
Chapter 5

Solving the EMI Equations using Finite Element
Methods

Miroslav Kuchta1, Kent-André Mardal1,2 and Marie E. Rognes1

Abstract This chapter discusses 2 × 2 symmetric variational formulations and as-
sociated finite element methods for the EMI equations. We demonstrate that the
presented methods converge at expected rates, and compare the approaches in terms
of approximation of the transmembrane potential. Overall, the choice of which for-
mulation to employ for solving EMI models becomes largely a matter of desired
accuracy and available computational resources.

5.1 Introduction

In this chapter, we present different weak formulations and corresponding finite
element methods for solving the EMI equations as presented in (7, Chapter 1) over
a physiological cell Ωi and its membrane Γ surrounded by an extracellular space Ωe

and a time interval (0,T] for some time T > 0. This coupled, time-dependent, and
typically nonlinear system of equations can be targeted numerically by an operator
splitting scheme, see e.g (8, Chapter 4). Such an approach, combined with for instance
an implicit Euler discretization in time, gives the following stationary and linear, but
still coupled system of equations to be solved at each time-step: find the potentials
ue = ue(x), ui = ui(x) (and current Im = Im(x)) such that
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−∇ · (σe∇ue) = 0 in Ωe, (5.1a)
−∇ · (σi∇ui) = 0 in Ωi (5.1b)
σe∇ue · ne = −σi∇ui · ni ≡ Im on Γ, (5.1c)

ui − ue = v on Γ, (5.1d)
v − C−1

m Δt Im = f on Γ, (5.1e)

where Δt > 0 denotes a time step size, and ne (resp. ni) denotes the outward
pointing normal on Γ when viewed from Ωe (resp. Ωi). In our (implicit Euler) time
discretization context, the known right-hand side f of (5.1e) combines the previous
transmembrane potential solution, v0, and the evaluation of the ionic current, Iion,
into f ≡ v0 − C−1

m Δt Iion.

We assume that the potential is grounded on part of the external boundary ΓDe and
that the remaining external boundary ΓNe is insulated. These assumptions give the
boundary conditions:

ue = 0 on ΓDe , (5.2a)
σe∇ue · ne = 0 on ΓNe . (5.2b)

This geometrical setting is illustrated in Figure 5.1.
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Fig. 5.1: (Left) Illustration of the geometric setting for the single cell EMI problem.
(Right) Sample meshes for our benchmark problem (5.17). The boundary facets of
the intracellular mesh Ωi,h form the membrane mesh Γh .

Remark 5.1 We remark that a single cell model is here considered for simplicity. In-
deed the formulations to be studied below can be similarly derived for the intercalated
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model (collections of connected cells). Formulations for a number of disconnected
cells are then practically identical to the case considered here.

Remark 5.2 If (5.2) is considered without any Dirichlet boundary data, i.e. |ΓDe | = 0,
then only the transmembrane potential is fixed and the intracellular and extracellular
potentials are determined only up to a single, common constant.

The EMI equations (5.1) set a rich scene for numerical exploration and can be solved
in a multitude of ways. In this chapter, we will derive 2×2 different weak formulations
(each defining a finite element method) of this system. The two first formulations
(in Section 5.2) compute the intracellular and extracellular potentials as the main
unknowns. These are referred to as primal formulations. The latter two formulations
(in Section 5.3) additionally introduce the current densities Ji = −σi∇ui and Je =
−σe∇ue as independent unknowns. These are referred to as mixed formulations. We
compare finite element discretizations of the primal and mixed formulations with
respect to the approximation of the transmembrane potential v in Section 5.4. This
choice is motivated by the observation that v is closely coupled to the membrane
dynamics as discussed in Chapter 1.

5.1.1 Preliminaries: Function Spaces and Norms

The EMI equations (5.1) define a multi-dimensional1 PDE system coupling unknown
fields defined over cellular domains and fields defined over the cell membrane, which
can be viewed as a lower-dimensional manifold. Identifying the right function spaces
for the different unknown fields is key to defining well-posed weak formulations of
these equations. We here present suitable Sobolev spaces for this setting; the reader
is referred to e.g. (3; 5) for more material and careful formalizations.

