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Abstract. With the pervasiveness of data mining (DM) in many areas
of our society, the management of digital data, readily available for anal-
ysis, has become increasingly important. Consequently, nearly all com-
munity accepted guidelines and principles (e.g. FAIR and TRUST) for
publishing such data in the digital ecosystem, stress the importance of
semantic data enhancement. Having rich semantic annotation of DM
datasets would support the data mining process at various choice points,
such as data understanding, automatic identification of the analysis task,
and reasoning over the obtained results. In this paper, we report on
the developments of an ontology-based annotation schema for seman-
tic description of DM datasets. The annotation schema combines three
different aspects of semantic annotation, i.e., annotation of provenance,
data mining specific, and domain-specific information. We demonstrate
the utility of these annotations in two use cases: semantic annotation of
remote sensing data and data about neurodegenerative diseases.
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1 Introduction

Recently, the success of Data Mining (DM) and Machine Learning (ML) in
a broad range of applications has led to a growing demand for ML systems.
However, this success heavily relies on the ML expertise of the practitioners,
and on the quality of the analyzed data, both of which are in short supply.
One potential solution for overcoming the shortage of expertise is to develop
more intelligent data analysis systems, that will assist domain practitioners in
the construction of analysis pipelines and the interpretation of results. Such an
intelligent DM system would we able to reason over distributed heterogeneous
data and knowledge bases, automatically define the learning task, recommend
the most suitable algorithms for the task at hand, and correctly interpret the
induced predictive models [17,18].
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The first step towards the development of such systems is the improvement
of data management and data understanding. Research data must be enriched
with formal and logical descriptors that capture the characteristics of the data
relevant for the task of automation of the data analysis process. Additionally,
these descriptors have the potential to significantly improve interdisciplinary
research by helping ML practitioners better understand the data originating
from the application domains, as well as easily incorporate domain knowledge
in the process of analysis. Formal descriptors, when published on the Web, can
also improve the accessibility and reusability of scientific data.

Many academic institutions have recognized the importance of effective man-
agement of scientific data, making it their central mission. For example, the FAIR
(Findable, Accessible, Interoperable, and Reusable) principles [26] are a set of
guiding principles that have been introduced to support and promote proper data
management and stewardship. In that context, data must be discoverable and
it should be semantically annotated with rich metadata. The metadata should
always be accessible by standardized communication protocols. The data and the
metadata have to be interoperable with external data from the same domain.
Finally, both data and metadata should be released with provenance details so
that the data can be easily replicated and reused.

Another set of principles that builds upon FAIR data are the TRUST princi-
ples [13]. The TRUST principles go a level higher by focusing on data repositories
and providing them with guidance to demonstrate Transparency, Responsibility,
User focus, Sustainability, and Technology (TRUST).

At the core of both principles lies the semantic enrichment of research data.
Semantic annotation of data, as a powerful technique, has attracted attention
in many domains. Unfortunately, semantic annotation of DM and ML datasets
is still in the early phases of development. To the best of our knowledge, there
are no semantic dataset repositories from the general area of data science that
completely adhere to the FAIR and TRUST principles.

In this paper, we report on the development of an ontology-based annota-
tion schema for semantic annotation of DM datasets. Our main objective is to
provide a rich vocabulary for data annotation, that will serve as a basis for the
construction of a dataset repository that closely follows the FAIR and TRUST
principles. The annotation schema we proposed includes three different types
of information: provenance, DM-specific, and domain-specific. The provenance
information improves the transparency and reusability of data. The DM-specific
information provides means for reasoning over the analyzed data and helps (in
a semi-automatic way) in the construction of the DM workflows (or pipelines).
The domain-specific information helps to bridge the gap between ML practition-
ers and domain experts, as well as to improve cross-domain research. Finally, we
demonstrate the utility of domain-specific annotations in two use cases from
the domains of neurodegenerative diseases and Earth Observation (EO), respec-
tively.
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2 Background and Related Work

In the context of computer science, ontologies are “an explicit formal specifica-
tions of the concepts and the relations among them that can exist in a given
domain” [9]. In other words, they provide the basis for an unambiguous, logi-
cally consistent, and formal representation of knowledge. It is important to note
that, the logical component of ontologies allows knowledge to be shared mean-
ingfully both at machine and human level. Also, an immediate consequence of
having formal ontologies based on logic is that they can be used in a variety
of reasoning tasks, as well as in the inference of new knowledge. The benefits
of having ontology-based knowledge representations have been demonstrated in
many data- and knowledge-driven applications. The research areas that retained
most attention and contributed the most to the technological breakthrough of
ontologies are bioinformatics and biomedicine. For example, the Open Biological
and Biomedical Ontology (OBO) Foundry [21] is a collective of ontology devel-
opers that have developed and maintain over 100 publicly-available ontologies
related to the life sciences. When it comes to the process of ontology engineer-
ing, the OBO Foundry has played a key role, as they have proposed ontology
design principles that promote open, orthogonal, and strictly-scoped ontologies
with collaborative development. These principles have further widened the use
of ontologies across different fields of science.

