
Chapter 10
The Alpha and Omega of Teacher
Education: Organizing Mathematical
Activities

In future not instruction and receptivity, but organisation and
activity will be the special mark of the teaching/learning process.

Johannes Kühnel (1869–1928)

1 Introduction

The aim of this paper is to describe an introductory mathematics course for primary
student teachers and to explain the philosophy behind it.

The paper is structured as follows: It starts with a general plea for placing the
mathematical training of any category of students into their professional context.
Then the context of primary education in Germany, with its strong emphasis on
the principle of learning by discovery, is sketched. The third and main section of the
paper presents the “O-script/A-script method”, a special teaching/learning format for
stimulating student teachers’ mathematical activities along the principle of learning
by discovery. In Sect. 4 special attention is given to the notion of proof in the context
of primary teacher education. The paper concludes with some observations of how
student teachers evaluate this approach.

2 Mathematics in Contexts

It is a most remarkable phenomenon that the teaching and learning of mathematics
at the university level which was hardly a subject of public discussion in the past is
now attracting world wide attention. The Discussion Document for the ICMI Study
on this topic (ICMI 1997) lists five external reasons for this changing attitude:

1. the increase in the number of students who are attending tertiary institutions;

2. pedagogical and curriculum changes that have taken place at the pre-university level;
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3. the increasing differences between secondary and tertiary mathematics;

4. the rapid development of technology;

5. demands on universities to be accountable.

I would like to add an internal reason and to comment on it: the changing views
about the nature of mathematics. The first three-quarters of this century witnessed
a steady rise of formalism and structuralism culminating in Bourbaki’s monolithic
architecture of mathematics. However, by the end of the seventies this programme
despite its success in some fields of mathematics turned out as a failure as a universal
programme, as did similar structuralistic programmes in other areas, for example
linguistics and architecture. At that time it was widely recognized that in no field of
study could semantics be replaced by syntax. Postmodern philosophy rediscovered
the meaningful context as an indispensable aspect of all human activity, including
mathematical activity. As far as details of the changing views of mathematics are
concerned I refer to Davis and Hersh (1981) and Ernest (1998).

As a consequence,wehave to conceive of “mathematics” not solely as an academic
field of study but as a broad societal phenomenon. Its diversity of uses and modes of
expression is only in part reflected by the kind of specialized mathematics which we
typically find in university departments. I suggest a use of capital letters to describe
MATHEMATICS as mathematical work in the broad sense including mathematics
in science, engineering, economics, industry, commerce, craft, art, education, daily
life, and so forth, and including the customs and requirements specific to these
contexts. Of course, specialized mathematics is a central part of MATHEMATICS.
But mathematicians cannot and must not claim a monopoly for the whole. It is
unjustified to assume that any piece of mathematics would form an absolute body of
knowledge carrying its potential applications in itself. In his paper “The pernicious
influence of mathematics on science” J.T. Schwartz used drastic words to warn
mathematical specialists of applying mathematics to other fields without paying
proper attention to the context (Schwartz 1986).

The consequences for the teaching and learning of mathematics at the university
should be clear: In teaching mathematics to non-specialists the professional context
of the addressees has to be taken fundamentally and systematically into account. The
context of mathematical specialists is appropriate for the training of specialists, not
for the training of non-specialists.

In the present paper the professional context to be considered is teaching mathe-
matics at the primary level. There are mathematicians who look down on this task.
In my view this is a fundamental mistake. The importance of primary mathematics
within MATHEMATICS can hardly be overestimated. After all, it is at this level
where the systematic encounter of children with mathematics begins and where the
points for their whole mathematical education are set. I would like to refer here to
the wisdom of the Tao-te-ching:

Plan difficult things at the very beginning when they are still easy.
Care for big things as long as they are still small.



2 Mathematics in Contexts 211

Although many elements of the context of primary teacher education are specific the
general approach adopted in this paper might be interesting for developing mathe-
matical courses for other professional fields, too.

3 The Context of Teacher Education

Since the beginning of the 1980s the development of primary education in the
State of North Rhine-Westphalia has exerted a great influence on the other Ger-
man States.1 The boundary conditions for primary mathematics education in North
Rhine-Westphalia are special in two respects:

1. In the first phase2 of their education at the university all primary student teachers
have to study three subjects: German language, mathematics and a third subject
(for example, environmental education, physical education, art, etc.). One of the
three subjects has to be chosen as a major subject (45 credit hours out of the 120
credit hours of the whole 3-year programme). Two other (minor) subjects cover
25 credit hours.3 As a consequence mathematics is compulsory for all primary
student teachers. Roughly 90% of them choose mathematics as a minor subject
(25 credit hours).