Let Ω be a bounded, polygonal domain in Rd for d = 2,3. We denote the space of
square-integrable functions over Ω by L2(Ω), and let H1(Ω) be the Sobolev space
of functions in L2(Ω) with weak derivatives in L2(Ω). The space H(div,Ω) contains
vector-valued functions v : Ω → R

d such that v ∈ L2(Ω) and ∇ · v ∈ L2(Ω). In
general, when clear from the context, the domain will be omitted from the notation.

The L2-inner product and norm for u, v ∈ L2(Ω) is written as

(u, v)0,Ω =
∫
Ω

uv dx, ‖v‖2
0,Ω =

∫
Ω

v2 dx.

Similarly, we define the H1-norm as ‖v‖2
1,Ω = ‖v‖2

0,Ω + ‖∇v‖2
0,Ω for v ∈ H1(Ω), and

the H(div)-norm as ‖v‖2
div,Ω = ‖v‖2

0,Ω + ‖∇ · v‖2
0,Ω.

1 PDEs coupling fields over domains of different topological dimensions are often referred to as
mixed-dimensional PDEs. To avoid the confusion-inducing term mixed-dimensional mixed in the
subsequent sections, we instead use the term multi-dimensional in this chapter.
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For Γ ⊆ ∂Ω, we define the constrained spaces H1
Γ(Ω) =

{
v ∈ H1(Ω) | v = 0 on Γ

}
,

and HΓ(div,Ω) = {v ∈ H(div,Ω) | v · n = 0 on Γ} where n is the (outward pointing)
normal vector of Γ. Finally the spaces H1/2(Γ) and H−1/2(Γ) are the trace spaces of
H1 and H(div) respectively (6, Ch. 1., 2.). Here, the spaces will be considered with
the norm defined in terms of fractional powers of the Helmholtz operator, see e.g.
(4), i.e.

‖u‖2
s = (u, (−Δ + I)su)0,Γ , u ∈ C∞(Γ).

We remark that in the following experiments the fractional norm is evaluated using
the eigenvalue decomposition of −Δ + I as detailed in (11).

5.2 Primal Formulations

We present two primal formulations of the stationary EMI system (5.1) with the
boundary conditions given by (5.2): one single-dimensional formulation and one
multi-dimensional formulation. The difference in the intra- and extracellular potential
across the cell membrane Γ sets up a potential jump, the transmembrane potential
v, c.f. (5.1d). Due to this jump, one cannot define a global, differentiable potential
u ∈ H1(Ωi ∪ Ωe) such that u|Ωi = ui and u|Ωe = ue. Instead, we seek ui ∈ H1(Ωi)

and ue ∈ H1(Ωe) separately. In the single-dimensional formulation, these are the
only unknown fields, while in the multi-dimensional formulation, we keep Im as an
additional unknown.

5.2.1 Single-Dimensional Primal Formulation

Define the function spaces

Vi = H1(Ωi), Ve = H1
ΓDe

(Ωe). (5.3)

To derive a weak formulation of (5.1), multiply (5.1a) by a test function ve ∈ Ve,
(5.1b) by another test function vi ∈ Vi , and integrate the divergence by parts. This
yields the variational formulation: find ue ∈ Ve, ui ∈ Vi satisfying∫

Ωe

σe∇ue · ∇ve dx −

∫
Γ

σe∇ue · neve ds = 0, (5.4a)∫
Ωi

σi∇ui · ∇vi dx +
∫
Γ

(−σi∇ui · ni) vi ds = 0. (5.4b)

for all ve ∈ Ve, vi ∈ Vi . In the bracketed term of (5.4b), we recognize the membrane
current density Im as defined by (5.1c), and similarly, the interface contribution in
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the corresponding extracellular equation (5.4a) hides −Im. Combining (5.1e) and
(5.1d), we find that

