Chapter 3 )
Embedded System Hardware e

In this chapter, we will present the interface between the physical environment and
information processing (the cyphy-interface) together with the hardware required
for processing, storing, and communicating information. Due to considering CPS,
covering the cyphy-interface is indispensable. The need to cover other hardware
components as well is a consequence of their impact on the performance, timing
characteristics, power consumption, safety, and security.

Regarding the cyphy-interface, we will present circuits for sampling and digi-
tization of physical quantities as well as for the reverse process. We will present
the sampling theorem and its impact. Regarding information processing, we will
provide details of efficient hardware, in particular of digital signal processors,
general-purpose computing on graphics processors, multi-core systems, and field
programmable gate arrays (FPGAs). With respect to information storage, we will
explain the memory hierarchy as it is used in embedded systems. We will also
explain if and how existing communication technologies can be used.

Electronic information processing requires electrical energy. Accordingly, this
chapter includes a section on the generation (e.g., harvesting), storage, and efficient
use of electrical energy in embedded systems, including battery and energy con-
sumption models. This chapter closes with a survey on the challenges of supporting
security in hardware.

3.1 Introduction

Frequently, hardware designs are reused, either in the form of real hardware
components or in the form of intellectual property (IP). The reuse of available hard-
and software components is at the heart of the platform-based design methodology
(see also p. 296). This methodology is seen as a key method for mastering the
growing complexity of embedded systems. Consistent with the need to consider
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available hardware components and with the design information flow shown in
Fig. 3.1, we are now going to describe some of the essentials of embedded system
hardware.

Hardware for embedded systems is much less standardized than hardware for
personal computers. Due to the huge variety of embedded system hardware, it
is impossible to provide a comprehensive overview of all types of hardware
components. Nevertheless, we will try to provide a survey of some of the essential
components which can be found in most systems. In many cyber-physical systems,
especially in control systems, hardware is used in a loop (see Fig. 3.2). We will use
this loop to structure the presentation of components in this chapter. In this (con-
trol) loop, information about the physical environment is made available through
sensors. Typically, sensors generate continuous sequences of analog values. In this
book, we will restrict ourselves to information processing where digital computers
process discrete sequences of values. Appropriate conversions are performed by two
kinds of circuits: sample-and-hold circuits and analog-to-digital converters (ADCs).
After such conversion, information can be processed digitally. Generated results can
be displayed and also be used to control the physical environment through actuators.
Since many actuators are analog actuators, conversion from digital to analog signals
may also be needed. We will see how this conversion can be achieved either
by digital-to-analog converters (DACs) or indirectly by pulse-width modulation
(PWM).

Due to the prevailing electronic information processing, we assume that we
require electrical energy. Some source of this energy must be available. If our energy
source does not provide energy permanently, we may need to store energy, e.g., in
rechargeable batteries or capacitors. During system operation, much of the electrical
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energy will be converted into thermal energy (heat). It may be necessary to remove
thermal energy from the system.

This model is obviously appropriate for control applications. For other applica-
tions, it can be employed as a first-order approximation. In the following, we will
describe essential hardware components of embedded and cyber-physical systems
following the structure of Fig. 3.2.

3.2 Input: Interface Between Physical and Cyber-World

3.2.1 Sensors

Sensors are key components of the cyphy-interface. Sensors can be designed for
virtually every physical quantity. There are sensors for weight, velocity, accelera-
tion, electrical current, voltage, temperature, etc. A wide variety of physical effects
can be exploited in the construction of sensors [151]. Examples include the law
of induction (generation of voltages in an electric field) and photoelectric effects.
There are also sensors for chemical substances [152].

Recent years have seen the design of a huge range of sensors, and much of the
progress in designing smart systems can be attributed to modern sensor technology.
The availability of sensors has enabled the design of sensor networks (see, e.g.,
Tiwari et al. [543]), a key element of the Internet of Things. It is impossible to
cover this subset of cyber-physical hardware technology comprehensively, and we
can only give characteristic examples:

* Acceleration sensors: Figure 3.3 shows a small sensor manufactured using
microsystem technology. The sensor contains a small mass in its center. When
accelerated, the mass will be displaced from its standard position, thereby
changing the resistance of the tiny wires connected to the mass.

Acceleration sensors are included in the powerful inertial measurement units
(IMUgs) (see, e.g., Siciliano et al. [487], Section 20.4). They contain gyros and
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accelerometers, and they capture up to six degrees of freedom, comprising
position (x, y, and z) and orientation (roll, pitch, and yaw) [575]. They are
contained in airplanes, cars, robots, and other products in order to provide inertial
navigation.

» Image sensors: There are essentially two kinds of image sensors: charge-coupled
devices (CCDs) and CMOS sensors. In both cases, arrays of light sensors are
used. The architecture of CMOS sensor arrays is similar to that of standard
memories: individual pixels can be randomly addressed and read out. CMOS
sensors use standard CMOS technology for integrated circuits. Due to this,
sensors and logic circuits can be integrated on the same chip. This allows
some preprocessing to be done already on the sensor chip, leading to so-called
smart sensors. CMOS sensors require only a single standard supply voltage and
interfacing in general is easy. Therefore, CMOS-based sensors can be cheap.

In contrast, CCD technology is optimized for optical applications. In CCD
technology, charges must be transferred from one pixel to the next until they can
finally be read out at an array boundary. This sequential charge transfer also gave
CCDs their name. For CCD sensors, interfacing is more complex.

Selecting the most appropriate image sensor depends on several constraints,
which change as technology evolves. The image quality of CMOS sensors has
been improved over the recent years, and the initial image superiority of CCDs
became questionable. Therefore, achieving a good image quality is feasible with
CCD and with CMOS sensors. Due to their faster readout speed, CMOS sensors
are preferred for cameras with live view modes or video recording functionality
[404]. Also, CMOS sensors are preferred for low-cost devices and if smart
sensors are to be designed. Several application areas for CCDs have disappeared,
but they are still used in areas such as scientific image acquisition.

* Biometric sensors: Demands for higher security standards as well as the need
to protect mobile and removable equipment have led to an increased interest in
authentication. Due to the limitations of password-based security (e.g., stolen
and lost passwords), biometric sensors and biomedical authentication receive
attention. Biometric authentication tries to identify whether or not a certain
person is actually the person she or he claims to be. Methods for biometric
authentication include iris scans, fingerprint sensors, and face recognition. False
accepts as well as false rejects are an inherent problem of biometric authenti-
cation (see definitions on p. 257). In contrast to password-based authentication,
exact matches are not possible.

* Artificial eyes: Artificial eye projects have received significant attention. Some
projects have an impact on the eye, but others provide vision in an indirect way.
For example, the Dobelle Institute experimented with a camera attached to a
computer sending electrical pulses to a direct brain contact [532]. More recently,
the less invasive translation of images into audio has been preferred.

* Radio frequency identification (RFID): RFID technology is based on the
response of a tag to radio frequency signals [226]. The tag consists of an
integrated circuit and an antenna, and it provides its identification to RFID
readers. The maximum distance between tags and readers depends on the type
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of the tag. The technology is used to identify objects, animals, or people and is a
key enabler for the Internet of Things.

* Automotive sensors: Today’s cars contain a large number of sensors. This
includes rain sensors, tire pressure sensors, collision sensors, etc. The overall
goal is to provide comfort and safety to the passengers and the environment.

¢ Other sensors: Other common sensors include thermal sensors, engine control
sensors, Hall effect sensors, and many more.

Machine learning algorithms [188, 204, 453, 560] may need to be used to obtain
meaningful information from noisy sensor readouts.
Sensors are generating signals. Mathematically, the following definition applies:

Definition 3.1 A signal ¢ is a mapping from a time domain D7 to a value domain
Dy:

O’ZDT—>DV

Signals may be defined over a continuous or a discrete time domain as well as over
a continuous or a discrete value domain.

3.2.2 Discretization of Time: Sample-and-Hold Circuits

All known digital computers work in a discrete time domain Dr. This means that
they can process discrete sequences or streams of values. Hence, incoming signals
over the continuous time domain must be converted to signals over the discrete time
domain. This is the purpose of sample-and-hold circuits. These are included in
the cyphy-interface. Figure 3.4 (left) shows a simple sample-and-hold circuit. In
essence, the circuit consists of a clocked transistor and a capacitor. The transistor
operates like a switch. Each time the switch is closed by the clock signal, the
capacitor is charged so that its voltage () is practically the same as the incoming
voltage e(r). After opening the switch again, this voltage will remain essentially
unchanged until the switch is closed again. Each of the values stored on the capacitor
can be considered as an element of a discrete sequence of values %(¢), generated
from a continuous function e(¢) (see Fig.3.4 (right)). If we sample e(z) at times
{t;}, then h(¢) will be defined only at those times.

An ideal sample-and-hold circuit would be able to change the voltage at the
capacitor in an arbitrarily short amount of time. This way, the input voltage at a
particular instance in time could be transferred to the capacitor, and each element
in the discrete sequence would correspond to the input voltage at a particular point
in time. In practice, however, the transistor has to be kept closed for a short time
window in order to really charge or discharge the capacitor. The voltage stored on
the capacitor will then correspond to a voltage reflecting that short time window.
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Fig. 3.5 Approximation of a square wave by sine waves for K = 1 (left) and K = 3 (right)

3.2.3 Fourier Approximation of Signals

Would we be able to reconstruct the original signal e(#) from the sampled signal
h(t)? In order to answer this question, we revert to the fact that arbitrary signals can
be approximated by summing (possibly phase-shifted) sine functions of different
frequencies (Fourier approximation).!

Example 3.1 A square wave can be approximated by Eq. (3.1) [440]:

K
=Y (ni sin(znkt)> 3.1)

k=1,3,5,7,9,...

In this equation, 7 is the period and approximation is improved for increasing K.
Figures 3.5 and 3.6 visualize Eq. (3.1).

I This presentation is based on the assumption that a comprehensive coverage of Fourier approx-
imations cannot be included in our course. Therefore, only the impact of these approximations is
demonstrated by examples. Knowing the theory behind these examples would be beneficial (see,
e.g., http://www.dspguide.com).
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Fig. 3.6 Approximation of a square wave by sine waves for K = 7 (left) and K = 11 (right)

The larger difference between the square wave and its approximation at the
jump discontinuities of the square wave (best visible for K=11) is called Gibbs
phenomenon [440]. v

Definition 3.2 A signal transformation 7+ is linear if for all signals e (t) and e;(¢)
we have

Tr(ei +e) =Tr(er) + Tr(er) (3.2)

Next, we restrict ourselves to linear systems. Then, in order to answer the question
raised above, we study sampling each of the sine waves independently.

Example 3.2 Consider signals described by either of the two functions e3 or e4:

es(t) = sin(%) +0.5sin (%) (3.3)

. (27t . [ 2nt . [ 2wt
eq(t) = sin <?> + 0.5sin <T> + 0.5sin <T) (3.4

The sine waves used in these functions have periods of T = 8§, 4, and 1, respectively
(this can be seen by comparing these sine waves with those of Eq. (3.1)). A graphical
representation of these functions is shown in Fig.3.7. Suppose that we will be
sampling these signals at integer times. It then so happens that both signals have the
same value whenever they are sampled. Obviously, it is not possible to distinguish
between e3(t) and e4(¢) if we sample at these instances in time and if only the
sampled signal is available. \Y

In general, sampled signals will not allow us to distinguish between some slow
signal e3(¢) and some other faster varying signal e4(¢) if e3(¢) and e4(¢) are identical
each time we are sampling the signals. The fact that two or more unsampled signals
can have the same sampled representation is called aliasing. We are not sampling
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e4(t) frequently enough to notice, for example, that it has slope changes between
integer times. So, from this counterexample we can conclude that reconstruction
of the original unsampled signal is not feasible unless we have additional
knowledge about the frequencies or the waveforms present in the input signal.

How frequently do we have to sample signals to be able to distinguish between
different sine waves? Let us assume that we are sampling the input signal at constant
time intervals, such that T is the sampling period:

Vs i Ty =t — 1 3.95)
Let
fi= - (3.6)
s — Ts .

be the sampling rate or sampling frequency. Then, sampling theory provides us
with the following theorem (see, e.g., [440]):

Theorem 3.1 (Sampling Theorem) Given the above definitions of variables,
aliasing is avoided if we restrict the frequencies of the incoming signal to less
than half of the sampling frequency f;:

T,
T; < TN where Ty is the period of the “fastest” sine wave, or (3.7)

fs > 2fn where fn is the frequency of the “fastest” sine wave (3.8)

Definition 3.3 fy is called the Nyquist frequency; fs is the sampling rate.
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The condition in Eq. (3.8) is called sampling criterion, and sometimes the Nyquist
sampling criterion.

Therefore, reconstruction of input signals e(¢) from discrete samples A (#) can be
successful only if we make sure that higher-frequency components such as the one
in e4(t) are removed. This is the purpose of anti-aliasing filters. Anti-aliasing filters
are placed in front of the sample-and-hold circuit (see Fig. 3.8).

Figure 3.9 demonstrates the ratio between the amplitudes of the output and the
input waves as a function of the frequency for this filter. Ideally, such a filter would
remove all frequencies at and above half the sampling frequency and keep all other
components unchanged. This way, it would convert signal e4(¢) into signal e3(¢).

In practice, such ideal filters (so-called brick-wall filters) do not exist.? Real-
izable filters will already start attenuating frequencies smaller than f;/2 and will
still not eliminate all frequencies larger than f;/2 (see Fig.3.9). Attenuated high-
frequency components will exist even after filtering. For frequencies smaller than
fs/2, there may also be some “overshooting,” i.e., frequencies for which there is
some amplification of the input signal.

The design of good anti-aliasing filters is an art by itself. This art has been
studied, for example, in great detail for high-quality audio equipment, involving
detailed hearing tests. Many of the perceived differences between high-quality
equipment have been attributed to the design of such filters.

3.2.4 Discretization of Values: Analog-to-Digital Converters

Since we are restricting ourselves to digital computers, we must also replace signals
that map time to a continuous value domain Dy by signals that map time to a

2This would require knowing the signal to be filtered for an infinite amount of time.



136 3 Embedded System Hardware

Vie
h) of w
3 Digital 1™
a'ref 2| outputs o
) = . 10"
aref g—="0
] [} 21"+
3 ref

"E)@” T T T
R Comparators 1
0 —v., y h
2 ref ref

Fig. 3.10 Flash ADC: left, schematic; right, w as a function of &

discrete value domain D7, . This conversion from analog-to-digital values is done by
analog-to-digital converters (ADCs). There is a large range of ADCs with varying
speed/precision characteristics. Typically, fast ADCs have a low precision and high-
precision converters are slow.

We will present several converters in the next subsections.

Flash ADC

This type of ADCs uses a large number of comparators. Each comparator has two
inputs, denoted as + and -. If the voltage at input + exceeds that at input -, the output
corresponds to a logical '1', and it corresponds to a logical '@ otherwise.?

In the ADC, all - inputs are connected to a voltage divider. If input voltage h(z)
exceeds %Vre f» the comparator at the top of Fig. 3.10 (left) will generate a '1'. The
encoder at the output of the comparators will try to identify the most significant '1'
and will encode this case as the largest output value. The case h(t) > V,.r should
normally be avoided since Vs is typically close to the supply voltage of the circuit
and input voltages exceeding the supply voltage can lead to electrical problems. In
our case, input voltages larger than V,.r generate the largest digital value as long as
the converter does not fail due to the high input voltage.

