
Chapter 1
Introduction

This chapter presents terms used in the context of embedded systems together with
their history as well as opportunities, challenges, and common characteristics of
embedded and cyber-physical systems. Furthermore, educational aspects, design
flows, and the structure of this book are introduced.

1.1 History of Terms

Until the late 1980s, information processing was associated with large mainframe
computers and huge tape drives. Later, miniaturization allowed information process-
ing with personal computers (PCs). Office applications were dominating, but some
computers were also controlling the physical environment, typically in the form of
some feedback loop.

Later, Mark Weiser created the term “ubiquitous computing” [573]. This term
reflects Weiser’s prediction to have computing (and information) anytime, any-
where. Weiser also predicted that computers are going to be integrated into
products such that they will become invisible. Hence, he created the term “invisible
computer.” With a similar vision, the predicted penetration of our day-to-day life
with computing devices led to the terms “pervasive computing” and “ambient
intelligence.” These three terms focus on only slightly different aspects of future
information technology. Ubiquitous computing focuses more on the long-term goal
of providing information anytime, anywhere, whereas pervasive computing focuses
more on practical aspects and the exploitation of already available technology.
For ambient intelligence, there is some emphasis on communication technology
in future homes and smart buildings. Due to the widespread use of small devices
in combination with the mobile Internet, some of the visions about the future have
already become a common practice. This widespread use is pervasive in the sense
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that it already had an impact on many areas of our life. Furthermore, artificial
intelligence is influencing our life as well.

Miniaturization also enabled the integration of information processing and the
environment using computers. This type of information processing has been called
an “embedded system”:

Definition 1.1 (Marwedel [371]) “Embedded systems are information processing
systems embedded into enclosing products.”

Examples include embedded systems in cars, trains, planes, and telecommuni-
cation or fabrication equipment. Embedded system products such as self-driving
cars and trains are already available or have been announced. Consequently, we
can expect miniaturization to have an impact on embedded systems comparable
to the one it had on the availability of mobile devices. Embedded systems come
with a large number of common characteristics, including real-time constraints,
and dependability as well as efficiency requirements. For such systems, the link
to physical systems is rather important. This link is emphasized in the following
citation [331]:

“Embedded software is software integrated with physical processes. The techni-
cal problem is managing time and concurrency in computational systems.”
This citation could be used as a definition of the term “embedded software” and
could be extended into a definition of “embedded systems” by just replacing
“software” by “system.”

However, the strong link to physical systems has recently been stressed even
more by the introduction of the term “cyber-physical systems” (CPS for short). CPS
can be defined as follows:

Definition 1.2 (Lee [332]) “Cyber-Physical Systems (CPS) are integrations of
computation and physical processes.”

The new term emphasizes the link to physical processes and the corresponding
physical environment. Emphasizing this link makes sense, since it is frequently
ignored in a world of applications running on servers, PCs, and mobile phones.
For CPS, models should include models of the physical environment as well. The
term CPS comprises an embedded system (the information processing part) and a
(dynamic) physical environment or CPS = ES + (dynamic) physical environment.
This is also reflected in Fig. 1.1.

In their call for proposals, the National Science Foundation in the USA mentions
also communication [412]: “Emerging CPS will be coordinated, distributed, and
connected and must be robust and responsive.”
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This is also done in the acatech report on CPS [6]: CPS . . . “represent networked,
software-intensive embedded systems in a control loop, provide networked and
distributed services.”

Interconnection and collaboration are also explicitly mentioned in a call for
proposals by the European Commission [155]: “Cyber-Physical Systems (CPS) refer
to next generation embedded ICT systems that are interconnected and collaborating
including through the Internet of Things, and providing citizens and businesses with
a wide range of innovative applications and services.”

The importance of communication was visualized by the European Commission
earlier, as shown in Fig. 1.2.

From these citations, it is clear that the authors do not only associate the
integration of the cyber- and the physical world with the term CPS. Rather, there
is also a strong communication aspect. Actually, the term CPS is not always used
consistently. Some authors emphasize the integration with the physical environment,
others emphasize communication.