In the area of DM and ML, a large body of research has focused on the devel-
opment of ontologies, vocabularies and schemas that cover different aspects of
the domain. Examples of such resources include the Data Mining OPtimiza-
tion Ontology (DMOP) [11], Exposé [24], MEX vocabulary [8], and the ML
schema [7]. DMOP has been designed to support automation at various choice
points of the DM process. The Exposé ontology provides the vocabulary needed
for a detailed description of machine learning experiments. MEX represents a
lightweight interchange format for ML experiments. ML Schema represents an
effort to unify the representation of machine learning entities.

The OntoDM suite of ontologies is of particular interest, as this paper extends
its line of work. OntoDM includes three different ontologies: OntoDM-core,
OntoDM-KDD, and OntoDT. OntoDM-core [17] is an ontology of core data min-
ing entities, such as dataset, DM task, generalizations, DM algorithms, imple-
mentations of algorithms, and DM software. OntoDM-KDD [16] is an ontology
for representing the process of knowledge discovery following the CRISP-DM
methodology [5]. OntoDT [18] is a generic ontology for the representation of
knowledge about datatypes.

Another type of information related to DM datasets that is important to
be formally represented is the provenance information. Provenance information
refers to the kind of information that describes the origin of a resource (in our
case a dataset), i.e., who created the resource, when was it published, and what
is its usage license. Provenance information is valuable when it comes to deciding
whether a specific resource can be trusted. This extra information also helps the
users better understand it, easily cite and reuse the resource for their purposes.
For the computers to make use of the provenance information, it has to be given
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explicitly, and it has to be based on common provenance vocabularies, such as the
Dublin Core vocabulary [25], the PROV ontology [2], Data Catalog Vocabulary
[1], or Schema.org [3].

3 Semantic Description of DM Datasets

To semantically describe a DM dataset, we consider three different types of
vocabularies/ontologies: (1) vocabularies for annotation of provenance informa-
tion, such as title, description, license, and format; (2) ontologies for annotation
of datasets with DM-specific characteristics, i.e., data mining task, datatypes,
and dataset specification; and (3) ontologies for annotation of domain-specific
knowledge that helps to contextualize the data originating from a given domain.

In this section, we discuss the first two aspects of the semantic enrichment
of datasets. We describe the Schema.org vocabulary, which we reuse for the
purpose of annotation of the dataset’s provenance details. Also, we outline the
main characteristics of the OntoDT and OntoDM-core ontologies and we further
extend their structure with terms essential for semantic description from a DM
perspective. In Sect.4 we discuss the annotation of domain specific knowledge
through examples from two different domains.

3.1 Provenance Information Annotation

To annotate DM datasets with provenance information, we have chosen the
Schema.org vocabulary, one of the most widely used vocabularies that provides
descriptors for provenance information in a structured manner. When annotating
the datasets, we usually use a subset of the list of provided descriptors as the
complete provenance information is not always available.

Figure 1 depicts an example annotation of provenance information in JSON-LD
format!. For this example, we used a dataset from the domain of Earth Obser-
vation (EO), named Forestry_Kras_-LiDAR_Landsat. The dataset was used in
a study that investigates the possibility of predicting forest vegetation height
and canopy cover in the Karst region in Slovenia by building predictive mod-
els using EO data [23]. For semantic annotation of provenance information for
this dataset, we used several terms from Schema.org, such as name, description,
URL, keywords, creator, distribution, temporal and spatial coverage, citation,
and license.

