Skip to main content

Controlling the Deep Learning-Based Side-Channel Analysis: A Way to Leverage from Heuristics

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12418))

Abstract

Deep neural networks have become the state-of-the-art method when a profiled side-channel analysis is performed. Their popularity is mostly due to neural nets overcoming some of the drawbacks of “classical” sidßhe need for feature selection or waveform synchronization, in addition to their capability to bypass certain countermeasures like random delays. To design and tune a neural network for side-channel analysis systematically is a complicated task. There exist hyperparameter tuning techniques which can be used in the side-channel analysis context, like Grid Search, but they are not optimal since they usually rely on specific machine learning metrics that cannot be directly linked to e.g. the success of the attack.

We propose a customized version of an existing statistical methodology called Six Sigma for optimizing the deep learning-based side-channel analysis process. We demonstrate the proposed methodology by successfully attacking a masked software implementation of AES.

S. Paguada and U. Rioja—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The key guessing vector \(\mathbf{g} \) (over \(n_{a}\) power traces) is computed using the log-likelihood principle \( g_{i}=\sum _{j=1}^{n_{a}} \log \left( \hat{p}_{i j}\right) \).

  2. 2.

    In SCA on software AES implementations, is common to target 8-bit intermediate values. In this case, since the size of the keyspace |K| is \(2^8\), the maximum GE value (worst case) is 256.

  3. 3.

    In [48], if we analyze the possible combinations of the specified subset of hyperparameters for Grid search optimization, we obtain \( 3^{2} \cdot 4^{2} \cdot 8^{1} \cdot 7^{1} \cdot 5^{1} = 40\,320 \) possible combinations

References

  1. Federal Office for Information Security (BSI) - Common Criteria for examination and evaluation of it security. https://www.bsi.bund.de/EN/Topics/CommonCriteria/commoncriteria.html. Accessed 17 June 2020

  2. FIPS 197: Announcing the Advanced Encryption Standard (AES), November 2001. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

  3. Agence Nationale de la Sécurité des Systèmes d’information - Certified products (2019). https://www.ssi.gouv.fr/en/products/certified-products/. Accessed 17 June 2020

  4. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.X., Veyrat-Charvillon, N.: Mutual information analysis: a comprehensive study. J. Cryptology 24(2), 269–291 (2011)

    Article  MathSciNet  Google Scholar 

  5. Becker, G., et al.: Test vector leakage assessment (TVLA) methodology in practice (extended abstract) (2013)

    Google Scholar 

  6. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    Google Scholar 

  7. Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., Cox, D.D.: Hyperopt: a python library for model selection and hyperparameter optimization. Comput. Sci. Discov. 8(1), 014008 (2015)

    Article  Google Scholar 

  8. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2

    Chapter  Google Scholar 

  9. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_3

    Chapter  Google Scholar 

  10. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3

    Chapter  Google Scholar 

  11. Cheng, C.S., Lee, S.C., Chen, P.W., Huang, K.K.: The application of design for Six Sigma on high level smart phone development. J. Q. 19, 117–136 (2012)

    Google Scholar 

  12. Choudary, M.O., Kuhn, M.G.: Efficient, portable template attacks. IEEE Trans. Inf. Forensics Secur. 13(2), 490–501 (2018)

    Article  Google Scholar 

  13. Common Criteria: Common Criteria v3.1. Release 5, April 2017. https://www.commoncriteriaportal.org/cc/index.cfm?. Accessed 17 June 2020

  14. EMVCo: EMV specifications (2001). https://www.emvco.com/. Accessed 17 June 2020

  15. Fisher, R.A.: The Design of Experiments, 9th edn. Macmillan (1935)

    Google Scholar 

  16. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3_27

    Chapter  Google Scholar 

  17. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked implementation of AES. In: Proceedings of the 2015 IEEE International Symposium on Hardware-Oriented Security and Trust, HOST 2015, pp. 106–111, June 2015

    Google Scholar 

  18. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press, New York (2016)

    MATH  Google Scholar 

  19. Gordon, J. (ed.): Six Sigma Quality for Business and Manufacture. Elsevier Science, October 2002, hardcover ISBN: 9780444510471

    Google Scholar 

  20. Hettwer, B., Gehrer, S., Güneysu, T.: Profiled power analysis attacks using convolutional neural networks with domain knowledge. In: Selected Areas in Cryptography - SAC 2018–25th International Conference, Calgary, AB, Canada, 15–17 August 2018, pp. 479–498 (2018)

    Google Scholar 

  21. Heuser, A., Zohner, M.: Intelligent machine homicide. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 249–264. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29912-4_18

    Chapter  Google Scholar 

  22. Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.: Machine learning in side-channel analysis: a first study. J. Cryptographic Eng. 1, 293–302 (2011)

    Article  Google Scholar 

  23. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  24. Lerman, L., Bontempi, G., Markowitch, O.: Side channel attack : an approach based on machine learning. In: Constructive Side-Channel Analysis and Secure Design, COSADE (2011)

    Google Scholar 

  25. Lerman, L., Bontempi, G., Markowitch, O.: A machine learning approach against a masked aes. J. Cryptograph. Eng. 5(2), 123–139 (2015)