Im = Cm(Δt)−1 ((ui − ue) − f ) . (5.5)

After substituting (5.5) into (5.4), the single-dimensional primal weak form of (5.1)
reads: find ui ∈ Vi and ue ∈ Ve such that∫

Ωe

σe∇ue · ∇ve dx +
∫
Γ

Cm(Δt)−1ueve ds−
∫
Γ

Cm(Δt)−1uive ds =

− Cm(Δt)−1
∫
Γ

f ve ds,∫
Ωi

σi∇ui · ∇vi dx +
∫
Γ

Cm(Δt)−1uivi ds−
∫
Γ

Cm(Δt)−1uevi ds =

Cm(Δt)−1
∫
Γ

f vi ds,

(5.6)

for all ve ∈ Ve and vi ∈ Vi .

We remark that (5.6) can be viewed as a coupling of two Poisson problems with a
Robin boundary condition on Γ. The well-posedness of the problem is then discussed
in (10, Chapter 6). Finally, the transmembrane potential can here be computed from
its definition (5.1d) as a difference of the computed potentials.

5.2.2 Multi-Dimensional Primal Formulation

An alternative formulation can be derived by keeping Im as a separate unknown
field. Since Γ is of a different (lower) dimension than Ωi,Ωe; and as Im : Γ → R

while ui : Ωi → R, ue : Ωe → R, we will refer to this as a multi-dimensional
primal formulation. Observe that (5.4) now yields two equations for three unknowns
ui ∈ Vi , ue ∈ Ve, and Im ∈ Q:∫

Ωe

σe∇ue · ∇ve dx −

∫
Γ

Imve ds = 0, ∀ ve ∈ Ve,∫
Ωi

σi∇ui · ∇vi dx +
∫
Γ

Imvi ds = 0, ∀ vi ∈ Vi .

However, the missing equation can be obtained from (5.5). Let

Q = H1/2(Γ), Q∗ = H−1/2(Γ). (5.7)

We remind the reader that if Γ is a co-dimensional 1 subset ofΩ then trace operations
from Ω to Γ, Tu = u|Γ, u ∈ C(Ω) and Tnτ = τ |Γ · n, τ ∈ C(Ω), formally have
the following mapping properties T : H1(Ω) → H1/2(Γ) and Tn : H(div,Ω) →
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H−1/2(Γ). Hence, let jm be a a test function from Q∗. We shall then enforce that (5.5)
holds in the weak sense:∫

Γ

(ui − ue) jm ds −
∫
Γ

ΔtC−1
m Im jm ds =

∫
Γ

f jm ds, ∀ jm ∈ Q∗.

In turn, the multi-dimensional primal formulation of (5.1) reads: find ui ∈ Vi ,
ue ∈ Ve, Im ∈ Q∗ such that∫

Ωe

σe∇ue · ∇ve dx −

∫
Γ

ve Im ds = 0,∫
Ωi

σi∇ui · ∇vi dx +
∫
Γ

vi Im ds = 0,∫
Γ

−ue jm ds +
∫
Γ

ui jm ds −
∫
Γ

ΔtC−1
m Im jm ds =

∫
Γ

f jm ds,

(5.8)

for all vi ∈ Vi , ve ∈ Ve and jm ∈ Q∗. We remark that (5.8) is closely related to
the Babuška problem for enforcing boundary conditions by Lagrange multipliers
(1) and the mortar finite element method, see e.g. (13). With regards to evaluation
of the transmembrane potential, we note that v can be post-computed in several
ways: from (5.1d) (as for the single-dimensional primal formulation (5.6)) or from
Im and (5.1e).