2. The syllabus for primary schools (grades 1 to 4) adopted in 1985 marked an
important turning point in the history of public education in Germany. For the
first time the principle of learning by discovery was explicitly prescribed as the
basic principle of teaching and learning (Kultusminister des Landes Nordrhein-
Westfalen 1985, Sect. 3):

The tasks and objectives of mathematics teaching are best served by a conception in which
learning mathematics is considered as a constructive and investigative process. Therefore
teaching has to be organized such that children are offered as many opportunities as possible
for self-reliant learning in all phases of the learning process:

1. starting from challenging situations; stimulating children to observe, to ask questions,
to guess;

2. exposing a problem or a complex of problems for investigation; encouraging individual
approaches; offering help for individual solutions;

3. relating new results to known facts in a diversity of ways; presenting results in a more
and more concise way; assisting to memory storage; stimulating individual practice of
skills;

4. talking about the value of new knowledge and about the process of acquiring it; sug-
gesting the transfer to new, analogous situations.

1With 17 million people Northrhine-Westfalia is the largest German State.
2The first phase (3 years) is followed by the second phase (2 years) which is spent at special
institutions in close proximity of schools.
325 credit hours are for general education (pedagogy, psychology, ...).
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The task of the teacher is to find and to offer challenging situations, to provide children with
substantial materials and productive ways of practising skills, and, above all, to build up and
sustain a form of communication which serves the learning processes of all children.

This emphasis on mathematical processes instead of ready-made subject matter is
visible in other parts of the syllabus, too. For example, the first section “Tasks and
objectives” lists the following four “general objectives” of mathematics teaching:
Mathematizing, Exploring, Reasoning and Communicating. Obviously, these objec-
tives reflect basic components of doing mathematics at all levels. The fourth section
of the syllabus describes in some detail why mathematical structures on the one hand
and applications of mathematics on the other hand are two sides of one coin and
how these two aspects can be interlocked in teaching. The explicit statement of this
complementarity is also novel for German primary schools.

The development of this new syllabus was certainly very much influenced by
similar developments in other European countries, in particular, the Netherlands.
However, there has also been a strong trend towards active learning within German
mathematics education. At the beginning of this century, Johannes Kühnel, one of
the leading figures of progressive education in Germany, wrote his famous book
“Neubau des Rechenunterrichts” (“Reconstructing the Teaching of Arithmetic”) in
which he described the “teaching/learning method of the future” as follows (Kühnel
1954, 70):

The learner will no longer be expected to receive knowledge, but to acquire it. In future
not instruction and receptivity, but organisation and activity will be the special mark of the
teaching/learning process.

Since the late eighties considerable progress has been made in developing practical
approaches and materials for this new conception of primary mathematics teaching
including innovative textbooks (cf. Winter 1987; Wittmann and Müller 1994–1997,
and Becker and Selter 1996). The project Mathe 2000 has played a leading role
in this development. Of course the implementation of these materials depends cru-
cially on the teachers’ ability to abandon the deeply rooted instruction/receptivity
model of teaching and learning in favour of the organisation/activity model. How-
ever, as experience shows, it is not enough just to describe new ways of teaching
in general terms. The natural way to stimulate and to support the necessary change
within the school system is to restructure teacher education according to the organ-
isation/activity model. Only teachers with first hand experiences in mathematical
activity can be expected to apply active methods in their own teaching as something
natural and not as something imposed from outside. Therefore all efforts in pre-
service and in-service teacher education have to be concentrated on reviving student
teachers’ and teachers’ mathematical activity.

Interestingly, the new emphasis on student activity is not restricted to teacher edu-
cation, it is a general phenomenon of the present discussion about teaching mathe-
matics at the university level (cf. the section “Student Activity” in ICMI 1997). More
and more mathematicians are taking special care of stimulating student activities.
Bill Jacob’s “Linear Functions and Matrix Theory” (Jacob 1995) is a good example.
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4 The O-Script/A-Script Method

The traditional pattern of introductory mathematics courses at German universities
is a combination of a 2 to 4 hours per week lecture (“Vorlesung”) on the one hand
and 2 hours of practice (“Übungen”) which take place in groups of about 30 students
on the other hand. I am well aware that expository teaching can be very stimulating
and that work in groups based on good problems can arouse students’ thinking and
communication as well. Nevertheless I contend that grosso modo the lecture/practice
pattern has a strong inherent tendency towards instuction and receptivity: Often the
tasks and exercises offered to students for elaboration requiremainly or evenmerely a
reproduction of the conceptual and technical tools introduced in the lecture. So more
or less students’ individual work and work in groups tends to be subordinated to the
lecture. Frequently, work in groups degenerates into a continuation of the lecture:
The graduate student responsible for the group just presents the correct solutions of
the tasks and exercises.