    Article  Google Scholar 

  26. Lerman, L., Poussier, R., Markowitch, O., Standaert, F.X.: Template attacks versus machine learning revisited and the curse of dimensionality in side-channel analysis: extended version. J. Cryptograph. Eng. 8(4), 301–313 (2018)

    Article  Google Scholar 

  27. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1

    Chapter  Google Scholar 

  28. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-38162-6

    Book  MATH  Google Scholar 

  29. Martinasek, Z., Malina, L.: Comparison of profiling power analysis attacks using templates and multi-layer perceptron network, January 2014

    Google Scholar 

  30. Martinasek, Z., Malina, L., Trasy, K.: Profiling power analysis attack based on multi-layer perceptron network. In: Mastorakis, N., Bulucea, A., Tsekouras, G. (eds.) Computational Problems in Science and Engineering. LNEE, vol. 343, pp. 317–339. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15765-8_18

    Chapter  Google Scholar 

  31. Masure, L., Dumas, C., Prouff, E.: A comprehensive study of deep learning for side-channel analysis. Trans. Cryptographic Hardware Embed. Syst. 2020, 348–375 (2019)

    Google Scholar 

  32. Montgomery, D.C.: Design & Analysis of Experiments. Wiley, USA (2019)

    Google Scholar 

  33. Moradi, A., Richter, B., Schneider, T., Standaert, F.X.: Leakage detection with the \(\cal{X}^2\)-test. IACR Trans. Cryptographic Hardware Embed. Syst. 2018(1), 209–237 (2018)

    Google Scholar 

  34. Perin, G., Buhan, I., Picek, S.: Learning when to stop: a mutual information approach to fight overfitting in profiled side-channel analysis. IACR Cryptol. ePrint Arch. 2020, 58 (2020)

    Google Scholar 

  35. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR Trans. Cryptographic Hardware Embed. Syst. 2019(1), 209–237 (2018)

    Google Scholar 

  36. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the performance of convolutional neural networks for side-channel analysis. In: Chattopadhyay, A., Rebeiro, C., Yarom, Y. (eds.) SPACE 2018. LNCS, vol. 11348, pp. 157–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05072-6_10

    Chapter  Google Scholar 

  37. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Canovas, C.: Study of deep learning techniques for side-channel analysis and introduction to ascad database. IACR Cryptol. ePrint Arch. 2018, 53 (2018)

    Google Scholar 

  38. Rioja, U., Paguada, S., Batina, L., Armendariz, I.: The uncertainty of side-channel analysis: a way to leverage from heuristics. Cryptology ePrint Archive, Report 2020/766 (2020). https://eprint.iacr.org/2020/766

  39. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262_3

    Chapter  Google Scholar 

  40. Smith, L.N.: Cyclical learning rates for training neural networks. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 464–472 (2017)

    Google Scholar 

  41. Smith, L.: A disciplined approach to neural network hyper-parameters: Part 1 - learning rate, batch size, momentum, and weight decay, March 2018

    Google Scholar 

  42. Smith, L.N., Topin, N.: Super-convergence: very fast training of residual networks using large learning rates. CoRR abs/1708.07120 (2017)

    Google Scholar 

  43. Srinivas, S.S., Sreedharan, V.R.: Failure analysis of automobile spares in a manufacturing supply chain distribution centre using Six Sigma DMAIC framework. Int. J. Serv. Oper. Manage. 29(3), 359–372 (2018)

    Google Scholar 

  44. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_26

    Chapter  Google Scholar 

  45. Tubbing, R.: An analysis of deep learning based profiled side-channel attacks: custom deep learning layer, CNN hyperparameters for countermeasures, and portability settings (2019)

    Google Scholar 

  46. Yang, G., Li, H., Ming, J., Zhou, Y.: Convolutional neural network based side-channel attacks in time-frequency representations. In: Bilgin, B., Fischer, J.-B. (eds.) CARDIS 2018. LNCS, vol. 11389, pp. 1–17. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15462-2_1

    Chapter  Google Scholar 

  47. Yang, S., Zhou, Y., Liu, J., Chen, D.: Back propagation neural network based leakage characterization for practical security analysis of cryptographic implementations, pp. 169–185, November 2011

    Google Scholar 

  48. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN architectures in profiling attacks. IACR Trans. Cryptographic Hardware Embed. Syst. 2020(1), 1–36 (2019)

    Google Scholar 

  49. Zhang, J., Zheng, M., Nan, J., Hu, H., Yu, N.: A novel evaluation metric for deep learning-based side channel analysis and its extended application to imbalanced data. In: CHES 2020, pp. 73–96 (2020)

    Google Scholar 

  50. Zotkin, Y., Olivier, F., Bourbao, E.: Deep learning vs template attacks in front of fundamental targets: experimental study. IACR Cryptol. ePrint Arch. 2018, 1213 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Servio Paguada , Unai Rioja or Igor Armendariz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paguada, S., Rioja, U., Armendariz, I. (2020). Controlling the Deep Learning-Based Side-Channel Analysis: A Way to Leverage from Heuristics. In: Zhou, J., et al. Applied Cryptography and Network Security Workshops. ACNS 2020. Lecture Notes in Computer Science(), vol 12418. Springer, Cham. https://doi.org/10.1007/978-3-030-61638-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61638-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61637-3

  • Online ISBN: 978-3-030-61638-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics