
Chapter 7
Optimization

Embedded systems have to be efficient (at least) with respect to the objectives
considered in this book. In particular, this applies to resource-constrained mobile
systems, including sensor networks embedded in the Internet of Things. In order
to achieve this goal, many optimizations have been developed. Only a small subset
of those can be mentioned in this book. In this chapter, we will present a selected
set of such optimizations. This chapter is structured as follows: first of all, we will
present some high-level optimization techniques, which could precede compilation
of source code or could be integrated into it. We will then describe concurrency
management for tasks. Section 7.3 comprises advanced compilation techniques. The
final Sect. 7.4 introduces power and thermal management techniques.

As indicated in our design flow, these optimizations complement the tools
mapping applications to the final systems, as described in Chap. 6 and as shown
in Fig. 7.1. Mapping tools may be optimizing, and optimization techniques may
involve scheduling. Hence, the scopes of the current and of Chap. 6 are partially
overlapping. The focus of Chap. 6 is on fundamental knowledge for mapping to
platforms, while the current chapter deals mostly with improvements over basic
techniques and is similar to the character of an elective.

7.1 High-Level Optimizations

In the next section, we will be considering optimizations which can be applied to the
source code of embedded software, before compilation or during early compilation
phases. Detecting regular structures such as array access patterns may be easier at
the source code level than at the machine code level. Also, optimization effects can
usually be expressed by rewriting the source program, i.e., the modified code can
be expressed in the source language. This helps in understanding the effect of such
transformations. We do also consider cases in which it may be necessary to annotate

© The Author(s) 2021
P. Marwedel, Embedded System Design, Embedded Systems,
https://doi.org/10.1007/978-3-030-60910-8_7

349

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60910-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-60910-8_7

350 7 Optimization

evaluation & validation

design

system software

design repositoryspecification

kn
ow

le
dg

e

optimization

(RTOS, ...)

HW-components
ap

pl
ic

at
io

n
test

mapping
application

Fig. 7.1 Context of the current chapter

Fig. 7.2 Memory layout for
two-dimensional array
p[j][k] in C

the source code with compiler directives and hints. Such code transformations are
called high-level optimizations. They have the potential to improve the efficiency
of embedded software.

7.1.1 Simple Loop Transformations

There are a number of loop transformations that can be applied to source code. The
following is a list of standard loop transformations:

• Loop permutation: Consider a two-dimensional array. According to the C
standard [289], two-dimensional arrays are laid out in memory as shown in
Fig. 7.2. Adjacent index values of the second index are mapped to a contiguous
block of locations in memory. This layout is called row-major order [405].
For row-major layout, it is usually beneficial to organize loops such that the
last index corresponds to the innermost loop. Note that the layout for arrays
is different for Fortran: adjacent values of the first index are mapped to a

7.1 High-Level Optimizations 351

contiguous block of locations in memory (column-major order). Switching
between publications describing optimizations for Fortran and for C can therefore
be confusing.

Example 7.1 The following is a loop permutation:

for (k=0; k<m; k++) for (j=0; j<n; j++)

for (j=0; j<n; j++) ⇔ for (k=0; k<m; k++)

p[j][k]= . . . p[j][k]= . . .

Such permutations may have a positive effect on the reuse of array elements in
the cache, since the next iteration of the innermost loop will access an adjacent
location in memory. ∇
Caches are normally organized such that adjacent locations can be accessed
significantly faster than locations that are further away from the previously
accessed location. In this way, caches are exploiting spatial locality.

Definition 7.1 Consider memory references to memory addresses a and b.
Suppose that we assume an access to a. We observe spatial locality if—under
this condition—the probability of also accessing b increases for small differences
of addresses a and b.

• Loop unrolling: Loop unrolling is a standard transformation creating several
instances of the loop body.

Example 7.2 In this example, we unroll the loop:

for (j=0; j<n; j++) for (j=0; j<n; j+=2)

p[j]= . . . ; ⇔ {p[j]= . . . ;

p[j+1]= . . . }

In this particular case, the loop is unrolled once. ∇
The number of copies of the loop is called the unrolling factor. Unrolling factors
larger than two are possible. Unrolling reduces the loop overhead (less branches
per execution of the original loop body) and therefore typically improves the
speed. As an extreme case, loops can be completely unrolled, removing control
overhead and branches altogether. Unrolling typically enables a number of
following transformations and may therefore be beneficial even in cases where
just unrolling the program does not give any advantages. However, unrolling
increases code size. Unrolling is normally restricted to loops with a constant
number of iterations.

• Loop fusion, loop fission: There may be cases in which two separate loops can
be merged, and there may be cases in which a single loop is split into two.

352 7 Optimization

Example 7.3 Consider the two versions of the following code:

for (j=0; j<n; j++) for (j=0; j<n; j++)

p[j]= . . . ; {p[j]= . . . ;

for (j=0; j<n; j++) ⇔ p[j]=p[j]+ . . . }

p[j]=p[j]+ . . .

The left version may be advantageous if the target processor provides a zero-
overhead loop instruction which can only be used for small loops. Also, the left
version may provide good candidates for unrolling, due to the simple loops. The
right version might lead to an improved cache behavior (due to the improved
locality of references to array p) and also increases the potential for parallel
computations within the loop body. As with many other transformations, it is
difficult to know which of the transformations leads to the best code. ∇

7.1.2 Loop Tiling/Blocking

Since small memories are faster than large memories (see p. 170), the use of
memory hierarchies may be beneficial. Possible “small” memories include caches
and scratchpad memories. A significant reuse factor for the information in those
memories is required. Otherwise the memory hierarchy cannot be exploited.

Example 7.4 Reuse effects can be demonstrated by an analysis of the following
example. Let us consider matrix multiplication for arrays of size N × N:

for (i=0; i<N; i++)
for(j=0; j<N; j++) {

r=0;
for (k=0; j<N; k++)

r+=X[i][k]*Y[k][j];
Z[i][j]=r;

}

Scalar variable r represents Z[i,j] in all iterations of the innermost loop. This
is supposed to help the compiler to allocate this element temporarily to a register.

Let us consider access patterns for this code, as shown in Fig. 7.3. We assume
that array elements are allocated in row-major order (as it is standard for C).

This means that array elements with adjacent row (right most) index values
are stored in adjacent memory locations. Accordingly, adjacent locations of X are
fetched during the iterations of the innermost loop. This property is beneficial if the
memory system uses prefetching (whenever a word is loaded into the cache, loading
of the next word is started as well). Accesses to Y do not exhibit spatial locality. If
the cache is not large enough to hold a full cache row, every access to Y will be a
cache miss. Hence, there will be N3 references to elements of Y in main memory.