Now, if input voltage A(¢) is less than %Vref, but still larger than %Vrgf, the
comparator at the top of Fig.3.10 will generate a '@', while the next comparator
will still signal a '1"'. The encoder will encode this as the second largest value.

Similar arguments hold for cases %Vref < h(t) < %Vref and 0 < h(r) < A—I‘Vref,
which will be encoded as the third largest and the smallest value, respectively.

3In practice, the case of equal voltages is not relevant, as the actual behavior for very small
differences between the voltages at the two inputs depends on many factors (like temperatures,
manufacturing processes, etc.) anyway.
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Figure 3.10 (right) shows the relation between input voltages and generated digital
values.

The outputs of the comparators encode numbers in a special way: if a certain
comparator output is equal to '1', then all the less significant outputs are all
equal to '1'. The encoder transforms this representation of numbers into the usual
representation of natural numbers. The encoder is actually a so-called priority
encoder, encoding the most significant input number carrying a '1' in binary.*

The circuit can convert positive analog input voltages into digital values.
Converting both positive and negative voltages and generating two’s complement
numbers requires some extensions.

One nice property of the flash ADC is the fact that it is automatically monotonic:
For any increase in the analog voltage from 0 to the maximum, the corresponding
digital value increases as well. This property is maintained even if the actual value
of the resistors would deviate from the nominal value. However, such a deviation
would have an impact on the precision of the linear relation expected between
analog and digital values.

Unfortunately, the chain of resistors forms a conducting path, which exists even
if the converter is not used. This could make it impossible to use this converter for
low-power equipment.

In general, ADCs are also characterized by their resolution. This term has several
different but related meanings [15]. The resolution (measured in bits) is the number
of bits produced by an ADC. For example, ADCs with a resolution of 16 bits are
needed for many audio applications. However, the resolution is also measured in
volts, and in this case it denotes the difference between two input voltages causing
the output to be incremented by 1:

Vrs
0 = VISR (3.9)
n
where: Q : is the resolution in volts per step,

Vrsgr : is the difference between the largest and the smallest voltage and

n : is the number of voltage intervals (not the number of bits).

Example 3.3 For the ADC of Fig. 3.10, the resolution is 2 bits or %V,ef volts, if we
assume V,..r as the largest voltage. v

The key advantage of the flash ADC is its speed. It does not need any clock.
The delay between the input and the output is very small, and the circuit can be
used easily, for example, for high-speed video applications. The disadvantage is its
hardware complexity: we need n — 1 comparators in order to distinguish between
n values. Imagine using this circuit in generating digital audio signals for CD

4Such encoders are also useful for finding the most significant '1' in the mantissa of floating-point
numbers.
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recorders. We would need 2! — 1 comparators! High-resolution ADCs must be
built differently.

Successive Approximation

Distinguishing between a large number of digital values is possible with ADCs
using successive approximation. The circuit is shown in Fig. 3.11.

The key idea of this circuit is to use binary search. Initially, the most significant
output bit of the successive approximation register is set to '1"'; all other bits are
setto '@'. This digital value is then converted to an analog value, corresponding to
0.5% the maximum input voltage.” If /(¢) exceeds the generated analog value, the
most significant bit is kept at '1'; otherwise itis resetto 'Q".

This process is repeated with the next bit. It will remain set to '1' if the input
value is either within the second or the fourth quarter of the input value range. The
same procedure is repeated for all the other bits.

Figure 3.12 shows an example. Initially the most significant bit is set to '1".
This value is kept, since the resulting V_ is less than A(¢). Then, the second most
significant bitis setto '1'. Itisresetto '@', since the resulting V_ is exceeding A (¢).
Next, the third most significant bit is tried. It is set to '1', and this value is kept.
Finally, the least significant bit is also set, and it remains set after the comparison has
been completed. Obviously, /(#) must be constant during the conversion, otherwise

SFortunately, the conversion from digital-to-analog values (D/A conversion) can be implemented
very efficiently and can be very fast (see p. 180).
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the whole procedure would be jeopardized. This requirement is met if we employ a
sample-and-hold circuit as shown above. The resulting digital signal is called w(z).

The key advantage of the successive approximation technique is its hardware
efficiency. In order to distinguish between n digital values, we need [log>(n)] bits
in the successive approximation register and the D/A converter. The disadvantage is
its speed, since it needs O(log, (n)) steps. These converters can therefore be used for
high-resolution applications, where moderate speeds are required. Examples include
audio applications.

Pipelined Converters

These converters consist of a chain of converters, where each stage in the chain is
in charge of converting a few bits (see Fig. 3.13). Each stage passes the remaining
residue of the voltage to the next stage (if any). For example, each stage could
convert a single bit and subtract the corresponding voltage. The resulting residue
would typically be scaled up by a factor of two (in order to avoid too small voltages)
and be passed on to the next stage. Typically, each stage would include a flash
ADC of a few bits and a D/A converter to compute the voltage to be subtracted.
Resulting digital values must be aligned in time. Required hardware resources
increase linearly with the number of bits. With this structure, a good throughput
can be achieved, but the latency is larger than for flash converters.

Other Converters

Integrating converters use (at least) two phases for the measurement. During the
first phase of length 71, the integral of the input voltage over time is computed.®
For constant inputs, the resulting value V,,,; is proportional to the input voltage
(Vour ~ Vin*xt1). During the second phase, this value is decreased at a constant rate,

This can be done with a capacitor in the feedback loop of an operational amplifier (see p. 397).
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Fig. 3.14 Comparison of the speed/resolution characteristics of various ADCs [558]

and the time to reach a value of zero is counted. The final count is proportional
to the input voltage. Hence, using proper scaling, the final count represents the
input voltage. If the input voltage contains some noise, its impact is likely to
be averaged out during the first integration phase. Hence, these converters are
capable of compensating noise. They are typically found in slow, high-resolution
multimeters.

For folding ADCs, the input voltage range is divided into 2™ segments [100,
321]. A coarse-grained converter detects the segment of the current input voltage,
yielding the m most significant output bits. A fine-grained converter computes the
value within a segment, yielding the less significant output bits.

For delta-sigma ADCs (AX ADCs), the name indicates that signal differences
(As) are encoded and that they are summed up (X). A description of these converters
is beyond the scope of this book. For details refer to Khorramabadi [292].

Comparison of ADCs

Figure 3.14 provides an overview of the speed/resolution trade-offs of ADCs, using
a trade-off analysis of Vogels et al. [558]. Flash ADCs are clearly the fastest but
provide only a small resolution. Pipelining is frequently superior to successive
approximation. Another overview of ADCs is provided by IEEE TV [437].
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Figure 3.15 shows the behavior of a flash ADC when the input signal is that
of Eq.(3.3). Only the behavior for a positive input signal is shown. The figure
includes the voltage corresponding to the digital value, the original voltage, and
the difference between the two. Obviously, the converter is “truncating” the digital
representation of the analog signal to the number of available bits (i.e., the digital
value is always less than or equal to the analog value). This is a consequence of
the way in which the flash converter is doing comparisons. “Rounding” converters
would need an internal correction by “half a bit.” Effectively, the digital signal
encodes values corresponding to the sum of the original analog values and the
difference w(r) — h(¢). This means, it appears as if the difference between the
two signals had been added to the original signal. This difference is a signal
called quantization noise:

Definition 3.4 Let /(¢) be some analog signal. Let w(¢) be derived from h(t) by
quantization. The difference between the two is called quantization noise:

quantization noise(t) = w(t) — h(t) < Q (3.10)

Increasing the resolution of the ADC decreases quantization noise. The impact of
quantization noise is captured in the definition of the signal-to-noise ratio (SNR),
measured in decibels (tenth of a bel, named after Alexander G. Bell).
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Definition 3.5 The SNR is defined as follows:

. . power of the “useful” signal
SNR (in dB = decibels) = 10 x log — 3.11)
power of the noise signal

voltage of the “useful” signal
=20=xlog — (3.12)
voltage of the noise signal

We have used that, for any given impedance R, the power of a signal is proportional
to the square of the voltage. Decibels are no physical units, since the SNR is
dimensionless.

For any signal i (), the power of the quantization noise is equal to « * Q, where
o < 1 depends on the waveform of A(t). If h(¢) can always be represented exactly
by a digital value, then o = 0. If &(¢) is always “just a little” below the next value
that can be represented, « may be close to 1.

Example 3.4 The SNR of 16 bit CD audio is (for « ~ 1) about 20 log(216) =
96 dB. Values of o < 1 and imperfect ADCs change this number. \%

3.3 Processing Units

Let us now discuss the next hardware element in the loop of Fig.3.2, pro-
cessing units. For information processing in embedded systems, we will con-
sider ASICs (application-specific integrated circuits) using hardwired multiplexed
designs, reconfigurable logic, and programmable processors. We will consider
ASICs first.

3.3.1 Application-Specific Integrated Circuits (ASICs)

For high-performance applications and for large markets, application-specific inte-
grated circuits (ASICs) can be designed. In general, ASICs are very energy-efficient
(see Sect.3.7.3 on p. 193). However, the cost of designing and manufacturing
such chips is quite high. The cost of the mask set (which is used for transferring
geometrical patterns onto the chip) has grown.’

It is feasible to decrease this cost by using less advanced semiconductor
fabrication technologies and by using multi-project wafers (MPW) containing
several designs. But there is a lack of flexibility: correcting design errors typically
requires a new mask set and a new fabrication run (unless the ASIC contains

7In 2017, http:/anysilicon.com/semiconductor-wafer-mask-costs/ mentioned an average cost of
about $ 1.5M for a 28 nm technology.
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processors with writable memories). This approach also has to cope with potentially
large design efforts requiring dedicated skills and expensive tools. Therefore,
ASICs are appropriate only under special circumstances, like large market volumes,
ultimate energy efficiency demands, special voltage or temperature ranges, mixed
analog/digital signals, or security-driven designs. Hence, the design of ASICs is not
covered in this book.

3.3.2 Processors

The key advantage of processors is their flexibility. With processors, the behavior
of embedded systems can be changed by changing the software running on those
processors. Changes of the behavior may be required in order to correct design
errors, to update the system to a new standard, or to add features. Because of
this, processors have found widespread use in embedded systems. In particular,
processors which are available commercially “off-the-shelf” (COTS) have become
very popular.

Embedded processors must be used in a resource-aware manner, i.e., we need
to care about resources required for running applications on them. Furthermore,
they do not need to be instruction set compatible with commonly used personal
computers (PCs) or servers. Therefore, their architectures may be different from
those processors. Efficiency has different aspects (see p. 13), some of which are
discussed next.

Energy Efficiency

The energy E for an application is related to the power P as a function of time,
since

E:/Pdt (3.13)

Let us assume that we start with some design having a power consumption of Py(¢),
leading to an energy consumption of

0]
E0=/ Py(t)dt
0

after 7o units of execution time. Suppose that a modified design finishing computa-
tions already at time #; comes with a power consumption of Pj(f) and an energy
consumption of
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Fig. 3.16 Comparison of P . o
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If P1(¢) is not too much larger than Py(¢), then a reduction of the execution time also
reduces the energy consumption. However, in general this is not necessarily always
true. The situation is also shown in Fig. 3.16: E1 may be smaller than Ey, but Ej can
also be larger than Ej. So, if the energy consumption is to be minimized, it should
be used as a cost function. Just minimizing the execution time can be misleading.

Minimization of power and energy consumption are both important. Power
consumption has an effect on the size of the power supply, the design of the
voltage regulators, the dimensioning of the interconnect, and short-term cooling.
Minimizing the energy consumption is required especially for mobile applications,
since battery technology is only slowly improving and since the cost of energy may
be quite high. Also, a reduced energy consumption decreases cooling requirements
and improves the reliability (since the lifetime of electronic circuits decreases for
high temperatures).

Next, we would like to demonstrate that for CMOS technology, it is preferable
to replace high-speed sequential computations by reduced speed parallel computa-
tions. This is shown by—first of all—considering the power consumption of CMOS
devices. The dynamic power consumption is the power consumption caused by
switching (in contrast to the static power consumption which exists even if no
switching takes place). The average dynamic power consumption Pyy, of CMOS
circuits is given by Chandrakasan et al. [90]

Piyn=a CL Vi, f (3.14)
where o is the switching activity, Cy, is the load capacitance, V44 is the supply

voltage, and f is the clock frequency. This means that the power consumption of
CMOS processors increases (at least)® quadratically with the supply voltage V.

81n practice, the increase may actually come with a larger exponential.
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The delay of CMOS circuits can be approximated as [90]

Vad

A=kC;————
(Vaa — Vi)?

(3.15)

where k is a constant and V; is the threshold voltage. V; has an impact on the
transistor input voltage required to switch the transistor on. For example, for a
maximum supply voltage of Vyg max = 3.3V, V; may be in the order of 0.8 V.
Consequently, the maximum clock frequency is a function of the supply voltage.
However, decreasing the supply voltage reduces the power quadratically, while the
run-time of algorithms is only linearly increased (ignoring the effects of the memory
system).

We can use this to reduce the amount of energy required for a certain amount
of computations. Let us assume that we are initially performing computations
sequentially at voltage V4, constant power P, clock frequency f, run-time of z,
and energy consumption £ = P x t.

Now let us assume that we are moving toward executing 8 operations in parallel.
Due to parallel execution, we can extend the time for each operation by a factor of
B. In turn, we can also reduce frequency f by a factor of 8 and use a new frequency

f
== (3.16)
B
This allows us to also reduce the voltage to a new voltage
V,
V), = % (3.17)

This reduces the power P° per operation quadratically:

P

0 _
=g

(3.18)
Due to executing B8 operations in parallel, the overall power P’ can be computed as

P’:ﬂ*Pozg (3.19)

The time 1’ to execute operations in parallel is the same as the time to compute them
sequentially (+' = r). Hence, the energy to execute the operations in parallel is

E =P xt== (3.20)
B

We conclude that it is more energy-efficient to execute 8 operations in parallel
instead of computing them sequentially. However, our derivation contains a number
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of approximations. On the one hand, power may be depending even cubically
on the voltage, and we have ignored the fact that memory speed is frequently a
limiting constraint. Faster processor clock speeds might just lead to more waiting for
memory accesses (but there may be also conflicts for memory access from multiple
cores). The energy would decrease quadratically if we would be able to keep the
power consumption independent of the level of parallelism. On the other hand, we
need to be able to find B operations which can be executed in parallel. Overall,
we keep in mind that parallel execution is a means for deriving energy-efficient
implementations, regardless of which hardware technology we are using.

Architectures must be optimized for their energy efficiency, and we must make
sure that we are not losing efficiency in the software generation process. For
example, compilers generating 50% overhead in terms of the number of cycles will
take us further away from the efficiency of ASICs, possibly by even more than
50%, if the supply voltage and the clock frequency must be increased in order to
meet timing deadlines.