Communication is more explicit in the term “Internet of Things” (IoT), which
can be defined as follows:

Definition 1.3 ([185]) The term Internet of Things “describes the pervasive pres-
ence of a variety of devices — such as sensors, actuators, and mobile phones —
which, through unique addressing schemes, are able to interact and cooperate with
each other to reach common goals.”

This term is linking sensors (such that sensed information is available on the
Internet) and actuators (such that things can be controlled from the Internet). The
Internet of Things is expected to allow the communication between trillions of
devices in the world. This vision affects a large amount of businesses.

The exploitation of IoT-technology for production has been called “Industry 4.0”
[68]. Industry 4.0 targets a more flexible production for which the entire life cycle
from the design phase onward is supported by the IoT.
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To some extent, it is a matter of preferences whether the linking of physical
objects to the cyber-world is called CPS or IoT. Taken together, CPS and IoT include
most of the future applications of IT.

The design of these future applications requires knowing fundamental
design techniques for embedded systems. This book focuses on such fundamen-
tal techniques and on foundations of embedded system design. Please remember
that these are used in IoT and CPS designs though this is not repeatedly stated in
each context. However, application-specific aspects of CPS and IoT are usually not
covered.

1.2 Opportunities

There is a huge potential for applications of information processing in the context of
CPS and IoT. The following list demonstrates this potential and the large variation
of corresponding areas:

• Transportation and mobility:

– Automotive electronics: Modern cars can be sold in technologically
advanced countries only if they contain a significant amount of electronics
[415]. These include airbag control systems, engine control systems,
navigation systems, anti-braking systems (ABS), electronic stability programs
(ESP), air-conditioning, anti-theft protection, driver assistance systems, and
many more. There is a trend toward autonomous driving. Embedded systems
can improve comfort levels, avoid accidents, and reduce the impact on the
environment. E-mobility would not be feasible without a significant amount
of electronic components.

– Avionics: A significant amount of the total value of airplanes is due to
the information processing equipment, including flight control systems, anti-
collision systems, pilot information systems, autopilots, and others. Depend-
ability is of utmost importance.1 Embedded systems can decrease emissions
(such as carbon dioxide) from airplanes. Autonomous flying is also becoming
a reality, at least for certain application areas.

– Railways: For railways, the situation is similar to the one discussed for cars
and airplanes. Again, safety features contribute significantly to the total value
of trains, and dependability is extremely important. Advanced signaling aims
at safe operation of trains at high speed and short intervals between trains. The
European Train Control System (ETCS) [444] is one step in this direction.
Autonomous rail-based transportation is already used in restricted contexts
like shuttle trains at airports.

1Problems with Boeing’s 737 MAX [419] underline this statement.
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– Maritime engineering (ships, ocean technology, and other maritime sys-
tems): Maritime systems, such as modern ships, use large amounts of
ICT equipment, e.g., for navigation, for safety, for optimizing the opera-
tion in general, and for bookkeeping (see, e.g., http://www.smtcsingapore.
com/ and https://dupress.deloitte.com/dup-us-en/focus/internet-of-things/iot-
in-shipping-industry.html).

– New concepts for mobility: The use of ICT technology and its components
is enabling new concepts for mobility. Even untrained people can travel
larger distances with e-bikes. The subtle interaction between human muscles
and electric engines turns e-scooters into a prime example of cyber-physical
systems. The collection of e-scooters at the end of each day, based on a list
of locations in the Internet, lets e-scooters become a perfect example of the
Internet of Things. Also, CPS/IoT-technology is very important for collective
taxis and other taxi-calling services.

• Mechanical engineering (incl. manufacturing): Machinery and fabrication
equipment have been combined with embedded systems for decades. In order to
optimize production technologies further, CPS/IoT-technology can be used.
CPS/IoT-technology is the key toward more flexible manufacturing, being
the target of “Industry 4.0” [68]. Factory automation is enabled by logistics.
There are several ways in which CPS/IoT-systems can be applied to logistics
[297]. For example, radio frequency identification (RFID) technology, if used
in combination with computer networks, provides easy identification of each
and every object, worldwide. Mobile communication allows unprecedented
interaction.

