
6QuantumGates

As discussed in Chap. 2, information in classical computers is represented by bits.
However, if the bits did not change, then the computer would remain the same
forever and would not be very useful! Therefore, it is necessary to change the values
of bits depending on what you want the computer to do. For example, if you want
a computer to multiply the number 2 and the number 3 together to produce the
number 6, then you need to put each of the numbers 2 and 3 into an 8-bit binary
representation, and then have a computational operation to multiply the two 8-bit
values together to produce 6. The operation of changing bits in a classical computer
is performed by classical logic gates.

6.1 Single Qubit Gates

Classical computers manipulate bits using classical logic gates such as OR, AND,
NOT and NAND. This link1 provides a basic review of classical logic gates.
Similarly, quantum computers manipulate qubits using quantum gates. The gates
are applied to qubits and the states of the qubits change depending on which
gate is applied. In the Bloch sphere representation, the gate provides instructions
for rotating the qubit’s arrow around the sphere. A quantum algorithm has to be
implemented on a quantum computer using quantum gates. After running a quantum
algorithm, the result is retrieved by measuring the qubit’s state. The hardware
implementation of quantum gates depends on how the qubit and quantum computer
has been implemented technologically.2 As an example, one could have a qubit
based on spin. Then gates could be implemented using an external magnetic field to

1https://whatis.techtarget.com/definition/logic-gate-AND-OR-XOR-NOT-NAND-NOR-and-
XNOR.
2E.g., topological qubits and superconducting qubits have very different hardware implementations
due to their very different nature.
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change the spin and hence the qubit state. This chapter will focus on gates from the
computing perspective rather than the engineering perspective. You will learn about
several important gates that act on a single qubit, interpret histograms produced by
a quantum computer simulator, and use matrices to describe the operation of these
gates.

6.2 X (Also Called NOT) Gate

In classical computers, the NOT gate takes one input and reverses its value. For
example, it changes the 0 bit to a 1 bit or changes a 1 bit to a 0 bit. This is like a
light-switch flipping a light from ON to OFF, or from OFF to ON. A quantum X

gate is similar in that a qubit in a definite state |0〉 will become |1〉 and vice versa.
When the qubit is in a superposition of all basis states, then the superposition also
flips:

(6.1)

To see how this works, you can try out the IBM Q simulator.3 Traditionally,
all qubits on the IBM Q machine (or any other quantum simulator) start with the
incoming qubits in the |0〉 state. To run this simple gate, drag the X gate onto any
qubit. To find the results, add the measurement operation at the end, as shown in
Fig. 6.1. Figure 6.1 is known as a quantum circuit, the quantum analog to classical
circuits. A circuit describes how a qubit changes through a computation depending
on which gates act on it. The circuit is read from left to right. As an example, in
Fig. 6.1 the single qubit on the left is initialized to |0〉. An X gate is then applied
to that specific qubit, and the last symbol on the qubit line denotes that the qubit is
measured. The double line underneath is used to illustrate the measurement.

After running the quantum circuit and opening the results, you should see a
histogram showing the measurements of the qubit’s final state for 1,024 independent
trial runs. As the qubit always starts as the |0〉 state, applying the X gate produces
the |1〉 state and so the measurement outcome is |1〉 100% of the time as shown in
Fig. 6.2.

Fig. 6.1 Applying the X

gate on the IBM Q simulator
and measuring the output

3https://quantum-computing.ibm.com. It can also be run on IBM’s real quantum computer, but you
may have to wait in a queue for the results.

https://quantum-computing.ibm.com
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Mathematically, the quantum NOT gate is represented as a matrix X which acts
on qubit states using matrix multiplication. The matrix representation is

X =
(

0 1
1 0

)
. (6.2)

It is worth noting that any computer will have hardware errors. In a classical
computer, this could be an electrical short of the motherboard, or degradation of the
hard drive which corrupts the stored classical bits. A real quantum computer will
also have hardware errors. The quantum state of a qubit can change accidentally
because of these hardware errors. Such errors may arise from the lack of full control
of the interference between electromagnetic fields, variations in temperature, or
energy dissipation. The accidental and incorrect change of a qubit state gives rise
to the wrong answer which is called “noise”.4 As quantum computers only measure
the state of a qubit, they cannot easily tell if the measurement is correct or incorrect.
When we humans interpret these results, noise can cause confusion as to which
answer is actually correct. Minimizing noise error is the greatest obstacle to building
quantum computers.5 For example, noise will cause the histogram in Fig. 6.2 to not
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Fig. 6.2 Histogram showing that the qubit is measured in the |1〉 state with a probability of
1. Reprint Courtesy of International Business Machines Corporation. ©International Business
Machines Corporation

