doi.org/10.1007/978-3-030-61909-1_1


3 Numerical Platform 65

further development of such programs is therefore only possible by the commercial
developer. In the research project applied for here, the platforms OpenGeoSys (UFZ
(coordinating), BGR, CAU, IfG, TUBAF), mD-LEM (CAU) and pythonSPH (Uni
Stuttgart) developed by some of the applicants as open source software can be used,
so that the limitations mentioned do not exist. The description of discontinuities with
different approaches described in the following aswell as their processing in the sense
of high-performance computing (HPC) requires targeted program extensions.

3.1.2 Continuum Models (XFEM and Variational Phase
Field)

In recent years, extended [10] or also known as generalized [108] finite element
methods (XFEM/GFEM) and phase-field methods [14] for the description of exist-
ing and developing discontinuities and singularities within continuum mechanical
approaches have established themselves ahead of all others. Both methods differ
fundamentally and have their own strengths and weaknesses. XFEM locally extends
the approach and test function space by formulations that can map the discontinu-
ous course of the solution and introduces corresponding additional local degrees of
freedom. Usually, this approach is combined with so-called level set methods, which
help to localize the discontinuity and thus ultimately determine in which elements
the solution space has to be extended. This approach allows the approximation of
discontinuous solutions on comparatively coarse grids, but requires programmatic
infra-structures for the treatment of flexible additional degrees of freedom, level sets
and other aspects, which require a considerable implementation effort, especially in
branched crack systems. In contrast, the variational phase fieldmethodwas originally
proposed as a generalized Griffith criterion by [34] and numerically implemented
using a phase-field variable by [15]. In the variational phase-field model, cracks are
represented by a smoothly varying function (phase-field variable) that transitions
from intact material (phase-field variable = 1.0) to fully broken state (phase-field
variable = 0.0) using a regularization parameter with the dimension of a length and
the energy consumed by the cracks is computed from this diffused representation.
One of the strengths of this approach is to account for arbitrary numbers of pre-
existing or propagating cracks in terms of energy minimization, without any a priori
assumption on their geometry or restriction on the growth to specific grid directions.

XFEM [10] was originally developed for crack propagation problems and was
also applied in the geotechnical context, e.g. for multiphase flows [25, 69] and
heat transport [48, 98]. Current developments of generalized and extended finite
element methods in the context of hydraulic stimulation are mainly concerned with
the efficient coupling of solid-state and flow-mechanical problems [65, 126, 137].

The variational phase-field model of fracture has witnessed wide ranging applica-
bility in from dynamic fracture [13, 17, 56], to ductile fracture [3, 4, 67], to thermal
and drying fracture [19, 63, 66]. The first application of the variational phase-field
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model to hydraulically driven crack propagation has been proposed by [18] and fol-
lowed by many others [26, 43, 55, 86, 128, 130] or for land slide modeling [127]
with various formulation and numerical implementation. While the reported find-
ings are promising thus far, the method still needs more establishments for practical
field scale applications. The required efforts may include validation against labora-
tory/field experiments, approaches to recover explicit properties such as fluid leak-off
from smeared crack representation, and more complex physics phenomena such as
visco-elasticity.

3.1.3 Discontinuum Models

Discontinuum models directly map forces of interaction between predefined dis-
crete elements. The latter may themselves be discretized and mapped by continuum
mechanics. Decisive for the mapping of developing discontinuities, however, are the
pre-defined interfaces subject to certain interface formulations. This type of mod-
elling was applied in geotechnics, for example, to geothermal systems [140] and has
also made a decisive contribution to the simulation of the pressure-driven genera-
tion of flow paths in polycrystalline salt rocks, which is bound to the discontinuum-
mechanicalmicrostructure of the salt rocks [143]. Polycrystalline salt rocks represent
a discontinuum of intergrown salt crystals on the micromechanical level [144]. In
contrast to porous media, there is no cross-linked pore space in salt rocks. Only by
pressure-driven opening and cross-linking of pathways, i.e.g.eneration of connectiv-
ity by opening channels along the grain boundaries of the salt crystals, cross-linked
flow paths are created in salt rocks. Fluid pressure-driven percolation is direction-
dependent and seeks the path of least resistance along the crystal grain boundaries
in the polycrystalline salt rock under the effect of the existing stress field [145]. This
mechanism of directional percolation can be simulated in coupled HM models on a
discontinuity mechanical basis.

The observations on numerical models of pathogenesis by source and shrink-
age processes based on a microscale based analysis must be able to map significant
structural changes and discontinuity developments in nonisothermal HM coupled
processes, which manifest themselves in progressive fracture or self-healing pro-
cesses under pressure, saturation and temperature influence. First basics of the mod-
elling of fracture processes on the microscale were published at the end of the 1990s
with reference to self-organising fracture processes based on Voronoi discretizations
[12]. By combining the approaches of HM modelling in saturated media [6] and
TM modelling [80], the connection for the simulation of self-organizing fracture
processes in geomaterials shall be established with consideration of complex TH2M
processes. Based on the elasticity theory, linear fracture models following Mode I
and Mode II were developed for fragile, largely homogeneous material with few
inclusions. For materials with high interference, models based on continuum frac-
ture mechanics [110] were developed which require specific information on material
microstructure and fracture behaviour. Thermal conductivity in cemented geoma-
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terials is determined by heat transfer between mineral particles, porosity, fluid and
contact quality [7, 129, 133]. The Thermal Particle Dynamics method can be used to
simulate the transient heat propagation in granular media and the associated thermal
expansion [115]. This was considered in a thermal DEM [116, 117], but the calcu-
lation effort is enormous and the grain or contact shape is greatly simplified [141].
In contrast to the particle methods, the heat propagation in cemented materials can
be determined numerically very effectively by classical FEM, but microlevel infor-
mation disappears due to the underlying homogenization. This poses a problem for
the initiation of discontinuities by thermal processes in THM coupling.