5.3 Mixed Formulations

We now turn to consider mixed formulations of the EMI system (5.1). Let us
(re)introduce the current densities

Ji = −σi∇ui, Je = −σe∇ue (5.9)

and the global field J onΩ = Ωi ∪Ωe such that J |Ωi = Ji and J |Ωe = Je. In general,
we use the convention that for a scalar or vector field u defined on Ω, the restriction
on Ωi and Ωe is denoted by ui and ue, respectively.

With these definitions, (5.1a)–(5.1c) become: find the current densities Ji, Je (or J)
and the potentials ui,ue (or u) satisfying

σ−1
e Je + ∇ue = 0 on Ωe, (5.10a)
σ−1
i Ji + ∇ui = 0 on Ωi, (5.10b)

−∇ · J = 0 in Ω, (5.10c)
Je · ne + Ji · ni = 0 on Γ. (5.10d)
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We refer to (5.10) together with (5.1d)–(5.1e) as the mixed EMI system with bound-
ary conditions given by (5.2). Weak formulations of the mixed form can enjoy
improved conservation properties and stability properties (3). In particular, approxi-
mations of J may be computed such that they are exactly divergence free, cf. (5.10c).

The continuity condition (5.10d) ensures that the normal component of J is contin-
uous on Γ. We remark that v ∈ H(div,Ω) implies continuity of v · n on Γ. Moreover,
we observe that (5.10c) involves only divergence of the field J . It is therefore suffi-
cient to seek J in S = HΓNe (div,Ω). Note that in contrast to the primal formulation,
here the Neumann boundary condition (5.2b) is enforced as an essential condition;
that is, it is included in the construction of the function space S.

5.3.1 Single-Dimensional Mixed Formulation

Let
S =

{
J ∈ HΓNe (div,Ω); J · n ∈ L2(Γ)

}
, V = L2(Ω). (5.11)

To derive a weak form of the mixed EMI system, consider a test function τ ∈ S.
Taking the dot product of (5.10a), (5.10b) with τi , τe, integrating and applying
integration by parts then yields∫

Ωe

σ−1
e Je · τe dx −

∫
Ωe

ue∇ · τe dx +
∫
Γ

ueτe · ne ds = −

∫
ΓDe

ueτe · ne ds,∫
Ωi

σ−1
i Ji · τi dx −

∫
Ωi

ui∇ · τi dx +
∫
Γ

uiτi · ni ds = 0.

Observe that by continuity of the normal component of the test function (τi ·n = τe ·n
on Γ), and the identity ne = −ni , the integrals on Γ can be added, resulting in∫
Γ
(ui − ue)τ · ni . Moreover, using (5.5), the membrane term can be rewritten as∫
Γ

(
C−1
m ΔtJ · ni + f

)
τ · ni . In turn, we arrive at the variational problem: find J ∈ S,

u ∈ V such that∫
Ω

σ−1J · τ dx +
∫
Γ

C−1
m ΔtJ · niτ · ni ds −

∫
Ω

u∇ · τ dx = −

∫
Γ

f τ · ni ds,

−

∫
Ω

q∇ · J dx = 0,
(5.12)

for all τ ∈ S and q ∈ V , with σ defined naturally as σ |Ωi = σi and likewise for Ωe.
Note that due to the extra trace regularity of the trial/test space S all the terms in
(5.12), and in particular the interface term

∫
Γ

C−1
m ΔtJ · niτ · ni ds, are well defined.

Without the extra regularity, i.e. if S = HΓNe (div,Ω), this would not be the case.

We remark that (5.12) is a Γ-perturbed mixed formulation of the Poisson problem
(see e.g. (3; 9) for more details on mixed formulations of the Poisson problem).
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Considering the task of approximating the transmembrane potential, we observe that
v can be computed in two ways, as for the multi-dimensional primal formulation.
Indeed, in addition to the identity v = ui − ue, cf. (5.1d), equation (5.1e) can be used
since Im = J · ni is readily available.

