
Chapter 2

A Cell-Based Model for Ionic Electrodiffusion in
Excitable Tissue

Ada J. Ellingsrud1, Cécile Daversin-Catty1 and Marie E. Rognes1

Abstract This chapter presents the KNP-EMI model describing ion concentrations
and electrodiffusion in excitable tissue. The KNP-EMI model extends on the EMI
model by removing the assumption that ion concentrations are constant in time
and space, and may as such be more appropriate in connection with modelling
e.g. spreading depression, stroke and epilepsy. The KNP-EMI model defines a system
of time-dependent, nonlinear, mixed dimensional partial differential equations. We
here detail the derivation of the system and present a numerical example illustrating
how ion concentrations evolve during neuronal activity.

2.1 Introduction and Motivation

In this chapter, we present an extension of the EMI model, presented in (11, Chapter
1), describing ion concentrations and electrodiffusion in excitable tissue. The EMI
model is based on the assumption that intra- and extracellular ion concentrations are
constant in time and space. This is often a good approximation, as ion concentrations
in healthy tissue typically quickly return to base levels after neuronal activity due to
cellular mechanisms such as e.g. membrane pumps and glial cell buffering. However,
there are scenarios where this assumption is inadequate.

Several cerebral pathologies are associated with increased neuronal activity (3), such
as e.g. seizures and epilepsy (10; 6; 1), stroke (17), and spreading depression (22).
In particular, periods of neuronal hyperactivity can lead to substantial variations in
extracellular ion concentrations. These variations will in turn (i) influence mem-
brane reversal potentials and (ii) generate diffusive currents. Changes in the reversal
potentials, caused by local ionic shifts, may affect the dynamical properties of the

1Simula Research Laboratory, Norway

14The Author(s) 2021
A. Tveito et al. (eds.), Modeling Excitable Tissue, Simula SpringerBriefs 
on Computing 7, https://doi.org/10.1007/978-3-030-61157-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61157-6_2&domain=pdf


2 A Cell-Based Model for Ionic Electrodiffusion in Excitable Tissue 15

neurons (12; 16; 24). On the other hand, diffusive currents, driven by ion concen-
tration gradients, can shift the extracellular potential (8; 3). Mathematical models
addressing the aforementioned phenomena and pathologies should therefore also
account for ion concentrations, their spatial and temporal gradients and associated
dynamics.

In this chapter, we derive a system of time-dependent, nonlinear partial differen-
tial equations describing the distribution and evolution of ion concentrations in a
geometrically-explicit representation of the intra- and extracellular domains using
the electroneutral Kirchhoff-Nernst-Planck (KNP) model (21). We will refer to this
model as the KNP-EMI model, see also e.g. (5).

2.2 Derivation of the Equations

Let the computational domain Ω and subdomains Ωi , Ωe, and Γ be defined as in
the previous chapter 1.1. For simplicity and clarity, we present the mathematical
model for one intracellular region Ωi1 = Ωi with membrane Γ below. We model
a set K of intracellular and extracellular ion concentrations, and note that key ions
in excitable tissue are potassium (K+), sodium (Na+), and chloride (Cl−). For each
ion species k ∈ K and each region r ∈ {i, e}, we model the ion concentrations
ckr : Ωr × (0,T] → R (mol/m3), and electrical potentials ur : Ωr × (0,T] → R

(V), and additionally the total transmembrane current density Im : Γ × (0,T] → R
(A/m2).

2.2.1 Equations in the Intracellular and Extracellular Volumes

In the EMI model, the free current densities Ji,Je (μA/cm2), c.f. (1.4), are assumed
to satisfy Ohm’s law. To include diffusive ion effects, we instead assume that the
free current density is composed of flux density contributions Jkr (mol/(m2s)) from
different ions k as:

Jr =
∑
k∈K

FzkJkr in Ωr , (2.1)

where zk is the valence of ion species k and F (C/mol) is Faraday’s constant.
Furthermore, we assume that ions can move by diffusion and/or in response to the
electrical field as charged particles. Hence, the ion flux densities are modelled as
the sum of two terms: (i) the ion concentrations that are transported via electrical
potential gradients σk

r ∇ur and (ii) the diffusive movement of ions due to ionic
gradients Dk

r ∇ ckr :
Jkr = −σk

r ∇ur − Dk
r∇ckr in Ωr , (2.2)
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where Dk
r (m2/s) and σk

r denote the effective diffusion coefficient and the conduc-
tivity for ion species k in region r , respectively. The conductivity σk

r depends on
the concentration of ion species k and the diffusion coefficient Dk

r in the following
manner:

σk
r = σ

k
r (c

k
r ) =

Dk
r zk

ψ
ckr in Ωr . (2.3)

Here, the constant ψ = RTF−1 combines Faraday’s constant F, the absolute temper-
ature T (K), and the gas constant R (J/(K mol)). Moreover, the bulk conductivity σr
can be expressed as:

σr = σr (ckr ) =
F
ψ

∑
k∈K

Dk
r ckr (z

k)2 in Ωr . (2.4)

See e.g. (21) for a derivation of the conductivity (2.3) and the bulk conductivity (2.4).
Comparing with (1.4) and (1.5), we note the dependency on the ion concentrations
in the conductivity σr in (2.3), and the second term accounting for ion diffusion
in (2.2).

As in Chapter 1, we stipulate that:

∇· Ji = 0 in Ωi, (2.5)
∇· Je = 0 in Ωe . (2.6)

Finally, conservation of ions for the bulk of each region Ωr gives that:

∂[k]i
∂t
+ ∇· Jki = 0 in Ωi, (2.7)

∂[k]e
∂t
+ ∇· Jke = 0 in Ωe, (2.8)

for t ∈ (0,T].

2.2.2 Membrane Currents

We next turn to modelling the cell membrane currents and membrane potential
across the interface Γ. As in Chapter 1, we introduce the membrane potential v as
the jump in the electrical potential over the membrane:

v = ui − ue on Γ. (2.9)

We also introduce the total membrane current as the combination of a capacitive
current and ion specific currents:
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Im = Icap + Iion = Cm
∂v

∂t
+ Iion, (2.10)

where the total channel current Iion is the sum of the ion specific channel currents
Ikion:

Iion =
∑
k∈K

Ikion, Ikion = Ikion(v, c
k
· , ...). (2.11)

The channel currents Ikion are subject to modelling, and will be discussed briefly in
Section 2.2.2.1.

Using our concepts, we have that the total ionic current density Im : Γ × (0,T) → R
(A/m2) across the interface Γ (from the intracellular to the extracellular domain) is
given by:

− F
∑
k∈K

zkJke · ne = F
∑
k∈K

zkJki · ni ≡ Im. (2.12)

It now remains to specify a set of interface conditions for the specific ion fluxes
Jkr · nr for r ∈ {i, e}.

Here, we propose a heuristic approach via ion specific capacitive current modelling,
and note that an alternative approach is presented in (15). As for the total current,
we assume that the capacitive current can be represented as a sum of ion specific
contributions:

Icap =
∑
k∈K

Ikcap. (2.13)

Without loss of generality, we let the ion specific capacitive current Ikcap,r in region
Ωr at the interface Γ be some fraction αkr of the total capacitive current Icap:

Ikcap,r = α
k
r Icap. (2.14)

Specifically, we assume that:

αkr =
Dk
r (z

k)2[k]r∑
l∈K Dl

r (zl)2[l]r
, (2.15)

and note that
∑

k∈K α
k
r = 1 for r ∈ {i, e}. By the above definitions, (2.10) and (2.12),

we let the intracellular and extracellular ion fluxes across the membrane be given by:

Jki · ni =
Ikion + α

k
i (Im − Iion)

Fzk
, −Jke · ne =

Ikion + α
k
e (Im − Iion)

Fzk
, (2.16)

for k ∈ K .
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2.2.2.1 Modelling Specific Ion Channels

The membrane channel currents Ikion(v) for each ion species k are subject to mod-
elling. These currents are typically expressed on the form:

Ikion(v) = gkL(v − Ek), (2.17)

where gkL is the conductivity, and Ek is the ion specific reversal potential (or Nernst
potential), given by:

Ek =
RT
zkF

ln
cke
cki
. (2.18)

This Nernst potential depends on the concentration ratio, whereas the Nernst potential
in models without explicit modelling of ion concentrations is constant. Typical
models include synaptic input currents, passive neuronal leak channels, or e.g. the
Hodgkin-Huxley model (9). For more details on membrane current models and
modelling, see e.g. (18).

2.2.3 Summary of KNP-EMI Equations

The KNP-EMI model equations follow from inserting (2.1) into (2.5)–(2.6), com-
bined with (2.7), (2.8), (2.9), (2.10), and (2.16), and read as follows.