3.2 Data Mining Specific Annotations

The second type of annotation considers explicit specification of dataset charac-
teristics from a DM perspective, e.g., the format of the data, the type of learning
task, and the features’ datatypes. Data used in the process of DM can take vari-
ous forms, but the standard one assumes that there is a set of objects of interest

! https://json-1d.org/.
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"@context":"https://schema.org/",
"@type":"Dataset",
"name":"Forestry_Kras_LiDAR_Lansat",
"description”:"This dataset was employed in a study that investigates the possibility of predicting forest
vegetation height and canopy cover in the Karst region, Slovenia by building predictive models
using remotely sensed data."
"url":"http://semantichub.ijs.si/ontodm",
"keywords":["remote sensing", "Karst region", "LiDAR", "Landsat"],
"creator":{
"Qtype":"Person",
"url": "https://www.researchgate.net/profile/Daniela_Stojanova2",
"name":"Daniela Stojanova"
"distribution":{
"@type":"DataDownload",
"encodingFormat":"ARFF",
"contentUrl":""

"temporalCoverage":"2001-08-03, 2002-05-18, 2002-11-10, 2003-03-18",
"spatialCoverage":{
"Qtype":"Place",
"geo": {
"Q@type": "GeoCoordinates",
"latitude": 45.3818,
"longitude": 13.4815

}

T

"citation": {
"Qtype": "ScholarlyArticle",
"name": "Estimating vegetation height and canopy cover from remotely sensed data with machine learning"
"identifier": "https://doi.org/10.1016/j.ecoinf.2010.03.004"

s

"license": "https://creativecommons.org/licenses/by/4.0/"

Fig.1. An example provenance information annotation for the Forestry Kras
Lidar/Landsat dataset [23] using the Schema.org vocabulary.

described with features (or attributes). In that sense, the term data example, or
(more commonly) data instance, refers to a tuple of feature values corresponding
to an observed object.

The features are formally typed, meaning that each of them has a designated
datatype. In general, there are many different datatypes such as boolean, real,
discrete datatype, to name a few. Having standardized datatype information at
disposal can enable the development of knowledge-based systems that automate
parts of data analysis workflows, e.g., assist DM practitioners in choosing a
suitable learning algorithm for the data at hand.

Data examples in DM can be described with different characteristics, which
can lead to treating the data in radically different ways. We identified four differ-
ent (orthogonal) characteristics that we believe are important to be represented
appropriately. These include (1) the availability of data examples, (2) the exis-
tence of missing values, (3) the mode of learning, and (4) the type of target in
the case of (semi-)supervised learning tasks.

Extending the OntoDT and OntoDM-core Ontologies. While the
OntoDT and OntoDM-core ontologies offer a rich vocabulary for the annotation
of DM datasets, they do not cover all of the above aspects. Thus, we extended
OntoDT with new DM-specific datatypes and provided an updated datatype tax-
onomy that allows us to properly describe DM datasets. The proposed taxonomy
of datatypes was then used as a basis for the update of the taxonomies of DM
tasks and data specification, which are part of the OntoDM-core ontology. The
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extended OntoDT and OntoDM-core ontologies are available at https://w3id.
org/OntoDT-extended and https://w3id.org/OntoDM-core-extended, respec-
tively.

Availability of the Data Examples. Based on the availability of the data
examples, we distinguish between two types of data, i.e., batch data (or datasets)
and online data (or data streams). The batch setting is the more traditional
approach where large volumes of data are collected over a longer period. On
the other hand, online data refers to the type of data that is continuously being
generated by heterogeneous data sources.

The availability of data examples is the first dimension we considered when we
updated the taxonomies of core classes of OntoDT and OntoDM-core. In Fig. 2,
we depict the top-level classes of the taxonomies of datatypes, data mining tasks,
and data specifications. At the second level, we have the corresponding classes
that represent the specifications of the availability of data examples. For instance,
the OntoDT: record(tuple) datatype and OntoDT: sequence datatype classes refer
to the datatypes of data examples in batch and online mode, respectively.

OntoDM-core:
batch clustering
task

OntoDM-core:
online clustering
task

OntoDM-core:
batch data
mining task

OntoDM-core:
online data
mining task

OntoDM-core:
batch predictive
modeling task

OntoDM-core:
online predictive
modeling task

OntoDM-core:
data mining task

has_part has_part has_part has_part has_part has_part ihas, part

OntoDT:record

with two
components

OntoDT:
datatype

OntoDT: OntoDT:
record (tuple) sequence
datatype datatype

OntoDT:sequence
of records with
two components

OntoDT:record
with one
component

OntoDT:sequence
of records with
one component

has_part has_part has_part has-part has_part has_part has_part
OntoDM-core:

OntoDM-core: data specification
unlabeled

dataset

OntoDM-core:
unlabeled
data stream

OntoDM-core:
dataset
specification

OntoDM-core:
data stream
specification

OntoDM-core:
labeled
dataset

OntoDM-core:
labeled data
stream

Fig. 2. Top level overview of the taxonomies of data mining tasks, datatypes and data
specifications for the batch setting (right-hand side) and online setting (left-hand side).