The lecture/practice format is particularly common in courses for large groups of
students. In fact if you are confronted with numbers of students as large as 400 to
600, as we are in our primary teacher education programme, there is a strong pressure
towards instuction/receptivity, and it is hard to think of alternatives.

However, the more I got involved in developmental research along the lines of
learning by discovery the more I felt the contradiction between the teaching/learning
model which I followed inmymathematical courses and the teaching/learningmodel
which I recommended in my courses in mathematics education.

The O-script/A-script method has been developed as an attempt to mitigate this
cognitive conflict. The basic idea, the Alpha and Omega, of this method is very sim-
ple: Just take Johannes Kühnel literally in teacher education and replace “instruction
and receptivity” by “Organisation and Activity”, that is, use both the lecture and the
group work for organizing student activities.

An essential ingredient of this new teaching/learning format is a clear distinction
between the text written down by the lecturer on the blackboard or the overhead
projector and the text elaborated by the individual student. As the lecturer’s main
task is to organize students’ learning her or his text is called the “O-script”. It is not a
closed text, but it contains many fragments, leaves gaps, and often gives only hints.
Therefore it is a torso to be worked on. As the elaborated text expresses the student’s
individual activity it is called the “personal A-script”.

The regulations of our teacher education programme do not allow for making the
A-script obligatory. However, the A-script can be used as an additional qualification
by students who fail the final test. Experience shows that the majority of student
teachers is willing to write an A-script. How to organize students’ activity in a
lecture? In trying to find an answer to this question I got inspired by two quotations:

We should teach more along problems than along theories. A theory should be developed
only to the extent that is necessary to frame a certain class of problems. (Giovanni Prodi)
The main goal of all science is first to observe, then to explain phenomena. In mathematics
the explanation is the proof. (David Gale)
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Accordingly, I divided the course in two parts: The first part was devoted to
introducing and clarifying a list of 50 carefully selected generic problems which
should be elaborated in the A-scripts. The second systematic part should present a
theoretical framework for these problems, however, based on students’ experiences
in writing the A-scripts. The second part did not differ from ordinary lectures. I think
this format absolutely appropriate at this place of the learning process. Actually, I
don’t see a substitute for it.

The following areas which are closely related to the contents of the primary
curriculum were covered in the course: (1) Place Value Systems, (2) Elementary
Combinatorics, (3) Arithmetic Progressions, (4) Sequences, (5) Elementary Number
Theory.

These areas are rich playgrounds for genuinemathematical activities. By using the
opportunities offered in the course student teachers acquire not only the appropriate
background knowledge which enables them to look at the primary curriculum from
a higher level. They also acquire first-hand experiences in mathematizing, exploring,
reasoning, and communicating.

The 10 problems selected for the area “Arithmetic Progressions” are as follows:

1. (FromButts 1973.) Try to decompose the set {1, 2, 3, ..., n} of the first n natural numbers
into two subsets such that the sum of the numbers in one subset is equal to the sum of
the numbers in the other subset. For which n is this possible? For which n not?

2. Investigate the analogous problem for the set {2, 4, ..., 2n} of the first n even numbers.

3. Investigate the analogous problem for the set {1, 3, ..., 2n − 1} of the first n odd num-
bers.

4. Which numbers can be represented as sums of consecutive numbers?

5. Which numbers can be represented as sums of 2 (or 3, 4, ...) consecutive numbers?

6. In how many ways can 1000 be represented as a sum of consecutive numbers?

7. In how many ways can 1000 be represented as a sum of consecutive odd numbers?

8. From Monday to Friday 60 little lambs were born on a pasture: on Tuesday 3 more
than on Monday, on Wednesday 3 more than on Tuesday, on Thursday 3 more than on
Wednesday, and on Friday 3 more than on Thursday. How many lambs were born on
each day?