For each ion species k ∈ K and each region r ∈ {i, e}, find the ion concentrations
ckr : Ωr × (0,T] → R (mol/m3), the electrical potentials ur : Ωr × (0,T] → R (V),
and the total transmembrane current density Im : Γ × (0,T] → R (A/m2) such that1:

∇·(F
∑
k

zkJkr ) = 0 in Ωr , (2.19)

∂ckr
∂t
+ ∇· Jkr = 0 in Ωr , (2.20)

−F
∑
k

zkJke · ne = F
∑
k

zkJki · ni ≡ Im at Γ, (2.21)

v = ui − ue at Γ, (2.22)
∂v

∂t
=

1
Cm

(Im − Iion) at Γ, (2.23)

where the ion flux density Jkr is given by (2.2), and Iion is subject to modelling. A
set of initial and boundary or compatibility conditions will close the system.

1 Note that the additional negative signs in (2.19) and (2.21), compared with the corresponding
equations in Chapter 1, result from our physically consistent definition of the ion flux density Jk

r as
the negative gradient, cf. (2.2).
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2.3 Numerical Solution of the KNP-EMI Equations

The KNP-EMI model defines a complicated system of time-dependent, nonlinear,
mixed dimensional partial differential equations. The number of unknowns depends
on the number of ion species modelled. Some of the variables exist in the intracellular
and extracellular domains, while others live on the lower-dimensional membrane.
This setting is numerically challenging and calls for advanced techniques.

To solve the KNP-EMI model numerically, one may consider a finite difference
scheme to approximate the time derivatives, a linearization of ion flux densities Jkr
and fractions αkr , a splitting scheme to handle active ion channel current models, and
a finite element discretization in space. Such a solution algorithm is detailed in (5),
and we refer the reader to this description for further details.

2.4 Comparing KNP-EMI and EMI during Neuronal
Hyperactivity

Neurons are negatively charged relative to their environment, with a resting mem-
brane potential of about −70 mV. This resting potential is maintained by low con-
centrations of sodium ions (Na+) and high levels of potassium ions (K+) inside
the cell (23). Action potentials (neuronal activity) are generated by the opening of
sodium and potassium channels in the cell membranes. The ionic gradient will drive
sodium into the cell and depolarize the cell membrane. Next, the potassium channels
open causing an outflux of potassium which in turn repolarizes the cell.

As a result, there is a continuous need to pump potassium into the intracellular
space and sodium out to the extracellular space to restore the electrochemical gra-
dient across the cell membrane. One of the key mechanisms for this process is the
Na/K/ATPase pump. The Na/K/ATPase pump actively transports 3 Na+ ions out of
the cell and 2 K+ ions into the cell (7; 14; 20). Several pathologies are associated
with increased neuronal activity, e.g. seizures and epilepsy (10; 6; 1), and spreading
depression (22). In periods of neuronal hyperactivity, the Na/K/ATPase pumps may
not be able to restore the concentrations to baseline levels. Consequently, the elec-
trochemical gradients may be reduced, and silenced neuronal activity and cellular
swelling may occur (13).

The ion concentration gradients observed during neuronal hyperactivity thus yields
a suitable setting for illustrating differences between the KNP-EMI and the EMI
frameworks. In particular, we compare the two frameworks both during normal
neuronal activity (firing rate of 1 Hz) and during hyperactivity (firing rate of 50 Hz).
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2.4.1 Model Parameters and Membrane Mechanisms

We consider two idealized axons, represented by two parallel, rectangular domains,
surrounded by extracellular space in three dimensions. The diameter of each axon is
2.0 · 10−7 m, and they are separated by 1.0 · 10−7 m of extracellular space. Parameter
values are as listed in Table 2.1. We refer to the supplementary code for a complete
description of the model set-up (4).

KNP-EMI membrane mechanisms The membrane mechanisms in the KNP-EMI
model, cf. (2.11), are modelled using the standard Hodgkin-Huxley model (9) com-
bined with a model for the Na/K/ATPase pump (12), the KCC2 cotransporter (24)
and the NKCC1 cotransporter (24). The Na/K/ATPase pump current IATP (A/m2) is
modelled as:

IATP = IATP(cNa
i , c

K
e ) =

Î
(1 + mK

cK
e
)2(1 + mNa

cNa
i

)3
, (2.24)

where Î is the maximum pump strength and mK and mNa denote the pump thresh-
old for extracellular potassium and intracellular sodium, respectively. Further, the
transmembrane currents generated by the KCC2 cotransporter IKCC2 (A/m2) and the
NKCC1 cotransporter INKCC1 (A/m2) are modelled as:

IKCC2 = SKCC2 ln(
cK
i cCl

i

cK
e cCl

e

), (2.25)