5.3.2 Multi-Dimensional Mixed Formulation

As for the primal formulations, the multi-dimensional mixed formulation is obtained
by keeping the interface term as an explicit unknown field. Let

S = HΓNe (div,Ω), V = L2(Ω), W = H1/2(Γ). (5.13)

To complete the formulation, the equation to be enforced weakly by test functions
w ∈ W is the membrane dynamics condition (5.1e) written in the form

J · ni − Cm(Δt)−1v = −Cm(Δt)−1 f on Γ.

The final multi-dimensional mixed weak formulation then reads: Find the current
densities J ∈ S, potentials u ∈ V , and transmembrane potential v ∈ W such that∫

Ω

σ−1J · τ dx −

∫
Ω

u∇ · τ dx +
∫
Γ

vτ · ni ds = 0,

−

∫
Ω

q∇ · J dx = 0,∫
Γ

wJ · ni ds −
∫
Γ

Cm(Δt)−1vw ds = −Cm(Δt)−1
∫
Γ

f w ds,

(5.14)

for all τ ∈ S, q ∈ V and w ∈ W . Note that (5.14) is defined on the standard H(div)
space, cf. (5.12), as the formulation no longer contains the troublesome interface term∫
Γ

C−1
m ΔtJ · niτ · ni ds. With regards to the approximation of v in formulation (5.14),

observe that no post-processing is required to obtain this quantity. This is contrast
to the previous three formulations. We remark that (5.14) is closely connected to the
Babuška problem for the mixed Poisson equation (2).

5.4 Finite Element Spaces and Methods

To solve the primal and mixed, single- and multi-dimensional weak formulations nu-
merically, we approximate the continuous function spaces by discrete finite element
spaces. Each choice of formulation and finite element space defines a finite element
method for solving the EMI system.
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Now, let Ωh be a mesh of the domain Ω = Ωi ∪ Ωe with characteristic mesh size h,
which conforms to Γ in the sense that no element of Ωh has its interior intersected
by Γ. The meshes Ωe,h and Ωi,h of the extracellular and intracellular domains are
formed as non-overlapping subsets of the cells of Ωh . As a consequence, the mesh
Γh of Γ is formed by the facets of elements of Ωh , cf. Figure 5.1. We remark that the
single-dimensional primal formulation allows for independent discretizations of Ωi ,
Ωe as well as Γ.

The choice of the finite element spaces plays a crucial role for the stability of the
different discrete formulations. In particular, for the saddle-point systems, the spaces
must be compatible in the sense of Babuška-Brezzi and satisfy discrete inf-sup
conditions, see e.g. (3). For the primal formulations (5.4) and (5.8), we seek discrete
unknowns and test functions in

Vi,h = P1(Ωi,h) ⊂ Vi, Ve,h = P1(Ωe,h) ⊂ Ve, Qh = P1(Γh) ⊂ Q, (5.15)

where P1 denotes the space of continuous piecewise linears (defined relative to the
relevant mesh). With these spaces, we expect linear convergence with the mesh size
h for all variables in H1-norms and quadratic convergence in the L2-norm.

For the mixed formulations (5.10) and (5.12), we seek discrete unknowns and test
functions in

Sh = RT0(Ωh) ⊂ S, Vh = P0(Ωh) ⊂ V, Wh = P0(Γh). (5.16)

Here RT0 denotes the lowest order Raviart-Thomas finite element spaces and P0
denotes the space of piecewise constants defined relative to the relevant mesh. These
spaces satisfy the relevant stability conditions, and we expect linear convergence of
all unknown fields in their respective natural norms.