There is a large amount of techniques available that can make processors
energy-efficient, and energy efficiency should be considered at various levels of
abstraction, from the design of the instruction set down to the design of the chip
manufacturing process [77]. Gated clocking and power gating are examples of such
techniques. With gated clocking, parts of the processor are disconnected from the
clock during idle periods. In a similar way, the power can be disconnected for some
components. For example, direct memory access (DMA) hardware or bus bridges
can be disconnected if they are not needed. Also, there are attempts, to get rid of
the clock for major parts of the processor altogether. There are two contrasting
approaches: globally synchronous locally asynchronous (GSLA) processors [436]
and globally asynchronous locally synchronous (GALS) processors [262]. Further
information about low-power design techniques is available in a book by E. Macii
[359] and in the PATMOS proceedings (see http://www.patmos-conf.org/).

At least three techniques can be applied at a rather high level of abstraction:

* Parallel execution: According to Eq. (3.20), parallel execution is an effective
means of improving the overall energy efficiency.

* Dynamic power management (DPM): With this approach, processors have
several power-saving states in addition to the standard operating state. Each
power-saving state has a different power consumption and a different time for
transitions into the operating state. Figure 3.17 shows the three states for the
StrongARM SA-1100 processor.

The processor is fully operational in the run state. In the idle state, it is just
monitoring the interrupt inputs. In the sleep state, on-chip activity is shut down,
the processor is reset, and the chip’s power supply is shut off [593]. A separate
I/0 power supply provides power to power manager hardware. The processor can
be restarted by the power manager hardware by a preprogrammed wake-up event.
Note the large difference in the power consumption between the sleep state and
the other states, and note also the large delay for transitions from the sleep to the
run state.
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Fig. 3.17 Dynamic power
management states of the
StrongARM SA-1100
processor [47]

* Dynamic voltage and frequency scaling (DVFS): Equation (3.14) can be
exploited in a technique called dynamic voltage and frequency scaling
(DVFS). For example, the Crusoe'" processor by Transmeta [295] provided
32 voltage levels between 1.1 and 1.6V, and the clock could be varied
between 200 MHz and 700 MHz in increments of 33 MHz. Transitions from
one voltage/frequency pair to the next took about 20 ms. Design issues for
DVFS-capable processors are described in a paper by Burd and Brodersen [76].
In 2004, Intel SpeedStep® Technology provided six different voltage/frequency
combinations for Pentium'" M processors [246]. More recent processors include
more comprehensive mechanisms for power management.

Code Size Efficiency

Minimizing the code size is very important for embedded systems, since large
hard disk drives (HDDs) or solid-state disks (SSDs) are typically not available and
since the capacity of memory is typically also very limited.® This is even more
pronounced for systems on a chip (SoCs). For SoCs, the memory and processors are
implemented on the same chip. In this particular case, memory is called embedded
memory. Embedded memory may be more expensive to fabricate than separate
memory chips, since the fabrication processes for memories and processors must be
compatible. Nevertheless, a large percentage of the total chip area may be consumed
by the memory. There are several techniques for improving the code size efficiency:

e CISC machines: Standard RISC processors have been designed for speed,
not for code size efficiency. Earlier complex instruction set processors (CISC
machines) were actually designed for code size efficiency, since they had to
be connected to slow memories. Caches were not frequently used. Therefore,
“old-fashioned” CISC processors are finding applications in embedded systems.
ColdFire processors [170], which are based on the Motorola 68000 family of
CISC processors, are an example.

¢ Compression techniques: In order to reduce the amount of silicon needed for
storing instructions as well as in order to reduce the energy needed for fetching

9The availability of large flash memories and 3D integration make memory size constraints less
tight.
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Fig. 3.18 Schemes for instruction fetch: left, uncompressed; right, compressed

these instructions, instructions are stored in memory in compressed form.
This reduces both the area and the energy necessary for fetching instructions.
Due to the reduced bandwidth requirements, fetching can also be faster. A
(hopefully small and fast) decoder is placed between the processor and the
(instruction) memory in order to generate the original instructions on the fly (see
Fig. 3.18 (right)).'? Instead of using a potentially large memory of uncompressed
instructions, we are storing the instructions in a compressed format.
The goals of compression can be summarized as follows:

— We would like to save ROM and RAM areas, since these may be more
expensive than the processors themselves.

— We would like to use some encoding technique for instructions and possibly
also for data with the following properties:

There should be little or no run-time penalty for these techniques.
Decoding should work from a limited context (it is, e.g., impossible to read
the entire program to find the destination of a branch instruction).

Word sizes of the memory, of instructions, and of addresses must be taken
into account.

Branch instructions branching to arbitrary addresses must be supported.
Fast encoding is only required if writable data is encoded. Otherwise, fast
decoding is sufficient.

There are several variations of this scheme:

— For some processors, there is a second instruction set. This second instruc-
tion set has a narrower instruction format. An example of this is the ARM®
processor family. The original ARM instruction set is a 32 bit instruction set.
Most ARM processors also provide a second instruction set, with 16 bit wide
instructions, called THUMB instructions. THUMB instructions are shorter,

10We continue denoting multiplexers, arithmetic units, and memories by shape symbols, due to
their widespread use in technical documentation. For memories, we adopt shape symbols including
an explicit address decoder (included in the shape symbols for the ROMs on the right). These
decoders identify the address input.
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Fig. 3.19 Re-encoding THUMB into ARM instructions

since they do not support predication,!! use shorter and less register fields,
and use shorter immediate fields (see Fig. 3.19).

THUMB instructions are dynamically converted into ARM instructions
while programs are decoded. THUMB instructions can use only half the
registers in arithmetic instructions. Therefore, register fields of THUMB
instructions are concatenated with a ' @' bit.!2 In the THUMB instruction set,
source and destination registers are identical, and the length of constants that
can be used is reduced by 4 bits. During decoding, pipelining is used to keep
the run-time penalty low.

Similar techniques also exist for other processors. The disadvantage of this
approach is that the tools (compilers, assemblers, debuggers, etc.) must be
extended to support a second instruction set. Therefore, this approach can be
quite expensive in terms of software development cost.

— A second approach is the use of dictionaries. With this approach, each
instruction pattern is stored only once. For each value of the program counter,
a look-up table provides a pointer to the corresponding instruction in the
instruction table, the dictionary (see Fig. 3.20).

This approach relies on using only very few different instruction patterns.
Therefore, only few entries are required for the instruction table. Hence, the
bit width of the pointers can be quite small. Many variations of this scheme

Unstructions using predicated execution have an effect only if a certain condition encoded in
the instruction evaluates to true. This condition typically involves values stored in condition code
registers, resulting from previous instructions. For example, instructions might have an effect
only if a previous <=-expression was true. Predication can be used to implement if statements
efficiently: the condition is stored in one of the condition registers, and if-statement bodies are
implemented as predicated instructions which depend on this condition. For ARM processors, the
condition is encoded in the first 4 bits of the instruction format. As a special case, an “always”
condition can be encoded, like in Fig.3.19. The more recently introduced 64 bit instruction set
places less emphasis on predicated execution.

12Using VHDL notation (see p. 98), concatenation is denoted by an & sign, and constants are
enclosed in quotes in Fig. 3.19.
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exist. Some are called two-level control store [118], nanoprogramming [514],
or procedure ex-lining [551].

Beszedes [52] and Latendresse [324] provide overviews of a large number
of known compression techniques. In addition, Bonny et al. [58] published a
Huffman-based technique.

Execution Time Efficiency Using Digital Signal Processing as an Example

In order to meet time constraints without having to use high clock frequencies,
architectures can be customized to certain application domains, such as digital signal
processing (DSP). Let us have a closer look at DSP now! In digital signal processing,
digital filtering is a very frequent operation. Let us assume that we are extending the
pipeline of Fig. 3.8 on p. 135. We add a processing component, supposed to perform
filtering. Names of signals are shown in Fig. 3.21.

Equation (3.21) describes a digital filter generating an output signal x (#) from an
input signal w(t). Both signals are defined over the (usually unbounded) domain
{z;} of sampling instances. We write x; instead of x(#;) and ws_j4r41 instead of
w(ts—n+k+l):l3

13In our notation, ag is the weight of the oldest input value. If we would define ag as the weight
of the youngest value of w, the first term would take the more commonly used form wg_j. Our
notation simplifies understanding the program code shown below.
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Fig. 3.22 Internal architecture of the ADSP 2100 processor family (simplified)
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Output element x corresponds to a weighted average over the last n signal elements
of w and can be computed iteratively, adding one product at a time. Processors for
DSP are designed such that each iteration can be encoded as a single instruction.

Example 3.5 This is feasible with DSP processors from the ADSP 2100 family,
whose architecture is shown in Fig. 3.22.

The processor has two memories, called DM and PM. A special address generating
unit (AGU) can be used to provide the pointers for accessing these memories in
index registers 10-17. There are separate units for additions and multiplications,
each with their own argument registers AXQ, AYQ, AF, MX0, MYQ, and MF. The
multiplier is connected to a second adder in order to compute the combination
of a multiplication and an addition (so-called MAC operation) quickly. For this
processor, one iteration is performed in a single cycle. For this purpose, the two
memories are allocated to hold the two arrays w and a.

Pointers to array elements can be kept in index registers. At each iteration, the
value contained in one of the modify registers M@-M7 is added to the used index
register. This is typically encoded as a side effect of accessing an array element.

Partial sums are stored in MR.

We would need unlimited memory space if, at each time instance ¢;, we would
be storing a new value in the next unused memory element. However, a bounded
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memory is sufficient, since we only need to access the most recent n values. This is
feasible with a ring buffer, implemented with modulo operations for index values.
The size of this buffer can be stored in length registers L@ to L7.

Obviously, mentioned registers serve different purposes. Therefore, they are
called heterogeneous registers. Heterogeneous registers are frequently found in
DSP processors.

In order to avoid extra cycles for testing for the end of the loop, zero-
overhead loop instructions are frequently provided in DSP processors. With such
instructions, a single or a small number of instructions can be executed a fixed
number of times.

Next, we are able to present the pipelined computation of Eq.(3.21), using
processors from the ADSP 2100 family (adopted from [14]):

/* outer loop over sampling times #; */ {

Lo = n; L4 = n; /* length of ring buffer(s) */

M1 =1; M5 = 1; /* increment for index registers x/

I0 = address of oldest value in w; I4 = start of weight table a;

MX@ = DM[IQ]; MYQ = PM[I4]; /* loading oldest w[] & ap */

MR = @; I0 = I0 + M1; I4 = I4 + M5; /* ring buffer aware add */

for (k=0; k< @m—1); k++) { /* n-1 iterations *x/
MR = MR + MX@ * MYQ; MXQ = DM[IQ]; MYQ = PM[I4]; /x MAC operation */
10 = 10 + M1; I4 = I4 + M5; /* ring buffer aware add */

}

MR = MR + MX@ * MYQ; x[s] = MR; /* MAC for youngest elem. */

}

The outer loop corresponds to the progressing time. For each iteration of the outer
loop, we initialize some registers. For the inner loop, a single instruction encodes
the inner loop body, comprising the following operations:

e reading of two arguments from argument registers MX@ and MY@, multiplying
them, and adding the product to register MR storing partial sums (so-called MAC
operation),

o fetching the next elements of arrays a and w from memories PM and DM and
storing them in argument registers MX@ and MY,

¢ updating pointers to the next arguments, stored in address registers 10 and 14, by
adding values stored in M1 and M5 and considering lengths in L@ and L4,

* testing for the end of the loop.

For given computational requirements, this (limited) form of parallelism leads to
relatively low clock frequencies. Processors not optimized for DSP would probably
need several instructions per iteration and would therefore require a higher clock
frequency if available. v

In addition to allowing single instruction realizations of loop bodies for filtering,
DSP processors provide a number of other application domain-oriented features:

e Saturating arithmetic changes overflow and underflow handling. In standard
binary arithmetic, wrap-around is used for the values returned after an overflow
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or underflow. Table 3.1 shows an example in which two unsigned 4 bit numbers
are added. A carry is generated which cannot be returned in any of the standard
registers. The result register will contain a pattern of all zeros. No result could be
further away from the true result than this one.

In saturating arithmetic, the result is as close as possible to the true result.
For saturating arithmetic, the largest value is returned in the case of an overflow,
and the smallest value is returned in the case of an underflow. This approach
makes sense especially for video and audio applications: the user will hardly
recognize the difference between the true result value and the largest value that
can be represented. Also, it would be useless to raise exceptions if overflows
occur, since it is difficult to handle exceptions in real time. Returning the right
value is feasible only if we know whether we are dealing with signed or unsigned
numbers.

* Fixed-point arithmetic: Sometimes, properties of floating-point computations
[186] are not welcome, and floating-point hardware increases the cost and power
consumption of processors. Hence, it has been estimated that 80% of the DSP
processors do not include floating-point hardware [1]. However, in addition to
supporting integers, many processors support fixed-point numbers. Fixed-point
data types can be specified by a 3-tuple (wl, iwl, sign), where wl is the total
word length, iwl is the integer word length (the number of bits left of the binary
point), and sign s € {s, u} denotes whether numbers are unsigned or signed.
See also Fig.3.23. Furthermore, there may be different rounding modes (e.g.,
truncation) and overflow modes (e.g., saturating and wrap-around arithmetic).

For fixed-point numbers, the position of the binary point is maintained after
multiplications (some low-order bits are truncated or rounded). For fixed-point
processors, this operation is supported by hardware.

* Real-time capability: Some of the features of modern processors used in PCs
are designed to improve the average execution time of programs. In many cases,
it is difficult if not impossible to formally verify that they improve the worst case
execution time. In such cases, it may be better not to implement these features.
For example, it is difficult (though not impossible [4]) to guarantee a certain
speed-up resulting from the use of caches. Therefore, caches are sometimes not

Table 3.1 Wrap-around vs.

>4V . o |1 1 |1
satu.ratmg. arithmetic for N 1 o lo 11
unsigned integers
Standard wrap-around arithmetic 1,0 |0 |0 |0
Saturating arithmetic 11 1 1
Fig. 3.23 Parameters of a sign binary point
fixed-point number system i/ \L
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iwl
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Fig. 3.24 Using 64 bit registers for 16 bit data types

used for embedded applications. Also, virtual addressing and demand paging'*
are frequently not found in embedded systems. Techniques for computing worst
case execution times will be presented in subsection 5.2.2.

Due to the importance of signal processing, instructions for DSP have been added
to many instruction sets.

Multimedia and Short Vector Instruction Sets

Registers and arithmetic units of many modern architectures are at least 64 bit wide.
Two 32 bit data types, four 16 bit data types, or eight 8 bit data types (“bytes”) can
be packed into a single 64 bit register (see Fig. 3.24).

Arithmetic units can be designed such that they suppress carry bits at 32 bit, 16
bit, or byte boundaries. Multimedia instruction sets exploit this fact by supporting
operations on packed data types. Such instructions are sometimes called single-
instruction, multiple-data (SIMD) instructions, since a single instruction encodes
operations on several data elements. With bytes packed into 64 bit registers, speed-
ups of up to about eight over non-packed data types are possible. Data types are
typically stored in packed form in memory. Unpacking and packing are avoided
if arithmetic operations on packed data types are used. Furthermore, multimedia
instructions can usually be combined with saturating arithmetic and therefore pro-
vide a more efficient form of overflow handling than standard instructions. Hence,
the overall speed-up achieved with multimedia instructions can be significantly
larger than the factor of eight enabled by operations on packed 64 bit data types. Due
to the advantages of operations on packed data types, new instructions have been
added to several processors. For example, so-called streaming SIMD extensions
(SSE) have been added to Intel’s family of Pentium®-compatible processors [247].
New instructions have also been called short vector instructions and introduced by
Intel® as Advanced Vector Extensions (AVX) [248].