4Background noise is an event that causes unwanted or incorrect affects on a signal.
5Noise can also occur in classical computers. Here, it can be because a wire in the computer which
holds the 0- or 1-bit breaks and gives the wrong bit value. However, since classical computation
has no probability associated with it, a single classical computation can be rerun twice and should
give the exact same result. In practice, your computer reruns the same code many times to spot if
there has been any errors and chooses the result which occurs most frequently. In this way you do
not notice the hardware noise as easily.
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have the perfect 100% outcome. Instead, noise will cause the qubit to be in the |0〉
state incorrectly some of the time, and the measurement histogram will incorrectly
be x% in the |0〉 state and (100 − x)% in the |1〉 state. If the noise is large, then
x = 50% and the measurement will be completely random. It should be understood
that noise is an effect that occurs in both classical and quantum computers but
because quantum computing technology is in its infancy, the noise is not as well
under control.

6.3 Hadamard Gate

The Hadamard gate is very important in quantum computing. If the qubit starts in a
definite |0〉 or |1〉 state, the Hadamard gate puts each into a superposition of |0〉 and
|1〉 states. In Fig. 6.3, we apply a Hadamard gate to the |0〉 state qubit on the IBM Q
simulator and measure the output.

The result of running the circuit 100 times is a histogram shown in Fig. 6.4.
Note that each run is independent: before each measurement, the qubit has to
be reset to the |0〉 state and passed through the gate, and then the measurement
happens. We repeat this process 1024 times. Each bin in the histogram shows the
frequency/probability of measuring |0〉 or |1〉. You can clearly see that applying the
Hadamard gate to a single qubit creates a superposition state of both |0〉 and |1〉. The
probabilities are not exactly 50/50 because of statistical error. The more data you
collect, the closer the result converges to 50/50. This is similar to flipping a coin
and counting the number of heads or tails; the greater the number of flips, the more
likely you are to observe 50/50 probability of seeing heads/tails.

Recall that measurement collapses the superposition. Only one classical state
can be observed, and all of the other quantum information is lost. Measurement
collapse is the reason why a qubit’s state cannot be duplicated, known as the no-
cloning theorem of quantum computing. Once a superposition state is measured, it
fundamentally changes into one of the basis states, and hence cannot be duplicated.
Still, it is not known how or whether measurement collapse happens.6

Fig. 6.3 Applying a
Hadamard gate and
measuring on the IBM Q
machine

6https://en.wikipedia.org/wiki/Measurement_problem.

https://en.wikipedia.org/wiki/Measurement_problem
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Fig. 6.4 Measurement histogram after running the Hadamard gate circuit in Fig. 6.3 1024
times. Reprint courtesy of International Business Machines Corporation, ©International Business
Machines Corporation

Fig. 6.5 Applying two Hadamard gates to the |0〉 state or |1〉 state

Question 1 Create a qubit in the |1〉 state and pass it through a Hadamard gate.
From the measurement histogram, can you tell whether the qubit started in a |0〉 or
|1〉 initial state?

The measurement histogram should look identical whether |0〉 or |1〉 was the
initial state. Then how can we tell what the initial state was after a Hadamard
operation? In the beam splitter, we determined where the photon came from by
adding a second beam splitter to create interference. The way to measure and
distinguish between them is to add a second Hadamard gate.

Question 2 Build a circuit that applies two Hadamard gates to a qubit in the |0〉
initial state as shown in Fig. 6.5. What is the output? Repeat this experiment for the
|1〉 initial state.

6.4 Mathematics of the Hadamard Gate

The Hadamard gate has the following matrix representation:

H = 1√
2

(
1 1
1 −1

)
. (6.3)
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Using matrix multiplication we can show that application of the Hadamard gate
to an |0〉 initial state puts the qubit into the (1/

√
2)(|0〉 + |1〉) state, also called the

|+〉 state:

(6.4)

If the initial state is |1〉, the Hadamard gate will create the superposition
(1/

√
2)(|0〉 − |1〉) state, called the |−〉:

(6.5)

In the Stern–Gerlach experiment, you learned that the |0〉 and |1〉 states make
up the z-basis and are associated with spin up and spin down. The |+〉 and |−〉
states comprise the x-basis and are associated with spin right and spin left. While
the Stern–Gerlach could be rotated to measure at any angle, a quantum computer is
physically built to only measure in the z-basis. Therefore, the spin right 1/

√
2(|0〉+

|1〉) and spin left 1/
√

2(|0〉 − |1〉) look the same when measured by a quantum
computer. However, the two states have hidden information that can be recovered
by using a second Hadamard gate to change back into the z-basis.