7.1 High-Level Optimizations 353

Fig. 7.3 Access pattern for unblocked matrix multiplication

Research on scientific computing led to the design of blocked or tiled algo-
rithms [320, 606], which improve the locality of references. The following is a
tiled version of the above algorithm1 for a block size parameter B:

for (ii=0; kk<N; ii+=B)
for (jj=0; jj<N; jj+=B)

for (kk=0; kk<N; kk+=B)
for (i=ii; i<min(ii+B-1,N); ii++)

for (j=jj; j<min(jj+B-1,N); jj++) {
r=0;
for (k=kk; k<min(kk+B-1,N); k++)

r+= X[i][k]*Y[k][j];
Z[i][j]=r;

}

Now, the two innermost loops are constrained to traverse a block of size B2 for
array Y. Suppose that a block of size B2 fits into the cache. Then, the first execution of
the innermost loop will load this block into the cache. During the second execution
of the innermost loop, these elements will be reused. Overall, there will be B-1
reuses of elements of Y. Hence, the number of accesses to main memory for elements
of this array will be reduced to N3/(B-1).

∇
Optimizing the reuse factor has been an area of comprehensive research. Initial
research focused on the performance improvements that can be obtained by tiling.
Performance improvements for matrix multiplication by a factor between 3 and 4.3
were reported by Lam [320]. Improvements increase with an increasing gap between
processor and memory speeds. Tiling can also reduce the energy consumption of
memory systems [103].

1This code was adopted from http://www.netlib.org/utk/papers/autoblock/node2.html.

http://www.netlib.org/utk/papers/autoblock/node2.html

354 7 Optimization

Many IF-state-
ments for
margin checking pixels

almost all
No checking, Margin

few pixels
checking,+

Fig. 7.4 Splitting image processing into regular and special cases

7.1.3 Loop Splitting

Next, we discuss loop splitting as another optimization that can be applied before
compilation. Potentially, this optimization could also be added to compilers.

Many image processing algorithms perform some kind of filtering. This filtering
consists of considering the information about a certain pixel as well as that of some
of its neighbors. Corresponding computations are typically quite regular. However,
if the considered pixel is close to the boundary of the image, not all neighboring
pixels exist, and the computations must be modified. In a straightforward description
of the filtering algorithm, these modifications may result in tests being performed in
the innermost loop of the algorithm. A more efficient version of the algorithm can
be generated by splitting the loops such that one loop body handles the regular
cases and a second loop body handles the exceptions. Figure 7.4 is a graphical
representation of this transformation. Margin checking is required for the yellow
areas.

Performing this loop splitting manually is very difficult and error-prone. Falk
et al. have published an algorithm [159] which also works for larger dimensions
automatically. It is based on a sophisticated analysis of accesses to array elements
in loops using polyhedral analysis [586]. Optimized solutions are generated using
genetic algorithms from the PGAPack library [340]. Falk’s algorithm can be
implemented, e.g., as a compiler pre-pass tool.

Example 7.5 The following code shows a loop nest from the MPEG-4 standard
performing motion estimation:

for (z=0; z<20; z++)
for (x=0; x<36; x++) {x1=4*x;
for (y=0; y<49; y++) {y1=4*y;
for (k=0; k<9; k++) {x2=x1+k-4;
for (l=0; l<9; l++) {y2=y1+l-4;
for (i=0; i<4; i++) {x3=x1+i; x4=x2+i;
for (j=0; j<4; j++) {y3=y1+j; y4=y2+j;
if (x3<0 ‖ 35<x3 ‖ y3<0 ‖ 48<y3)
then_block_1; else else_block_1;
if (x4<0 ‖ 35<x4 ‖ y4<0 ‖ 48<y4)
then_block_2; else else_block_2;

}
}
}

}
}

}

7.1 High-Level Optimizations 355

Falk’s algorithm detects that the conditions x3<0 and y3<0 are never true. The
analysis allows transforming the loop nest into the code below. Instead of complex
tests in the innermost loop, we have a splitting if-statement after the third for-loop
statement. Regular cases are handled in the then part of this statement. The else
part handles the relatively small number of remaining cases:

for (z=0; z<20; z++)
for (x=0; x<36; x++) {x1=4*x;

for (y=0; y<49; y++)
if (x>=10 ‖ y>=14)
for (; y<49; y++)

for (k=0; k<9; k++)
for (l=0; l<9; l++)
for (i=0; i<4; i++)

for (j=0; j<4; j++) {
then_block_1; then_block_2}

else {y1=4*y;
for (k=0; k<9; k++) {x2=x1+k-4;
for (l=0; l<9; l++) {y2=y1+l-4;
for (i=0; i<4; i++) {x3=x1+i; x4=x2+i;
for (j=0; j<4; j++) {y3=y1+j; y4=y2+j;
if (0 ‖ 35 <x3 ‖ 0 ‖ 48 < y3) /* x3<0, y3<0 never true */
then_block_1; else else_block_1;
if (x4 < 0‖ 35 < x4 ‖ y4 < 0 ‖ 48 < y4)
then_block_2; else else_block_2;

}
}

}
}

}
}

∇
Run-times can be reduced by loop splitting for various applications and architec-
tures. Resulting relative run-times are shown in Fig. 7.5. For the motion estimation
algorithm, cycle counts can be reduced by up to about 75% (to 25% of the original
value). Substantial savings (larger than for the simple transformations mentioned
earlier) are possible.

7.1.4 Array Folding

Some embedded applications, especially in the multimedia domain, include large
arrays. Since memory space in embedded systems is limited, options for reducing
the storage requirements of arrays should be explored. Figure 7.6 represents the
addresses used by five arrays as a function of time. At any particular time, only a
subset of array elements is needed. The maximum number of elements needed is
called the address reference window [122]. In Fig. 7.6, this maximum is indicated
by a double-headed arrow. A classical memory allocation for arrays is shown in

356 7 Optimization

architecture

AR
M

 (t
hu

m
b)

TI
 C

6x

0

20

40

60

80

100

Su
n

Pe
nt

iu
m

Po
w

er
PC

 G
3

D
EC

 A
lp

ha
 E

V4

AR
M

 (a
rm

)

Runtime [%]

Cavity detection

QSDPCM

target

Motion
estimation

Fig. 7.5 Results for loop splitting

addresses &A &C

&D &E

&B

t t

t tt

Fig. 7.6 Reference patterns for arrays

addresses

m
em

or
y

si
ze

t t

addresses

m
em

or
y

si
ze

m
em

or
y

si
ze

addresses

t

Fig. 7.7 Unfolded (left), inter-array folded (center), and intra-array folded (right) arrays

Fig. 7.7 (left). Each array is allocated the maximum of the space it requires during
the entire execution time (if we consider global arrays).

One of the possible improvements, inter-array folding, is shown in Fig. 7.7
(center). Arrays which are not needed at overlapping time intervals can share the
same memory space. A second improvement, intra-array folding [121], is shown
in Fig. 7.7 (right). It takes advantage of the limited sets of components needed

7.2 Task-Level Concurrency Management 357

within an array. Storage can be saved at the expense of more complex address
computations. The two kinds of foldings can also be combined.

Other forms of high-level transformations have been analyzed by Chung, Benini,
and De Micheli [103, 524]. There are many additional contributions in this domain
in the compiler community.

7.1.5 Floating-Point to Fixed-Point Conversion

Floating-point to fixed-point conversion is a commonly used optimization tech-
nique. This conversion is motivated by the fact that many signal processing
standards (such as MPEG-2 or MPEG-4) are specified in the form of C-programs
using floating-point data types. It is left to the designer to find an efficient
implementation of these standards.