The hybrid lattice models have been developed to tackle the shortages in contin-
uum based models, such as the simplicity to define the heterogeneity/anisotropy as
well as the fracture simulation and stress redistribution during the frack propagation
(discontinuities) without the need to re-mesh the domain [11, 114]. The lattice model
is similar to the finite volume (FVM) or finite difference (FDM) methods, with the
difference that the FVM or FDM explicitly discretize the continuum [81, 84]. The
simplicity and accuracy of lattice models to simulate the fracking in cemented geo-
materials, such as rock and concrete [47, 58, 77], are well established. The lattice
models in comparison to the continuummethods are time consuming and expensive.
Therefore, their applicability and development in real engineering applications or
commercial softwares are not well developed. However, with the increase of compu-
tational power during past years as well as the implementation of parallel computing
or GPU computing methods, the application of lattice models in commercial soft-
wares is imminent.

The mentioned DEM approaches, as classical discontinuummodels, have the dis-
advantage that additional connections between the particles have to be implemented
by beam elements, which contain the fracture-mechanical criteria. Lattice based
models—LEM [25, 27] have been developed for modeling of fracture mechanical
processes considering discontinuity and crack initiation as well as crack propaga-
tion. These include a networking of the existing heterogeneity ranges (Voronoi and
Delaunay triangulation) and use simple linear fracture criteria on the microscale.
The cross-linked two- and three-dimensional continuum regions are microscopi-
cally coupled by 1D elements in the center of gravity of the Voronoi cells. In the
simplest case these elements are Hookesche springs with a normal stiffness [29]. In
three-dimensional space these simple springs already give a good approximation of
the Mode I failure model [132]. With the use of Born spring models and an addi-
tional tangential degree of freedom, shear behaviour can already be modelled [46].
By extending the spring, for example as a beam element [90], displacements, rota-
tions and moments can be transferred to the node in addition to the forces, whereby
an additional bending contact can be taken into account [85]. For the spatial lattice
network thus generated, the displacements at each point are determined by generat-
ing an equilibrium or by minimizing the energy [64] or dynamic relaxation [28]. The
LEM combines the advantages of simple implementation with the ability to control
particle interaction in the model while simultaneously self-organizing initiation and
progression organization of a discontinuity, [88, 136].
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Additionally, in contrast to discretemodels, the latticemodels can be implemented
to represent a continuum, as the lattice elements do not necessarily define the particle
to particle contact mechanics [79]. The hybrid lattice model can represent a contin-
uum or particle-to-particle contacts, depending on the objective of the simulation.
In both cases, the domain is discretized into series of spring or beam elements, rep-
resenting the bonds. The regularization of a lattice model grants the independency
of the results from the mesh size and meshing technique [75]. The lattice models
were initially emerged in order to simulate the fracture initiation and propagation in
cemented geomaterials. With the time, lattice models have been extended to simu-
late the wide variety of the thermal [80, 82, 99], thermo-mechanical [88, 89] and
hydro-mechanical [39] problems in the engineering applications. In the recent years,
the hybrid lattice models have been extended to determine the granular, cemented or
swelling geomaterials response under the coupled thermo-hydro-mechanical (THM)
processes.

3.1.4 Smoothed Particle Hydrodynamics

Smoothed Particle Hyrodynamics (SPH) methods are reticule numerical collocation
methods for solving partial differential equations. SPH methods were formulated
almost 40years ago to solve astrophysical problems and have been further devel-
oped in recent years to solve a variety of problems and models in fluid and solid
state mechanics [70]. The SPH method is particularly suitable for problems with
free surfaces or material interfaces such as discontinuities and cracks: SPH methods
are Updated or Total Lagrange methods, i.e. boundary conditions at discontinuities
can be described numerically well. In recent years, great progress has been made
in the efficiency of SPH formulations, especially for questions with internal inter-
faces, such as for non-Darcy flows in porous media or in the multiphase fluidics of
immiscible fluids in porous media [73, 112]. The so-called “Whole Domain For-
mulation”, i.e. a numerical procedure in which the surface conservation equations
(mass and momentum), such as the Young-Laplace equation in multiphase fluidics,
are “smeared” by means of the kernel function and integrated into the bulk con-
servation equations (Continuum Surface Force—CSF), can be interpreted here as
a “phase field method” which “continuously smears” the physical properties of the
discontinuities. Besides the consideration of the SPH-inherent kernel function in the
CSF methods and the absence of the need to artificially adduce discontinuities, the
net-free SPH methods above all show great efficiency advantages when complex
and small-scale (pore) geometries are to be precisely mapped [101]. In addition to
small-scale direct numerical simulations on the pore space scale, SPH methods for
coupled HM problems in geomechanics have already been developed [20, 21]. The
two HM-coupled biotubes poroelastic equation sets for the porous solid phase and
the viscous pore fluid were formulated in these works with two disjunctive particle
sets which can lead to difficulties in impulse interaction modelling. A further devel-
opment of the SPH method for HM processes, also taking into account propagating
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discontinuities such as cracks and crack networks, is therefore imperative to establish
the SPH method as an efficient and reliable tool for geoscientific problems.

All the approaches described above have proved to be suitable in principle for
the physical analysis of the growth of discontinuities. However, in connection with
the extension of the methods to coupled THM processes, there is still a fundamen-
tal need for development in many areas. This is to be supported by an improved
process understanding to be worked out, by building on it some of the numerical
methods used here are to be further developed purposefully beyond the state of the
art. Applications that go beyond the simulation of laboratory experiments and use the
methods for solving practically motivated problems of large-scale geosystems have
so far hardly been found in the literature or have not even been developed for certain
essential process couplings. There is an urgent need for systematic investigations
into the questions of how these methods can be translated into practical applica-
tions, what computing resources are required, and in which cases certain methods
appear more suitable than others. The aim of this project is to develop such an overall
view and a systematic comparison of the methods at defined benchmarks as well as
their embedding in proven software, partly with the inclusion of methods of high
performance computing.

3.2 Numerical Methods

3.2.1 FFS—Forces on Fracture Surfaces

This numericalmethod explicitly uses the geometry of a rock surface and calculations
on single surface elements are executed. The main advantage of this method is the
possibility to closely look inside the mechanisms which control the shear behaviour
of the joint (Fig. 3.2). The drawback is the high computation time needed due to the
more complex calculation scheme.

Starting point were the works by [23, 31]. The last mentioned work uses a FFS
approach. The geometry of surface is represented as a triangular surface. The apparent
dip angles θ∗ for the elements are calculated. An iterative scheme decides whether
the surface can slide over its counterpart or whether the surface elements in contact

Fig. 3.2 The elements used
in a shear test simulation are
marked in red. The FFS
approach is able to look
directly inside a model and
helps to deepen the
understanding of the active
processes
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Fig. 3.3 A surface element
is represented as a rock
column which withstands
normal forces by elastic
deformation

are destroyed. In the case of destruction the geometry is corrected and the next check
for sliding versus destruction starts. The two important formulas are the one for the
sliding forces:

Fslide = Floc tan(ϕb + θ∗) (3.1)

where Floc is the local force acting on one element, ϕb is the basic friction and θ∗
the apparent dip angle of this element. The other formula is the one for shear forces,
which is the force needed to destroy the surface element:

Fshear = A (c + σloc tan(�)) (3.2)

where A is the ground area of the element, c the cohesion of the rock material, σloc

the local normal stress and � the angle of inner friction of the rock material.
The idea of the newly developed approach is to have a physically consistent

calculation scheme. Therefore the normal forces of the surface elements in contact
have to be estimated. The simplest approach was chosen to keep things manageable.
An elastic stress-displacement behaviour was basically used (Fig. 3.3). The resulting
formula is:

Fn =
∑

i

(
E a2 �hi

h

)
(3.3)

For all i surface elements in contact the relative height change �hi
h , the ground area

a2 and the Young’s modulus E were used. For a specific rock joint the two surfaces
aremoved towards each other until the force created by the elastic deformation equals
the force which is applied to the fracture. Another simplification compared to [23]
is the usage of quadratic grid elements. This allows to store the height values in a
matrix form which is easy to handle.
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3.2.2 LEM—Lattice-Element-Method

The application of the lattice element in modeling the fracture initiation and propa-
gation in geomaterials has been well established [58, 77, 114]. The main advantage
of the LEM over other numerical methods is the ability to model the stress redistri-
bution and concentration upon the fracking process. The application of the LEM is
extended to model the heat transfer in cemented geomaterials [89] as well as non-
cohesive granular particles [83]. The thermo-mechanical lattice model based on the
integration of the interface element is able to model the expansion and shrinkage
processes during the heating and cooling cycles [88]. The LEM is also implemented
to model the foam concrete behavior under dynamic loading [81]. In the past decade,
using the dual lattice model to simulate the coupled hydro-mechanical loadings in
geomaterials has developed [39]. In these models, the dual mesh grid for the fluid
transport is generated. The short description of the implemented coupled thermo-
hydro-mechanical lattice method is given below.

Discretization of the Domain

The domain is discretized into a series of Voronoi cells to represent the individual
particles or a continuum depending on the purpose of the investigation. With the
application of the vectorized random lattice (VRL), the irregularity factor known
as the randomness factor (αR), which varies between 0 and 1, is introduced [74].
When the randomness factor is 0, the generated mesh is regular and when it is equal
to 1, it reaches the maximum irregularity for VRL model. Afterward, the Voronoi
tessellation is implemented and polygonal cells are generated (see Fig. 3.4a, b). The
Delaunay triangulation process results in the Voronoi cell connectivity, which are
defined as the bond elements between two adjacent nodes.

Fig. 3.4 The generated domain with αR = 0.5. a 2D discretization, and b 3D discretization
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Mechanical Lattice Model

The mechanical lattice model is based on the assumption of the Mode I and II
linear elastic fracture mechanics. The simulation of the fracture in LEM is based
on the removal of the bond elements between the neighboring Voronoi cells [79].
The elements strength threshold is defined based on the critical strain energy or the
fracture toughness forMode I and II. In a different approach, the strength threshold is
defined based on theMohr-Coulomb’s tension cutoffmodel [11]. The lattice elements
are represented by a series of spring (1DOF), Euler-Bernoulli beam (3DOF) (Fig. 3.5)
or Timoshenko beam elements (4DOF). The regularization of the regular lattice
model, such as a triangular or square discretization technique, is carried out and a
relationship between the continuum and element properties is presented [47, 75].
This regularization assumes that the stored strain energy of a continuum, UR, is
equal to the stored strain energies in each individual Voronoi cells, UCell . The strain
energy stored in a unit cell depends on the total number of each cells bond elements
(Nb), the elements response forces (Fb) and the response displacements (ub). For a
continuum, the stored energy depends on the continuum stresses (σR) and continuum
strains (εR) throughout the continuum volume (VR).