Type of Learning. According to the type of learning, DM learning meth-
ods can be categorized into three groups, i.e., unsupervised, supervised, and
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OntoDT: completely
labeled data with
missing values

OntoDT: completely
labeled data

OntoDT: completely
labeled data without
missing values

OntoDT: record with
two components

OntoDT: semi-labeled
data with missing
values

OntoDT: semi-labeled
ata

I

OntoDT: record
(tuple) datatype

OntoDT: semi-labeled
data without missing
values
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data with missing
values

OntoDT: record with | ¢ OntoDT: unlabeled
e & OntoDT: unlabeled
data without missing

values

Fig. 3. A part of the OntoDT datatype taxonomy.

OntoDT: completely labeled
data with missing values and
with primitive output

OntoDT: completely labeled
data with missing values and
with structured output

OntoDT: completely labeled
data without missing values
and with primitive output

OntoDT: completely labeled
data without missing values
and with structured output

OntoDT: semi- labeled data
with missing values and with
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OntoDT: semi- labeled data
with missing values and with
structured output

OntoDT: semi-labeled data
without missing values and
with primitive output

OntoDT: semi-labeled data

without missing values and
with structured output

semi-supervised learning. The key difference between them is the completeness
of the data they use for training. Unsupervised learning makes use of unlabeled
data examples that are only composed of descriptive features. Supervised learn-
ing, in contrast to unsupervised learning, uses labeled data that, apart from the
descriptive features, has some special feature of interest usually referred to as
target. Finally, in semi-supervised learning, we have learning from both labeled

and unlabeled data examples.

In the updated taxonomies, we modeled this characteristic at the second
level. Hence, for both batch and online learning, we defined classes that specify
information about the type of learning (see Fig.2). If we take the taxonomy of
data types as an example, in the batch learning scenario the OntoDT: record
(tuple) datatype class further resolves into two classes: OntoOT: record with one

component and OntoDT: record with two components. OntoOT:

record with one

component class represents the datatype of data examples used in unsupervised
batch learning mode, where there is only one descriptive component that aggre-
gates the descriptive features of the data example. The OntoDT: record with
two components class represents the datatype of data examples that have one
descriptive and one target component and are used in either supervised or semi-
supervised learning. Figure 3 illustrates in greater detail the taxonomy of data
types and the four dimensions that it is based on. Finally, the taxonomies of tasks

and dataset specifications are designed similarly following the
(see Fig. 2).

same principles
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Missing Values. Another property we consider when describing data examples,
which is important for DM algorithms, is the existence of missing values (see
Fig.3) since some DM algorithms cannot function properly in the presence of
missing values. We say that one data example has missing values when there
is no recorded value for at least one descriptive feature. This is different from
having missing values in the target space, which, as we discussed above, leads
to semi-labeled data. Missing values affect the data quality; thus they must be
handled accordingly by the DM algorithms.

v-® 'batch predictive modeling task v-® *batch predictive modeling task'

v @ 'supervised predictive modelling task' v-© 'semi-supervised predictive modelling task'
v- @ *supervised primitive output prediction task’ v 'semi-supervised primitive output prediction task’
v @ 'supervised feature-based primitive output prediction task’ k4 ‘semi-supervised feature-based primitive output prediction task’