• Robotics: This is also a traditional area in which embedded/cyber-physical
systems have been used. Mechanical aspects are very important for robots.
Hence, they may be linked to mechanical engineering. Robots, modeled after
animals or human beings, have been designed. Figure 1.3 shows such a robot.

• Power engineering and the smart grid: In the future, the production of
energy is supposed to be much more decentralized than in the past. Providing
stability in such a scenario is difficult. ICT technology is required in order to
achieve a sufficiently stable system. Information on the smart grid can be found,
for example, at https://www.smartgrid.gov/the_smart_grid and at http://www.
smartgrids.eu/.

• Civil engineering: CPS devices can be beneficial in many applications of civil
engineering. This includes structural health monitoring. Natural and artificial
structures like mountains, volcanoes, bridges, and dams (see, e.g., Fig. 1.4) are
potentially threatening lives. We can use embedded system technology to enable
advance warnings in case of increased dangers like avalanches or collapsing
dams.2

2The case of the dam in Brumadinho (see https://en.wikipedia.org/wiki/
Brumadinho_dam_disaster) is a counterexample of how modern sensors should be exploited.

http://www.smtcsingapore.com/
http://www.smtcsingapore.com/
https://dupress.deloitte.com/dup-us-en/focus/internet-of-things/iot-in-shipping-industry.html
https://dupress.deloitte.com/dup-us-en/focus/internet-of-things/iot-in-shipping-industry.html
https://www.smartgrid.gov/the_smart_grid
http://www.smartgrids.eu/
http://www.smartgrids.eu/
https://en.wikipedia.org/wiki/Brumadinho_dam_disaster
https://en.wikipedia.org/wiki/Brumadinho_dam_disaster
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Fig. 1.3 Humanoid Robot
“Lola”, © Chair of Applied
Mechanics, Technical
University of Munich (TUM)

Fig. 1.4 Example of a dam to be monitored (Möhnesee dam), ©P. Marwedel

• Disaster recovery: In the case of major disasters such as earthquakes or flooding,
it is essential to save lives and provide relief to survivors. Flexible communication
infrastructures are essential for this.

• Smart buildings: Smart buildings are one of the areas of civil engineering.
Information processing can be used to increase the comfort level in buildings,
can reduce the energy consumption within buildings, and can improve safety and
security. Subsystems which traditionally were unrelated must be connected for
this purpose. There is a trend toward integrating air-conditioning, lighting, access
control, accounting, safety features, and distribution of information into a single
system. Tolerance levels of air-conditioning subsystems can be increased for
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empty rooms, and the lighting can be automatically reduced. Air-condition noise
can be reduced to a level required for the actual operating conditions. Intelligent
usage of blinds can also optimize lighting and air-conditioning. Available rooms
can be displayed at appropriate places, simplifying ad hoc meetings and cleaning.
Lists of non-empty rooms can be displayed at the entrance of the building
in emergency situations (provided the required power is still available). This
way, energy can be saved on cooling, heating, and lighting. Also safety can
be improved. Initially, such systems might mostly be present in high-tech office
buildings, but the trend toward energy-efficient buildings also affects the design
of private homes. One of the goals is to design so-called zero-energy-buildings
(buildings which produce as much energy as they consume) [426]. Such a design
would be one contribution toward a reduction of the global carbon-dioxide
footprint and global warming.

• Agricultural engineering: There are many agricultural applications. For exam-
ple, the “regulations for traceability3 of agricultural animals and their move-
ments require the use of technologies like IoT, making possible the real time
detection of animals, for example, during outbreaks of (a) contagious disease”
[516].