Ucell = UR (3.4)

Ucell = 1

2

b=Nb∑

b=1

Fb ub (3.5)

UR = 1

2

∫

VR

σR εR dV (3.6)

For a discretized 2D domain with the spring element, the length of the element
(Lb), alignment orientation (ni, j,k,m), first stiffness coefficient ((R)′), continuumstiff-
ness matrix CR, and strains of εi, j,k,m are correlated as,

Fig. 3.5 The Euler-Bernoulli beam element representing the bond between two cells
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Ucell = 1

2

b=Nb∑

b=1

L2
b

(
(R)′ ni n j nk nm εi j εkm

)
b (3.7)

UR = 1

2
εR CR εR (3.8)

For a Euler-Bernoulli beam element in 2D, the curvature strain (κi, j ), curvature
stiffness (Di, j ), stiffens matrix (Ci, j,k,m) and second stiffness coefficient ((R)′′) are
related as,

UR = V

2
εi j Ci jkmεkm + V

2
κi Di jκ j (3.9)

Ci jkm =
b=Nb∑

b=1

(
ni nk

(
n j nm (R)′) + n j nm (R)′′

))
b (3.10)

After the regularization of the lattice model and with the minimization of the
potential energy of the system, the load versus displacement relation in each time
step is determined. For a single element, the stored total strain energy (U b

t ) is equal
to the sum of axial (U b

a ), shear (U
b
s ) and moment (U b

m) strain energies. Eventually,
the total strain energy depends on the axial force ( fx ), shear force ( fy) and moment
(Mb) along the element’s length of z = 0 : Lb, the area of elements (Ab), element’s
shear modulus (Gb), element’s Young’s modulus (Eb), and moment of inertia (Ib).
The bi-linear softening scheme is implemented to model the quasi-brittle material
behavior existing in rock and concrete geomaterials [45]. The measured Eb values
depends on the peak strain (εp), failure strain (ε f ), current element strain (εb) and
peak load ( f p) where the stiffness degradation starts.

U b
t (z) = U b

a (z) + U b
s (z) + U b

m(z) = 1

2

∫ Lb

0

(
fx (z)

2

Eb Ab
+ fy(z)

2

Gb Ab
+ Mb(z)

2

Eb Ib

)
· dz

(3.11)

Eb = f p

ε f − εp

(
ε f

εb
− 1

)
(3.12)

Thermo-mechanical Lattice Model

The thermo-mechanical lattice model is based on the weak coupling scheme between
the thermal and mechanical models, which decreases the computational costs. The
thermal lattice model is based on the discrete thermal lattice model (TDEM) [32,
142], where the Hertzian contact model is implemented to account for the heat
conductance (hb) between the particles. The axial compression force increment ( fx )
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Fig. 3.6 The heat flow into ith cell from surrounding boundaries

results in higher thermal conductance between the particles, which eventually leads
to a higher effective thermal conductivity (Kef f ). The regularization of the thermal
lattice model is based on the relationship between the heat conductivity of elements
and the continuum [83]. The hb depends on the contact length (L ′

b) (or area in 3D
domain), contact forces and assigned elements thermal conductivities (kb).

hb = kb

(
(L ′

b) +
(
3 fx Lb

4Eb

) 1
3

)
(3.13)

In a steady state, the amount of the heat in- and outflow (qb) from a Voronoi cell
(Fig. 3.6) is equal to zero,

ρi ci vi
dTi

dt
− ∇ · (ki∇Ti ) − ρi q̇i = 0 (3.14)

∇ · (k∇Ti ) =
b=Nb∑

b=1

qb =
b=Nb∑

b=1

hb(Ti − Tj )b = 0 (3.15)

where, q̇ is heat density (assumption: q̇ = 0), t is time,ρi is density, ci is heat capacity
and vi is the volume of each Voronoi cell (i). In a transient case,

b=Nb∑

b=1

qb =ρi ci vi
dTi

dt
(3.16)

The effective thermal conductivity is calculated based on the average volume
technique, where qave is the average heat flow, qb

Cell is the heat flow through the
assigned cells located in the boundary (NC ), Ṫ is the temperature gradient and x̂cell

is the relative coordinates of each cell.

qave =
∑b=NC

b=1 qb
Cell · x̂Cell

V
(3.17)
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qave = Kef f · Ṫ (3.18)

The thermal strain is calculated based on the linear expansion of the lattice ele-
ments and the given heat expansion coefficient. The implementation of the thermal
expansion into the mechanical model results in a fully coupled thermo-mechanical
model [88].

Hydro-mechanical Lattice Model

The existing hydro-mechanical latticemodels are based on the assumption of the dual
lattice network, where the mechanical lattice elements transfer the mechanical loads
between the twonodes and the conduct elements perpendicular to the alignment of the
mechanical elements transfer thefluid or gasflowbetween the conduct nodes [39, 40].
The implemented hydro-mechanical lattice model is based on the mass conservation
(m f ) of the fluids in the continuum. The hydraulic aperture (ah), fluid density (ρ f ),
fluid viscosity (ν f ), flow length (L ′

b), hydraulic resistance (Rh), saturation degree
(Sr ) and bulk modulus (K f ) are the main parameters used to determine the hydraulic
pressures (Pf ) and transferred fluid masses (�m f ) between the conduct nodes.

mt+1
f = mt

f + �m f (3.19)

mt=0
f = Srt=0Vcavρ f

(
1 + Pt=0

f

K f

)
(3.20)

�m f,i j = f (Sr)
Pf, j − Pf,i − ρ f g

(
Z j − Zi

)

Rh
�t (3.21)

where, Z is the relative coordinate of the i, j conduct nodes, Vcav is the volume of
the cavity, g is the gravity and f (Sr) is the saturation function which is equal to 0
and 1 in a dry and saturated conditions, respectively. According to the finite-discrete
element method (FDEM) [57], the fluid mass is stored within defined physical and
artificial cavities. Each conduct node represents an artificial cavity connected through
conductive elements (Fig. 3.7), where the hydraulic conductivity is governed based
on the parallel plate cubic flow rule.