14See Appendix C on p. 401 for an introduction to paging.
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Very Long Instruction Word (VLIW) Processors

Computational demands for embedded systems are increasing, especially when
multimedia applications, advanced coding techniques, or cryptography are involved.
Performance improvement techniques used in high-performance microprocessors
are not appropriate for embedded systems: driven by the need for instruction set
compatibility, processors found, for example, in PCs spend a huge amount of
resources and energy on automatically finding parallelism in application programs.
Still, their performance is frequently not sufficient. For embedded systems, we can
exploit the fact that instruction set compatibility with PCs is not required. Therefore,
we can use instructions which explicitly identify operations to be performed in
parallel. This is possible with explicit parallelism instruction set computers
(EPICs). With EPICs, detection of parallelism is moved from the processor to the
compiler. This avoids spending silicon and energy on the detection of parallelism
at run-time. As a special case, we consider very long instruction word (VLIW)
processors. For VLIW processors, several operations or instructions are encoded
in a long instruction word (sometimes called instruction packet) and are assumed
to be executed in parallel. Each operation/instruction is encoded in a separate field
of the instruction packet. Each field controls certain hardware units. Four such fields
are used in Fig. 3.25, each one controlling one of the hardware units.

For VLIW architectures, the compiler has to generate instruction packets. This
requires that the compiler is aware of the available hardware units and schedules
their use.

Instruction fields must be present, regardless of whether or not the corresponding
functional unit is actually used in a certain instruction cycle. As a result, the code
density of VLIW architectures may be low if insufficient parallelism is detected to
keep all functional units busy. The problem can be avoided if more flexibility is
added.

For example, the Texas Instruments TMS 320C6xx family of processors imple-
ments a variable instruction packet size of up to 256 bits. In each instruction field,
1 bit is reserved to indicate whether or not the operation encoded in the next field
is still assumed to be executed in parallel. No instruction bits are wasted for unused
functional units. Due to its variable length instruction packets, TMS 320C6xx
processors do not quite correspond to the classical model of VLIW processors. Due
to their explicit description of parallelism, they are EPIC processors, though.
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Implementing register files for VLIW and EPIC processors is far from trivial.
Due to the large number of operations that can be performed in parallel, a large
number of register accesses has to be provided in parallel. Therefore, a large number
of ports is required. However, the delay, size, and energy consumption of register
files increase with their number of ports. Hence, register files with very large
numbers of ports are inefficient. As a consequence, many VLIW/EPIC architectures
use partitioned register files. Functional units are then only connected to a subset of
the registers.

VLIW Pipelines

A potential problem of VLIW and EPIC architectures is their possibly large delay
penalty: this delay penalty might originate from branch instructions found in some
instruction packets. Instruction packets normally must pass through pipelines. Each
stage of these pipelines implements only part of the operations to be performed by
the instructions executed. Branch instructions cannot be detected in the first stage
of the pipeline. When the execution of the branch instruction is finally completed,
additional instructions have already entered the pipeline (see Fig. 3.26).
There are essentially two ways to deal with these additional instructions:

1. They are executed as if no branch had been present. This case is called delayed
branch. Instruction packet slots that are still executed after a branch are called
branch delay slots. These branch delay slots can be filled with instructions
which would be executed before the branch if there were no delay slots. However,
it is normally difficult to fill all delay slots with useful instructions, and some
must be filled with no-operation instructions (NOPs). The term branch delay
penalty denotes the loss of performance resulting from these NOPs.

2. The pipeline is stalled until instructions from the branch target address have been
fetched. There are no branch delay slots in this case. In this organization, the
branch delay penalty is caused by the stall.
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Fig. 3.27 Intel® Core™ Duo Processor

Branch delay penalties can be significant, and efficiency can be improved by
avoiding branches if possible. In order to avoid branches originating from if
statements, predicated instructions have been introduced (see p. 149).

The Crusoe'" processor is a (commercially finally unsuccessful) example of an
EPIC processor designed for PCs [295]. Its instruction set includes 64 bit and 128
bit VLIW instructions. Efforts for making EPIC instruction sets available in the PC
sector resulted in Intel’s IA-64 instruction set [249] and its implementation in the
Itanium® processor. Due to legacy problems, it has been used mainly in the server
market. Many MPSoCs (see p. 162) are based on VLIW and EPIC processors.

Multi-core Processors

Processor features for single processors described above have helped to design high-
performance processors in a resource-aware manner. However, it turned out that a
further performance increase for single processors hits the power wall: a further
increase in clock speeds would result in a too large power consumption and in
too hot circuits. Further increase in the level of VLIW parallelism was not feasible
either. Due to advances in fabrication technology, it is now feasible to manufacture
multiple processors on the same semiconductor die. Multiple processors integrated
on the same chip are called multicores. This is in contrast to multiprocessor
systems which have been used in computing centers for decades. The integration
of multiple cores on the same die enables a much faster communication, compared
to multiprocessor systems. Also, this approach facilitates the sharing of resources
(such as caches) among the cores. As an example, Fig.3.27 demonstrates the
architecture of the Intel® Core™ Duo [540].

In this case, L1 caches are private, whereas L2 caches are shared. Implementing
efficient accesses to caches needs some consideration [540]. With such architec-
tures, cache coherence is becoming an issue also within one die. This means, we
have to know whether updates of data and possibly also instructions by one core
are seen by the others. Protocols for automatic cache coherence (like the MESI
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Fig. 3.28 ARM® Cortex® -A15 pipeline

protocol) are known for many years in computer architecture [211]. Now, they have
to be implemented on the chip. Scalability is an issue: for how many cores can we
reasonably provide enough bandwidth in the communication architecture to always
keep caches coherent? Also, the system memory bandwidth may be insufficient for
a growing number of cores. Architectures other than the above Intel architecture
exist.

In the architecture of Fig.3.27, all processors are of the same type. Such
an architecture is called a homogeneous multi-core architecture. Advantages of
homogeneous multi-core architectures include the fact that the design effort is
limited (processors will be replicated) and that software can easily be migrated from
one processor to another one. This is very useful in case one of the cores fails.

In contrast to homogeneous multi-core architectures, there are also hetero-
geneous multi-core architectures incorporating processors of different types.
Processors which are best suited for certain applications can be selected. Typically,
heterogeneous architectures achieve the best energy efficiency that is feasible.

In order to find a good compromise between homogeneous and (totally) het-
erogeneous architectures, architectures with a single instruction set but different
internal architectures, so-called single-ISA heterogeneous multi-cores [316], have
been proposed. The ARM® big.LITTLE architecture is a very prominent example
of this.

Figure 3.28 contains the pipeline architecture of the Cortex® -A15 processor
[165].

It is a complex pipeline, containing multiple pipeline stages for instruction fetch,
instruction decoding, instruction issue, execution, and write-back. Instructions have
to pass through at least 15 pipeline stages before their result is stored. Dynamic
scheduling of instructions allows executing instructions in a sequence different from
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the one in which they are fetched from memory (so-called out-of-order execution).
Several instructions can be issued in one clock cycle (so-called multi-issue). The
architecture offers a high performance but requires much power.

In contrast, Fig. 3.29 shows the pipeline of the Cortex® -A7 architecture [165].

It is a simple pipeline. Instructions pass through 8 to 11 stages; they are
always processed in the order in which they are fetched from memory (so-
called in-order execution). There are few situations in which two instructions are
issued concurrently. Hence, the architecture is power-efficient but has a limited
performance.

Figure 3.30 [165] demonstrates trade-offs between power consumption and
performance. For each of the two architectures shown, there is flexibility for these
two objectives, depending upon the supply voltage and the clock frequency.

Obviously, the Cortex®-A15 is more appropriate for more demanding high-
performance applications, e.g., in video processing. The Cortex®-A7 is more
appropriate for “always-on applications” like low-volume message processing. It
would be a waste of energy if mobile phones would only contain Cortex®-A15
cores.
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Fig. 3.31 ARM® big.
LITTLE architecture

comprising Cortex® -A7 and Cortex -A15 Cortex -A7
Cortex® -A15 cores
Core Core Core Core

Interrupt control

[ L1 Cache J [ L1 Cache J

’ CCIl-400 Coherent Interconnect ’

Therefore, today’s multi-core chips typically are heterogeneous in that they
contain a mixture of high-performance and energy-efficient processors, as in
Fig.3.31.

Graphics Processing Units (GPUs)

In the last century, many computers used specialized graphics processing units
(GPUs) in order to generate an appealing graphical representation of computer
output. This hardwired solution suffered from being unable to support non-standard
computer graphics algorithms. Therefore, these highly specialized GPUs have been
replaced by programmable solutions. Current GPUs try to run a large number
of computations concurrently in order to achieve the desired performance. The
standard approach to concurrency is to run many fine-grained threads at the same
time. The goal is to keep many processing units busy and to hide memory latencies
by fast switching between threads.

Example 3.6 Let us consider the multiplication of two large matrices on a GPU.
Figure 3.32 [211] shows how the computations can be mapped to a GPU.

The matrix is partitioned into so-called thread blocks. Each thread block can be
allocated to one of the cores contained in a GPU. Each thread block, in turn, contains
a number of threads, and each thread includes a number of instructions. In Fig. 3.32,
the overall set of computations is called a grid. v

Each core will try to achieve progress by executing threads. If some thread gets
blocked, e.g., due to waiting for memory, the core will execute some other thread.
The instructions contained in a thread can also be executed concurrently, e.g.,
by using multiple pipelines. The thread blocks can be executed concurrently on
contemporary GPUs. Fast switching between the execution of threads and in this
way hiding memory latencies is an essential feature for GPUs.

Example 3.7 Figure 3.33 shows the architecture of the ARM® Mali"™ -T880 GPU
[23].

The architecture is defined as intellectual property (IP), comprising a synthe-
sizable model. In this model, the number of SC cores is configurable between
1 and 16. Each core includes several pipelines for the execution of arithmetic,
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Fig. 3.34 ARM® big.LITTLE system on a chip (SoC)

load/store, or texture-related instructions. In the thread issue hardware, as many
threads as possible are issued each clock phase. The GPU also contains additional
components like a memory management unit (see Appendix C), up to two caches
and an AMBA® bus interface. Programming support includes an interface to the
OpenGL library [484] and to OpenCL (see https://www.khronos.org/opencl/). V

In general, GPU computing achieves high performances in an energy-efficient
way (see also Sect.3.7.3 on p. 193).

Multiprocessor Systems on a Chip (MPSoCs)

Going one step further, heterogeneous multi-core systems have also been merged
with GPUs.

Example 3.8 Figure 3.34 shows a contemporary heterogeneous multi-core system,
also comprising a Mali GPU [22].

The architecture shown in Fig.3.34 does not only contain processor cores.
Rather, it comprises a number of additional system components, such as memory
management units (see Appendix C) and interfaces for peripheral devices. Overall,
the idea behind this integration is to avoid extra chips for such functionality. As a
result, a whole system is integrated on one chip. Therefore, we are calling such an
architecture a system-on-a-chip (SoC) or even a multiprocessor system-on-a-chip
(MPSoC) architecture. \Y


https://www.khronos.org/opencl/
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Mapping techniques for such processors are important, since examples demon-
strate that a power efficiency close to that of ASICs can be achieved. For example,
for IMEC’s ADRES processor, an efficiency of 55 % 10° operations per watt (about
50% of the power efficiency of ASICs) has been predicted [363, 481]. However, the
design effort for such architectures is larger than in the homogeneous case.

Example 3.9 There are MPSoCs comprising processors which we introduced
earlier: 66 AK2x MPSoCs from Texas Instruments contain ARM® and C66xxx pro-
cessors [530] (see Fig. 3.35), demonstrating relevance of the presented processors.
Vv

The number and the diversity of components can be even larger. For example,
there may be specialized processors for mobile communication or image processing.

Example 3.10 Figure 3.36 contains a simplified floor-plan of the SH-MobileGl
chip [205]. The chip demonstrates that highly specialized processors are being used.
There are special processors for image processing (red), for GSM and 3G mobile
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Fig. 3.37 Tensor processing unit (TPU), v1, for fast classification [277, 448]

communication (green), etc. In order to save energy, power is shut down for unused
areas, causing these areas to be a special case of dark silicon (c.f. p. 14). v

Specialized processors are used since progress in semiconductor manufacturing
and the design of new architectures is slowing down. Hence, specialized processors
are needed to meet performance targets. This view is supported by the architecture
which we will present next.

Example 3.11 Around 2013, Google predicted that it would soon become very
expensive to provide the expected pattern recognition performance in their data
centers with conventional CPUs or GPUs. As a result, the design of specialized
machine learning processors for fast classification with deep neural networks
(DNNG5s) was started with a high priority. The resulting so-called Tensor Processing
Unit (TPU) architecture is shown in Fig. 3.37.

At the core of the architecture, there is a 256 by 256 array of MAC units.
64k 8 bit MAC operations can be performed in a single cycle; 16 bit operations
require more cycles. DNNs consist of layers of computations, where at each
layer MAC operations involving weight factors are required. These are performed
by “pumping” input data or data from intermediate layers through the MAC
matrix. Each cycle, 256 result values become available. TPU version 1 outperforms
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commonly used CPUs and GPUs by a factor of 29.2 and 13.3, respectively. The
performance/power ratio is improved by factors of 34 and 16, respectively. More
recently, Google announced second- and third-generation TPUs [93]. They do also
support training DNNS. v

3.3.3 Reconfigurable Logic

In many cases, full-custom hardware chips (ASICs) are too expensive, and software-
based solutions are too slow or too energy-consuming. Reconfigurable logic
provides a solution if algorithms can be efficiently implemented in custom hardware.
It can be almost as fast as special-purpose hardware, but in contrast to special-
purpose hardware, the performed function can be changed by using configuration
data. Due to these properties, reconfigurable logic finds applications in the following
areas:

» Fast prototyping: Modern ASICs can be very complex and the design effort can
be large and take a long time. It is therefore frequently desirable to generate a
prototype, which can be used for experimenting with a system which behaves
“almost” like the final system. The prototype can be more costly and larger than
the final system. Also, its power consumption can be larger than the final system,
some timing constraints can be relaxed, and only the essential functions need
to be available. Such a system can then be used for checking the fundamental
behavior of the future system.

¢ Low-volume applications: If the expected market volume is too small to justify
the development of special-purpose ASICs, reconfigurable logic can be the right
hardware technology for applications, for which software would be too slow or
too inefficient.

¢ Real-time systems: The timing of reconfigurable logic-based designs is typically
known very precisely. Therefore, they can be used to implement timing-predic-
table systems.

e Applications benefiting from a very high level of parallel processing: For
example, parallel searches for certain patterns can be implemented as parallel
hardware. Therefore, reconfigurable logic is employed in searches for genetic
information, for patterns in Internet messages, in stock data, in seismic analysis,
and more.

