
Chapter 1

Derivation of a Cell-Based Mathematical Model
of Excitable Cells

Karoline Horgmo Jæger1 and Aslak Tveito1,2

Abstract Excitable cells are of vital importance in biology, and mathematical mod-
els have contributed significantly to understand their basic mechanisms. However,
classical models of excitable cells are based on severe assumptions that may limit
the accuracy of the simulation results. Here, we derive a more detailed approach to
modeling that has recently been applied to study the electrical properties of both
neurons and cardiomyocytes. The model is derived from first principles and opens up
possibilities for studying detailed properties of excitable cells. We refer to the model
as the EMI model because both the extracellular space (E), the cell membrane (M)
and the intracellular space (I) are explicitly represented in the model, in contrast to
classical spatial models of excitable cells. Later chapters of the present text will focus
on numerical methods and software for solving the model. Also, in the next chapter,
the model will be extended to account for ionic concentrations in the intracellular
and extracellular spaces.

1.1 Introduction

Mathematical modeling has a great potential for increasing our understanding of the
physiological processes underlying the function of the body. For example, modeling
of the electrical properties of excitable cells may provide insight into the complex
electrical signaling involved in a number of important functions, like transfer of
information through neurons and coordination of the pumping of the heart. A popular
model of the conduction of electrical signals in neurons is the so-called cable equation
(30), whereas the extracellular potential surrounding neurons is often modeled using
the point-source or line-source approximations (6). The three aforementioned models
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have been used extensively to gain insight into the function of neurons and the
interpretation of measurements of the extracellular potential around neurons (6;
5; 12). Correspondingly, the conduction of electrical signals through the heart is
traditionally modeled using the homogenized bidomain and monodomain models
(20). These models are also widely used and have, for instance, provided insight into
mechanisms of cardiac arrhythmias (26; 33).

However, despite the success of the above-mentioned classical models of excitable
cells, the models have certain shortcomings that may make them inaccurate or im-
practical in some situations. For example, in the derivation of the cable equation, the
extracellular potential is often assumed to be constant (30; 15). Therefore, changes in
the extracellular potential generated by the neuron itself or by neighboring neurons
(i.e., ephaptic effects) are ignored in the model. This could potentially lead to in-
accuracies (16; 2; 34). In addition, the point-source and line-source approximations
rely on the assumption that the extracellular space is infinite and homogeneous. Con-
sequently, the models might not be well-suited to interpret extracellular potentials
measured when large measurement electrodes are present in the extracellular space
close to the neurons (3).

Moreover, the bidomain and monodomain models represent cardiac tissue in a ho-
mogenized manner, assuming that the intracellular space, the extracellular space
and the cell membrane exist everywhere in the tissue. Because the geometry of the
individual cells is not represented, it is very hard to use the models to study the effect
of, e.g., the cell geometry or a non-uniform distribution of ion channels on the cell
membrane. These properties are both believed to influence cardiac conduction, but
their exact effects are not fully understood and call for further investigations (28; 21).
In addition, it has been proposed that ephaptic coupling between cardiac cells might
occur at small extracellular clefts located at the intercalated discs between cells (29).
Since the geometry of the extracellular space is not represented in the homogenized
models, it is difficult to use these models to study such ephaptic effects.

In order to account for the difficulties related to the classical models, alternative
electrophysiological models have been developed (e.g., (28; 31; 24)). In this chapter,
we consider one of these alternative models, referred to as the EMI model, because
it explicitly represents the extracellular space (E), the cell membrane (M) and the
intracellular space (I). This model has been used to study both neurons (1; 34; 3)
and cardiac tissue (32; 31; 18). Because the model represents the extracellular space,
the membrane and the intracellular space in a coupled manner, the model allows for
representation of ephaptic effects between neurons (34) or cardiomyocytes (18). In
addition, since the geometry of the extracellular space is explicitly represented, the
model allows for representation of non-homogeneous extracellular surroundings (3).
Furthermore, since the geometry of each cell is represented, the model allows for
study of the effect of cell geometry and non-uniform distributions of ion channels
on cardiac conduction properties (18).