For many signal processing applications, it is possible to replace floating-point
numbers with fixed-point numbers (see p. 153). The benefits may be significant. For
example, a reduction of the cycle count by 75% and of the energy consumption
by 76% has been reported for an MPEG-2 video compression algorithm [225].
However, some loss of precision is normally incurred. More precisely, there is a
trade-off between the cost of the implementation and the quality of the algorithm
(evaluated, for example, in terms of quality metrics; see Sect. 5.3 on p. 254).
For small word lengths, the quality may be seriously affected. Consequently, the
quality loss has to be analyzed. This replacement was initially performed manually.
However, it is a very tedious and error-prone process.

Therefore, researchers have tried to support this replacement with tools. One
of such tools is FRIDGE (fixed-point programming design environment) [283, 588].
The functionality of FRIDGE has been made available commercially as part of the
Synopsys System Studio tool suite [518].

SystemC can be used for simulating fixed-point data types.
An analysis of the trade-offs between the additional noise introduced and the

word length needed was proposed by Shi and Brodersen [486] and also by Menard
et al. [390]. The topic continues to attract researchers [334], also in the context of
machine learning [454].

7.2 Task-Level Concurrency Management

As mentioned on p. 38, the task graphs’ granularity is one of their most important
properties. Even for hierarchical task graphs, it may be useful to change the
granularity of the nodes. The partitioning of specifications into tasks or processes
does not necessarily aim at the maximum implementation efficiency. Rather, during
the specification phase, a clear separation of concerns and a clean software model
are more important than caring about the implementation too much. For example,
a clear separation of concerns includes a clear separation of the implementation
of abstract data types from their use. As a result of the design process, tasks will

358 7 Optimization

Fig. 7.8 Merging of tasks

Fig. 7.9 Splitting of tasks

typically become objects within the operating system, i.e., processes (cf. Defini-
tion 4.1) or threads. Also, we might be using several tasks in a pipelined fashion
in our specification, while merging some of them might reduce context switching
overhead. Hence, there will not necessarily be a one-to-one correspondence between
the tasks in the specification and those in the implementation. This means that
a regrouping of tasks may be advisable. Such a regrouping is indeed feasible by
merging and splitting of tasks.

Merging of task graphs can be performed whenever some task τi is the immediate
predecessor of some other task τj and if τj does not have any other immediate
predecessor (see Fig. 7.8 with τi = τ3 and τj = τ4). This transformation can lead to
a reduced overhead of context switches if the node is implemented in software, and
it can lead to a larger potential for optimizations in general.

On the other hand, splitting of tasks may be advantageous, since tasks may be
holding resources (like large amounts of memory) while they are waiting for some
input. In order to maximize the use of these resources, it may be best to constrain the
use of these resources to the time intervals during which these resources are actually
needed.

Example 7.6 In Fig. 7.9, we are assuming that task τ2 requires some input some-
where in its code.

In the initial version, the execution of task τ2 can only start if this input is
available. We can split the node into τ ∗

2 and τ ∗∗
2 such that the input is only required

for the execution of τ ∗∗
2 . Now, τ ∗

2 can start earlier, resulting in more scheduling
freedom. This improved scheduling freedom might improve resource utilization
and could even enable meeting some deadline. It may also have an impact on the
memory required for data storage, since τ ∗

2 could release some of its memory before
terminating and this memory could be used by other tasks while τ ∗∗

2 is waiting for
input. ∇

One might argue that the tasks should release resources like large amounts
of memory before waiting for input. However, the readability of the original
specification could suffer from caring about implementation issues in an early
design phase.

7.2 Task-Level Concurrency Management 359

Quite complex transformations of the specifications can be performed with a
Petri net-based technique described by Cortadella et al. [111]. Their technique starts
with a specification consisting of a set of tasks described in a language called FlowC.
FlowC extends C with process headers and inter-task communication specified in
the form of read and write function calls.

Example 7.7 Figure 7.10 shows an input specification using FlowC. The example
uses input ports IN and COEF, as well as an output port OUT. Point-to-point

Fig. 7.10 System specification

360 7 Optimization

interprocess communication between processes is realized through a unidirectional
buffered channel DATA. Task GetData reads data from the environment and sends
it to channel DATA. Each time N samples have been sent, their average value is
also sent via the same channel. Task Filter reads N values from the channel (and
ignores them), then reads the average value, and multiplies the average value by
c. (c can be read from port COEF). Filter writes the result to port OUT. The third
parameter in READ and WRITE calls is the number of items to be read or written.
READ calls are blocking, and WRITE calls are blocking if the number of items in
the channel exceeds a predefined threshold. The SELECT statement has the same
semantics as the statement with the same name in Ada (see p. 112): execution
of this task is suspended until input arrives from one of the ports. This example
meets all criteria for splitting tasks that were mentioned in the context of Fig. 7.9.
Both tasks will be waiting for input while occupying resources. Efficiency could be
improved by restructuring these tasks. However, the simple splitting of Fig. 7.9 is
not sufficient. The technique proposed by Cortadella et al. is more comprehensive:
FlowC programs are first translated into (extended) Petri nets. Petri nets for each of
the tasks are then merged into a single Petri net. Using results from Petri net theory,
new tasks are then generated. Figure 7.11 shows a possible new task structure.

In this new task structure, there is one task which performs all initializations: in
addition, there is one task for each of the input ports. An efficient implementation
would raise interrupts each time new input is received for a port. There should be a

Fig. 7.11 Generated software tasks

7.3 Compilers for Embedded Systems 361

unique interrupt per port. The tasks could then be started directly by those interrupts,
and there would be no need to invoke the operating system for that. Communication
can be implemented as a single shared global variable (assuming a shared address
space). The operating system overhead would be small, if required at all.

The code for task tau_in shown in Fig. 7.11 is the one that is generated by the
Petri net-based inter-task optimization of the task structure. It should be further
optimized by intra-task optimizations, since the test performed for the first if
statement is always false (j is equal to i-1 in this case, and i and j are reset to
0 whenever i becomes equal to N). For the third if statement, the test is always
true, since this point of control is only reached if i is equal to N and i is equal to
j whenever label L0 is reached. Also, the number of variables can be reduced. The
following is an optimized version of tau_in [111]:

tau_in () {
READ(IN,sample,1);
sum+=sample; i++;
DATA=sample; d=DATA; /* merging of DATA & d feasible */

L0: if (i<N) return;
DATA=sum/N; d=DATA;
d=d*c; WRITE(OUT,d,1);
sum=0; i=0;
return;

}

The optimized version of tau_in could be generated by a clever compiler. Hardly
any of today’s compilers will generate this version, but the example shows the type
of transformations required for generating “good” task structures. ∇
For more details about the task generation, refer to Cortadella et al. [111]. Similar
optimizations are described in the book by Thoen [538] and in a publication by
Meijer et al. [389].