v ‘supervised flat classification task’ Y@ 'se pervised flat classification task’
"supervised binary classification task' t semi-supervised binary classification task’
"supervised multi-class classification task’ R 'semi-supervised multi-class classification task’
‘supervised regression task’ "semi-supervised regression task’
‘supervised structure based primitive output prediction task' @ 'semi-supervised structure-based primitive output prediction task'
v-® 'supervised structured output prediction task' v-® 'semi-supervised structured output prediction task'
v-© 'supervised feature-based structured output prediction task' v-© 'semi-supervised feature-based structured output prediction task'
v @ 'supervised hierarchical classification task’ v 'semi-supervised hierarchical classification task’
[ "supervised DAG based hierarchical classification task’ 'semi-supervised DAG based hierarchical classification task"
»> "supervised tree-based hierarchical classification task’ ‘semi-supervised tree-based hierarchical classification task’
‘supervised multi-label classification task’ "semi-supervised multi-label classification task’
v @ 'supervised multi-target prediction task" v @ 'semi-supervised multi-target prediction task’
v @ 'supervised multi-target classification task’ v 'semi-supervised multi-target classification task'
*supervised multi-target binary classification® *semi-supervised multi-target binary classification task'
‘supervised multi-target multi-class classification task" ‘semi-supervised Iti get multi-class i ion task’
‘supervised multi-target regression task’ ‘semi-supervised multi-target regression task’
‘supervised time-series prediction task’ "semi-supervised time-series prediction task’
'supervised structure based structured output prediction task’ ‘semi-supervised structure-based structured output prediction task’

Fig. 4. A Protégé snapshot of the taxonomy of supervised and semi-supervised batch
predictive modeling tasks.

OntoDM-core:
online data mining
task

OntoDT: record
(tuple) datatype

OntoDT: sequence
datatype

OntoDT: base type

OntoDT: record with
—» two components
base type

OntoDM-core: OntoDT: sequence
online predictive | of records with two
modeling task components

is_datatype_, |OntoDT: record with
role_of two components

has_base
datatype

Fig. 5. An example of modeling online data mining tasks with the corresponding
datatypes from OntoDT.

Type of Target. In the case of (semi-)supervised learning, data examples can
become even more complex as the target/output itself can have a complex struc-
ture. Based on the type of target we have primitive and structured output predic-
tion tasks. Primitive output prediction tasks predict a single target, as in classi-
fication (a discrete value) and regression (a real value). In the case of structured
output prediction tasks, there is more than one target that has to be predicted.
Examples of such tasks are multi-target regression, multi-label classification, and
hierarchical multi-label classification. Figure4 presents the complete taxonomy
of supervised and semi-supervised predictive modeling tasks.
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Concerning the (semi-)supervised online predictive modeling tasks, the base
datatypes of the target can be the same as the target datatypes in the batch pre-
dictive modeling tasks. Figure 5 illustrates how this is achieved in the OntoDT
and OntoDM-core ontologies. For instance, OntoDM-core: online predictive mod-
eling task class is related with the OntoDT': sequence of records with two compo-
nents class. Sequence datatypes have a base datatype, in this example, it is the
OntoDT: record with two components base type, which has the datatype role of
OntoDT:record of two components. Note that OntoDT:record of two components
is the same class used for the representation of the data examples’ datatype in
the batch predictive learning mode.

3.3 Example Annotations of DM Datasets

Using this annotation schema, we have annotated 496 DM datasets in total,
all containing data from different application domains. The generated semantic
annotations are publicly available in RDF format and can be queried via the
Jena Fuseki server?.

After describing the four characteristics that govern the modeling of the
taxonomies of datatypes, data specification, and tasks, we provide an illustrative
example that shows how we can combine them in a single annotation schema for
the purpose of semantic annotation of DM datasets. Namely, Fig. 6 depicts the
classes needed for annotation of a data stream with missing values applicable to
the learning task of semi-supervised multi-label classification.

To represent the datatype of the data examples, we use the OntoDT:feature-
based semi-labeled stream data with missing values and with a set of discrete
output class. This class is connected via the has-part relation with the classes
that represent the corresponding data mining task and data specification defined
in the OntoDM-core ontology, i.e., OntoDM-core: online semi-supervised multi-
label classification task and OntoDM-core: multi-label semi-labeled classification
data stream. The annotation schema for data streams includes also a specification
of a base datatype. Next, we have the classes used for describing the datatypes
of the descriptive and target component. On the descriptive side, some of the
examples can have missing values, thus, we use a record/tuple of choice (prim-
itive, void) datatypes. For the target component, we have two alternatives, one
of which is a discrete datatype used for annotation of labeled examples, and the
other is a void datatype used to annotate unlabeled data examples.

4 Domain-Specific Annotations: Use Cases

In this section, we demonstrate the utility of the annotation schema we intro-
duced in the previous section on two use cases, i.e., annotation of datasets for the
domains of neurodegenerative diseases and Earth Observation (EO). For the two

? Fuseki dataset containing the semantic annotations in RDF format: http://
semantichub.ijs.si/fuseki/dataset.html?tab=query&ds=/DMDatasets.
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Fig. 6. An example of an annotation schema for data streams applicable to semi-
supervised multi-label classification.

use cases, we also enriched the annotation schema with terminology specific to
the domain at hand. The inclusion of domain-specific annotations improves the
representation of the datasets, making them accessible and reusable, offers the
possibility of execution of advanced query scenarios, and enables interoperability
with other data from the domain.