INKCC1 = SNKCC1
1

1 + e16−cK
e

(ln(
cK
i cCl

i

cK
e cCl

e

) + ln(
cNa
i cCl

i

cNa
e cCl

e

)), (2.26)

where SKCC2 and SNKCC1 are the maximal cotransporter strengths. Moreover, the cell
is stimulated by prescribing a synaptic input Isyn of the form:

Iksyn = gsynHe
t−t0
α (v − Ek), (2.27)

where α (s) is the synaptic time constant, H is the Heaviside function for a small
region on the left side of the axons, and gsyn = 1.25 · 10−3 S/m2. In summary, the
membrane channel currents for sodium, potassium and chloride are modelled as:

INa
ion(v, c

k
r ) = gNa

leak(v − ENa) + ḡNam3h(v − ENa) + 3IATP + INKCC1 + INa
syn

IK
ion(v, c

k
r ) = gK

leak(v − EK) + ḡKn4(v − EK) − 2IATP + INKCC1 + IKCC2

ICl
ion(v, c

k
r ) = gCl

leak(v − ECl) − 2INKCC1 − IKCC2,

where, gkleak and ḡk is the leak conductivity and the maximal conductivity for ion
species k, respectively, the Nernst potential Ek for ion species k is as described in
Section 2.2.2.1, and the gating variables m, h and n are described by the standard
Hodgkin-Huxley ODEs, see e.g. (23) for details.
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EMI membrane mechanisms For the EMI model, we apply the standard Hodgkin-
Huxley model and stimulate the cell by prescribing an input current of the form (2.27);
thus, the membrane channels currents are modelled as:

Iion(v) = gNa
leak(v − ENa) + gK

leak(v − EK) + gCl
leak(v − ECl)

+ ḡNam3h(v − ENa) + ḡKn4(v − EK) + IATP + Isyn,

where EK, ENa and ECl are calculated by (2.18) with the initial values from the KNP-
EMI model for the sodium and potassium concentrations. Similarly, the bulk conduc-
tivities σi and σe are calculated by (2.4), and the net current from the Na/K/ATPase
pump IATP is given by (2.24). Finally, there is no contribution from KCC2 and
NKCC1, as both cotransporters mediate ion transport without any net charge move-
ment across the membrane.

Parameter Symbol Value Unit Reference

gas constant R 8.314 J/(K mol) (23)
temperature T 300 K (23)
Faraday’s constant F 9.648 · 104 C/mol (23)
membrane capacitance Cm 0.02 F/m (24)
Na+ diffusion coefficient DNa

r 1.33 · 10−9 m2/s (23)
K+ diffusion coefficient DK

r 1.96 · 10−9 m2/s (23)
Cl− diffusion coefficient DCl

r 2.03 · 10−9 m2/s (23)
intracellular immobile anions cA

i 110 mM
extracellular immobile anions cA

e 10 mM
valence of immobile anions zA -1
Na+ leak conductivity gNa

L 0.281 S/m2 *
K+ leak conductivity gK

L 0.43 S/m2 *
Cl− leak conductivity gCl

L 0.2 S/m2 *
K+ HH max conductivity ḡK 360 S/m2 (9)
Na+ HH max conductivity ḡNa 1200 S/m2 (9)
maximum pump strength Î 0.18 A/m2 (24)
maximum KCC2 strength SKCC2 0.0034 A/m2 *
maximum NKCC1 strength SNKCC1 0.023 A/m2 *
ECS K+ pump threshold mK+ 3 mM *
ICS Na+ pump threshold mNa+ 12 mM *
synaptic time constant α 1.0 · 10−3 s
global time step Δt 1.0 · 10−5 s
local time step Δt∗ Δt/25 s
spatial resolution Δx = Δy 2.5 · 10−7 m

Table 2.1: The physical and model parameters used in the simulations. The values
are collected from Sterratt et al. (23), Hodgkin et al. (9), Wei et al. (24), whereas the
values marked with * are computed by a steady state estimation.
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The initial conditions for the intra- and extracellular ion concentrations, the mem-
brane potential and the gating variables are listed in Table 2.2. At the exterior
boundary, we apply no flux boundary conditions for each ion species.