7.3 Compilers for Embedded Systems

7.3.1 Introduction

Obviously, optimizations and compilers are available for the processors used in PCs
and servers. Compiler generation for commonly used processors is well understood.
For embedded systems, standard compilers are also used in many cases, since they
are typically cheap or even freely available.

However, there are several reasons for designing special optimizations and
compilers for embedded systems:

• Processor architectures in embedded systems exhibit special features (see p. 143).
These features should be exploited by compilers in order to generate efficient

362 7 Optimization

code. Compilation techniques might also have to support compression techniques
described on p. 148–p. 150.

• A high efficiency of the code is more important than a high compilation speed.
• Compilers could potentially help to meet and prove real-time constraints. First of

all, it would be nice if compilers contained explicit timing models. These could
be used for optimizations which really improve the timing behavior. For example,
it may be beneficial to freeze certain cache lines in order to prevent frequently
executed code from being evicted and reloaded several times.

• Compilers may help to reduce the energy consumption of embedded systems.
Compilers performing energy optimizations should be available.

• For embedded systems, there is a larger variety of instruction sets. Hence, there
are more processors for which compilers should be available. Sometimes, there is
even the request to support the optimization of instruction sets with retargetable
compilers. For such compilers, the instruction set can be specified as an input
to a compiler generation system. Such systems can be used for experimentally
modifying instruction sets and then observing the resulting changes for the
generated machine code. This is one particular case of design space exploration
and is supported, for example, by Tensilica tools [82].

Some approaches for retargetable compilers are described in a book on this topic
[376]. Optimizations can be found in books by Leupers et al. [337, 338]. In
this Section, we will present examples of compilation techniques for embedded
processors.

7.3.2 Energy-Aware Compilation

Many embedded systems are mobile systems which must run on batteries. While
computational demands on mobile systems are increasing, battery technology is
expected to improve only slowly [414]. Hence, the availability of energy is a serious
bottleneck for new applications.

Saving energy can be done at various levels, including the fabrication process
technology, the device technology, the circuit design, the operating system, and the
application algorithms. Adequate translation from algorithms to machine code can
also help. High-level optimization techniques such as those presented on p. 349–p.
357 can also help to reduce the energy consumption. In this subsection, we will look
at compiler optimizations which can reduce the energy consumption (frequently
called low-power optimizations). Energy models are very essential ingredients of
all energy optimizations. Energy models were presented in Chap. 5. Using models
like those, the following compiler optimizations have been used for reducing the
energy consumption:

• Energy-aware scheduling: the order of instructions can be changed as long as
the meaning of the program does not change. The order can be changed such that
the number of transitions on the instruction bus is minimized. This optimization

7.3 Compilers for Embedded Systems 363

can be performed on the output generated by a compiler and therefore does not
require any change to the compiler.

• Energy-aware instruction selection: typically, there are different instruction
sequences for implementing the same source code. In a standard compiler, the
number of instructions or the number of cycles is used as a criterion (cost
function) for selecting a good sequence. This criterion can be replaced by the
energy consumed by that sequence. Steinke and others found that energy-aware
instruction selection reduces the energy consumption by some percent [509].

• Replacing the cost function is also possible for other standard compiler opti-
mizations, such as register pipelining, loop invariant code motion, etc. Possible
improvements are also in the order of a few percent.

• Exploitation of the memory hierarchy: as already explained on p. 168,
smaller memories provide faster access and consume less energy per access.
Therefore, a significant amount of energy can be saved if memory hierarchies
are exploited. Of all the compiler optimizations analyzed by Steinke [511, 512],
the energy savings enabled by memory hierarchies are the largest. It is therefore
beneficial to use small scratchpad memories (SPMs; see p. 172) in addition to
large background memories. All accesses to the corresponding address range
will then require less energy and are faster than accesses to the larger memory.
The compiler should be responsible for allocating variables and instructions to
the scratchpad. This approach does, however, require that frequently accessed
variables and code sequences are identified and mapped to that address range.

7.3.3 Memory-Architecture Aware Compilation

Compilation Techniques for Scratchpads

The advantages of using SPMs have been clearly demonstrated [36]. Therefore,
exploiting SPMs is the most prominent case of memory hierarchy exploitation.
Available compilers are usually capable of mapping memory objects to certain
address ranges in the memory. Toward this end, the source code typically has to
be annotated.

Example 7.8 For ARM® tools, memory segments can be introduced in the source
code by using pragmas like

pragma arm section rwdata = "foo", rodata = "bar"

Variables declared after this pragma would be mapped to read-write segment
"foo," and constants would be mapped to read-only segment "bar." Linker
commands can then map these segments to particular address ranges, including
those belonging to the SPM. ∇

364 7 Optimization

This is the approach taken in compilers for ARM processors [20]. This is not a
very comfortable approach, and it would be nice if compilers could perform such
a mapping automatically for frequently accessed objects. Therefore, optimization
algorithms have been designed. Some of these optimizations have been presented
in a separate book [378]. Available SPM optimizations can be classified into two
categories:

• Non-overlaying (or “static”) memory allocation strategies: for these strategies,
memory objects will stay in the SPM while the corresponding application is
executed.

• Overlaying (or “dynamic”) memory allocation strategies: for these strategies,
memory objects are moved in and out of the SPM at run-time. This is a kind of
“compiler-controlled paging,” except the migration of objects happens between
the SPM and some slower memory and does not involve any disks.

Non-overlaying Allocation

For non-overlaying allocation, we can start by considering the allocation of
functions and global variables to the SPM. For this purpose, each function and each
global variable can be modeled as a memory object. Let

• S be the size of the SPM,
• sfi and svi be the sizes of function i and variable i, respectively,
• g be the energy consumption saved per access to the SPM (i.e., the difference

between the energy required per access to the slow main memory and the one
required per access to the SPM),

• nfi and nvi be the number of accesses to function i and variable i, respectively,
• xfi and xvi be defined as

xfi =
{
1 if function i is mapped to the SPM
0 otherwise

(7.1)

xvi =
{
1 if variable i is mapped to the SPM
0 otherwise

(7.2)

Then, the goal is to maximize the gain

G = g

(∑
i

nfi ∗ xfi +
∑

i

nvi ∗ xvi

)
(7.3)

while respecting the size constraint

∑
i

sfi ∗ xfi +
∑

i

svi ∗ xvi ≤ S (7.4)

7.3 Compilers for Embedded Systems 365

The problem is known as a (simple) knapsack problem (see p. 320 for the more
general case). Standard knapsack algorithms can be used for selecting the objects
to be allocated to the SPM. However, Eqs. (7.3) and (7.4) also have the form of an
integer linear programming (ILP) problem (see Appendix A), and ILP solvers can be
used as well. g is a constant factor in the objective function and is not needed for the
solution of the ILP problem. The corresponding optimization can be implemented
as a pre-pass optimization (see Fig. 7.12).

The optimization impacts addresses of functions and global variables. Compilers
typically allow a manual specification of these addresses in the source code.
Hence, no change to the compiler itself is required. The advantage of such a pre-
pass optimization is that it can be used with compilers for many different target
processors. There is no need to modify a large number of target-specific compilers.