Reconfigurable hardware frequently includes random access memory (RAM) to
store configurations. We distinguish between persistent and volatile configuration
memory. For persistent memory, information is retained when power is shut off.
For volatile memory, the information is lost once power is shut down. If the
configuration memory is volatile, its content must be loaded from some persistent
storage technology such as read-only memories (ROMs) or flash memories at
startup.



166 3 Embedded System Hardware

Fig. 3.38 Floor-plan of S =
column-based 'g7 'g"
Xilinx® UltraScale FPGAs = =
3 3
5] ©
b= b=
8 B
= =
b= > = > =
< o << o <
o = o £ foe
31 2] 5| 2| 3
s | =] 8| =] 8
) o (o) o > m ®
o - £ - £ - 1)
1% 3| 8| 3|8/ 3
3 a S a g} a 3
@ . &) . O . @
g o s | 9 s | 9 8
= O = (@) = (@) (=
Fig. 3.39 Xilinx® UltraScale 6
CLB (one of eight blocks —7 LUT
shown) —
— P 8x

Field programmable gate arrays (FPGAs) are the most common form of
reconfigurable hardware. As the name indicates, such devices are programmable
“in the field” (after fabrication). Furthermore, they consist of arrays of processing
elements. As an example, Fig.3.38 shows the column-based structure of the
Xilinx® UltraScale architecture [602]."> Some columns contain I/O interfaces,
clock devices, and/or RAM. Other columns comprise configurable logic blocks
(CLBs), special hardware for digital signal processing, and some RAM. CLBs
are the key components. They provide configurable functions. The architecture of
Xilinx® UltraScale CLBs is shown in Fig. 3.39 [599].

In this architecture, each CLB contains eight blocks. Each block comprises a
RAM which is used to implement logic functions by a look-up table (LUT, shown
in red), two registers, multiplexers, and some additional logic.Each LUT has six
address inputs and two outputs. It can implement any single Boolean function of
six variables or two functions of five variables (provided that the two functions
share input variables). This means that all 26 functions of 6 variables or all 232
functions of 5 inputs can be implemented! This is the key means for achieving

I5Rotation of this figure would improve its readability but would contradict the official designation
of this layout style.
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configurability. In addition, the logic contained in such a block can also be
configured. This includes the control of the two registers, which can be programmed
to store results of the LUT or some direct input values. Blocks in a CLB can be
combined to form adders, multiplexers, shift registers, or memories. Configuration
data determines the setting of multiplexers in the CLBs, the clocking of registers
and RAM, the content of RAM components, and the connections between CLBs.
Some of the LUTs can also be used as RAM. A single CLB can store up to 512 bits.

Several CLBs can be combined to create, for example, adders having a larger bit
width, memories having a larger capacity, or complex logic functions.

Currently available FPGAs comprise a large number of specialized blocks,
like hardware for digital signal processing (DSP), some memory, high-speed I/O
devices for various I/O standards, a decryption facility for FPGA configuration data,
debugging support, ADCs, high-speed clocking, etc.

Example 3.12 Virtex® UltraScale™ VU13P devices include 1728 k LUTs, 48 Mbit
distributed RAM, 94.5Mbit “Block RAM,” 360 Mbit “UltraRAM,” about 12k
specialized DSP devices, 4 PCIe® devices, Ethernet interfaces, and up to 832 I/O
pins [601]. \Y

Integration of reconfigurable computing with processors and software is simpli-
fied if processors are available in the FPGAs. There may be either hard cores or
soft cores. For hard cores, the layout contains a special area implementing a core in
a dense way. This area cannot be used for anything but the hard core. Soft cores are
available as synthesizable models which are mapped to standard CLBs. Soft cores
are more flexible but less efficient than hard cores. Soft cores can be implemented
on any FPGA chip.

Example 3.13 The MicroBlaze processor [598] is an example of a soft core. \Y

Example 3.14 At the time of writing this book, hard cores are available, for
example, on Zynq UltraScale+ MPSoCs. They contain up to four ARM® Cortex-
AS53 cores, two ARM Cortex-RS cores, and a Mali-400MP2 GPU processor [602]. V

Typically, configuration data is generated from a high-level description of the
functionality of the hardware, for example, in VHDL. FPGA vendors provide the
necessary design kits. Ideally, the same description could also be used for generating
ASICs automatically. In practice, some interaction is required. Exploitation of the
available parallelism typically requires manually parallelized applications, since
automatic parallelization is frequently very limited. The parallelism offered by
FPGAs is typically not fully exploited if all computations are mapped to processor
cores. Overall, FPGAs allow implementing a huge variety of hardware devices
without any need to create hardware other than FPGA boards.

Example 3.15 Currently (in 2020), alternate providers of FPGAs include Altera®
(see http://www.altera.com, acquired by Intel®), Lattice Semiconductor (see http:/
www.latticesemi.com), QuickLogic (see http://www.quicklogic.com), Microsemi
(formerly Actel; see http://www.microsemi.com), and Chinese vendors. \Y%


http://www.altera.com
http://www.latticesemi.com
http://www.latticesemi.com
http://www.quicklogic.com
http://www.microsemi.com
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3.4 Memories

3.4.1 Conflicting Goals

Data, programs, and FPGA configurations must be stored in some kind of memory.
Memories must have a capacity as large as required by the applications, provide
the expected performance, and still be efficient in terms of cost, size, and energy
consumption. Requirements for memories also include the expected reliability and
access granularity (e.g., bytes, words, pages). Furthermore, we distinguish between
persistent and volatile memory (see p. 165). The mentioned requirements are
conflicting, as has already been observed by Burks, Goldstine, and von Neumann
in 1946 [78]:

“Ideally one would desire an indefinitely large memory capacity such that any
particular ...word ...would be immediately available — i.e. in a time which is
... shorter than the operation time of a fast electronic multiplier. . .. It does not seem
possible physically to achieve such a capacity.”

Access times of some currently available memories can be estimated with CACTI.
These estimates are based on the tentative generation of a memory layout and the
extraction of capacitances [589]. Many different parameters enable the selection of
an appropriate fabrication technology.'6

Example 3.16 Figure 3.40 shows the results for a range of exponentially increasing
sizes [36]. Obviously, the access time increases as a function of the capacity of
memories: the larger the memory, the longer it takes to access information. In
addition, Fig. 3.40 also includes the energy consumption. Large memories also tend
to be energy-inefficient. The impact of the capacity of the memory on the energy
consumption is even larger than the impact on the access time. v

161n fact, it is frequently difficult to select the right parameters.
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For a number of years, the difference in speeds between processors and memories
increased (see Fig. 3.41) until processor clock rates saturated (around 2003). While
the speed of memories increased by only a factor of about 1.07 per year, overall
processor performance increased by a factor of 1.5-2 per year [358]. Overall, the gap
between processor performance and memory speeds has become large. Accordingly,
a further increase of the overall performance is made at least very difficult due
to memory access times. This fact has also been called the memory wall [358].
Further increase of clock rates of single processors has come to a standstill, but the
large gap remains which existed when clock speeds became essentially saturated
and multi-cores require additional memory bandwidth. As a result, we have to find
compromises between the different requirements for the memory architecture.

3.4.2 Memory Hierarchies

Due to the observed conflicts, Burks, Goldstine, and von Neumann wrote already
in 1946 [78]: “We are therefore forced to recognize the possibility of constructing a
hierarchy of memories, each of which has greater capacity than the preceding but
which is less quickly accessible.”

The exact structure of the hierarchy depends on technological parameters and
also on the application area. Typically, we can identify at least the following levels
in the memory hierarchy:

* Processor registers can be seen as the fastest level in the memory hierarchy, with
only a limited capacity of at most a few hundred words.

* The working memory (or main memory) of computer systems implements
the storage implied by processor memory addresses. Usually it has a capacity
between a few megabytes and some gigabytes and is volatile.

» Typically there is a large access speed difference between the main memory and
registers. Hence, many systems include some type of buffer memory. Frequently
used buffer memories include caches, translation look-aside buffers (TLBs;
see Appendix C), and scratchpad memory (SPM). In contrast to PC-like
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systems and compute servers, the architecture of these small memories should
guarantee a predictable real-time performance. A combination of small memories
containing frequently used data and instructions and a larger memory containing
the remaining data and instructions is generally also more energy efficient than a
single, large memory.

* Memories introduced so far are normally implemented in volatile memory
technologies. In order to provide persistent storage, some different memory
technology must be used. For embedded systems, flash memory is frequently
the best solution. In other cases, hard disks or Internet-based storage solutions
(like the “cloud”) may be used.

Memory hierarchies can be exploited in order to achieve a compromise between
the design goals for the memory. Memory partitioning has been considered, for
example, by A. Macii [360]. New memory technologies (including persistent
memories) have the potential to change currently dominating hierarchies [388].

3.4.3 Register Files

The mentioned impact of the storage capacity on access times and energy consump-
tion applies even to small memories such as register files. Figure 3.42 shows the
cycle time and the power as a function of the size of memories used as register files
[471]. The power needs to be considered due to frequent accesses to registers, as a
result of which they can get very hot.

3.4.4 Caches

For caches it is required that the hardware checks whether or not the cache has a
valid copy of the information associated with a certain address. This check involves
comparing the tag fields of caches, containing a subset of the relevant address bits
[211]. If the cache has no valid copy, the information in the cache is automatically
updated.
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Caches were initially introduced in order to provide good run-time efficiency.
The name is derived from the French word cacher (to hide), indicating that
programmers do not need to see or to be aware of caches, since updating information
in caches is automatic. However, when large amounts of information need to be
accessed, caches are not so invisible anymore. This has been demonstrated very
nicely by Drepper [139]. Drepper analyzed execution times of a program traversing
a linear list of entries. Each entry contained one 64 bit pointer to the next entry plus
NPAD 64 bit words. Execution times were measured for a Pentium P4 processor
comprising a 16 kB level 1 cache requiring 4 processor cycles per access, a 1 MB
level 2 cache requiring 14 processor cycles per access, and a main memory requiring
200 cycles per access. Figure 3.43 shows the average number of cycles per access
to one list element as a function of the total size of the list for the case NPAD=0.
For small sizes of the list, four cycles are required per list element. This means
that we are almost always accessing the level 1 cache, since it is large enough for
this size of the list. If we increase the size of the list, we need eight cycles per
access on average. In this case, we are accessing the level 2 cache. However, since
the cache block size is large enough to hold two list elements, only every second
access is actually an access to the level 2 cache. For even larger lists, the access time
increases to nine cycles. In these cases, the list is larger than the level 2 cache, but
automatic prefetching of level 2 cache entries hides some of the access latency of
the main memory.

Figure 3.44 shows the average number of cycles per access to one list element as
a function of the total size of the list for cases NPAD=0, 7, 15, and 31. For NPAD=7,
15, and 31, prefetching fails due to the larger size of list items. Obviously, we see
a dramatic increase of access times. This means that the cache architecture has a
strong impact on the execution times of applications. Increasing cache size will
only change the size of the application at which this increase in execution times
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happens. Clever exploitation of hierarchies can have a large impact on execution
times.

So far, we have just looked at the impact of capacity on access times. In the
context of Fig. 3.40 however, it is obvious that caches potentially also improve the
energy efficiency of a memory system. Accesses to caches are accesses to small
memories and therefore require less energy per access than large memories.

Predicting cache misses and hits at design time is difficult and is a burden for the
accurate prediction of real-time performance (see p. 246).

3.4.5 Scratchpad Memories

Alternatively, small memories can be mapped into the address space (see Fig. 3.45).

Such memories are called scratchpad memories (SPMs) or tightly coupled
memories (TCM). SPMs are accessed by a proper selection of memory addresses.
There is no need for checking tags, as for caches. Instead, the SPM is accessed
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whenever some simple address decoder is signaling an address to be in the address
range of the SPM. SPMs are typically integrated together with processors on the
same die. Hence, they are a special case of on-chip memories. For n-way set
associative caches, reads are usually reading n entries in parallel and select the right
entry only afterward. These energy-hungry parallel reads are avoided for SPMs. As
aresult, SPMs are very energy-efficient.

Figure 3.46 shows a comparison between the energy required per access to the
scratchpad (SPM) and the energy required per access to the cache.

For a two-way set associative cache, the two values differ by a factor of about
three. The values in this example were computed using the energy consumption for
RAM arrays as estimated by CACTI [589]. A detailed comparison between figures
of merit for caches and scratchpads was published by Banakar et al. [36].

Frequently used variables and instructions should be allocated to the address
space of SPMs. SPMs can improve the memory access times very predictably if
the compiler is in charge of keeping frequently used variables in the SPM (see p.
363).

3.5 Communication

Information must be communicated before it can be processed in an embedded
system. Communication is particularly important for the Internet of Things. Infor-
mation can be communicated through various channels. Channels are abstract
entities characterized by the essential properties of communication, like maximum
information transfer capacity and noise parameters. The probability of communica-
tion errors can be computed using communication theory techniques. The physical
entities enabling communication are called communication media. Important media
classes include wireless media (radio frequency media, infrared), optical media
(fibers), and wires.

There is a huge variety of communication requirements between the various
classes of embedded systems. In general, connecting the different embedded
hardware components is far from trivial. Some common requirements can be
identified.
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3.5.1 Requirements

The following list contains some of the requirements that must be met:

Real-time behavior: This requirement has far-reaching consequences on the
design of the communication system. Several low-cost solutions such as standard
Ethernet fail to meet this requirement.

Efficiency: Connecting different hardware components can be expensive. For
example, point-to-point connections in large buildings are almost impossible.
Also, it has been found that separate wires between control units and external
devices in cars significantly add to the cost and the weight of the car. With
separate wires, it is also difficult to add new components. The need for cost
efficiency also affects the way in which power is made available to external
devices. There is frequently the need to use a central power supply to reduce
the cost.

Appropriate bandwidth and communication delay: Bandwidth requirements
of embedded systems may vary. It is important to provide sufficient bandwidth
without making the communication system too expensive.

Support for event-driven communication: Polling-based systems provide a
very predictable real-time behavior. However, their communication delay may
be too large, and there should be mechanisms for fast, event-oriented communi-
cation. For example, emergency situations should be communicated immediately
and should not remain unnoticed until some central controller polls for messages.
Security/privacy: Ensuring security/privacy of confidential information (confi-
dentiality) may require the use of encryption.

Safety/robustness: For safety-critical systems, the required level of safety must
be achieved. This includes robustness: cyber-physical systems may be used at
extreme temperatures, close to major sources of electromagnetic radiation, etc.
Car engines, for example, can be exposed to temperatures of, e.g., less than —20
and up to +180°C (—4-356 °F). Voltage levels and clock frequencies could be
affected due to this large variation in temperatures. Still, reliable communication
must be maintained.

Fault tolerance: Despite all the efforts for robustness, faults may occur. Cyber-
physical systems should be operational even after faults, if at all feasible.
Restarts, like the ones found in PCs, cannot be accepted. This means that retries
may be required after attempts to communicate failed. A conflict exists with
the first requirement: if we allow retries, then it is difficult to meet real-time
requirements.

Maintainability, diagnosability: Obviously, it should be possible to repair
embedded systems within reasonable time frames.