Fig. 1 Steinbring’s problem
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9. (From Steinbring 1997). In the scheme of Fig. 1 the number in the circle (the “addi-
tion number”) and the number in the first box (“the starting number”) can be chosen
arbitrarily. The numbers in the other four boxes are calculated inductively according to
the following rule (see the example in Fig. 1): The number in a box is the number in
the preceding box plus the addition number. The numbers in all five boxes are added to
give the final result (the “target”). How to choose the starting number and the addition
number in order to get the target 50? How many solutions do exist? Which numbers
can be obtained as targets?
(In this problem and the next one natural numbers and the number 0 are admitted.)

10. Investigate the same problem for 6 boxes instead of 5.

The list of these 10 problems has been constructed by employing the “method of
generating problems” (Wittmann 1971). So the use of heuristic strategies is ensured.
Problem 8 is taken from a textbook for grade 4, problem 9 from a paper on the
findings of a teaching experiment based on this problem. Therefore student teachers
can see explicit connections with the primary curriculum.4 As these connections
are reinforced in the subsequent maths education course the maths courses become
meaningful for student teachers within their professional context.

In the first part of the course each weekly lecture introduced 5 problems to the stu-
dent teachers for investigation. The problems were explained in full detail and it was
indicated how these problems could be attacked in different ways by using various
“enactive”, “iconic” and “symbolic” representations. Themain heuristic strategies as
described, for example, in Polya (1981), Mason (1982) or Schoenfeld (1985), were
explained by referring to the problems of the course. However, no solutions were
given.

The student teachers had less problems with developing ideas. The real challenge
was how to formulate a coherent text. “What should an A-script look like?” was a
frequent question. So parts of the lecture as well as of the group work had to address
this difficulty. Referring to some examples I indicated in my lectures how the gaps
of the O-script can be filled to get an A-script. In addition, student teachers were
allowed to submit drafts of their A-scripts for critical reading, and could revise them
according to the comments they received.

At the end of the first part of the course the students (at least the brave ones)
had intensively worked on 50 selected problems. Even when they hadn’t solved all
problems properly, they had experienced a variety of mathematical phenomena. This
was a good basis for the theoretical framework developed in the subsequent second
part of the course.

For example, the problems on arithmetic progressions were theoretically framed
by proofs of the sum formula and of the following remarkable theorem by J.J.
Sylvester: The number of representations of a number n as a sum of consecutive
numbers is equal to the number of odd divisors of n.

Both proofs were based on ideas that had been developed by students before.

4After their own work on problem 9 student teachers were shown a video on a teaching experiment
in which a group of 12 fourth graders had found all solutions within 30 minutes.
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Interestingly, the extended work on problems in the first part paid off in the second
part: the course “covered” the same mathematical content as courses in the ordinary
format usually do.

5 Operative Proofs

As stated at the beginning, the basic tenet of the present paper is that themathematical
training of student teachers should reflect their professional context. This requirement
is particularly critical when it comes to proofs.

It should be obvious that the notion of formal proof related to deductively struc-
tured theories is inappropriate or even counterproductive as a background for appre-
ciating “Reasoning” as an objective of primary mathematics. That is not to say, how-
ever, that the notion of proof is irrelevant for primary mathematics. On the contrary.
Fortunately, contemporary views of proof allow for an intellectually honest incorpo-
ration of proof into both primary teacher education and primary teaching. Studies in
the history and philosophy of mathematics have destroyed the long held formalistic
doctrine that the only rigorous form of proof is a formal proof. It has turned out that
the notion of formal proof has its clear limitations, particularly from the point of
view of the practising mathematician (cf., for example, Branford 1913, Hardy 1929,
Thom 1973, Davis and Hersh 1981, Atiyah 1984, Long 1986 and Thurston 1994).
In a letter submitted to the working group on proof at ICME 7, Québec 1992, Yuri I.
Manin expressed his broader understanding of “proof as a journey” very nicely:

Many working mathematicians feel that their occupation is discovery rather than invention.
My mental eye sees something like a landscape; let me call it a “mathscape”. I can place
myself at various vantage points and change the scale of my vision; when I start looking
into a new domain, I first try a bird’s eye view, then strive to see more details with better
clarity. I try to adjust my perception to guess at a grand design in the chaos of small details
and afterwards plunge again into lovely tiny chaotic bits and pieces.

Any written text is a description of a part of the mathscape, blurred by the combined imper-
fections of vision and expression. Every period has its own social conventions, and the
aesthetics of the mathematical text belong to this domain. The building blocks of a mod-
ern paper (ever since Euclid) are basically axioms, definitions, theorems and proofs, plus
whatever informal explanations the author can think of.