The knapsack model can be extended into various directions:

• Allocation of basic blocks: The approach just described only allows the
allocation of entire functions or variables to the SPM. As a result, a major fraction
of the SPM may remain empty if functions and variables are large. Therefore,
we try to reduce the granularity of the objects which are allocated to the SPM.
The natural choice is to consider basic blocks as memory objects. In addition,
we do also consider sets of adjacent basic blocks, where adjacency is defined
as being adjacent in the control flow graph [509]. We call such sets of adjacent
blocksmulti-basic blocks. Figure 7.13 shows a control flow graph and the set of
considered multi-basic blocks.

Target
codecode

Source
optimizations
Pre-pass

compiler
(ARM- or gcc)

Memory hierarchy

(e.g. SPM size)
description

Fig. 7.12 Pre-pass optimization

Fig. 7.13 Basic blocks and
multi-basic blocks

366 7 Optimization

The ILP model can be extended accordingly. Let

– sbi and smi be the sizes of basic blocks i and multi-basic blocks i, respec-
tively,

– nbi and nmi be the number of accesses to basic block i and multi-basic blocks
i, respectively,

– xbi and xmi be defined as

xbi =
{
1 if basic block i is mapped to the SPM
0 otherwise

(7.5)

xmi =
{
1 if multi basic block i is mapped to the SPM
0 otherwise

(7.6)

Then, the goal is to maximize the gain

G = g

(∑
i

nfi · xfi+
∑

i

nbi · xbi+
∑

i

nmi · xmi+
∑

i

nvi · xvi

)
(7.7)

while respecting the constraints

∑
i

sfi ∗ xfi +
∑

i

sbi ∗ xbi +
∑

i

smi ∗ xmi +
∑

i

svi ∗ xvi ≤ S (7.8)

∀ basic blocks i : xbi + xff ct (i) +
∑

i′∈multibasicblock(i)

xmi′ ≤ 1 (7.9)

fct(i) is the function containing basic block i and multibasicblock(i) is the set of
multi-basic blocks containing basic block i.

The constraint (7.9) ensures that a basic block is mapped to the SPM only
once, instead of potentially being mapped as a member of the enclosing function
and a member of a multi-basic block.

Experiments using this model were performed by Steinke et al. [512]. For
some benchmark applications, energy reductions of up to about 80% were found,
even though the size of the SPM was just a small fraction of the total code size
of the application. Results for the bubble sort program are shown in Fig. 7.14.
Obviously, larger SPMs lead to a reduced energy consumption in the main
memory (see white boxes). The energy required in the CPU is also reduced, since
less wait cycles are required. The SPM needs only small amounts of energy (see
the tiny blue boxes). Supply voltages have been assumed to be constant, even
though a faster execution could have allowed us to scale down frequencies and
voltages, leading to an even larger energy reduction.

7.3 Compilers for Embedded Systems 367

Fig. 7.14 Energy reduction
by compiler-based mapping
to a SPM

0 Size

CPU
main memory
scratch pad

204846 821 652 215 4201

Energy [mJ]

6

5

4

3

2

1

• Partitioned memories [572]: Small memories are faster and require less energy
per access. Therefore, it makes sense to partition memories into several smaller
memories. The ILP model can be extended easily to also model several mem-
ories. We do not distinguish between the various types of memory objects
(functions, basic blocks, variables, etc.) in this case. An index i represents any
memory object. Let

– Sj be the size of the memory j ,
– si be the size of object i (as before),
– ej be the energy consumption per access to memory j ,
– ni the number of accesses to object i (as before),
– xi,j be defined as

xi,j =
{
1 if object i is mapped to memory j

0 otherwise
(7.10)

Instead of maximizing the energy saving, we are now minimizing the overall
energy consumption. Hence, the goal is now to minimize

C =
∑
j

ej

∑
i

xi,j ∗ ni (7.11)

while respecting the constraints

∀j :
∑

i

si ∗ xi,j ≤ Sj (7.12)

∀i :
∑
j

xi,j = 1 (7.13)

368 7 Optimization

Partitioned memories are advantageous especially for varying memory require-
ments. Storage locations accessed frequently are called the working set of
an application. Applications with a small working set could use a very small
fast memory, whereas applications requiring a larger working set could be
allocated to a somewhat larger memory. Therefore, a key advantage of partitioned
memories is their ability to adapt to the size of the current working set.

Furthermore, unused memories can be shut down to save additional energy.
However, we are considering only the “dynamic” energy consumption caused
by accesses to the memory. In addition, there may be some energy consumption
even if the memory is idle. This consumption is not considered here. Therefore,
savings from shutting down memories are not reflected in Eqs. (7.11) and (7.12).

• Link/load-time allocation of memory [420]: Optimizing code at compile time
for a certain SPM size has a disadvantage—the code might perform badly if we
run it on different variants of some processor if these variants have differently
sized SPMs. We would like to avoid requiring different executable files for the
different variants of the processor. As a result, we are interested in executables
which are independent of the SPM size. This is feasible if we perform the
optimization at link time. The proposed approach computes the ratio of the
number of accesses divided by the size of a variable at compile time and stores
this value together with other information about variables in the executable. At
load time, the OS is queried for the size of the SPM. Then, the code is patched
such that as many profitable variables as possible are allocated to the SPM.

Overlaying Allocation

Large applications may have multiple hot spots (multiple areas of code containing
compute-intensive loops). Non-overlaying approaches fail to provide the best
possible results in this context. For such applications, the SPM should be exploited
for each of the hot spots. This requires an automatic migration between the layers
in the memory hierarchy. For overlaying algorithms, memory objects are migrated
between different levels of the hierarchy.2 This migration can be either programmed
explicitly in the application or inserted automatically. Overlaying algorithms are
beneficial for applications with multiple hot spots, for which the code or data can
be evicting each other. For overlaying algorithms, we are typically assuming that
all applications are known at design time such that memory allocation can be
considered at this time. Algorithms by Verma [555] and by Udayakumararan et
al. [548] are early examples of such algorithms.

Verma’s algorithm starts with the CFG of the application to be optimized. For
edges of the graph, Verma considers potentially freeing the SPM for locally used

2Some of the material in this subsection has also been included in a separate book by the same
author and publisher [378].

7.3 Compilers for Embedded Systems 369

Use A

Modify A

Load A

Use T3

Use T3

Load T3

Store A

Use A

Define A SP size=|A|=|T3|

T3

B10

B9

B6

B5

B8

B7

B4

B3

B2

B1

Fig. 7.15 Potential spill code

memory objects by storing these objects in some slower memory and later restoring
them. Blocks of code are handled as if they were arrays of data.

Example 7.9 In Fig. 7.15, we are considering control blocks B1–B10 and control
flow branching at B2. We assume that array A is defined, modified, and used along
the left path. T3 is only used in the right part of the branch. We consider potentially
freeing the SPM so that T3 can be locally allocated to the SPM. This requires spill
and load operations in potentially inserted blocks B9 and B10 (dotted lines: potential
inserts). Cost and benefit of these spill operations are then incorporated into a global
ILP. Solving the ILP yields an optimal set of memory copy operations. ∇
For a set of benchmarks, the average reductions in energy consumption and execu-
tion time, compared to the non-overlaying case, are 34% and 18%, respectively.