These communication requirements are a direct consequence of the general

characteristics of embedded/cyber-physical systems mentioned in Chap. 1. Due to
the conflicts between some of the requirements, compromises must be made. For
example, there may be different communication modes: one high-bandwidth mode
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guaranteeing real-time behavior but no fault tolerance (this mode is appropriate
for multimedia streams) and a second fault-tolerant, low-bandwidth mode for short
messages that must not be dropped.

3.5.2 Electrical Robustness

There are some basic techniques for electrical robustness. Digital communication
within chips is normally using so-called single-ended signaling. For single-ended
signaling, signals are propagated on a single wire (see Fig. 3.47).

Such signals are represented by voltages with respect to a common ground (less
frequently by currents). A single ground wire is sufficient for a number of single-
ended signals. Single-ended signaling is very much susceptible to external noise.
If external noise (originating from, e.g., motors being switched on) affects the
voltage, messages can easily be corrupted. Also, it is difficult to establish high-
quality common ground signals between a large number of communicating systems,
due to the resistance (and self-inductance) on the ground wires. This is different for
differential signaling. For differential signaling, each signal needs two wires (see
Fig.3.48).

Using differential signaling, binary values are encoded as follows: if the voltage
on the first wire with respect to the second is positive, then this is decoded as '1';
otherwise values are decoded as '@'. The two wires will typically be twisted to form
so-called twisted pairs. There will be local ground signals, but a non-zero voltage
between the local ground signals does not hurt. Advantages of differential signaling
include the following:

* Noise is added to the two wires in essentially the same way. The comparator
therefore removes almost all the noise.
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¢ The logic value depends just on the polarity of the voltage between the two wires.
The magnitude of the voltage can be affected by reflections or because of the
resistance of the wires; this has no effect on the decoded value.

* Signals do not generate any currents on the ground wires. Hence, the quality of
the ground wires becomes less important.

¢ No common ground wire is required. Hence, there is no need to establish a high-
quality ground wiring between a large number of communicating partners.

* As aconsequence of the properties mentioned so far, differential signaling allows
a larger throughput than single-ended signaling.

However, differential signaling requires two wires for every signal, and it also
requires negative voltages (unless it is based on complementary logic signals using
voltages for single-ended signals). Differential signaling is used, for example, in
standard Ethernet-based networks and the universal serial bus (USB).

3.5.3 Guaranteeing Real-Time Behavior

For internal communication, computers may be using dedicated point-to-point
communication or shared buses. Point-to-point communication can have a good
real-time behavior but requires many connections, and there may be congestion
at the receivers. Wiring is easier with common, shared buses. Typically, such
buses use priority-based arbitration if several access requests to the communication
media exist (see, e.g., [211]). Priority-based arbitration comes with poor timing
predictability, since conflicts are difficult to anticipate at design time. Priority-
based schemes can even lead to “starvation” (low-priority communication can be
completely blocked by higher-priority communication). In order to get around
this problem, time division multiple access (TDMA) can be used. In a TDMA
scheme, each partner is assigned a fixed time slot. The partner is only allowed to
transmit during that particular time slot. Typically, communication time is divided
into frames. Each frame starts with some time slot for frame synchronization and
possibly some gap to allow the sender to turn off (see Fig. 3.49, [302]).
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This gap is followed by a number of slices, each of which serves for communi-
cating messages. Each slice also contains some gap and guard time to take clock
speed variations of the partners into account. Slices are assigned to communication
partners. Variations of this scheme exist. For example, truncation of unused slices
or the assignment of partners to several slices are feasible. TDMA reduces the
maximum amount of data available per frame and partner but guarantees a certain
bandwidth for all partners. Starvation can be avoided. The ARM AMBA bus [21]
includes TDMA-based bus allocation.

Communication between computers is frequently based on Ethernet standards.
For 10 and 100 Mbit/s versions of Ethernet, there can be collisions between various
communication partners. This means several partners are trying to communicate
at about the same time and the signals on the wires are corrupted. Whenever this
occurs, the partners must stop communications, wait for some time, and then retry.
The waiting time is chosen at random, so that it is not very likely that the next
attempt to communicate results in another collision. This method is called carrier-
sense multiple access with collision detection (CSMA/CD). For CSMA/CD,
communication time can become huge, since conflicts can repeat a large number
of times, even though this is not very likely. Hence, CSMA/CD cannot be used
when real-time constraints must be met.

This problem can be solved with CSMA/CA (carrier-sense multiple access
with collision avoidance). As the name indicates, collisions are completely
avoided, rather than just detected. For CSMA/CA, priorities are assigned to all
partners. Communication media are allocated to communication partners during
arbitration phases, which follow communication phases. During arbitration
phases, partners wanting to communicate indicate this on the media. Partners finding
such indications of higher priority must immediately remove their indication.

Provided that there is an upper bound on the time between arbitration phases,
CSMA/CA guarantees a predictable real-time behavior for the partner having the
highest priority. For other partners, real-time behavior can be guaranteed if the
higher priority partners do not continuously request access to the media.

Note that high-speed versions of Ethernet (>1 Gbit/s) also avoid collisions.
TDMA schemes are also used for wireless communication. For example, mobile
phone standards like GSM use TDMA for accesses to the communication medium.

3.5.4 Examples

* Sensor/actuator buses: Sensor/actuator buses provide communication between
simple devices such as switches or lamps and the processing equipment. There
may be many such devices and the cost of the wiring needs special attention for
such buses.

* Field buses: Field buses are similar to sensor/actuator buses. In general, they
are supposed to support larger data rates than sensor/actuator buses. Examples of
field buses include the following:
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— Controller Area Network (CAN): This bus was developed in 1981 by
Bosch and Intel for connecting controllers and peripherals. It is popular in
the automotive industry, since it allows the replacement of a large amount
of wires by a single bus. Due to the size of the automotive market, CAN
components are relatively cheap and are therefore also used in other areas
such as smart homes and fabrication equipment. CAN is based on differential
signaling and arbitration using CSMA/CA. The encoding of signals is similar
to that of serial (RS-232) lines of early PCs, with modifications for differential
signaling. CSMA/CA-based arbitration does not prevent starvation. This is an
inherent problem of the CAN protocol. Extensions exist.

— The Time-Triggered Protocol (TTP) [304]: This is a protocol for fault-
tolerant safety systems like airbags in cars.

— FlexRay™ [253]: This is a TDMA protocol which has been developed by
the FlexRay consortium (BMW, Daimler AG, General Motors, Ford, Bosch,
Motorola, and Philips Semiconductors).

FlexRay includes a static as well as a dynamic arbitration phase. The static
phase uses a TDMA-like arbitration scheme. It can be used for real-time com-
munication and starvation can be avoided. The dynamic phase provides a good
bandwidth for non-real-time communication. Communicating partners can be
connected to up to two buses for fault-tolerance reasons. Bus guardians may
protect partners against partners flooding the bus with redundant messages,
so-called babbling idiots. Partners may use their own local clock periods.
Periods common to all partners are defined as multiples of such local clock
periods. Time slots allocated to partners for communication are based on these
common periods.

The levi simulation allows simulating the protocol in a lab environment
[495].

— LIN (Local Interconnect Network): This is a low-cost communication stan-
dard for connecting sensors and actuators in the automotive domain [346].

— MAP: MAP is a bus designed for car factories.
— EIB: The European Installation Bus (EIB) is a bus designed for smart homes.

* The Inter-Integrated Circuit (I?C) Bus : This is a simple low-cost bus designed
to communicate at short distances (meter range) with relatively low data rates.
The bus needs only four wires: ground, SCL (clock), SDA (data), and a voltage
supply line. Data and clock lines are open collector lines (see pp. 89-91). This
means that connected devices pull these lines only toward ground. Separate
resistors are needed to pull these lines up. The standard speed of I>C is 100 kb/s,
but versions for 10kb/s and up to 3.4 Mb/s do also exist. The voltage on the
supply voltage line may vary between interfaces. Only the standards for detecting
high and low logic levels are defined relative to the supply voltage. The bus is
supported on some micro-controller boards.

¢ Wired multimedia communication: For wired multimedia communication,
larger data rates are required. For example, MOST (Media Oriented Systems
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Transport) is a communication standard for multimedia and infotainment equip-
ment in the automotive domain [402]. Standards like IEEE 1394 (FireWire) may
be used for the same purpose.

Wireless communication: This kind of communication is becoming more
popular. Standards for wireless communication include the following:

— Mobile communication is becoming available at increased data rates. 7
Mbit/s are obtained with HSPA (High Speed Packet Access). About ten times
higher rates are available with long-term evolution (LTE). 5G networks are
expected to provide data rates between 50 Mbit/s and more than a gigabit/s,
with latencies less than those of earlier networks.

— Bluetooth is a standard for connecting devices such as mobile phones and
their headsets over short distances.

— Wireless local area networks (WLANS) are standardized as IEEE standard
802.11, with several supplementary standards.

— ZigBee (see http://www.zigbee.org) is a communication protocol designed to
create personal area networks using low-power radios. Applications include
home automation and the Internet of Things.

— Digital European cordless telecommunications (DECT) is a standard used
for wireless phones. It is being used throughout the world, except for different
frequencies used in North America (see https://en.wikipedia.org/wiki/Digital _
Enhanced_Cordless_Telecommunications).

3.6 Output: Interface Between Cyber and Physical World

Output devices are key components of the cyphy-interface. Examples include:

Displays: Display technology is an area which is extremely important. Accord-
ingly, a large amount of information [503] exists on this technology. Major
research and development efforts lead to new display technology such as organic
displays [342]. Organic displays are emitting light and can be fabricated with
very high densities. In contrast to LCDs, they do not need backlight and
polarizing filters. Major changes are therefore expected in these markets.
Electro-mechanical devices: These influence the environment through motors
and other electro-mechanical equipment.

Analog as well as digital output devices are used. In the case of analog

output devices, the digital information must first be converted by digital-to-analog
converters (DACs). These converters can be found on the path from analog inputs
of embedded systems to their outputs. Figure 3.50 shows the naming convention
of signals along the path which we use. Purpose and function of the boxes will be
explained in this section.


http://www.zigbee.org
https://en.wikipedia.org/wiki/Digital_Enhanced_Cordless_Telecommunications
https://en.wikipedia.org/wiki/Digital_Enhanced_Cordless_Telecommunications
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3.6.1 Digital-to-Analog Converters

Digital-to-analog converters (DACs) are also included in the cyphy-interface. They
are not very complex. Figure 3.51 shows the schematic of a simple so-called
weighted-resistor DAC.

The key idea of the converter is to first generate a current which is proportional
to the value represented by a digital signal x. Such a current can hardly be used by
a following system. Therefore, this current is converted into a proportional voltage
y. This conversion is done with an operational amplifier (depicted by a triangle
in Fig.3.51). Essential characteristics of operational amplifiers are described in
Appendix B of this book.

How do we compute the output voltage y? Consider the four resistors on the left
in Fig. 3.51. The current through any resistor is zero if the corresponding element of
digital signal x is '@"'. If itis '1', the current corresponds to the weight of that bit,
since resistor values are chosen accordingly. Now, consider the loop indicated by the
red dashed line in Fig. 3.51. We can apply Kirchhoff’s loop rule (see Appendix B) to
the loop turned on by the least significant bit xo of x. Let us start the loop traversal at
the corresponding resistor and continue in a clockwise fashion. The second term is
the voltage V_ between the inputs of the operational amplifier, counted as positive,
since we proceed in the direction of the arrow. The third term is contributed by the
constant voltage source, counted as negative, since we proceed against the direction
of the arrow. Overall, we have

xoxlox8* R+ V_ =V, =0 (3.22)
V_ is approximately O (see Appendix B, Eq. (B.14)). Therefore, we have

Vre f

Ip = xo *
OXOS*R

(3.23)
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Corresponding equations hold for the currents /1 to /3 through the other resistors.
We can now apply Kirchhoff’s node rule to the circuit node connecting all resistors.
At this node, the outgoing current must be equal to the sum of the incoming currents.
Therefore, we have

I=hL+5L+1I1+1 (3.24)
Vref Vref Vref Vref
I= 'J J o o
BE T T R T R T R R
v, . .
- %f % §xi 52173 (3.25)

Now, we can apply Kirchhoff’s loop rule to the loop comprising Ry, y, and V_.
Since V_ is approximately 0, we have

y+RixI' =0. (3.26)
Next, we can apply Kirchhoff’s node rule to the node connecting I, I’, and the
inverting signal input of the operational amplifier. The current into this input is
practically zero, and currents I and I’ are equal: I = I’. Hence, we have

Y4+ R *x1=0 (3.27)

From Egs. (3.25) and (3.27), we obtain

3
Ry o R
y:—Vref*?* EOXZ-*ZI - ref*8>kR * nat(x) (3.28)

nat denotes the natural number represented by digital signal x. Obviously, y is
proportional to the value represented by x. Positive output voltages and bit vectors
representing two’s complement numbers require minor extensions.

From a DSP point of view, y(¢) is a function over a discrete time domain: it
provides us with a sequence of voltage levels. In our running example, it is defined
only over integer times. From a practical point of view, this is inconvenient, since
we would typically observe the output of the circuit of Fig.3.51 continuously.
Therefore, DACs are frequently extended by a “zero-order hold” functionality.
This means that the converter will keep the previous value until the next value is
converted. Actually, the DAC of Fig. 3.51 will do exactly this if we do not change
the settings of the switches until the next discrete time instant. Hence, the output of
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the converter is a step function y’(¢) corresponding to the sequence vV ¥y (@) is
a function over the continuous time domain.

As an example, let us consider the output resulting from the conversion of the
signal of Eq. (3.3), assuming a resolution of 0.125. For this case, Fig.3.52 shows
v/ (¢) instead of y(¢), since y’(¢) is a bit easier to visualize.

DACs enable a conversion from time- and value-discrete signals to signals in
the continuous time and value domain. However, neither y(z) nor y'(¢) reflects the
values of the input signal in between the sampling instances.

3.6.2 Sampling Theorem

Suppose that the processors used in the hardware loop forward values from ADCs
unchanged to the DACs. We could also think of storing values x(¢) on a CD and
aiming at generating an excellent analog audio signal. Would it be possible to
reconstruct the original analog voltage e(t) (see Figs.3.8, 3.21, and 3.50) at the
outputs of the DACs?

It is obvious that reconstruction is not possible if we have aliasing of the type
described in Fig.3.7 on p. 134.'% So, we assume that the sampling rate is larger
than twice the highest frequency of the decomposition of the input signal into sine

17In practice, due to rise and fall times being > 0, transitions from one step to the next will not be
ideal, but take some time.

18Reconstruction may be possible if additional information about the signal is available, e.g., if we
restrict ourselves to certain signal types.
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waves (sampling criterion; see Eq. (3.8)). Does meeting this criterion allow us to
reconstruct the original signal? Let us have a closer look!

Feeding DACs with a discrete sequence of digital values will result in a
sequence of analog values being generated. Values of the input signal in between
the sampling instances are not generated by DACs. The simple zero-order hold
functionality (if present) would generate only step functions. This seems to indicate
that reconstruction of e(¢) would require an infinitely large sampling rate, such that
all intermediate values can be generated.

However, there could be some kind of smart interpolation computing values in
between the sampling instances from the values at sampling instances. And indeed,
sampling theory [440] tells us that a corresponding time-continuous signal z(¢) can
be constructed from the sequence y(¢) of analog values.