On a technical level, the alignment of the DM-specific annotation schema
with the annotation schemas designed for the particular domains is straightfor-
ward. In that sense, the proposed ontology-based annotation schema enables the
direct extension of the datatype classes at any level in the taxonomy with classes
that define the semantic meaning of the domain-specific datatypes. The newly
introduced datatype classes are then linked to the corresponding entities in the
domain ontologies.

4.1 Neurodegenerative Disease Datasets

Neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease
(PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD) are a
group of diseases caused by a progressive loss of structure or function of neurons.
They can lead to irreversible deterioration of cognitive functions like memory loss,
cause problems with movement, and spatial orientation. In the past two decades,
researchers have been investigating new treatments that can slow or stop the pro-
gression of the diseases. There are two widely-known studies concerning neurode-
generative diseases, i.e., Alzheimer’s disease Neuroimaging Initiative (ADNI) [19]
and Parkinson’s Progression Markers Initiative (PPMI) [4].
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To annotate the datasets with terms relevant to the domain, we use the
NDDO (Neurodegenerative Disease Data Ontology) ontology [12]. NDDO is
designed in accordance with the ADNI and PPMI studies and it is aligned with
the OntoDT and OntoDM-core ontologies. Thus, it can be easily adjusted to
annotate the four aspects of data examples we considered in Sect. 3. To illus-
trate this, we use an instance dataset from the PPMI study that [15] used for
the task of predicting the motor impairment assessment scores by utilizing the
values of regions of interest (ROIs) from fMRI imaging assessment and DaT
scans. The DM task they were solving was multi-target regression (MTR).

a)
. : OntoDM-core:
e [t G, Getest
specification
1 - ,
| ) |
? (lrielolfeas: feature-basegr;tgn?-rlzetel labeled Ohtobhicore:
supervised multi- ——h/p—> data with recordpof nuymeric <«—h/p multi-target
target regression task ordered primitive output regression dataset
|
rh/f/c l~h/f/c
OntoDT: record of OntoDT: descriptive OntoDT: completely OntoDT: record of
primitives ~ <«d/"o— record of primitives labeled target record of —d/r/o» numeric
r datatype field component numeric field component datatype T
hiflc il
QntoDT: primitive __q/t/o_, OntoDT: primitive ¢ OptoDT: /o QntoDT: numeric
field component datatype numeric datatype field component
OntoDT: OntoDT:
real datatype integer datatype
| |
c) I I
NDDO: NDDO: NDDO: NDDO:
3rd_Ventricle 3rd_Ventricle Arising from chair Arising from chair
Datatype Score Score Datatype
Lh/dQ uh/d

Fig. 7. A semantic annotation schema for the PPMI dataset [15]: a) top level classes
from OntoDM and OntoDT; b) specific classes and relations required for annotation
of datasets used in cluster analysis and c) specific NDDO datatype classes.

Figure 7, depicts the point of alignment of the domain classes defined in
NDDO with classes from the extended versions of the OntoDT and OntoDM-
core ontologies. To represent the MTR task and MTR dataset specification, we
use the classes defined in OntoDM-core, and connect them with the correspond-
ing datatype class from OntoDT (in our case OntoDT: feature-based completely
labeled data with record of numeric ordered primitive output) (see Fig. 7 b). This
class has two field components. The first one describes the datatypes of the
descriptive features, which are of a primitive datatype. The latter describes the
datatypes of the features on the target side. In the MTR learning setting each
target feature is described with the numeric datatype. The sub-classes of the
numeric datatype, real and integer datatype, are positioned at the bottom of
the datatype taxonomy, and we link them with the domain datatypes.
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For example, NDDOQO: 3rd_Ventricle Score is one of the descriptive features
present in the PPMI dataset and it is linked with the NDDO: 3rd_Ventricle
Datatype class that semantically defines its datatype. Similarly, NDDO: Arising
from the chair Score is a target and its associated datatype is the NDDO: Arising
from the chair Datatype class. Other features are connected with the respective
datatypes in the same way.