Udayakumararan’s algorithm is similar, but it evaluates memory objects accord-
ing to their number of memory accesses divided by their size. This metric is then
used to heuristically guide the optimization process. This approach can also take
heap objects into account.

Large arrays are difficult to allocate to SPM. In fact, even a single array can be
too large to fit into an SPM. The splitting strategy of Verma [160] is restricted to a
single-array splitting. Loop tiling is a more general technique, which can be applied
either manually or automatically [344]. Furthermore, array indexes can be analyzed
in detail such that frequently accessed array components can be kept in the SPM
[357].

370 7 Optimization

Our explanations have so far mainly addressed code and global data. Stack and
heap data require special attention. In both cases, two trivial solutions may be
feasible: in some cases, we might prefer not to allocate code or heap data to the
SPM at all. In other cases, we could run stack [5] and heap size analysis [219] to
check whether stack or heap fit completely into the SPM and, if they do, allocate
them to the SPM.

For the heap, Dominguez et al. [134] proposed to analyze the liveness of heap
objects. Whenever some heap object is potentially needed, code is generated to
ensure that the object will be in the SPM. Objects will always be at the same address,
so that the problem of dangling references to heap objects in the SPM is avoided.
McIllroy et al. [384] propose a dynamic memory allocator taking characteristics
of SPM into account. Bai et al. [33] suggest that the programmer should enclose
accesses to global pointers by two functions p2s and s2p. These functions provide
conversions between global and local (SPM) addresses and also ensure a proper
copying of memory contents.

For stack variables, Udayakumararan et al. [548] proposed to use two stacks, one
for calls to short functions with their stack being in main memory and one for calls
to computationally expensive functions whose stack area is in the SPM. Kannan et
al. [281] suggested to keep the top stack frames in the SPM in a circular fashion.
During function calls, a check for a sufficient amount of space for the required stack
frame is made. If the space is not available, old stack frames are copied to a reserved
area in main memory. During returns from function calls, these frames can be copied
back. Various optimizations aim at minimizing the necessary checks.

Multiple Threads/Processes

The above approaches are still limited to handling a single process or thread. For
multiple threads, moving objects into and out of the SPM at context switch time has
to be considered. Verma [556] proposed three different approaches:

1. For the first approach, only a single process owns space in the SPM at any given
time. At each context switch, the information of the preempted process in the
occupied space is saved, and the information for the process to be executed is
restored. This approach is called the saving/restoring approach. This approach
does not work well with large SPMs, since the copying would consume a
significant amount of time and energy.

2. For the second approach, the space in the SPM is partitioned into areas for
the various processes. The size of the partitions is determined in a special
optimization. The SPM is filled during initialization. No further compiler-
controlled copying is required. Therefore, this approach is called the non-saving
approach. This approach makes sense only for SPMs large enough to contain
areas for several processes.

7.3 Compilers for Embedded Systems 371

3. The third approach is a hybrid approach: The SPM is split into an area jointly
used by processes and a second area, in which processes obtain some exclusively
allocated space. The size of the two areas is determined in an optimization.

In more dynamic cases, the set of applications may vary during the use of the
system. For such cases, dynamic memory managers are appropriate. Pyka [463]
published an algorithm based on an SPM manager using indirect addressing and
being included in the operating system. This approach also allows the migration
of library elements to the SPM. A reduction of the consumed energy of 25%–35%
could be achieved despite the additional level of indirect addressing.

This additional level of indirection can be avoided if a memory management unit
(see Appendix C) is available. Egger et al. [149] developed a technique exploiting
MMUs: at compile time, sections of code are classified as either benefiting or
not benefiting from an allocation to the SPM. The code benefiting is stored in a
certain area in the virtual address space. Initially, this area is not mapped to physical
memory. Therefore, a page fault occurs when the code is accessed for the very first
time. Page fault handling then invokes the SPM manager (SPMM) and the SPMM
allocates (and deallocates) space in the SPM, always updating the virtual-to-real
address translation tables as needed. The approach is designed to handle code and
is capable of supporting a dynamically changing set of applications. Unfortunately,
the size of current SPMs corresponds to just a few entries in today’s page tables,
resulting in a coarse-grained SPM allocation.

Supporting Different Architectures and Objectives

We have so far considered different allocation types. Another dimension in SPM
allocation is the architectural dimension. Implicitly, we have so far considered
single-core systems with a single-memory hierarchy layer and a single SPM. Other
architectures exist as well. For example, there may be hybrid systems containing
both caches and SPM. We can try to reduce cache misses by selectively allocating
SPM space in case of cache conflicts [92, 280, 611]. Also, we can have different
memory technologies, like flash memory or other types of nonvolatile RAM [565].
For flash memory, load balancing is important. Also, there might be multiple levels
of memories.

SPM can possibly be shared across cores. Also, there may be multiple memory
hierarchy levels, some of which can be shared. Liu et al. [349] present an ILP-based
approach for this.

Still another dimension in SPM allocation is the objective function. So far, we
have focused on energy or run-time minimization. Other objectives can be consid-
ered as well. Implicitly, we have modeled the average case energy consumption.
We could have modeled the worst case energy consumption (WCEC) instead.
The WCEC is an objective considered, for example, by Liu [349]. Reliability and
endurance are relevant for the design of reliable applications, in particular in the
presence of aging [566]. It may also be necessary to avoid overheating of memories.

372 7 Optimization

7.3.4 Reconciling Compilers and Timing Analysis

Almost all compilers which are available today do not include a timing model.
Therefore, the development of real-time software typically has to follow an iterative
approach: software is compiled by a compiler which is unaware of any timing
information. The resulting code is then analyzed using a timing analyzer such as
aiT [4]. If the timing constraints are not met, some of the inputs to the compiler
run must be changed, and the procedure has to be repeated. We call this “trial-
and-error”-based development of real-time software. This approach suffers from
several problems. First of all, the number of required design iterations is initially
unknown. Furthermore, the compiler used in this approach is “optimizing,” but
a precise evaluation of objectives apart from the code size is usually impossible.
Hence, compiler writers can only hope that their “optimizations” have a positive
impact of the quality of the code in terms of relevant objectives. Due to the complex
timing behavior of modern processors, this hope is hardly supported by evidence.
Finally, the “trial-and-error”-based development of real-time software requires the
designer to find appropriate modifications of the input to the compiler such that the
real-time constraints will eventually be met.