Let {t},s = ..., —1,0,1,2,...be the time points at which we sample our input
signal. Let us assume a constant sampling rate of f; = Tir Vs 0 Ty = tgp1 — t).
Then, sampling theory tells us that we can approximate e(¢) from y(¢) as follows:

z(t) = Z

§=—00

y(tg)sing-(t — t5)
Tt —1t)

(3.29)

This equation is known as the Shannon-Whittaker interpolation. y(z,) is the
contribution of signal y at sampling instance ;. This means, all 26* Boolean
functions of 6 inputs respectively all 23> Boolean functions of 5 inputs can be
implemented. The decrease follows a weighting factor, also known as the sinc
function

sin(%(t — 1))

T (3.30)
T $

sinc(t —tg) =

which decreases non-monotonically as a function of |t — f¢|. This weighting factor
is used to compute values in between the sampling instances. Figure 3.53 shows the
weighting factor for the case T = 1.

Using the sinc function, we can compute the terms of the sum in Eq. (3.29).
Figures 3.54 and 3.55 show the resulting terms if e(r) = e3(¢) and processing
performs the identify function (x(¢) = w(r)).

At each of the sampling instances 7, (integer times in our case), z(fy) is computed
just from the corresponding value y(;), since the sinc function is zero in this
case for all other sampled values. In between the sampling instances, all of the
adjacent discrete values contribute to the resulting value of z(¢). Figure 3.56 shows
the resulting z(7) if e(f) = e3(¢) and processing performs the identify function
(x() = w()).

The figure includes signals e3(¢) (blue), y'(¢) (red), and z(r) (magenta). z(z) is
computed by summing up the contributions of all sampling instances shown in the
diagrams in Figs. 3.54 and 3.55. e3(¢) and z(¢) are very similar.
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How close could we get to the original input signal by implementing Eq. (3.29)?
Sampling theory tells us (see, e.g., [440]) that Eq.(3.29) computes an exact
approximation if the sampling criterion (Eq. (3.8)) is met. Therefore, let us see
how we can implement Eq. (3.29).

How do we compute Eq.(3.29) in an electronic system? We cannot compute
this equation in the discrete time domain using a digital signal processor for this,
since this computation has to generate a time-continuous signal. Computing such a
complex equation with analog circuits seems to be difficult at first sight.

Fortunately, the required computation is a so-called folding operation between
signal y(#) and the sinc function. According to the classical theory of Fourier
transforms, a folding operation in the time domain is equivalent to a multiplication
with frequency-dependent filter function in the frequency domain. This filter
function is the Fourier transform of the corresponding function in the time domain.
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back

Therefore, Eq. (3.29) can be computed with some appropriate filter. Figure 3.57
shows the corresponding placement of the filter.

Which frequency-dependent filter function is the Fourier transform of the sinc
function? Computing the Fourier transform of the sinc function yields a low-pass
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filter function [440]. So, “all” we must do to compute Eq. (3.29) is to pass signal
y(t) through a low-pass filter, filtering frequencies as shown for the ideal filter
in Fig.3.58. The representation of function y(#) as a sum of sine waves would
require very high-frequency components, making such a filtering non-redundant,
even though we have already assumed an anti-aliasing filter to be present at the
input.

Unfortunately, ideal low-pass filters do not exist. We must live with compromises
and design filters approximating the low-pass filters. Actually, we must live with
several imperfections preventing a precise reconstruction of the input signals:

¢ Ideal low-pass filters cannot be designed. Therefore, we must use approximations
of such filters. Designing good compromises is an art (performed extensively,
e.g., for audio equipment).

* Similarly, we cannot completely remove input frequencies beyond the Nyquist
frequency.

e The impact of value quantization is visible in Fig.3.56. Due to value quantiza-
tion, e3(r) is sometimes different from z(¢). Quantization noise, as introduced by
ADCs, cannot be removed during output generation. Signal w(¢) from the output
of the ADC will remain distorted by the quantization noise. However, this effect
does not affect the signal 4 (¢) from the output of sample-and-hold circuits.

* Equation (3.29) is based on an infinite sum, involving also values at future
instances in time. In practice, we can delay signals by some finite amount to know
a finite number of “future” samples. Infinite delays are impossible. In Fig. 3.56,
we did not consider contributions of sampling instances outside the diagram.

The functionality provided by low-pass filters demonstrates the power of analog
circuits: there would be no way of implementing the behavior of analog filters in the
digital domain, due to the inherent restriction to discretized time and values.

Many authors have contributed to sampling theory. Therefore, many names can
be associated with the sampling theorem. Contributors include Shannon, Whittaker,
Kotelnikov, Nyquist, Kiipfmiiller, and others. Therefore, the fact that the original
signal can be reconstructed should simply be called the sampling theorem, since
there is no way of attaching all names of relevant contributors to the theorem.
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3.6.3 Pulse-Width Modulation

In practice, the presented generation of analog signals has a number of disadvan-
tages:

* DACs using an array of resistors are difficult to build. The precision of the
resistors must be excellent. The deviation of the resistor handling the most
significant bit from its nominal value must be less than the overall resolution of
the converter. For example, this means that, for a 14 bit converter, the deviation
of the real resistance from its nominal value must be in the order of 0.01%. This
precision is difficult to achieve in practice, in particular over the full temperature
range. If this precision is not achieved, the converter is not linear, possibly not
even monotone.

e In order to generate a sufficient power for motors, lamps, loudspeakers, etc.,
analog outputs would need to be amplified in a power amplifier. Analog power
amplifiers, such as so-called class A power amplifiers, are very power-inefficient,
since they contain an always conducting path between the two rails of the power
supply. This path results in a constant power consumption, irrespective of the
actual output signal. For very small output signals, the ratio between the actually
used power and the consumed power is therefore very small. As a result, the
efficiency of audio power amplifiers for low-volume audio would be terribly bad.

e It is not easy to integrate analog circuitry on digital micro-controller chips.
Adding external analog active components increases costs substantially.

Therefore, pulse-width modulation (PWM) is very popular. With PWM, we are
using a digital output and generate a digital signal whose duty cycle corresponds to
the value to be converted. Figure 3.59 shows digital signals with duty cycles of 25%
and 75%. Such signals can be represented by Fourier series like in Eq. (3.1). For
applications of PWM, we try to eliminate effects of higher-frequency components.

PWM signals can be generated by comparing a counter against a value stored
in a programmable register (see Fig.3.60). A high voltage is output whenever the
value in the counter exceeds the value in the register. Otherwise, a voltage close to
zero is generated. The clock signal of the counter must be programmable to select
the basic frequency of the PWM signals. In our schematic, we have assumed that
the PWM frequency is identical for all PWM outputs. Registers must be loaded with
the values to be converted, typically at the sampling rate of the analog signals.
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The effort required for filtering higher-frequency components depends upon the
application. For driving a motor, the averaging takes place in the motor, due to the
mass of the moving parts in the motor and possibly also due to the self-inductance
of the motor. Hence, no external components are needed (see Fig. 3.60). For lamps,
the averaging takes place in the human eye, as long as the frequencies are not too
low. It may also be okay to drive simple buzzers directly. In other cases, filtering
out higher-frequency components may be needed. For example, electromagnetic
radiation caused by higher-frequency components may be unacceptable, or audio
applications may be demanding filtered high-frequency signals. In Fig. 3.60, two
capacitors and one inductor have been used to filter out high-frequency components
for the loudspeakers. In our example, we are showing four PWM outputs. Having
several PWM outputs is a common situation. For example, Atmel 32 bit AVR micro-
controllers in the AT32UC3A Series have seven PWM outputs [27]. In practice,
there are many options for the detailed behavior of PWM hardware.

The choice of the basic frequency (the reciprocal of the period) of the PWM
signal and the filter is a matter of compromises. The basic frequency has to be
higher than the highest-frequency component of the analog signal to be converted.
Higher frequencies simplify the design of the filter if any is present. Selecting a too
high frequency results in more electromagnetic radiation and in unnecessary energy
consumption, since switching will consume energy. Compromises typically use a
basic PWM frequency that is larger than the highest frequency of the analog signal
by a factor between 2 and 10.

3.6.4 Actuators

There is a huge amount of actuators [151]. Actuators range from large ones that are
able to move tons of weight to tiny ones with dimensions in the wm area, like the
one shown in Fig. 3.61.
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Fig. 3.61 Detail of a rotary 10zm
stepper micromotor: top:
stationary part; lower left:
rotary part. The micromotor
uses three-phase electrostatic
power [478]. © Sarajlic et al.
(2010)

Figure 3.61 shows a tiny motor manufactured with microsystem technology. The
dimensions are in the pwm range. The rotating center is controlled by electrostatic
forces.

As an example, we mention only a special kind of actuators which will become
more important in the future: microsystem technology enables the fabrication of
tiny actuators, which can be put into the human body, for example. Using such tiny
actuators, the amount of drugs fed into the body can be adapted to the actual need.
This allows a much better medication than needle-based injections.

Actuators are important for the Internet of Things. It is impossible to provide a
complete overview over actuators.

3.7 Electrical Energy

General constraints and objectives for the design of embedded and cyber-physical
systems (see pp. 8—16 and Table 1.2) have to be obeyed for hardware design. Among
the different objectives, we will focus on energy efficiency. Reasons for caring about
the energy efficiency were listed in Table 1.1 on p. 13.

3.7.1 Energy Sources

For plugged devices (i.e., for those connected to the power grid), energy is easily
available. For all others, energy must be made available via other techniques. In
particular, this applies to sensor networks used in IoT systems where energy can
be a very scarce resource. Batteries store energy in the form of chemical energy.
Their main limitation is that they must be carried to the location where the energy
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Fig. 3.62 Photovoltaic material: left, panel; right, solar-powered watch

is required. If we would like to avoid this limitation, we have to use energy
harvesting, also called energy scavenging. A large amount of techniques for
energy harvesting is available [570, 577], but the amount of energy is typically much
more limited:

* Photovoltaics allows the conversion of light into electrical energy. The conver-
sion is usually based on the photovoltaic effect of semiconductors. Panels of
photovoltaic material are in widespread use. Examples can be seen in Fig. 3.62.

* The piezoelectric effect can be used to convert mechanical strain into electrical
energy. Piezoelectric lighters exploit this effect.

* Thermoelectric generators (TEGs) allow turning temperature gradients into
electrical energy. They can be used even on the human body.

* Kinetic energy can be turned into electrical energy. This is exploited, for
example, for some watches. Also, wind energy falls into this category.

* Ambient electromagnetic radiation can be turned into electrical energy as well.

e There are many other physical effects allowing us to convert other forms of
energy into electrical energy.

3.7.2 Energy Storage

For many applications of embedded systems, power sources are not guaranteed to
provide power whenever it is needed. However, we may be able to store electrical
energy. Methods for storing electrical energy include the following:

1. Non-rechargeable batteries can be used only once and will not be considered.

2. Capacitors are a very convenient means of storing electrical energy. Their
advantages include a potentially fast charging process, very high output currents,
close to 100% efficiency, low leakage currents (for high-quality capacitors), and
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a large number of charge/discharge cycles. The limited amount of energy that
can be stored is their main disadvantage.

. Rechargeable batteries allow storing and using electrical energy, very much

like capacitors. Storing electrical energy is based on certain chemical processes,
and using this energy is based on reversing these chemical processes.

Due to their importance for embedded systems, we will discuss rechargeable

batteries. If we want to include sources of electrical energy in our system model, we
will need models of rechargeable batteries. Various models can be used. They differ
in the amount of details that are included, and there is not a single model that fits all
needs [467]. The following models are popular:

Chemical and physical models: They describe the chemical and/or physical
operation of the battery in detail. Such models may include partial differential
equations, including many parameters. These models are beneficial for battery
manufacturers but typically too complex for designers of embedded systems
(who will typically not know the parameters).

Simple empirical models: Such models are based on simple equations for which
some parameter fitting has been performed. Peukert’s law [451] is a frequently
cited empirical model. According to this law, the lifetime of a battery is

lifetime = C/I* (3.31)

where o > 1 is the result of some empirical fitting process. Peukert’s law reflects
the fact that higher currents will typically lead to an effective decrease of the
battery capacity. Other details of battery behavior are not included in this model.
Abstract models: These provide more details than the very simple empirical
models, but do not refer to chemical processes. We would like to present two
such models:

— The model proposed by Chen and Ricén [94]. The model is an electrical
model, as shown in Fig.3.63. According to this model, a charging current
Ipgs: controls a current source in the left part of the schematic. The current
generated by the current source is equal to the charging current entering on the
right. This current will charge the capacitor Ccapaciry. The amount of charge
on the capacitor is called state of charge (SoC). The state of charge is reflected
by the voltage Vsoc on the capacitor, since the charge on the capacitor can
be computed as O = Ccapaciry * Vsoc. Resistor Rseif— pischarge models the
self-discharge (leakage) of this capacitor which happens even when no current
is drawn at the terminal pins of the battery.

Let us consider the voltage which is available at the battery terminals when
the current through these terminals is zero. The voltage at the battery terminals
will typically non-linearly depend on Vsoc. This dependency can be modeled
by a non-linear function Vo (Vsoc), representing the open terminal output
voltage of the battery. This voltage decreases when the battery provides some
current. For a constant discharging current, Rseries + RTransient_s models
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Fig. 3.63 Battery model according to Chen et al. (simplified)

the corresponding voltage drop. For short current spikes, the decrease is
determined by the value of Rge s only, since Cr will act as a buffer. When
the current consumption increases, time constant Rrransien:_s*Cr determines
the speed for the transition from only Rgeries causing the voltage drop to
Rseries + RrTransiens_s causing the voltage drop. The original proposal by
Chen et al. includes a second resistor/capacitor pair in order to model transient
output voltage behavior more precisely. Overall, this model captures the
impact of high output currents on the voltage, the non-linear dependency of
the output voltage, and self-discharge reasonably well. Simpler versions of
this model exist, i.e., ones that do not model all three effects.

Actual batteries exhibit the so-called charge recovery effect: whenever the
discharge process of batteries is paused for some time interval, the battery
recovers, i.e., more charge becomes available, and the voltage is typically also
increased. This effect is not considered in Chen’s model. However, it is the
focus of the so-called kinetic battery model (KiBaM) of Manwell et al. [364].
The name reflects the analogy upon which this model is based. The model
assumes two different bins of charge, as shown in Fig.3.64. The right bin
contains the charge y; which is immediately available. The left bin contains
charge y, which exists in the battery but which needs to flow into the right
bin to become available. An interval of heavy usage of the battery may almost
empty the right bin. It will then take some time for charge to become available
again. The speed of the recovery process is determined by parameter k, the
width of the pipe connecting the two bins. The details of the model (like the
amount of charge flowing) reflect the physical situation of the bins. This model
describes the charge recovery process with some reasonable precision but fails
to describe transients and self-discharge as captured in Chen’s model. The
kinetic model has an impact on how embedded systems should be used. For
example, it has been demonstrated that it is beneficial to plan for intervals,
during which wireless transmission is turned off [144].