Axioms, definitions and theorems are spots in a mathscape, local attractions and crossroads.
Proofs are the roads themselves, the paths and the highways. Every itinerary has its own
sightseeing qualities, which may be more important than the fact that it leads from A to B.

With this metaphor, the perception of the basic goal of a proof, which is purportedly that
of establishing “truth” is shifted. A proof becomes just one of many ways to increase the
awareness of a mathscape.

Any chain of argument is a one-dimensional path in a mathscape of infinite dimensions.
Sometimes it leads to the discovery of its end-point, but as often as not we have already
perceived this end-point, with all the surrounding terrain, and just did not know how to get
there.

We are lucky if our route leads us through a fertile land, and if we can lure other travellers
to follow us.



5 Operative Proofs 217

In mathematics education this new view of proof has been reflected in many papers
(cf., for example, de Villiers 1997). Based on Semadeni’s and Kirsch’s proposals of
“pre-mathematical” or “pre-formal” proofs (Semadeni 1974; Kirsch 1979), the con-
cept of “operative proof” has been developed (Wittmann 1997). An operative proof
is a proof which is embedded in the exploration of a mathematical problem context
and which is based on the effects of operations exerted thereby on meaningfully
represented mathematical objects.

For this reason operative proofs explain phenomena which were observed before
(cf. Gale’s statement quoted above) and thus they contribute to understanding math-
ematics.

As also non-symbolic representations can be used operative proofs are particu-
larly useful for the early grades and for primary teacher education. I would like to
demonstrate this by giving two examples frommy introductory course on arithmetic.

Example 1 (Infinity of primes) The formal proof of the infinity of prime numbers
runs as follows: Let us assume that the set of prime numbers is finite: p1, p2, . . . , pr .
The number n = p1 p2 . . . pr + 1 has a divisor p that is a prime number. Therefore
n is divisible by one of the numbers p1, . . . , pr . From p|n and p|p1 p2 . . . pr we
conclude that p also divides the difference n − p1 p2 . . . pr = 1. However, p|1 is a
contradiction of the fact that 1 is not divisible by a prime number. Therefore the
assumption was wrong.

The following operative proof of the infinity of primes is based on the represen-
tation of natural numbers on the number line. One of the problems that the student
teachers had to investigate was the determination of primes by means of the sieve of
Eratosthenes. Therefore they knew from their own experience how the sieve works.
Using this knowledge the infinity of primes can be proved just by explaining why
the iterative sieve procedure does not stop: Assume that in finding primes we have
arrived at a prime number p. Then p is encircled and all multiples of p are cancelled.
The product

n = 2× 3× 7× 11× . . .× p

is a common multiple of all primes sieved out so far. So it was cancelled at every
previous step of the procedure. As no cancellation process following the selection
of a prime can hit adjacent numbers the successor of n has not been cancelled yet.
Therefore after every step there are numbers left and the smallest of them is a new
prime number.

Example 2 (Sylvester’s theorem) In the first part of the course the student teachers
worked with arithmetic progressions and investigated the representation of natural
numbers as sums of consecutive numbers. Based on their experiences the following
operative proof of Sylvester’s theorememerged in a naturalway: Sums of consecutive
numbers are represented as staircases.Dependingon the parity of the number of stairs,
each staircase can be transformed into a rectangular shape that represents a product.
If the parity is odd, there is a middle stair and the upper part of the staircase can be
cut off and added to the lower part (Fig. 2).
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Fig. 2 Operative proof of Sylvester’s theorem, case 1

Fig. 3 Operative proof of Sylvester’s theorem, case 2

If the parity of stairs is even then the staircase can be divided vertically in the
middle and the two parts fit together to make a rectangular shape (Fig. 3).

A careful study of the effects of these two operations shows that in both cases an
odd divisor of the represented number arises: either the number of stairs or the sum
of the heights of the first and last stair (which must be odd for an even number of
stairs). As a consequence any staircase representation of a number gives rise to an
odd factor of n. But the converse is also true: A rectangle with an odd side can be
transformed into a staircase of one of the two types depending on the relative size
of the odd factor. A closer inspection reveals that this relationship between staircase
representations and rectangular representations of n is bijective.

Again this operative proof explains phenomena which are well known from pre-
vious work on problems.

The advantage of operative proofs in the context of teacher education is obvi-
ous: These proofs are not separated from this context but closely related to it. In
becoming acquainted with operative proofs student teachers learn to appreciate the
use of informal means of representation for doing mathematics at early levels. Often,
elements of such activities in teacher education can immediately be implanted into
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primary teaching. Consider, for example, the following exercise from a textbook for
the second grade:

1+ 2+ 3 =
2+ 3+ 4 =
3+ 4+ 5 =
4+ 5+ 6 =
. . . . . .