5.5 Numerical Results

5.5.1 Comparison of Convergence between Formulations

In order to compare the properties of the different formulations, and in particular
their numerical stability and accuracy, we consider a manufactured solution test case
with a smooth analytical solution. We defineΩ = [0,1]2 andΩi = [0.25,0.75]2 with
|ΓNe | = 0. For simplicity, let σi = 1, σe = 2, Cm = 1, Δt ∈

{
1,10−4} and consider

the exact solution

ue = sin (π(x + y)) ,

ui =
ue
σi
+ cos

(
π(x − 1

4 )(x − 3
4 )
)

cos
(
π(y − 1

4 )(y −
3
4 )
)
,

(5.17)
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which corresponds to (Δt dependent) right hand sides f = ui − ue − Δt Im. Note,
that with (5.17) both v � 0 and Im � 0. We discretize the domain by a uniform
mesh by dividing the unit square into n × n squares and dividing each square by
the (left) diagonal into isosceles triangles of size h, cf. Figure 5.1. To compare the
dimensionality of the different formulations, Table 5.1 lists the dimensions of the
four different finite element pairings over these meshes.

h |Ve ,h | |Vi ,h | |Qh | |Sh | |Vh | |Wh |

4.42E-02 864 289 64 3136 2048 64
2.21E-02 3264 1089 128 12416 8192 128
1.10E-02 12672 4225 256 49408 32768 256
5.52E-03 49920 16641 512 197120 131072 512
2.76E-03 198144 66049 1024 787456 524288 1024
1.38E-03 789504 263169 2048 3147776 2097152 2048
6.93E-04 3151872 1050625 4096 12587008 8388608 4096

Table 5.1: Dimensions of the different finite element spaces for uniform refinements
of the unit square. The first row corresponds to a mesh of Ω with n = 16, i.e. having
2 × 16 × 16 cells.

10−2.5 10−2 10−1.5

10−5

10−4

10−3

10−2

10−1

h

‖u − uh ‖1: 1
‖u − uh ‖0: 2
‖u − uh ‖1: 1
‖u − uh ‖0: 2
‖Im − Im,h ‖

−
1
2
: 1

10−2.5 10−2 10−1.5
10−3

10−2

10−1

100

h

‖J − Jh ‖div: 0.99
‖u − uh ‖0: 1
‖J − Jh ‖div: 0.99
‖u − uh ‖0: 1
‖v − vh ‖ 1

2
: 1

Fig. 5.2: Convergence properties of (left) primal formulations (5.6)–(5.8) and (right)
mixed formulations (5.12)–(5.14). The EMI system (5.1) is solved with the exact
solution given by (5.17) andΔt = 1. Filled symbols correspond to single-dimensional
formulations. The number associated with each line indicates the convergence rate
obtained from a least squares fit of the corresponding data.
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On a series of meshes and for a set of different timesteps, we compute 2 the different
approximations of all four finite element methods. We then evaluate the approxi-
mation error by evaluating the difference between (higher order interpolants of) the
exact solution and the approximations in appropriate norms. Figure 5.2 shows the
errors of the different formulations (with Δt = 1). In the primal formulations, u
refers to the global potential, i.e. ui = u|Ωi , ue = u|Ωe . As the formulations seek
the approximations ui ∈ H1(Ωi), ue ∈ H1(Ωe) the error is considered in the natural
(broken) norm ‖u‖1 = (‖ui ‖2

1+ ‖ue‖2
1 )

1/2. We observe that all the quantities converge
linearly in their respective natural norms, as expected. In particular, the errors in the
current density Im in (5.8) and the transmembrane potential v in (5.14) are reported
in the fractional norms H−1/2 and H1/2, respectively. The former is computed by
first interpolating the error into the space of continuous piecewise cubic polynomials
on Γh while for v − vh the P1 element is used for error interpolation. Without this
higher-order approximation of the error, i.e. if the error is computed in the same
space as the discrete solution, we observe quadratic convergence.

Finally, we note that the primal formulations yield identical approximations of u
cf. Figure 5.2 (left). Similarly, the mixed formulations give identical approximations
of (u, J) cf. Figure 5.2 (right). Considering for comparison the error in the potential
in the L2-norm, it can be seen that the primal formulations are more accurate
than the mixed formulations. The same experiments for Δt = 10−4 give similar
approximation results. However, it is not true that these conclusions hold in the limit
of Δt approaching 0, see e.g. Chapter 6.