Overall, the two models demonstrate nicely that models must be selected to
reflect the effects that should be taken into account.

e There may be mixed models which are partially based on abstract models and

partially on chemical and physical models.
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Fig. 3.64 Kinetic battery model

3.7.3 Energy Efficiency of Hardware Components

We will continue our discussion of energy efficiency by comparing the energy
efficiency for the different technologies which we have at our disposal. Hardware
components discussed in this chapter are quite different as far as their energy
efficiency is concerned. A comparison between these technologies and changes over
time (corresponding to a certain fabrication technology) can be seen in Fig. 3.65.1
The figure reflects the conflict between efficiency and flexibility of currently
available hardware technologies.

The diagram shows the energy efficiency GOP/J in terms of number of operations
per unit of energy of various target technologies as a function of time and the target
technology. In this context, operations could be 32 bit additions. Obviously, the
number of operations per joule is increasing as technology advances to smaller
and smaller feature sizes of integrated circuits. However, for any given technology,
the number of operations per joule is largest for hardwired application-specific
integrated circuits (ASICs). For reconfigurable logic usually coming in the form
of field programmable gate arrays (FPGAs; see p. 165), this value is about one
order of magnitude less. For programmable processors, it is even lower. However,
processors offer the largest amount of flexibility, resulting from the flexibility of
software. There is also some flexibility for reconfigurable logic, but it is limited to
the size of applications that can be mapped to such logic. For hardwired designs,
there is no flexibility. The trade-off between flexibility and efficiency also applies to
processors: for processors optimized for an application domain, such as processors
optimized for digital signal processing (DSP), power-efficiency values approach
those of reconfigurable logic. For general standard microprocessors, the values for
this figure of merit are the worst. This can be seen from Fig.3.65, comprising
values for microprocessors such as x 86-like processors (see “MPU” entries), RISC
processors, and the cell processor designed by IBM, Toshiba, and Sony.

Figure 3.65 does not identify exactly the applications which are compared, and it
does not allow us to study the type of application mapping that has been performed.

19The figure approximates information provided by H. De Man [363] and is based on information
provided by Philips.
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Fig. 3.65 Hardware efficiency (©De Man and Philips)

More detailed and more recent comparisons have been made, enabling us to study
the assumptions and the approach of these comparisons in a more comprehensive
manner. A survey of comparisons involving GPUs has been published by Mittal
et al. [398]. The survey includes a list of 28 publications for which GPUs have
been found to be more energy-efficient than CPUs and 2 publications for which
the reverse was true. Also, the survey comprises a list of 26 publications for which
FPGAs have been found to be more energy-efficient than GPUs and 1 for which
the reverse was true. For example, Hamada et al. [200] found for a gravitational n-
body simulation that the number of operations per watt was by a factor of 15 higher
for FPGAs than for GPUs. For a comparison against CPUs, the factor was 34. The
exact factors certainly depend on the application, but as a rule of thumb, we can state
the following: If we aim at top power- and energy-efficient designs, we should use
ASICs. If we cannot afford ASICs, we should go for FPGAs. If FPGAs are also not
an option, we should select GPUs. Also, we have already seen that heterogeneous
processors are in general more energy-efficient than homogeneous processors. More
detailed information can be computed for particular application areas.



3.7 Electrical Energy 195

The Case of Mobile Phones

Among the different applications of embedded systems (see pp. 4-8), we are now
looking at telecommunication and smart phones. For smart phones, computational
requirements are increasing at a rapid rate, especially for multimedia applications.
De Man and Philips estimated that advanced multimedia applications need about
10-100 billion operations per second. Figure 3.65 demonstrates that advanced hard-
ware technologies provided us more or less with this number of operations per joule
(=Ws) in 2007. This means that the most power -efficient platform technologies
hardly provided the efficiency which was needed. Standard processors (entries
for MPU and RISC) were hopelessly inefficient. It also meant that all sources of
efficiency improvements needed to be exploited. More recently, the power efficiency
has been improved. However, all such improvements are typically compensated by
trends to provide a higher quality, e.g., by an increase of the resolution of still and
moving images as well as a higher bandwidth for communication.

A detailed analysis of the power consumption has been published by Berkel [553]
and by Carroll et al. [84]. A more recent analysis including LTE mobile phones has
been published by Dusza et al. [144]. A power consumption of up to around 4 watts
has been observed. The display itself caused a consumption of up to around 1 watt,
depending on the display brightness.

Improving battery technology would allow us to consume power over longer
periods, but the thermal limitation prevents us from going significantly beyond
the current consumption in the near future. Due to thermal issues, it has become
standard to design mobile phones with temperature sensors and to throttle devices
in case of overheating. Of course, a larger power consumption would be feasible for
larger devices. Nevertheless, environmental concerns also result in the need to keep
the power consumption low.

Technology forecasts have been published as so-called International Technology
Roadmap for Semiconductors. In the ITRS edition of 2013 [261], it is explic-
itly stated that mobile phones are driving technological development: “System
integration has shifted from a computational, PC-centric approach to a highly
diversified mobile communication approach. The heterogeneous integration of
multiple technologies in a limited space (e.g., GPS, phone, tablet, mobile phones,
etc.) has truly revolutionized the semiconductor industry by shifting the main goal
of any design from a performance driven approach to a reduced power driven
approach. In few words, in the past performance was the one and only goal; today
minimization of power consumption drives IC design.”

Sensor Networks

Sensor networks used for the Internet of Things are another special case. For sensor
networks, there may be even much less energy available than for mobile phones.
Hence, energy efficiency is of utmost importance, comprising of course energy-
efficient communication [543].
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3.8 Secure Hardware

The general requirements for embedded systems can often include security (see
p- 9). In particular, security is important for the Internet of Things. If security is a
major concern, special secure hardware may need to be developed. Security may
need to be guaranteed for communication and for storage [309]. Security has to be
provided despite possible attacks and countermeasures must be designed. Attacks
can be partitioned into the following [300]:

* Software attacks are based on the execution of software. The deployment of
software Trojans is an example of such an attack. Also, software defects can
be exploited. Buffer overflows are a frequent cause of security hazards. Side-
channel attacks try to exploit additional sources of information complementing
the specified interfaces. Side-channel attacks based on software execution are
difficult, but not infeasible. For example, it may be possible to exploit execution
time information.”’ Security-relevant algorithms should be designed such that
their execution time does not depend on data values. This requirement also affects
the implementation of computer arithmetic: instructions should not have data-
dependent execution times.

» Attacks which require physical access and which can be classified into the
following:

— Physical attacks try to open a side channel by physically tampering with the
system. For example, silicon chips can be opened and analyzed. The first step
in this procedure is de-packaging (removing the plastic covering the silicon).
Next, micro-probing or optical analysis can be used. Such attacks are difficult,
but they reveal many details of the chip.

— Power analysis is another class of attacks. Power analysis techniques include
simple power analysis (SPA) and differential power analysis (DPA). In some
cases, SPA may be sufficient to compute encryption keys. In other cases,
advanced statistical methods may be needed to directly compute keys from
small statistical fluctuations of measured currents.

— Analysis of electromagnetic radiation is another class of side-channel
attacks.

Different classes of people might try these attacks, and different classes of
people may have an interest in blocking these attacks. The attacker may actually
be the user of an embedded device trying to obtain unauthorized network access or
unauthorized access to protected media such as music.

We can distinguish between the following countermeasures:

20Side-channel attacks based on timing information have been published under the names Spectre
and Meltdown. They apply to modern processors using speculative execution; see https://en.
wikipedia.org/wiki/Spectre_(security_vulnerability).
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A security-aware software development process is required as a shield against
software attacks.

Tamper-resistant devices include special mechanisms for physical protection
(shielding, or sensors to detect tampering with the modules).

Devices can be designed such that processed data patterns have very little impact
on the power consumption. This requires special devices which are typically not
used in complex chips.

Logical security, typically provided by cryptographic methods: encryption can
be based on either symmetric or asymmetric ciphers.

— For symmetric ciphers, sender and receiver are using the same secret key
to encrypt and decrypt messages. DES, 3DES, and AES are examples of
symmetric ciphers.

— For asymmetric ciphers, messages are encrypted with a public key and
decrypted with a private key. RSA and Diffie-Hellman are examples of
asymmetric ciphers.

— Also, hash codes can be added to messages, allowing the detection of message
modifications. MD5 and SHA are examples of hashing algorithms.

Due to the performance gap, some processors may support encryption and
decryption with dedicated instructions. Also, specialized solutions such as
ARM’s TrustZone computing exist. “At the heart of the TrustZone approach is
the concept of secure and non-secure worlds that are hardware separated, with
non-secure software blocked from accessing secure resources directly. Within the
processor, software either resides in the secure world or the non-secure world; a
switch between these two worlds is accomplished via software referred to as the
secure monitor (Cortex-A) or by the core logic (Cortex-M). This concept of secure
(trusted) and non-secure (non-trusted) worlds extends beyond the processor
to encompass memory, software, bus transactions, interrupts, and peripherals
within an SoC” (see https://www.arm.com/products/security-on-arm/trustzone).

The Kalray MPPA2® -256 multi-core processor chip contains as many as
128 specialized crypto co-processors connected to a matrix of 288 “regular”
cores (see http://www.kalrayinc.com/kalray/products/). Cores are 64 bit VLIW
processors.

The following challenges exist for the design of countermeasures [300]:

. Performance gap: Due to the limited performance of embedded systems,

advanced encryption techniques may be too slow, in particular if high data rates
have to be processed.

. Battery gap: Advanced encryption techniques require a significant amount of

energy. This energy may be unavailable in a portable system. Smart cards are a
special case of hardware that must run using a very small amount of energy.

. Lack of flexibility: Frequently, many different security protocols are required

within one system, and these protocols may have to be updated from time to
time. This hinders using special hardware accelerators for encryption.
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4. Tamper resistance: Mechanisms against malicious attacks need to be built in.
Their design is far from trivial. For example, it may be difficult if not impossible
to guarantee that the current consumption is independent of the cryptographic
keys that are processed.

5. Assurance gap: The verification of security requires extra efforts during the
design.

6. Cost: Higher security levels increase the cost of the system.

Ravi et al. have analyzed these challenges in detail for a Secure Sockets Layer (SSL)
protocol [300].

More information on secure hardware is available, for example, in a book by
Gebotys [180] and in proceedings of a workshop series dedicated to this topic (see
[183] for the most recent edition).

3.9 Problems

We suggest solving the following problems either at home or during a flipped
classroom session:

3.1 It is suggested that locally available small robots are used to demonstrate
hardware in the loop, corresponding to Fig. 3.2. The robots should include sensors
and actuators. Robots should run a program implementing a control loop. For
example, an optical sensor could be used to let a robot follow a black line on the
ground. The details of this assignment depend on the availability of robots.

3.2 Define the term “signal”!

3.3 Which circuit do we need for the transition from continuous time to discrete
time?

3.4 What does the sampling theorem tell us?

3.5 Assume that we have an input signal x consisting of the sum of sine waves
of 1.75kHz and 2kHz. We are sampling x at a rate of 3kHz. Will we be able
to reconstruct the original signal after discretization of time? Please explain your
result!

3.6 Discretization of values is based on ADCs. Develop the schematic of a flash-
based ADC for positive and negative input voltages! The output should be encoded
as 3 bit two’s complement numbers, allowing to distinguish between eight different
voltage intervals.

3.7 Suppose that we are working with a successive approximation-based 4 bit
ADC. The input voltage range extends from V,,,;,, =1V (="0000") to V,;,4x =4.75V
(="1111"). Which steps are used to convert voltages of 2.25V, 3.75V, and 1.8 V?
Draw a diagram similar to Fig. 3.12 which depicts the successive approximation to
these voltages!
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Table 3.2 Complexity of ADCs

Flash-based converter Successive approximation converter
Time complexity
Space complexity

3.8 Compare the complexity of flash-based and successive approximation-based
ADC. Assume that you would like to distinguish between n different voltage
intervals. Enter the complexity into Table 3.2, using the O-notation.

3.9 Suppose a sine wave is used as an input signal to the converter designed in
Problem 3.6. Depict the quantization noise signal for this case!

3.10 Create a list of features of DSP processors!

3.11 Which components do FPGAs comprise? Which of these are used to imple-
ment Boolean functions? How are FPGAs configured? Are FPGAs energy-efficient?
Which kind of applications are FPGAs good for?

3.12 What is the key idea of VLIW processors?

3.13 What is a “single-ISA heterogeneous multi-core architecture”? Which advan-
tages do you see for such an architecture?

3.14 Explain the terms “GPU” and “MPSoC”!

3.15 Some FPGAs support an implementation of all Boolean functions of six
variables. How many such functions exist? We ignore that some functions differ
only by a renaming of variables.

3.16 In the context of memories, we are sometimes saying “small is beautiful.”
What could be the reason for this?

3.17 Some levels of the memory hierarchy may be hidden from the application pro-
grammer. Why should such a programmer nevertheless care about the architecture
of such levels?

3.18 What is a “scratchpad memory” (SPM)? How can we ensure that some
memory object is stored in the SPM?

3.19 Develop the following FlexRay' " cluster: The cluster consists of the five nodes
A, B, C, D, and E. All nodes should be connected via two channels. The cluster uses a
bus topology. The nodes A, B, and C are executing a safety critical task, and therefore
their bus requests should be guaranteed at the time of 20 macroticks. The following
is expected from you:

* Download the levi FlexRay simulator [495]. Unpack the ZIP file and install!
 Start the training module by executing the file leviFRP jar.
* Design the described FlexRay cluster within the training module.
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» Configure the communication cycle such that the nodes A, B, and C have a
guaranteed bus access within a maximal delay of 20 macroticks. The nodes D
and E should use only the dynamic segment.

» Configure the node bus requests. The node A sends a message every cycle. The
nodes B and C send a message every second cycle. The node D sends a message
of the length of 2 minislots every cycle, and the node E sends every second cycle
a message of the length of 2 minislots.

* Start the visualization and check if the bus requests of the nodes A, B, and C are
guaranteed.

* Swap the positions of nodes D and E in the dynamic segment. What is the
resulting behavior?

3.20 Develop the schematic of a 3 bit DAC! The conversion should be done for a 3
bit vector x encoding positive numbers. Prove that the output voltage is proportional
to the value represented by the input vector x. How would you modify the circuit if
x represented two’s complement numbers?

3.21 The circuit shown in Fig. B.4 in Appendix B is an amplifier, amplifying input
voltage Vi:

Vour = 8closed * Vi

Compute the gain g.joseq for the circuit of Fig. B.4 as a function of R and R;!

3.22 How do different hardware technologies differ with respect to their energy
efficiency?

3.23 The computational efficiency is sometimes also measured in terms of billions
of operations per second per watt. How is this different from the figure of merit used
in Fig. 3.65?

3.24 Why is it so important to optimize embedded systems? Compare different
technologies for processing information in an embedded system with respect to their
efficiency!

3.25 Suppose that your mobile phone uses a lithium battery rated at 720 mAh. The
nominal voltage of the battery is 3.7 V. Assuming a constant power consumption
of 1 W, how long would it take to empty the battery? All secondary effects such as
decreasing voltages should be ignored in this calculation.

3.26 Which challenges do you see for the security of embedded systems?

3.27 What is a “side-channel attack”? Please provide examples of side-channel
attacks!
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adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
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The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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