Looking at the results children discover the times 3-row. If the sums are represented
by three columns of counters, the displacement of one counter to make a rectangle
is obvious. This work with counters is a good and in my view also a necessary
preparation for algebra where the same exercise can be resumed as follows:

(a − 1)+ a + (a + 1) = 3a.

6 Experiences with the Course

Feedback from student teachers collected by means of a questionnaire after the
introductory course on elementary geometry showed that the “O-script/A-script”
method was accepted by 75% of the population. The writing of the A-script was
experienced as a very time-consuming, but effective exercise. In the same vein 70%
affirmed that their understanding of the principle of learning by discovery had been
improved.

However, only 59% of the students indicated that the course had had amore or less
positive influence on their view of mathematics. 41% expressed their concerns about
the openness of the first part. This result is not surprising as at school many students
are programmed as receivers of knowledge. The adopted definitely mechanistic and
formalistic attitude towards mathematics gives them a feeling of security and helps
them “to survive”. Feeling comfortable with mechanistic routines in the system of
school and university (!) they do not want to be confronted with uncertainty.

The unfavourable influence of mathematical experiences from school is particu-
larly apparent in student teachers’ preconceptions of operative proofs. An instructive
example was reported in Wittmann and Müller (1990). In a seminar student teach-
ers studied figurate numbers.5 In particular trapezoid numbers were introduced as a
composition of square and triangular numbers (see Fig. 4).

In looking for patterns the students guessed that for all n the trapezoid number ‘Tn
and n leave the same remainder modulo 3. For this relationship an operative proof
(at that time called “iconic proof”) was given which was based on the corresponding
pattern.

5In history figurate numbers played a fundamental role as a cradle of number theory. We are
convinced that these numbers are also a wonderful context for stimulating mathematical activities
in children. As a consequence figurate numbers play an important role in “mathe 2000”.
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Fig. 4 Trapezoid numbers

Right after this demonstration some students expressed their doubt on its validity.
The teacher didn’t intervene and quickly the whole group agreed that the demonstra-
tion could only claim the status of an illustration, not the status of a proof. The teacher
then offered a formal proof and confronted it with the operative proof. The student
teachers were invited to think about these two types of proof and to write down their
opinions. The papers showed very clearly how the student teachers’ appreciation of
operative proofs was inhibited by the understanding of proof that they had acquired
at school. For illustration I quote from some papers:

The symbolic proof is to be preferred because it is more mathematical.

The iconic proof is much more intuitive for me and explains much better what the problem
is. For me the inferences drawn from patterns of dots are convincing and sufficient as a
proof. Unfortunately we have not been made familiar with this type of proof at school. Only
symbolic proofs have been taught.

The iconic proof is very intuitive. One understands the connections fromwhich the statement
flows. I can’t imagine how a counterexample could be found, because it does not matter how
many 3-columns can be constructed. In my opinion it is nevertheless not a proof, but only
a demonstration, which, however, holds for all n. At school I learned that only a symbolic
proof is a proof.

The symbolic proof is more mathematical. This proof is more demanding, as some formulae
are involved which you have to know and to recall. The iconic proof can be followed step
by step, and each step is immediately clear. However, I wonder if an iconic proof would be
accepted in examinations.

Cognitive conflicts in accepting operative proofs as valid proofs have to be under-
stood as natural symptoms of a metamorphosis lifting student teachers to higher
professional levels. Experience shows that in retrospect student teachers consciously
appreciate teacher education programmes which are embedded in the professional
context. In a recent survey by the centre of teacher education at the University of
Dortmund 2700 student teachers in North Rhine-Westphalia in their second phase
of training were asked to evaluate the courses in mathematics and mathematics edu-
cation they had received in the first phase of their training at the university (Zentrum
für Lehrerbildung 1997). The results are very encouraging (Fig. 5). The evaluations
of the programmes at the universities Paderborn and Dortmund which share the
same philosophy were much higher than those of the six other universities in North
Rhine-Westphalia which offer courses in primary teacher education.
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Fig. 5 Results of the empirical study

A team of 16 authors has just written a book “Arithmetic as a Process” (Müller
et al. 2004) which is based on the O/A approach to teacher education described in
this paper. This book is a truly mathematical book, but unlike other books it con-
sciously puts mathematics in the context of teacher education—neither by sacrificing
education to mathematics nor mathematics to education.
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