4.2 Earth Observation (EO) Datasets

Remote sensing (RS) is the process of monitoring specific physical characteristics
of an area of interest by measuring the reflected and emitted energy at a distance
from the target area. Satellite-based remote sensing technologies are commonly
used for Earth Observation (EO) to monitor characteristics that change over
time, i.e., weather prediction, natural changes of the Earth, and development of
the urban area.

Due to the increasing availability of EO data, it is essential to develop an
ontological approach to managing this kind of data. However, to the best of our
knowledge, a general ontology that systematically describes the EO domain is
still lacking. Nonetheless, some ontologies formalize the knowledge of specific
parts of the domain, i.e., Semantic Sensor Network (SSN) ontology [6], SOSA
(Sensor, Observation, Sample, and Actuator) ontology [10], Semantic Web for
Earth and Environment Technology (SWEET) ontology [20], and the Extensible
Observation Ontology (OBOE) [14].

For semantic annotation of EO data, we have designed a lightweight ontol-
ogy that is aligned with the aforementioned EO ontologies. The ontology is
available at https://w3id.org/eo-ontology. The ontology was constructed using
the bottom-up approach, based on 4 instances of datasets we have available at
our side from previous research [22].

The datasets contain two target features (forest vegetation height and canopy
cover) whose values are obtained via the LiDAR technology. But since LiDAR
can sometimes be inconvenient or expensive, [22] examined the possibility of
using remote sensing data generated from satellites, such as Landsat 7, IRS-P6,
SPOT, as well as aerial photographs for the construction of descriptive features
that can be relevant for the prediction of the two targets. The Landsat 7, IRS-
P6, and SPOT satellites use multiple channels for collecting reflected energy,
and one channel of emitted energy, that operate on different wavelengths.

In this study, when designing the EO ontology, we took into consideration
the process of data collection and data preprocessing described in the study
mentioned above. In the preprocessing phase, the raw satellite image is converted
into a standard geo-referenced data format, which then undergoes the process
of image segmentation (see Fig.8). A key characteristic of the different image
segments is the resolution of the segment size. The image segment size is modeled
as a data property of the image segmentation specification class.
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Fig. 8. Core entities of the Earth Observations ontology. Rectangular boxes represent
continuant classes, while ellipses represent process classes. The color scheme was chosen
for better visual perception.

All features present in the datasets are EO properties observed at a specific
point in time, and they are related to a specific image segment. We define two
subclasses of the EO property class, i.e., SOSA: observable property class and
EO aggregated property class. The first one refers to the properties observed with
a remote sensor (SOSA: Sensor) hosted on a given platform/satellite (SOSA:
Platform). The latter defines the type of properties that are the result of some
process of EO property aggregation that transforms the originally observed mea-
surements. The process uses multiple EO properties as input and produces one
EO aggregated property. The aggregation can be based on some statistical char-
acteristics, such as STATO: minimum value, STATO: mazimum value, STATO:
average value and STATO: standard deviation, where STATO is an ontology of
statistical methods. This was also the case in our observed datasets. Addition-
ally, we define the EO property transformation process that transforms one EO
property into another.

Similarly, as in Sect. 4.1, to achieve full interoperability, we integrated the
general DM annotations with the domain-specific ones. The integration was per-
foremed at the level of features appearing in the dataset. Thus, the OntoDM-
core: feature specification class connects with the datatype of the feature via
the has-identifier relation, while it also connects with the EO property class
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via the is-about relation. Additionally, the OntoDM-core: feature-based data
example class is composed of multiple OBOE: Measurements. In OBOE, mea-
surement represents a measurable characteristic of an observed property, which
in our case is FO property.

5 Conclusions and Future Work

We have developed an ontology-based annotation schema for rich semantic anno-
tation of DM datasets that takes into consideration 3 different semantic aspects
of the datasets: provenance, DM-specific characteristics of the data, and domain-
specific information. The annotation schema is generic enough to support the
easy extension of its core classes with information relevant to the application
domain. The utility of the designed schema was demonstrated through semantic
annotation of data from two different domains: neurodegenerative diseases and
Earth observation.

Annotations based on this schema provide means for support of the complete
data analysis process, e.g., enable cross-domain interoperability, assist in the def-
inition of the learning task, ensure consistent representation of datatypes, assess
the soundness of data, and automatically reason over the obtained results. These
annotations also enable the development of applications that require advanced
data querying capabilities. They also enable the development of data repositories
that adhere to the highest standards of the Open data initiative.
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