5.5.2 Post-Processing the Transmembrane Potential

With the exception of the multi-dimensional mixed formulation (5.14), the trans-
membrane potential v in the remaining EMI formulations is computed by post-
processing. In (5.6) the approximation vh can be obtained by interpolating the dif-
ference ui,h − ue,h onto e.g. the space of continuous piecewise linear functions over
Γh . This procedure can, of course, be used in the other formulations as well. How-
ever (5.8) and (5.12) also offer an alternative approach. In the multi-dimensional
primal formulation, the discrete membrane current density, Im,h is computed in the
space P1(Γh) of continuous piecewise linear functions on Γh . In turn, vh can be
computed (in the same space) as a projection of C−1

m Δt Im,h + f . The same formula
can be applied in the single-dimensional mixed formulation since the current density
can be evaluated as Jh · ni . We recall that in (5.12) the natural space for vh is the
space of (discontinuous) piecewise constant functions on Γh however.

Convergence of the transmembrane potential obtained by the different formulations
and post-processing strategies is shown in Figure 5.3 for the same test case as previ-

2 The code used to produce results in this chapter is available at https://github.com/MiroK/
emi-book-fem and archived at (12).

https://github.com/MiroK/emi-book-fem
https://github.com/MiroK/emi-book-fem
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ously. We observe that the primal formulations yield quadratic convergence and that
the single-dimensional primal (5.6), and multi-dimensional primal formulation (5.8)
are practically identical. The discrete potentials obtained by solving the mixed for-
mulations converge linearly with the projection method in the single-dimensional
mixed formulation yielding the most accurate vh . In particular, the approximation
is better than that of the multi-dimensional mixed formulation for this test case.
Computing the potential in the single-dimensional mixed formulation (5.12) by in-
terpolating ui,h − ue,h leads to poorer approximation than for the multi-dimensional
mixed formulation. By comparing the results for two different time steps, we observe
that the rates do not change considerably if Δt is modified.

10−2.5 10−2 10−1.5

10−5

10−4

10−3

10−2

10−1

h

‖v
−
v h
‖ 0

single-prime: 1.97
multi-prime-Im: 1.97
single-mixed: 1
single-mixed-Im: 1
multi-mixed: 1

10−2.5 10−2 10−1.5

10−6

10−5

10−4

10−3

10−2

10−1

h

‖v
−
v h

‖ 0

single-prime: 2
multi-prime-Im: 2
single-mixed: 1
single-mixed-Im: 1
multi-mixed: 1

Fig. 5.3: Approximation of the transmembrane potential by the different EMI for-
mulations. (Left) Δt = 1, (right) Δt = 10−4. Postprocessing by projection (using the
current density) is indicated by Im. In multi-dimensional mixed formulation vh is
obtained by solving (5.14). Interpolation of ui,h − ue,h is used in other formulations.
The final number indicates the convergence rate.

5.6 Conclusions and Outlook

All four finite element formulations provide a converging approximation to the sta-
tionary problem (5.1). This system is a key building block in any operator splitting
algorithm for the time-dependent EMI equations (1.30). The formulations provide
solutions which differ by accuracy as well as computational cost, cf. Figures 5.2–5.3
and Table 5.1. The formulations also differ in robustness of their approximation
properties with respect to Δt. This issue is however beyond the scope of this chap-
ter, and the interested reader is referred to the discussion in Chapter 6. In terms
of coupling with the membrane dynamics the single/multi-dimensional primal and
single-dimensional mixed formulations require post-processing. However, all ap-
proaches discussed in Section 5.5.2 are easy to implement. Therefore, the choice of
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which formulation to employ in solving the EMI model is largely a matter of desired
accuracy and available computational resources.

Open Access This chapter is licensed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original aut-
hor(s) and the source, provide a link to the Creative Commons license and indicate 
if changes were made.

The images or other third party material in this chapter are included in the chap-
ter’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the chapter’s Creative Commons license and 
your intended use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright holder.
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