In other words, the EMI model allows for a more detailed representation of excitable
cells and tissues than classical models of computational electrophysiology. In fact,
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Fig. 1.1: Illustration of an EMI model domain consisting of an extracellular domain,
Ωe, a cell membrane, Γ, and an intracellular domain, Ωi .

the classical models mentioned above can be derived from the more detailed EMI
model by introducing certain simplifying assumptions, see e.g., (1; 8; 11). In this
chapter, however, we focus on deriving the EMI model from Maxwell’s equations of
electromagnetism.

1.2 Derivation of the EMI Model

In this section, we present a derivation of the EMI model for excitable cells. This
derivation is to a large extent based on the derivation found in (1; 17). We consider
a domain separated into an extracellular part, Ωe and an intracellular part, Ωi , like
illustrated in Figures 1.1 and 1.3. The cell membrane, denoted by Γ, is defined as the
boundary between Ωi and Ωe. Here, we derive a model for the electrical potentials
in both a domain with a single cell (Figure 1.1) and in a domain with two cells
connected at an intercalated disc denoted by Γ1,2 (Figure 1.3).

1.2.1 Fundamental Equations

We base the derivation of the EMI model on two of the quasi-static approximations
of Maxwell’s equations, i.e.,

∇ × E = 0, (1.1)
∇ × H = J. (1.2)
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Here, E is the electric field (typically in μF/cm), H is the magnetic field (typically in
μA/cm) and J is the density of free currents (typically in μA/cm2). In the quasi-static
approximation of (1.2), it is assumed that free unbalanced charges are instantly bal-
anced. The assumptions hold in the intracellular and extracellular spaces. However,
we assume that charges may accumulate at the cell membrane and at the intercalated
discs between cells. Therefore, we let (1.2) at these locations be replaced by the
corresponding equation without the quasi-static approximation, i.e., by

∇ × H = J + ε ∂E
∂t
, (1.3)

where ε is the permittivity of the medium (typically in μF/cm). In addition, we
assume that Ohm’s law applies in the intracellular and extracellular domains. This
means that

J = σE, (1.4)

where σ is the conductivity of the considered medium (typically in mS/cm). We also
note that (1.1) implies that E is a conservative vector field and that it therefore can
be defined as the gradient of a scalar field (9). More specifically, we can define

E = −∇u, (1.5)

where the scalar u is the electric potential (typically in mV).

1.2.2 Model for the Intracellular and Extracellular Domains

In order to derive equations for the intracellular and extracellular domains, we take
the divergence of both sides of (1.2) and apply the vector identity ∇ · (∇ × H) = 0,
which holds for any vector H (9). This yields

∇ · J = 0.

Inserting (1.4) and (1.5), we obtain the Laplace equation

∇ · σ∇u = 0. (1.6)

More specifically, for the intracellular and extracellular domains, we have

∇ · σi∇ui = 0 in Ωi, (1.7)
∇ · σe∇ue = 0 in Ωe, (1.8)

where σi and σe are the intracellular and extracellular conductivities, respectively,
and ui and ue are the electric potentials in the intracellular and extracellular domains,
respectively.
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1.2.3 Model for the Membrane

In order to derive the EMI model equations for the membrane, we consider a volume
element, B, intersected by the membrane. This volume element may be divided into
an extracellular part, Be, and an intracellular part, Bi , such that Be ∪ Bi = B and
Be ∩ Bi = ∅, as illustrated in Figure 1.2A. In each of these domains, we assume
that (1.3) holds. Taking the divergence of both sides of (1.3) and applying the vector
identity ∇ · (∇ × H) = 0 results in

∇ · J = −∇ · ε
∂E
∂t
. (1.9)