This “trial-and-error”-based approach can be avoided if timing analysis is
integrated into the compiler. This has been the aim of the development of the
worst case execution time-aware compiler (WCC). The development of WCC
started at TU Dortmund with an integration of the timing analyzer aiT into an
experimental compiler for the TriCore architecture. Figure 7.16 shows the resulting
overall structure. WCC uses the ICD-C compiler infrastructure [230] to read and
parse C source code. The source is then converted into a “high-level intermediate
representation” (HL-IR). The HL-IR is an abstract representation of the source code.
Various optimizations can be applied to the HL-IR. The optimized HL-IR is passed
to the code selector. The code selector maps source code operations to machine
instructions. Machine instructions are represented in the low-level intermediate
representation (LLIR). In order to estimate the WCETEST , the LLIR is converted
into the CRL2 representation used by aiT (using the converter LLIR2CRL). aiT is
then able to generate WCETEST for the given machine code. This information
is converted back into the LLIR representation (using the converter CRL2LLIR).
WCC uses this information to consider WCETEST as the objective function during
optimizations. This can be done straightforward for optimizations at the LLIR
level. However, many optimizations are performed at the HL-IR-level. WCETEST -
directed optimizations at this level require using back annotation from the LLIR
level to the HL-IR level. ICD-C includes this back annotation.

WCC has been used to study the impact of optimizing for a reduced WCETEST

in the compiler. The numerous results include a study of the impact of this objective
for register allocation [158]. Results shown in Fig. 7.17 indicate a dramatic impact.
WCETEST can be reduced down to 68.8% of the original WCETEST on the average
by just using WCET-aware register allocation in WCC. The largest reduction yields
a WCETEST of only 24.1% of the original WCETEST . The combined effect of

7.4 Power and Thermal Management 373

C
R

L2
LL

IR
LL

IR
2C

R
L

WCET-

Assembly
Optimized

Optimizations

Optimizations

Back-
annotation

LLIR

HL-IR
ICD-C

Parser
C Sources

Selector

Code
CRL2

aiT

CRL2+
WCETEST

Fig. 7.16 Worst case execution time-aware compiler WCC

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

ad
pc
m_

ve
rif
y

cjp
eg
_tr
an
su
pp

co
mp

re
ss crc

dij
ks
tra du

ff

ed
ge
_d
ete

ct ed
n

ep
ic

ex
pin

t
fdc

t

fft
_1
02
4

fft
_2
56 fir

fir
2d
im gs

m

gs
m_

en
co
de h2

63

h2
64
de
c_
blo

ck

h2
64
de
c_
ma

cr
o

iir_
4_
64

iir_
biq

ua
d_
N

jfd
cti
nt

lat
nr
m_

32
_6
4

lm
sfi
r_8

_1

lm
sfi
r_3

2_
64 lpc

lud
cm
p

ma
tm
ult

Re
la
tiv

e
W
CE

T
ES

T
[%

]

Fig. 7.17 Reduction of WCETEST by WCET-aware register allocation

several such optimizations has been analyzed by Lokuciejewski et al. [353]. For
the considered benchmarks, Lokuciejewski found a reduction of down to 57.1% of
the original WCETEST . Lokuciejewski et al. have also used machine learning to
optimize heuristics for WCET reduction [354].

7.4 Power and Thermal Management

7.4.1 Dynamic Voltage and Frequency Scaling (DVFS)

Some embedded processors support dynamic power management (see p. 146) and
dynamic voltage scaling (see p. 144). An additional optimization step can be used to
exploit these features. Typically, such an optimization step follows code generation
by the compiler. Optimizations at this step require a global view of all tasks of the
system, including their dependencies, slack times, etc.

374 7 Optimization

Example 7.10 The potential of dynamic voltage scaling is demonstrated in the
following example [251]. We assume that we have a processor which runs at three
different voltages, 2.5V, 4.0V, and 5.0V. Assuming an energy consumption of 40 nJ
per cycle at 5.0V, Eq. (3.14) can be used to compute the energy consumption at the
other voltages (see Table 7.1, where 25 nJ is a rounded value).

Furthermore, we assume that our task needs to execute 109 cycles within 25 s.
There are several ways of doing this, as can be seen from Figs. 7.18, 7.19, and 7.20.
Using the maximum voltage (see Fig. 7.18), it is possible to shut down the processor
during the slack time of 5 s (we assume the power consumption to be zero during
this time).

Another option is to initially run the processor at full speed and then reduce
the voltage when the remaining cycles can be completed at the lowest voltage (see
Fig. 7.19).

Finally, we can run the processor at a clock rate just large enough to complete
the cycles within the available time (see Fig. 7.20).

The corresponding energy consumptions can be calculated as

Ea = 109 ∗ 40 ∗ 10−9J = 40 J (7.14)

Eb = 750 ∗ 106 ∗ 40 ∗ 10−9 + 250 ∗ 106 ∗ 10 ∗ 10−9J = 32.5 J (7.15)

Ec = 109 ∗ 25 ∗ 10−9J = 25 J (7.16)

The smallest energy consumption is achieved for the ideal supply voltage of 4 volts,
with no idle time at the end. ∇

In the following, we use the term variable voltage processor only for processors
that allow any supply voltage up to a certain maximum. It is expensive to support

Table 7.1 Characteristics of
processor with DVFS

Vdd [V] 5.0 4.0 2.5

Energy per cycle [nJ] 40 25 10

fmax [MHz] 50 40 25

Cycle time [ns] 20 25 40

Fig. 7.18 Possible voltage
schedule

Fig. 7.19 Second voltage
schedule

7.4 Power and Thermal Management 375

Fig. 7.20 Third voltage
schedule

truly variable voltages, and therefore, actual processors support only a few fixed
voltages.

The observations made for the above example can be generalized into the
following statements. The proofs of these statements are given in the paper by
Ishihara and Yasuura [251].

• If a variable voltage processor completes a task before the deadline, the energy
consumption can be reduced.3

• If a processor uses a single supply voltage Vs and completes a task τ just at
its deadline, then Vs is the unique supply voltage which minimizes the energy
consumption of τ .

If a processor can only use a number of discrete voltage levels, then a voltage
schedule using the two voltages which are the two immediate neighbors of the
ideal voltage Videal can be chosen. These two voltages lead to the minimum energy
consumption except if the need to use an integer number of cycles results in a small
deviation from the minimum.4

The statements can be used for allocating voltages to tasks. Next, we will
consider such an allocation. We will use the following notation:

n : the number of tasks
ECj : the number of executed cycles of task j

L : the number of voltages of the target processor
Vi : the ith voltage, where 1 ≤ i ≤ L

fi : the clock frequency for supply voltage Vi

d : the global deadline at which all tasks must have been completed
SCj : the average switching capacitance during the execution of task j (SCj

comprises the actual capacitance CL and the switching activity α (see
Eq. (3.14) on page 144))

The voltage scaling problem can then be formulated as an integer linear
programming (ILP) problem (see p. 393). Toward this end, we introduce variables
Xi,j denoting the number of cycles executed at a particular voltage:

Xi,j : the number of clock cycles task j is executed at voltage Vi

3This formulation makes an implicit assumption in lemma 1 of the paper by Ishihara and Yasuura
explicit.
4This need is not considered in the original paper.

376 7 Optimization

Simplifying assumptions of the ILP model include the following:

• There is one processor that can be operated at a limited number of discrete
voltages.

• The time for voltage and frequency switches is negligible.
• The worst case number of cycles for each task is known.