6.4.1 Examples

1. A spin right 1/
√

2(|0〉 + |1〉) is sent through a Hadamard gate, creating a
superposition of |+〉 and |−〉 given by 1/

√
2(|+〉 + |−〉). By performing a basis

change, show that this is equivalent to producing a |0〉 state.

1√
2

(
|+〉 + |−〉

)
= 1√

2

( 1√
2
|0〉 + 1√

2
|1〉

)
+ 1√

2

( 1√
2
|0〉 − 1√

2
|1〉

)
,

(6.6)

= 1

2
|0〉 + 1

2
|1〉 + 1

2
|0〉 − 1

2
|1〉, (6.7)

= |0〉. (6.8)

2. Use matrix multiplication to show how applying the Hadamard gate twice to a
|0〉 state qubit recovers its original state.

H |0〉 = 1√
2

(
1 1
1 −1

) (
1
0

)
= 1√

2

(
1
1

)
, (6.9)
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HH |0〉 = 1

2

(
1 1
1 −1

) (
1
1

)
=

(
1
0

)
. (6.10)

In fact, all quantum gates are reversible as a consequence of the unitary matrix
condition. Recall that the gates must be unitary so that the probabilities always
add up to 1. Multiplying any unitary matrix by its conjugate transpose will return
the identity matrix, i.e., reverses the gate to get the original state by UU† =
U†U = 1. The Hadamard matrix is self-unitary, i.e., it is its own conjugate
transpose, U = U†.

6.5 Z Gate

The Z-gate matrix representation is

Z =
(

1 0
0 −1

)
. (6.11)

The Z gate leaves a |0〉 state unchanged but flips the sign of the |1〉 state to −|1〉
by

(6.12)

This is equivalent to changing the qubit from a |+〉 state to a |−〉 state. The effects
of the X, H , and Z gates are summarized in Fig. 6.6.

Fig. 6.6 The X, H , and Z

gates change the qubit’s state
in the z- and x-basis and are
related according to this
diagram
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6.6 Big Ideas

1. Every interaction with a classical computer is caused by code instructing classical
logic gates to operate on classical bits. Similarly, a calculation on a quantum
computer is caused by coding quantum logic gates to act on qubits.

2. Common single-qubit gates include the X, Z, and H (Hadamard) gates.
3. Each quantum gate can be mathematically represented as a unitary matrix which

acts on qubits.

6.7 Activities

Exploring gates on the IBM Quantum Computer 10.4.

6.8 Check Your Understanding

1. Use matrix multiplication to show how applying an X gate flips:
(a) A qubit in the |0〉 state.
(b) A qubit in the general |ψ〉 = α|0〉 + β|1〉 state.

2. Explain the relationship between a beam splitter and a Hadamard gate.
3. A |0〉 qubit is passed through a Hadamard gate. We measure the qubit state

as |1〉. Which of the following choices best describes the result if we perform a
measurement on the qubit a second time without reinitializing?

(A) |0〉
(B) |1〉
(C) 50% chance of |0〉 or |1〉

4. Assume a qubit represents a light bulb that can be measured as either ON or
OFF.

(a) The light bulb is originally ON. What gate would you use to turn it OFF?
(b) The light bulb is originally ON and passes through a Hadamard gate. What

do you measure as the output?
(c) The light bulb is originally ON and passed through two Hadamard gates in

series. What do you measure as the output?
5. Explain how the Hadamard gate is implemented in the Stern–Gerlach

experiment.
6. Explain the output of the Mach–Zehnder interferometer using what you

learned about Hadamard gates.
7. Use matrix multiplication to demonstrate

(a) The Hadamard gate applied to a |1〉 state qubit turns it into a |−〉.
(b) A second Hadamard gate turns it back into the |1〉 state.
(c) The output after applying the Hadamard gate twice to a general state |ψ〉 =

α|0〉 + β|1〉.
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Fig. 6.7 Five quantum circuits for Problem 8

Fig. 6.8 Circuit diagram for
Problem 12

8. Which of the quantum circuits in the Fig. 6.7 would NOT produce the
histogram shown in Fig. 6.4?

9. Use matrix multiplication to show how applying the Z gate to |+〉 changes
it to |−〉.

10. Using only Hadamard and Z gates, design a quantum circuit that outputs the
same result as an X gate.

11. Using the IBM Q simulator, apply the Z gate to a qubit in the following
initial states and interpret the measurement histogram.

(a) |0〉
(b) |1〉 (Hint: You need to first flip the |0〉 state using the X gate.)
(c) |+〉 (Hint: You need to first create the |+〉 state using the H gate.)
(d) |−〉 (Hint: You need to first create the |−〉 state using the X and H gates.)

12. What is the expected measurement histogram produced by the circuit in
Fig. 6.8?

13. Show that the Hadamard gate is unitary and therefore reversible.
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