Integrating this equation over each of the volume elements Bi and Be, we get∫
Bi

∇ · J dV = −

∫
Bi

∇ · ε
∂E
∂t

dV,∫
Be

∇ · J dV = −

∫
Be

∇ · ε
∂E
∂t

dV,

and applying the divergence theorem (see e.g., (9)), we obtain∫
∂Bi

J · nBi dS = −

∫
∂Bi

ε
∂E
∂t

· nBi dS, (1.10)∫
∂Be

J · nBe dS = −

∫
∂Be

ε
∂E
∂t

· nBe dS. (1.11)

Here, nBi and nBe are the outward pointing normal vectors of Bi and Be, respectively.
Furthermore, in (1.10) and (1.11), the left-hand side terms represent the free ionic
current and the right-hand side terms represent the capacitive current.

1.2.3.1 Ionic Current

We start by considering the left-hand side of (1.10), representing the ionic current.
Here, we note that the boundary ∂Bi may be split into two parts, ΓB and ∂Bi \ ΓB,
where ΓB is the part of ∂Bi coinciding with the membrane and ∂Bi \ ΓB is the
remaining part (see Figure 1.2A). We can then write∫

∂Bi

J · nBi dS =
∫
∂Bi\ΓB

J · nBi dS +
∫
ΓB

J · ni dS, (1.12)

where ni is the outward pointing normal vector of the membrane and nBi is the out-
ward pointing normal vector of the remaining part of Bi , as illustrated in Figure 1.2A.
At the membrane, the current density, J, consists of currents through different types
of ion channels, pumps and exchangers located at the membrane. This current den-
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Fig. 1.2: A: Illustration of a volume element, B, intersected by the membrane. The
volume element is separated into an intracellular part, Bi , and an extracellular part,
Be. B: Illustration of a small volume element, B, located on the extracellular part of
the membrane.

sity is typically denoted by Iion and given in units of μA/cm2. By convention, Iion is
defined to be positive for a flux of positive ions out of the cell (i.e., in the direction
of ni). This gives ∫

ΓB

J · ni dS =
∫
ΓB

Iion dS. (1.13)

The boundary ∂Bi \ ΓB is located in the intracellular domain. Here, we assume that
the current density, J, is given by Ohm’s law (1.4), such that∫

∂Bi\ΓB

J · nBi dS =
∫
∂Bi\ΓB

σiE · nBi dS. (1.14)

Inserting (1.13) and (1.14) into (1.12), we get∫
∂Bi

J · nBi dS =
∫
∂Bi\ΓB

σiE · nBi dS +
∫
ΓB

Iion dS, (1.15)

and similar arguments for the extracellular part of the membrane yield∫
∂Be

J · nBe dS =
∫
∂Be\ΓB

σeE · nBe dS −

∫
ΓB

Iion dS. (1.16)

Note that the negative sign in front of the last term is due to the fact that ne = −ni .

1.2.3.2 Capacitive Current

For the right-hand side part of (1.10), representing the capacitive current, we again
split the integral into two parts
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∂Bi

ε
∂E
∂t

· nBi dS =
∫
∂Bi\ΓB

ε
∂E
∂t

· nBi dS +
∫
ΓB

εΓ
∂E
∂t

· ni dS.

Here, εΓ is the permittivity of the membrane. Following the quasi-static assumptions,
we assume that the term ε ∂E

∂t is negligible for the part of ∂Bi that does not coincide
with the membrane. Furthermore, from (1.5), we get E · ni = −∇u · ni ≈ v/d, where

v = ui − ue (1.17)

is the membrane potential and d is the thickness of the membrane. We assume that
the membrane can be treated as a capacitor formed by two parallel plates separated by
an insulator. In that case, the membrane capacitance per area is given by Cm = εΓ/d
(13). Therefore,∫

∂Bi

ε
∂E
∂t

· nBi dS =
∫
ΓB

εΓ
∂E
∂t

· ni dS =
∫
ΓB

εΓ
d
∂v

∂t
dS =

∫
ΓB

Cm
∂v

∂t
dS. (1.18)

Similar arguments for the extracellular side yield∫
∂Be

ε
∂E
∂t

· nBe dS = −

∫
ΓB

Cm
∂v

∂t
dS, (1.19)

where the change of sign again is due to the fact that ne = −ni .