Rh = 12ν f

a3
h

L ′
b = 12ν f

∫ z j

zi

1

ah(z3)
dz = 6ν f (ah, j + ah,i )

(ah,i ah, j )2
L ′

b (3.22)

When an artificial cavity is saturated, the amount of excessive fluid mass flowing
inside the cavity builds the pore pressure, which then is transmitted into the mechan-
ical nodes. If the cavity is not saturated, then the pore pressure is assumed to be
zero.
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Fig. 3.7 The schematic representation of the implemented hydro-mechanical model

Pt
f = Pt−1

f + K f
�m f

ρ f V t
cav

if Srt = 1 (3.23)

With the implementation of the pore pressures into the mechanical lattice nodes,
the pore pressure diffusion and the change of the hydraulic conductivity with the
crack opening and closure are measured. The flow simulation is implemented under
both the pressure- and flowrate-controlled boundary conditions.

Shrinkage and Swelling Lattice Model

The simulation of the shrinkage and swelling using the lattice element method is
based on the particle shrinkage model [100], which is mainly considered in the
discrete models. In contrast to the DEM, the shrinkage in LEM is implemented
into the lattice elements (Fig. 3.8). To do so, the interface elements are generated to
represent the bond between the particles [88]. The shrinkage and swelling coefficients
(αs) are temperature dependent. According to the initial water content (ωt=0) and
the change of the water content during the shrinkage and swelling process, the linear
strain in the lattice elements is determined and implemented into the mechanical
model.

Lt
b = Lt=0

b e−αs · t
t=∞ (3.24)

αs = −1

3
ln

(
1 − ωt=0 − ωt

1 + e0
· Gs

)
(3.25)
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Fig. 3.8 The implementation of the interface element to simulate the shrinkage and swelling pro-
cesses

The shrinkage and swelling coefficient are time, temperature and depth depen-
dent. Therefore, graphs representing the evaporation rate as well as the soil water
characteristic curves to assess the applied suction and the water content during the
wetting and drying paths are required [124]. ¯̄σ and ¯̄ε are the stress and strain tensors,
respectively.

¯̄σ = C : ¯̄ε − Sr Pf
¯̄δ (3.26)

The elements shrinkage and expansion results in the axial compression and tensile
stresses in the lattice elements, which when they exceed their predefined strength
threshold are removed, is simulated as well as the micro fracking process under
shrinkage and swelling conditions.

3.2.3 DEM—Distinct-Element-Method

The distinct element method (DEM) extends the capabilities of continuum-
mechanical approaches by introducing a new level of discretization, which allows it
to describe independent deformable bodies that can interact via their contact points
and surfaces, see Fig. 3.9. The behaviour of these contacts can be modelled using
joint constitutive models, which are typically formulated in terms increments. This
approach is especially suitable for materials with a pronounced grain structure, such
as salt rocks.

The models of rock salt, from laboratory scale samples to entire potash mines,
therefore need to be built from randomised assemblies of polyhedral grains, in order
to simulate the discontinuous and granular nature. The generation of the randomised
structures is based on Voronoi-discretization, which allows to divide arbitrary vol-
umes (areas) into polyhedral parts. The program generates pseudo-random point
clouds using a Monte-Carlo-method, which can then be refined to avoid clustering.
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Fig. 3.9 Interaction between
blocks and contacts in the
DEM

It is also possible to introduce a local variation of the grains size thisway. The thermo-
hydro-mechanical behaviour of a model set up in this way is then a combination of
the behaviour of the of bulk of the grains, and of the contact properties. For both,
constitutive laws were derived at IfG [146].

Since it would be computationally unfeasible to represent a large geological struc-
turewith realistic grain sizes ofmillimeters or centimeters, a coarse-grained approach
is taken. This approach was validated by carrying out discretization studies with a
variation of Voronoi sizes. The blocks/grains dominate the hardening and the creep
behaviour, while the softening occurs predominantly by shear and tensile failure on
grain boundaries [147].

Another advantage of the discontinuum mechanical approach lies in its capabil-
ities to model the pressure driven percolation of gases and fluids on discrete flow
paths on opened grain boundaries. The undamaged grain boundaries start out as
impermeable but can be opened due to plastic failure.

The constitutive laws for both bulk and contacts were implemented as DLLs for
the programs UDEC and 3DEC of Itasca CG, Inc.

3.2.4 SPH—Smoothed-Particle-Hydrodynamics

Direct Numerical Simulations (DNS) of effective physical properties of single-phase
flow through porous or fractured solid materials can be performed directly on the
pore scale of the porous soil or rock. Morphological information, the basis for the
subsequent DNS, is obtained as segmented (binarized) voxel-data from μ X-Ray
ComputedTomography (XRCT). In general, numerical simulations of flowprocesses
on XRCT-data at small to moderate Reynolds (Re) numbers could be performed by
mesh-based Finite Element, Finite Differences or Finite Volume methods.

Here, we haven chosen the mesh-less Smoothed Particle Hydrodynamics meth-
ods as an alternative simulation technique. SPH is a Lagrangian simulation tool
used to solve Partial Differential Equations (PDE) and was originally developed for
astrophysical problems [36, 59]. In recent years, due to it’s flexibility and scalabil-
ity and applicability on HPC architectures, especially in an explicit formulation, it
became attractive for various problems fluid dynamics like single and multi-phase
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fluid mechanics with internal interfaces, suspension flow, and single and multi-phase
flow in porous media [61, 102–105].

Within the framework of this method, the discretisation of the PDEs spans a set
of interacting collocation points Pi with position vectors xi , referred to as particles.
The positions of the particles represent integration points at which field functions
�(x, t) are interpolated by convolution with the Dirac-Delta function δ:

�(x, t) =
∫

�

�(x′, t) δ(x − x′) dv. (3.27)

Replacing δ(x − x′) with the kernel function W (x − x′, h) results in the approx-
imation

�(x, t) ≈
∫

�

�(x′, t) W (x − x′, h) dv, (3.28)

where the support h of the kernel determines a sphere of influence and likewise
declares neighbouring particles P j with position vector x j . Subsequently, the dis-
cretisation (numerical integration) of the integral formulation converts continuous
field functions into discrete particle properties �(xi ) = �i , kernel representations
into spatial discretisation and Eq. (3.28) yields

�i =
N∑

j

� j W (xi − x j , h) Vj . (3.29)

Herein, Vj is introduced as the discrete representation of dv and j = 1, 2,
. . . , N indicates the neighbour particles within the kernel support of particle Pi .
Analogously, differential operators turn into short-range interaction forces. For more
technical details, also accounting to the necessary time integration we refer to
[72, 103, 138].

3.2.4.1 Single-Phase Flow of a Newtonian Fluid

A SPH implementation of single-phase flow of a Newtonian fluid is based on the
solution of the balance of momentum in the present local form

ρf v̇f = μf div ( grad vf) − grad p + ρf b (3.30)

and the balance of mass
ρ̇f = −ρf div vf, (3.31)

which are known as the Navier-Stokes equations. We adopted the notation used in
mixture theory [106, 107] where a subscript is used for kinematic quantities and a
superscript elsewhere. ρf(x, t) is the mass density field, vf is the velocity vector, μf
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is the dynamic viscosity, p(x, t) is the pressure field and b are body force densities.
The “dot” operator, cf. Eqs. (3.30) and (3.31), is denoting the material or substantial
time derivative ·(•) = ∂t• + grad (•) · vf. In order to solve the quasi-incompressible
(weakly compressible) character of the Navier-Stokes equations an equation of state
for the pressure in the form p(ρf) has to be formulated. Therefore, either a linear
model or the Tait equation [42]

p(ρf) = ρ
f
0 c2f
γ

[(
ρf

ρ
f
0

)γ

− 1

]
(3.32)

is commonly employed, wherein cf = √
K f/ρf is the speed of sound of the fluid with

the bulk modulus K f and γ is a constant, specific to the modeled problem (usual
γ = 7 for quasi-incompressible fluids).

3.2.4.2 Discrete Equations

By applying the above introduced transformation from continuous field equations to
discrete algebraic SPH equations, the total force on each fluid particle Pi is obtained
as the sum of the discrete body forces FB

i = mi b, viscous interaction forces FV
i j and

pressure interaction forces FP
i j

mi v̇i =
N∑

j

FP
i j +

N∑

j

FV
i j +

N∑

j

FB, (3.33)

which leads to a relation for the particle velocity update

v̇i = −
N∑

j

m j

(
pi

ρi
2

+ p j

ρ j
2

)
xi j

ri j

∂Wi j

∂ri j
(3.34)

+
N∑

j

m j (μi + μ j )(vi − v j )

ρiρ j

(
1

ri j

∂Wi j

∂ri j

)
+ b. (3.35)

Reconfiguration of the balance of mass, cf. Eq. (3.31) yields

ρ̇i =
N∑

j

m j (vi − v j ) · xi j

ri j

∂Wi j

∂ri j
. (3.36)

However, the density field can also be calculated by an accumulative kernel inter-
polation ρi = ∑

m j Wi j .
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3.2.4.3 Boundary Conditions, Time Integration and Artificial Viscosity

For the application of single-phase flow though porous media, the solid skeleton is
considered to be rigid and fluid-solid interfaces �F S generally satisfy no-slip and no-
penetration boundary conditions. More general solid-fluid interaction phenomena
could be considered in SPH formulations, e.g. to mimic rough rock surfaces with
asperities, but are not further discussed in the following. To that end, the solid domain
is populated by so-called “dummy” particles [103, 138]. The velocity and pressure of
these dummy particles is extrapolated by the fluid phase and computed by the balance
of momentum, respectively, following the method proposed by Adami et al. [1].
Resulting velocity and pressure fields of dummy particles are counteracting those of
the fluid phase and thus create no-slip and no-penetration conditions on �F S . The
discrete particle properties are updated by theVelocityVerlet time integrationmethod
[109, 119] which is a common time-integration scheme in particle methods. Further,
a dissipative artificial viscosity term is used to reduce non-physical oscillations, e.g.
[71, 72, 138].

FEM—Finite-Element-Method

Figure 3.10 shows a conceptual illustration of three different approaches formodeling
displacement discontinuities: (a) cohesive zone model using lower-dimensional (i.e.
co-dimension 1) interface elements with local enrichment to represent a strong dis-
placement discontinuity (see Sect. 3.2.4.3); (b) phase-field models of brittle fracture
in which a crack surface density per unit volume is introduced for regularisation (see
Sect. 3.2.5); and (c) non-local elasto-plastic damage models, in which a kernel func-
tion with a specified support region is used to characterize a fracture process zone. In
the latter two approaches the discontinuities are smeared over a zone characterized
by a length-scale parameter. All models (a–c) are implemented in OpenGeoSys.

In the following we briefly introduce two of the Finite-Element-Method based
approaches. The first approach is the variational phase-field implemented in Open-

Fig. 3.10 Smeared and
explicit numerical
representations of fracture.
Figure reproduced
from [139]
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GeoSys and is particularly suited for simulaiton of fracturing process. The second is
the hybrid dimensional formulation and is specifically designed for numerical stable
fractured-porous media analysis.

3.2.5 PFM—Variational Phase-Field Method

Phase-field models have become one of the most established numerical techniques
for fracturing simulation in the last two decades. The approachwas first introduced by
Bourdin et al. [15] as a numerical implementationmethod to the variational approach
to fractures proposed by Francfort and Marigo [34]. Since the initial inception of
the method, models for brittle and cohesive fracture have been further studied by
many others [4, 5, 16, 41, 53, 60, 76, 87, 111, 118, 120, 134] including advanced
numerical solution schemes [30, 35]. Lately, its application ranges from ductile
fracturing [3, 4, 54, 66] to fatigue [2, 96], desiccation fracture [22, 63], and dynamic
fracturing [13, 17, 44, 56, 91].