Using these assumptions, the ILP problem can be formulated as follows:
Minimize

E =
n∑

j=1

L∑
i=1

SCj ∗ Xi,j ∗ V 2
i (7.17)

subject to

∀j :
L∑

i=1

Xi,j = ECj (7.18)

and

n∑
j=1

L∑
i=1

Xi,j

fi

≤ d (7.19)

The goal is to find the number Xi,j of cycles that each task τj is executed at a
certain voltage Vi . According to the statements made above, no task will ever need
more than two voltages. Using this model, Ishihara and Yasuura show that efficiency
is typically improved if tasks have a larger number of voltages to choose from. If
large amounts of slack time are available, many voltage levels help to find close to
optimal voltage levels. However, four voltage levels do already give good results
quite frequently.

There are many cases in which tasks actually run faster than predicted by their
worst case execution times. This cannot be exploited by the above algorithm. This
limitation can be removed by using checkpoints at which actual and worst case
execution times are compared and then to use this information to potentially scale
down the voltage [30]. Also, voltage scaling in multi-rate task graphs was proposed
[479]. DVFS can be combined with other optimizations such as body biasing [369].
Body biasing is a technique for reducing leakage currents.

7.4.2 Dynamic Power Management (DPM)

In order to reduce the energy consumption, we can also take advantage of power-
saving states, as introduced on p. 146. The essential question for exploiting DPM is:

7.4 Power and Thermal Management 377

when should we go to a power-saving state? Straightforward approaches just use a
simple timer to transition into a power-saving state. More sophisticated approaches
model the idle times by stochastic processes and use these to predict the use of
subsystems with more accuracy. Models based on exponential distributions have
been shown to be inaccurate. Sufficiently accurate models include those based on
renewal theory [490].

A comprehensive discussion of power management was published (see, for
example, [46, 356]). There are also advanced algorithms which integrate DVS and
DPM into a single optimization approach for saving energy [491].

Allocating voltages and computing transition times for DPM may be two of the
last steps of optimizing embedded software.

Power management is also linked to thermal management.

7.4.3 Thermal Management

Design time planning of the thermal behavior would need to leave large margins in
terms of available performance. Hence, it is necessary to use run-time monitoring of
temperatures. This means that thermal sensors must be available in systems which
potentially could get too hot. This information is then used to control the generation
of additional heat and possibly has an impact on cooling mechanisms as well. Many
users of mobile phones may already have observed this: it is, for example, very
common to stop charging a mobile phone when it is already too hot. Controlling
fans (when available) can be considered as another case of thermal management.
Also, systems may be shutting down partially or completely, if temperatures are
exceeding maximum thresholds. Shutdown areas of silicon chips can be called “dark
silicon.” Some systems may be reducing the clock frequencies and voltages. There
are also other options like a reduction of the performance by intentionally not using
some of the available hardware. It is possible, for example, to issue less instructions
per clock cycle or not to use some of the processor pipelines. For multiprocessor
systems, tasks may be automatically migrated between various processors. In all of
these cases, the objective “temperature” is evaluated at run-time and used to have an
impact at run-time. Avoiding overheating is the goal of the work reported by Merkel
et al. [391] and by Donald et al. [135]. Using temperature sensors to control the
systemmeans that control loops are being created. Potentially, such loops could start
to oscillate. Atienza et al. have compared the behavior of various control strategies
and came to the conclusion that an advanced control loop algorithm provides the
best results, with a higher computing performance at a lower temperature, compared
to standard approaches [610]. The details of this control loop design would be
beyond the scope of a textbook useful for undergraduate students.

378 7 Optimization

7.5 Problems

We suggest solving the following problems either at home or during a flipped
classroom session:

7.1 Loop unrolling is one of the potentially useful optimizations. Please name two
potential benefits and two potential problems!

7.2 We assume that you want to use loop tiling. How can you adjust the tiling to
the memory architecture at hand?

7.3 For which architectures would you expect the largest benefits from a replace-
ment of floating-point arithmetic by fixed-point arithmetic?

7.4 Provide an overview over techniques for taking advantage of scratch pad
memories!

7.5 Consider the following program:

1 #include <stdio.h>
2 #define DATALEN 15
3 #define FILTERTAPS 5
4 double x[DATALEN] = { 128.0, 130.0, 180.0, 140.0, 120.0,
5 110.0, 107.0, 103.5, 102.0, 90.0,
6 84.0, 70.0, 30.0, 77.3, 95.7 };
7 const double h[FILTERTAPS]={0.125,-0.25,0.5,-0.25,0.125};
8 double y[DATALEN]; // result;
9 int main(void) {
10 int i,n;
11 for(i=0;i<DATALEN;++i) {
12 y[i] = 0;
13 for(n=0; n < FILTERTAPS; ++n)
14 if ((i-n) > = 0) y[i] += h[n]*x[i-n];
15 }
16 for(i = 0; i < DATALEN; ++i) printf("%.2f ",y[i]);
17 return 0;
18 }

Perform at least the following optimizations:

• Removal of the if in the innermost loop (line 14)
• Loop unrolling (line 13)
• Constant propagation
• Floating-point to fixed-point conversion
• Avoidance of all accesses to arrays

Please provide the optimized version of the program after each of the transforma-
tions and do also check for consistent results!

7.5 Problems 379

Table 7.2 SPM mapping: left, accesses to variables; right, memory characteristics

Number of
Variable Size [bytes] accesses

a 1024 16

b 2048 1024

c 512 2048

d 256 512

e 128 256

f 1024 512

g 512 64

h 256 512

Energy
Memory Size [bytes] per access

Scratchpad 4096 (4 k) 1.3 nJ

Main memory 262,144 (256 k) 31 nJ

7.6 Suppose that your computer is equipped with a main memory and a scratchpad
memory. Sizes and the required energy per access are shown in Table 7.2 (right).
Characteristics of accesses to variables are as indicated in Table 7.2 (left).

Which of those variables should be allocated to the scratchpad memory, provided
that we use a static, non-overlaying allocation of variables? Use the integer linear
problem (ILP) model to select the variables. Your result should include the ILP
model as well as the results. You may use the lp_solve program [17] to solve your
ILP problem.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	7 Optimization
	7.1 High-Level Optimizations
	7.1.1 Simple Loop Transformations
	7.1.2 Loop Tiling/Blocking
	7.1.3 Loop Splitting
	7.1.4 Array Folding
	7.1.5 Floating-Point to Fixed-Point Conversion

	7.2 Task-Level Concurrency Management
	7.3 Compilers for Embedded Systems
	7.3.1 Introduction
	7.3.2 Energy-Aware Compilation
	7.3.3 Memory-Architecture Aware Compilation
	Compilation Techniques for Scratchpads
	Non-overlaying Allocation
	Overlaying Allocation
	Multiple Threads/Processes
	Supporting Different Architectures and Objectives

	7.3.4 Reconciling Compilers and Timing Analysis

	7.4 Power and Thermal Management
	7.4.1 Dynamic Voltage and Frequency Scaling (DVFS)
	7.4.2 Dynamic Power Management (DPM)
	7.4.3 Thermal Management

	7.5 Problems