1.2.3.3 Collecting the Ionic and Capacitive Currents

Collecting the ionic and capacitive currents by inserting (1.15)–(1.16) and (1.18)–
(1.19) into (1.10)–(1.11), we obtain∫

∂Bi\ΓB

σiE · nBi dS +
∫
ΓB

Iion dS = −

∫
ΓB

Cm
∂v

∂t
dS,∫

∂Be\ΓB

σeE · nBe dS −

∫
ΓB

Iion dS =
∫
ΓB

Cm
∂v

∂t
dS,

which can be rewritten to∫
∂Bi\ΓB

σiE · nBi dS = −

∫
ΓB

Im dS, (1.20)∫
∂Be\ΓB

σeE · nBe dS =
∫
ΓB

Im dS, (1.21)

where the total membrane current density Im is defined as

Im = Cm
∂v

∂t
+ Iion. (1.22)
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Fig. 1.3: Illustration of an EMI model domain consisting of two cells, Ω1
i and Ω2

i ,
connected at an intercalated disc, Γ1,2 and surrounded by an extracellular domain,
Ωe

We now wish to rewrite (1.20)–(1.21) to a differential form. We note that we can
divide any volume element, B, intersecting the membrane into a purely intracellular, a
purely extracellular, and a membrane intersecting part. We also know that (1.7)–(1.8)
hold in the purely intracellular and extracellular parts. Therefore, we are interested
in equations (1.20)–(1.21) as the size of B approaches zero. For example, we may
consider a small extracellular volume element shaped as a cylinder, as illustrated in
Figure 1.2B. As the height, ΔhB, of this cylinder approaches zero, the integral over
∂Be \ ΓB approaches the integral over ΓB, and we therefore get∫

∂Be\ΓB

σeE · nBe dS ≈

∫
ΓB

σeE · nBe dS.

Inserting this approximation into (1.21), we obtain∫
ΓB

σeE · nBe dS =
∫
ΓB

Im dS ⇒ σeE · nBe = Im,

and inserting (1.5) and ne = −nBe , we get

σe∇ue · ne = Im. (1.23)

Similar arguments for the intracellular part of the membrane yield

− σi∇ui · ni = Im, (1.24)

where the negative sign is due to the negative sign in (1.20). Finally, combining
(1.23) and (1.24), we obtain

σe∇ue · ne = −σi∇ui · ni = Im, (1.25)

where Im = Cm
∂v
∂t + Iion and v = ui − ue (see (1.22) and (1.17)).
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1.2.4 Model for the Intercalated Disc

In some cases, we wish to model cells that are connected to each other, as illustrated
in Figure 1.3. We then let the intercalated discs connecting the cells be represented
as boundaries between the intracellular domains, like the membrane is a boundary
between the intracellular and extracellular domains. Furthermore, we assume that the
intercalated disc have capacitive properties like the membrane, and that gap junctions
allow for currents between neighboring cells, in the same manner as ion channels
allows for currents between the intracellular and extracellular spaces. Therefore, the
derivation of equations for an intercalated disc follows the exact same lines as the
derivation of the membrane equations. More precisely, for two connected cells, we
define an intercalated disc potential, w, by

w = u1
i − u2

i , (1.26)

where u1
i and u2

i are the electric potentials in Ω1
i and Ω2

i , respectively. In addition,
we define a total intercalated disc current density, I1,2, by

I1,2 = C1,2
∂w

∂t
+ Igap, (1.27)

where Igap is the current density through the gap junctions, with positive direction
in the direction from Ω1

i to Ω2
i , C1,2 is the capacitance of the intercalated disc,

and C1,2
∂w
∂t is the capacitive current density of the intercalated disc. Furthermore,

following the same arguments as for the derivation of the membrane equations, we
end up with an analogue to (1.25) of the form

σ2
i ∇u2

i · n2
i = −σ1

i ∇u1
i · n1

i = I1,2, (1.28)

representing the total current density across the interface.