Regularisation of the Total Energy Functional

In the variational approach to fractures in [34], the total energy in the system is
defined as the sum of the elastic strain energy, the potential of the external forces and
the surface energy as:

E(u, �c) :=
∫

�\�c

ψ(u) d� −
∫

∂N�

t̄ · u d� −
∫

�\�c

�b · u d� + Gc

∫

�c

d�,

(3.37)
where ψ is the strain energy density, t̄ is the boundary traction force, u is the dis-
placement, � is the mass density of the porous medium, b is the applied specific body
force, and Gc is the critical energy release rate. For hydraulic fracturing, the work
done by the fluid pressure within the fracture p needs to be added to the energy, and
the total energy becomes:

E(u, �c) :=
∫

�\�c

ψ(u) d� −
∫

∂N�

t̄ · u d� −
∫

�\�c

�b · u d� + Gc

∫

�c

d�

+
∫

�c

p[[u]] · n� d� (3.38)

where n� is the normal direction to the crack set �. Following Bourdin et al. [18],
with introduction of a phase-field order variable (or damage variable) d (3.38) is
regularised as:
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E(u, d, p) =
∫

�

(1 − d)2ψ(u)d� −
∫

∂N�

t̄ · u ds −
∫

�

�b · u d�

+ Gc

4cw

∫

�

(
w(d)

�
+ � |∇d|2

)
d� +

∫

�

pu · ∇d d�.

(3.39)

where d is the damage variable that equals 0 when undamaged and 1 for a fully
damaged state, cw is a normalization parameter defined as cw := ∫ 1

0

√
w(s)ds, � is

a regularisation length, and w(d) is the dissipative energy function. Various possi-
ble dissipative energy functions w(d) are discussed in [60]. The most widely used
function is a quadratic form [15, 51, 53, 68] w(d) = d2. The variational phase-field
model with this choice of the dissipative function is called AT2 model in [19], and
we follow this terminology in this report. Another choice for w(d) is a linear form
w(d) = d and is known as AT1. A thorough study comparing these two models in
terms of fracture nucleation and propagation can be found in [111]. Note that in arriv-
ing at (3.39), the work done by the fracture pressure in the crack is approximated as∫
�

pu · ∇d d�.

Numerical Implementation

The solution of (3.39) follows the alternate minimisation scheme introduced in [15]
with respect to u and d given a time-evolving p. Thus, the minimisation problem
can be stated as

(u, d)∗ = arg min Ẽ(u, d, p)⎧
⎨

⎩
u ∈ H1

d ∈ H1, dt ⊂ dt+�t

, (3.40)

The first variation of the energy functional with respect to u is

δE(u, d, p; δu) = 1

2

∫

�

(1 − d)2C(u)):ε(δu) d�− (3.41)

−
∫

∂N�

t · δu d� −
∫

�

�b · δu d� +
∫

�

pδu · ∇d d�, (3.42)

where C is the constitutive relation that satisfies ψ = C(ε) : ε/2. The first variation
of the energy functional with respect to d of AT1 is:

δE(u, d, p; δd) = −
∫

�

dδdC(ε(u)) : ε(u)d�

+ 3Gc

8

∫

�

(
δd

�
+ 2�∇d · ∇δd

)
d� +

∫

�

pu · ∇δd d�,

(3.43)
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and AT2 is

δE(u, d, p; δd) = −
∫

�

dδdC(ε(u)) : ε(u)d�

+ Gc

∫

�

(
d

�
δd + �∇d · ∇δd

)
d� +

∫

�

pu · ∇δd d�.

(3.44)

It should be noted that the solution of (3.43) or (3.44) for d is not bounded in
[1, 0]. Therefore, the solution scheme would require enforcement of the variational
inequality (0 ≤ d ≤ 1). For this study, a variational inequality non-linear solver of
the PETSc library [8, 9] has been applied to fulfill the bound of d.

3.2.6 HDF—Hybrid-Dimensional-Formulation

Hydro-mechanical modeling of fluid flow in deformable high aspect-ratio fractures
(aperture � fracture length) requires special numerical treatment of the govern-
ing equations. Discretization of high aspect-ratio fractures is challenging, and small
absolute fracture deformations might lead to non-linear changes in the flow con-
ditions within the fracture domain. Hybrid-dimensional elements were designed to
overcome these difficulties and implicitly couple flow in deformable fractures with
the deformation state of the surrounding matrix [24, 37, 38, 49, 50, 92–95, 97,
121–123].

Governing Equations of the Hybrid-Dimensional Formulation

Flow in hydraulic transmissive high aspect-ratio fractures is based on the physics
of viscous fluids Re � 1 and creeping flow conditions resulting in a Poiseuille-
type flow description [131]. The introduced assumptions simplify the balance of
momentum to a pressure driven flow formulation where the relative fluid velocity

wf = − δ(u)2

12 ηfR
grad p =: −ks

Fr

ηfR
grad p, (3.45)

is obtained from the parabolic velocity profile. In (3.45) δ denotes the fracture aper-
ture, ηfR the effective dynamic viscosity, u the fracture deformation, p the fluid
pressure and ks

Fr the introduced local fracture permeability. To determine relations
between injected fluid and fracture volume, fluid density changes and fluid velocity
the balance of mass is evaluated for a compressible fluid in deformable fractures.
Hence,