Parameter Symbol Value Unit Reference

initial intracellular Na+ concentration cNa,0
i 18 mM

initial extracellular Na+ concentration cNa,0
e 120 mM

initial intracellular K+ concentration cK,0
i 80 mM

initial extracellular K+ concentration cK,0
e 4 mM

initial intracellular Cl+ concentration cCl,0
i 7 mM

initial extracellular Cl+ concentration cCl,0
e 112 mM

initial membrane potential v0 −67.74 · 10−3 V *
initial HH gating value (Na+ activation) m0 αm (v0)

αm (v0)+βm (v0)
– (9)

initial HH gating value (Na+ inactivation h0 αh (v
0)

αh (v0)+βh (v0)
– (9)

initial HH gating value (K+ activation) n0 αn (v
0)

αn (v0)+βn (v0)
– (9)

Table 2.2: Initial conditions. The initial ion concentrations are chosen such that the
Nernst potentials are equal to those in the Hodgkin-Huxley model (9). The membrane
potential is computed by a steady state estimation.

2.4.2 Results and Discussion

During normal activity, the KNP-EMI and the EMI models behave similarly, both
for the membrane potential and the extracellular potential (Figure 2.1 A, B). The
stimuli current depolarizes the membrane potential above the threshold for firing,
and an action potential is initiated (Figure 2.1 A). Simultaneously, the extracellular
potential decreases by ∼ 0.13 mV, before quickly returning to baseline (Figure 2.1
B).

During hyperactivity, the KNP-EMI and EMI models differ (Figure 2.1 C, D, E,
F). In both models, repeated action potentials are triggered. But, for the KNP-EMI
model, we observe changes in the membrane potential between hyperpolarization
phases. In particular, we conclude that the KNP-EMI membrane resting potential
increases with repeated firing: after 5 action potentials (at t = 90 ms) the membrane
potential has a minimum value of −75 mV, which is an 9% increase from the first
action potential. Eventually, the membrane is depolarized to the point where action
potentials can long longer be fired (Figure 2.1 E).

The observed changes are caused by alterations in the ion concentration gradients.
For each action potential, the extracellular Na+ concentration decreases by 0.15 mM
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and the extracellular K+ concentration increases by 0.16 mM (Figure 2.2 A, B). Dur-
ing normal activity (Figure 2.2 A, B), the ion concentrations will slowly be pumped
back toward baseline levels, and the membrane potentials are not substantially af-
fected by the small ion concentration changes. However, in the case of hyperactivity,
the membrane mechanisms (i.e. pumps and cotransporters) are not able to keep up.
Consequently, the extracellular Na+ concentration will keep decreasing and the ex-
tracellular potassium will keep increasing, causing the cell to depolarize (Figure 2.2
C, D).

In the KNP-EMI model (Figure 2.2 A, B), we note that 7.92 % of the extracellular
K+ concentration is restored, and 7.3 % of the extracellular Na+ concentration is
restored after 100 ms. That is, the extracellular concentrations do not reach baseline
levels within the simulation period. Other studies have reported that it takes on the
order of minutes (0.5 minutes (19), 6 minutes (2)) before the concentrations return
to baseline after neuronal activity.

2.5 Conclusions and Outlook

In this chapter, we have presented a mathematical model, the KNP-EMI model,
for ionic electrodiffusion in excitable tissue with an explicit representation of the
intracellular, extracellular and membrane domains. For further reading on method-
ological aspects, we refer to (5; 15) and references therein. This model extends on the
EMI model presented in Chapter 1 and may be more accurate in situations with rapid
and persistent changes in ion concentrations. Moreover, the KNP-EMI framework
allows for modelling ligand-gated ion channels (e.g. NMDA receptors).

The complexity of the KNP-EMI system yields a number of numerical challenges.
The mere number of unknowns result in large systems of equations calling for
efficient solution techniques. The nonlinearities in the system can easily lead to
non-convergence and thus call for robust algorithms. Moreover, the coupling of full
and lower dimensional domains and fields calls for well-posed numerical methods
together with suitable simulation software. Further, the system couples different time
scales: from neuronal action potentials taking place at the microscale to the slower
diffusion process. In short, modelling ionic electrodiffusion in the EMI setting is an
area with vast opportunities for further research.
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Fig. 2.1: Comparison of potentials over time at fixed points in space predicted by
the KNP-EMI and the EMI frameworks during normal activity (upper panels) and
during hyperactivity (mid and lower panels). The membrane potentials for KNP-EMI
and EMI during normal activity (A) and hyperactivity (C, E, F), and the extracellular
potentials for KNP-EMI and EMI during normal activity (B) and hyperactivity (D).
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Fig. 2.2: Time development of extracellular ion concentrations at a fixed point
in space for the KNP-EMI framework during normal activity (upper panels) and
hyperactivity (lower panels). The extracellular sodium (A) and potassium (B) con-
centrations during normal activity, and the extracellular sodium (C) and potassium
(D) concentrations during hyperactivity.
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