1.2.5 Models of the Ionic Currents

Mathematical models of the ionic currents governing the membrane potential of
excitable cells come in a large variety of versions; see (4) for several hundred
examples. The simplest possible model is just a passive current of the form Iion =
const · v, followed by a third order polynomial model. More realistic models tend to
be more complex and are usually written on the form

Iion =

N∑
i=1

Ii, (1.29)



10 Jæger et al.

given in μA/cm2. Here, the individual currents can usually be written on the form
Ii = Ii(v, s), where v denotes the membrane potential, given by ui − ue, and s
denotes gating variables and ionic concentrations. The celebrated model of the
action potential of a neuron presented by Hodgkin and Huxley (see (14)) can be
written on this form, and so can the first model of a cardiac cell presented by Nobel
(25). A comprehensive and readable introduction to models of the membrane ionic
currents is given in the survey (27).

Correspondingly, the ionic currents through gap junctions between neighboring
cells are often modeled by a simple passive model of the form Igap = const · w.
More detailed models of voltage-dependent gap junction dynamics have also been
introduced (see e.g., (10; 35)).

1.2.6 Summary of the Model Equations

In summary, the EMI model for a single cell surrounded by an extracellular domain
(as illustrated in Figure 1.1) is given by the equations (1.7), (1.8), (1.17), (1.22) and
(1.25), that is

∇ · σi∇ui = 0 in Ωi, (1.30)
∇ · σe∇ue = 0 in Ωe, (1.31)
σe∇ue · ne = −σi∇ui · ni ≡ Im at Γ, (1.32)

v = ui − ue at Γ, (1.33)
∂v

∂t
=

1
Cm

(Im − Iion) at Γ, (1.34)

where ui , ue and v are the intracellular, extracellular and membrane potentials,
respectively, typically given in mV. Moreover, σi and σe are the intracellular and
extracellular conductivities, respectively (typically in mS/cm), Cm is the membrane
capacitance (typically in μF/cm2), and Γ denotes the cell membrane. The ionic
currents through channels, pumps and exchangers at the membrane are denoted by
Iion and typically given in μA/cm2.

If several cells are connected at intercalated discs, as illustrated for two cells in
Figure 1.3, the system of equations must be extended to include equations for the
currents between cells. For two cells, this extension consists of the equations

σi∇u2
i · n2

i = −σi∇u1
i · n1

i ≡ I1,2 at Γ1,2, (1.35)
u1
i − u2

i = w at Γ1,2, (1.36)

wt =
1

C1,2
(I1,2 − Igap) at Γ1,2, (1.37)
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where, as above, Γ1,2 is the intercalated disc, n1
i is the outward pointing normal

vector of Ω1
i , n2

i is the outward pointing normal vector of Ω2
i , and u1

i and u2
i are the

intracellular potentials (typically in mV) of Ω1
i and Ω2

i , respectively. Furthermore,
C1,2 is the specific capacitance of the intercalated disc (typically in μF/cm2), and
Igap is the current through the gap junctions (typically in μA/cm2).

1.3 Conclusion

In the present chapter, we have derived the EMI model. The EMI model predicts
electrical potentials in cells with an explicit geometrical representation and thus
allows for more detail than homogenized models of excitable tissue. In the next
chapter (7, Chapter 2), the model will be extended by taking ion concentration in the
extracellular and intracellular spaces into account. Numerical solutions of the EMI
models will be presented in (19, Chapter 4), (23, Chapter 5) and (22, Chapter 6). In
these chapters the readers will also be pointed to open software that can be used to
solve the EMI model.

Open Access This chapter is licensed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original aut-
hor(s) and the source, provide a link to the Creative Commons license and indicate 
if changes were made.

The images or other third party material in this chapter are included in the chap-
ter’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the chapter’s Creative Commons license and 
your intended use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright holder.
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