˙
(ρfR δ) + div

(
wf ρfR δ

) = 0 (3.46)
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provides the condition to fulfill the conservation of mass in a deformable fracture
setting, where ρfR is the fluid density. Once the fracture is surrounded by a porous
medium leak-off can occur and is simply taken into account by an additional source
term on the right hand side of (3.46). Evaluation of the balance of mass and momen-
tum and assuming a linear constitutive relationship between fluid pressure and effec-
tive fluid density for barotropic fluids provides the scalar, lower-dimensional gov-
erning equation for fluid flow in deformable fractures

ṗ
︸︷︷︸

(I)

− δ2

12 ηfR
grad p · grad p

︸ ︷︷ ︸
(II)

− δ

12 ηfR βf
grad δ · grad p

︸ ︷︷ ︸
(III)

− 1

12 ηfRβf
div

(
δ2 grad p

)

︸ ︷︷ ︸
(IV)

+ 1

δ βf

∂δ

∂t︸ ︷︷ ︸
(V)

= qlk

︸︷︷︸
(VI)

(3.47)

Equation (3.47) consists of a transient (I), a quadratic (II), a convection (III), a
diffusion (IV), a coupling (V) and a leak-off (VI) term.Due to their minor contribution
to the overall solution terms (II) and (III) will be neglected in the following.

Numerical Implementation

Different strategies to solve (3.47) have been proposed in the literature. Due to the
stiff nature of the global system, implicit coupling of the rock matrix and fracture
domain is mandatory. Solution strategies can be distinguished between staggered
and monolithic approaches. Staggered algorithms allow calculations on independent
domains and non-conformal meshing of fluid and solid domains [38], but require
a higher number of iterations compared to the monolithic approaches [92]. Mono-
lithic approaches such as zero-thickness interface elements are numerically stable
and allow modeling of constitutive contact behavior of fracture surfaces since con-
nectivity between both surfaces is guaranteed [95]. Here we focus on the element
formulation of zero-thickness interface elements. The interested reader is referred to
[37, 38, 92] for a detailed description of weak coupling schemes.

Interface elements allow longitudinal and transversal fracture flow as well as
pressure jumps along both fracture surfaces. Numerically it is realized by auxiliary
lower dimensional elements and averaging of the balance of mass and momentum.
For the averaging process the already introduced balances of mass and momentum
are extended to capture longitudinal and transversal fracture flow by decomposition
of the seepage velocity

wf = wl
f + wt

f. (3.48)

In order to allow integration of aligning node values on auxiliary element level
the balance of mass is averaged over the fracture height and reads
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δ

K f
Ṗf + δ̇ + divl

(
Wfδ

) = w+
f · n+ + w−

f · n− (3.49)

where Pf = ∫ δ/2
−δ/2 p̂ dn is the integral pressure,Wf = ∫ δ/2

−δ/2 wt
f dn the integral seepage

velocity, K f the fluid’s bulk modulus, divl the divergence evaluated in longitudinal
direction and the superscripts + and − denote the fracture surfaces. Averaging of the
balance of momentum is conducted for the longitudinal and transversal fracture flow
separately. In the longitudinal direction, the averaging process results in

Wf = −ks
Fr,l(x, t)

ηfR
gradl Pf. (3.50)

Description of the balance of momentum for transversal flow is realized by intro-
ducing and averaging a Darcy-like pressure-flow relationship which is approximated
by the trapezoidal rule and finally given by

1

2

(
−w+

f · n+ + w−
f · n−

)
= −ks

Fr,t

ηfR

− p+ + p−

δ
. (3.51)

A boundary condition for pressure Pf closes the set of averaged balance equations.
The formulation of the averaged quantity Pf depends on the domain composition of
the fracture height and reads

−ξ w+
f · n+ + 2 ks

Fr,t

δ ηfR
p+ = −(1 − ξ) w−

f · n− + 2 ks
Fr,t

δ ηfR
P

−ξ w−
f · n− + 2 ks

Fr,t

δ ηfR
p− = −(1 − ξ) w+

f · n+ + 2 ks
Fr,t

δ ηfR
P

(3.52)

in its general form. Here the stability limit ξ = 1/2 [93] is chosen [62] so that the
pressure jump along the fracture height and averaged pressure P are given by

Pf = p+ + p−

2

w−
f · n− − w+

f · n+ = 2 ks
Fr,t

p− − p+

δ
.

(3.53)

The averaged governing equation for fluid flow in a deformable fracture at aux-
iliary element level is finally obtained by addition/subtraction of (3.49) and (3.53)
and leads to
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1

2

[
1

K f
Ṗf + δ̇ + divl

(
Wfδ

)
]

− ks
Fr,t Pt

f = w+
f · n+ on �Fr

+ ,

1

2

[
1

K f
Ṗf + δ̇ + divl

(
Wfδ

)
]

+ ks
Fr,t Pt

f = w−
f · n− on �Fr

− .

(3.54)

To solve the governing equation (3.54) in a finite element (FE) framework the
weak form of the zero-thickness element formulation results in

∫

�Fr+

[
1

2

(
Ṗf wa + δ2

12 ηfRβf
gradl Pf · gradl wa + 1

δ βf

∂δ

∂t
wa

)
− 1

δ βf
ksFr,t Pt

f wa

]
dv

= 1

δ βf
w+
f · n+,

∫

�Fr−

[
1

2

(
Ṗf wa + δ2

12 ηfRβf
gradl Pf · gradl wa + 1

δ βf

∂δ

∂t
wa

)
+ 1

δ βf
ksFr,t Pt

f wa

]
dv

= 1

δ βf
w−
f · n− (3.55)

where wa is the lower dimensional test function used for the integration of the aux-
iliary elements. The form provided by Eq. (3.55) is implemented in a FE framework
using a Newton-Raphson scheme to solve non-linear, transient pressure diffusion
problems in deformable fractures surrounded by a porous matrix which is captured
by Biot’s theory.
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