• Health sector andmedical engineering: The importance of healthcare products
is increasing, in particular in aging societies. Opportunities start with new sen-
sors, detecting diseases faster and more reliably. New data analysis techniques
(e.g., based on machine learning) can be used to detect increased risks and
improve chances for healing. Therapies can be supported with personalized
medication based on artificial intelligence methods. New devices can be designed
to help patients, e.g., handicapped patients. Also, surgery can be supported
with new devices. Embedded system technologies also allow for a significantly
improved result monitoring, giving doctors much better means for checking
whether or not a certain treatment has a positive impact. This monitoring also
applies to remotely located patients. Available information can be stored in
patient information systems. Lists of projects in this area can be found, for
example, at http://cps-vo.org/group/medical-cps and at http://www.nano-tera.ch/
program/health.html.

• Scientific experiments: Many contemporary experiments in sciences, in partic-
ular in physics, require the observation of experiment outcomes with IT devices.
The combination of physical experiments and IT devices can be seen as a special
case of CPS.

• Public safety: The interest in various kinds of safety is also increasing. Embed-
ded and cyber-physical systems and the Internet of Things can be used to improve
safety in many ways. This includes public health in times of pandemics and the
identification/authentication of people, for example, with fingerprint sensors or
face recognition systems.

3The importance of traceability in general, beyond animals, became particularly obvious during
the Corona-19 crisis.

http://cps-vo.org/group/medical-cps
http://www.nano-tera.ch/program/health.html
http://www.nano-tera.ch/program/health.html
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• Military applications: Information processing has been used in military equip-
ment for many years. Some of the first computers analyzed military radar signals.

• Telecommunication: Mobile phones have been one of the fastest-growing mar-
kets in the recent years. For mobile phones, radio frequency (RF) design, digital
signal processing, and low-power design are key aspects. Telecommunication is
a salient feature of IoT. Other forms of telecommunication are also important.

• Consumer electronics: Video and audio equipment is a major sector of the
electronics industry. The information processing integrated into such equipment
is steadily growing. New services and better quality are implemented using
advanced digital signal processing techniques. Many TV sets (in particular high-
definition TV sets), multimedia phones, and game consoles comprise powerful
high-performance processors and memory systems. They represent special cases
of embedded systems. Compared to other types of embedded systems, safety and
real-time behavior are less important. Nevertheless, certain real-time constraints
must be met in order to achieve a certain frame rate or to meet time constraints
for communication protocols. Also, there is a limited availability of resources
like electrical energy and communication bandwidth. In this sense, limited
availability of resources is a feature which consumer electronics shares with the
other application areas mentioned so far.

The large set of examples demonstrates the huge variety of applications of
embedded systems in CPS and IoT systems. Even more applications are listed in a
report on opportunities and challenges of the IoT [516]. In a way, many of the future
applications of ICT technology can be linked to such systems. From the above list,
we conclude that almost all engineering disciplines will be affected.

The long list of application areas of embedded systems is resulting in a
corresponding economic importance of such systems. The acatech report [6]
mentions that, at the time of writing the report, 98% of all microprocessors were
used in these systems. In a way, embedded system design is an enabler for many
products and has an impact on the combined market volume size of all the areas
mentioned. However, it is difficult to quantify the size of the CPS/IoT market since
the total market volume of all these areas is significantly larger than the market
volume of their ICT components. Referring to the value of semiconductors in the
CPS/IoT market would also be misleading, since that value is only a fraction of the
overall value.

The economic importance of CPS and the IoT is reflected in calls for proposals
by funding organizations, like the NSF [116] and the European Commission [156].

1.3 Challenges

Unfortunately, the design of embedded systems and their integration in CPS and
IoT systems comes with a large number of difficult design issues. Commonly found
issues include the following:



1.3 Challenges 9

• Cyber-physical and IoT systems must be dependable.

Definition 1.4 A system is dependable if it provides its intended service with a
high probability and does not cause any harm.

A key reason for the need of being dependable is that these systems are directly
connected to the physical environment and have an immediate impact on that
environment. The issue needs to be considered during the entire design process.

Dependability encompasses the following aspects of a system:

1. Security:

Definition 1.5 ([75, 255]) Information security can be defined as the “preser-
vation of confidentiality, integrity and availability of information.”

This preservation can be compromised by thefts or damages, resulting from
attacks from the outside. Connecting components in IoT systems enables such
attacks, with cyber-crime and cyber-warfare as special, potentially harmful
cases. Connecting more components enables more attacks and more damages.
This is a serious issue in the design and proliferation of IoT systems.

The only really secure solution is to disconnect components, which
contradicts the idea of using connected systems. Related research is therefore
expected to be one of the fastest-growing areas in ICT-related research.

According to Ravi et al. [300], the following typical elements of security
requirements exist:

– A user identification process validates identities before allowing users to
access the system.

– Secure network access provides a network connection or service access
only if the device is authorized.

– Secure communications include a number of communication features.
– Secure storage requires confidentiality and integrity of data.
– Content security enforces usage restrictions.

2. Confidentiality is one of the aspects of security .

Definition 1.6 ([255]) Confidentiality is “property that information is not
made available or disclosed to unauthorized individuals, entities, or pro-
cesses.”

Confidentiality is typically implemented using techniques which are found in
secure systems, e.g., encryption.

3. Safety:

Definition 1.7 ([250]) Safety can be defined as the absence of “unacceptable
risk of physical injury or of damage to the health of people, either directly or
indirectly as a result of damage to property or to the environment.”

“Functional safety is the part of the overall safety that depends on a system
or equipment operating correctly in response to its inputs.”
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“In the context of computer systems, this term is used to distinguish from
threats due to external attacks, e.g., due to malicious software. In contrast
to such threats, safety refers to risks caused by failures occurring without
any external action, e.g., hardware failures, power failures, incorrectly written
software, or operator errors” (translated from German [576]).

4. Reliability: This term refers to malfunctions of systems resulting from
components not working according to their specification at design time.
Lack of reliability can be caused by breaking components. Reliability is the
probability that a system will not fail within a certain amount of time.4 For
an evaluation of reliability, we are not considering malicious attacks from
the outside but only effects occurring within the system itself during normal,
intended operation.

5. Repairability: Repairability (also spelled reparability) is the probability that
a failing system can be repaired within a certain time.

6. Availability: Availability is the probability that the system is available.
Reliability and repairability must be high and security hazards absent in order
to achieve a high availability.

Designers may be tempted to focus just on the functionality of systems initially,
assuming that dependability can be added once the design is working. Typically,
this approach does not work, since certain design decisions will not allow
achieving the required dependability in the aftermath. For example, if the
physical partitioning is done in the wrong way, redundancy may be impossible.
Therefore, “making the system dependable must not be an after-thought”, it
must be considered from the very beginning [303]. Good compromises achieving
an acceptable level of safety, security, confidentiality, and reliability have to be
found [296].

Even perfectly designed systems can fail if the assumptions about the
workload and possible errors turn out to be wrong [303]. For example, a system
might fail if it is operated outside the initially assumed temperature range.

• If we look closely at the interface between the physical and the cyber-world, we
observe a mismatch between physical and cyber models. The following list
shows examples:

– Many cyber-physical systems must meet real-time constraints. Not complet-
ing computations within a given time frame can result in a serious loss of the
quality provided by the system (e.g., if the audio or video quality is affected)
or may cause harm to the user (e.g., if cars, trains, or airplanes do not operate
in the predicted way). Some time constraints are called hard time constraints:

Definition 1.8 (Kopetz [303]) “A time-constraint is called hard if not meet-
ing that constraint could result in a catastrophe.”

All other time constraints are called soft time constraints.

4A formal definition of this term is provided in Definition 5.36 on p. 281 of this book.
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Many of today’s information processing systems are using techniques for
speeding-up information processing on the average. For example, caches
improve the average performance of a system. In other cases, reliable com-
munication is achieved by repeating certain transmissions. On average, such
repetitions result in a (hopefully) small loss of performance, even though for a
certain message the communication delay can be several orders of magnitude
larger than the normal delay. In the context of real-time systems, arguments
about the average performance or delay cannot be accepted. “A guaranteed
system response has to be explained without statistical arguments” [303].
Many modeling techniques in computer science do not model real time.
Frequently, time is modeled without any physical units attached to it, which
means that no distinction is made between picoseconds and centuries. The
resulting problems are very clearly formulated in a statement made by Edward
Lee: “The lack of timing in the core abstraction (of computer science) is a flaw,
from the perspective of embedded software” [330].

– Many embedded systems are hybrid systems in the sense that they include
analog and digital parts. Analog parts use continuous signal values in con-
tinuous time, whereas digital parts use discrete signal values in discrete
time. Many physical quantities are represented by a pair, consisting of a real
number and a unit. The set of real numbers is uncountable. In the cyber-
world, the set of representable values for each number is finite. Hence, almost
all physical quantities can only be approximated in digital computers.
During simulations of physical systems on digital computers, we are typically
assuming that this approximation gives us meaningful results. In a paper, Taha
considered consequences of the non-availability of real numbers in the cyber-
world [522].

– Physical systems can exhibit the so-called Zeno effect. The Zeno effect can
be introduced with the help of the bouncing ball example. Suppose that we
are dropping a bouncing ball onto the floor from a particular height. After
releasing the ball, it will start to fall, being accelerated by the gravitation of
the earth. When it hits the floor, it will bounce, i.e., it will start to move in
the opposite direction. However, we assume that bouncing will have some
damping effect and that the initial speed of the ball after the bounce will be
reduced by a factor of s < 1, compared to the speed right before the bounce.
The case s < 1 is also called inelastic collision. s is called the restitution. Due
to this, the ball will not reach its initial height. Furthermore, the time to reach
the floor a second time will be shorter than for the initial case. This process
will be repeated, with smaller and smaller intervals between the bounces.
However, according to the ideal model of inelastic collisions, this process will
go on and on. Figure 1.5 visualizes the height as a function of time (a so-called
time/distance diagram) of the inelastic collision.

Now, let � be an arbitrary time interval, anywhere in the time domain.
Would there be an upper bound on the number of bounces in this time interval?
No, there would not be an upper bound, since bouncing is repeated in shorter
and shorter intervals.
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This is a special case of the Zeno effect. A system is said to exhibit a Zeno
effect, when it is possible to have an unlimited number of events in an interval
of finite length [403]. Mathematically speaking, this is feasible since infinite
series may be converging to a finite value. In this case, the infinite series of
times at which bouncing occurs is converging to a finite instance in time. See
the discussion starting on p. 46 for more details. On digital computers, the
unlimited number of events can only be approximated.

– Many CPS comprise control loops, like the one shown in Fig. 1.6.
Control theory was initially based on analog continuous feedback systems.

For digital, discrete time feedback, periodic sampling of signals has been
the default assumption for decades and it worked reasonably well. However,
periodic sampling is possibly not the best approach. We could save resources
if we would extend sampling intervals during times of relatively constant
signals. This is the idea of adaptive sampling. Adaptive sampling is an area
of active research [209].
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– Traditional sequential programming languages are not the best way to describe
concurrent, timed systems.

– Traditionally, the process of verifying whether or not some product is a correct
implementation of the specification is generating a Boolean result: either the
product is correct or not. However, two physically existing products will never
be exactly identical. Hence, we can only check with some level of imprecision
whether a product is a correct implementation of the design. This introduces
fuzziness and Boolean verification is replaced by fuzzy verification [184, 446].

– Edward Lee pointed out that the combination of a deterministic physical
model and a deterministic cyber model will possibly be a non-deterministic
model [333]. Non-deterministic sampling can be one reason for this.

Overall, we observe a mismatch between the physical and the cyber-world.
Effectively, we are still looking for appropriate models for CPS, but cannot expect
to completely eliminate the mismatch.

• Embedded systems must use resources efficiently. This requires that we must be
aware of the resources needed. The following metrics can be considered in order
to evaluate resource efficiency:

1. Energy: Electronic information and communication technology (ICT) uses
electrical energy for information processing and communication. The amount
of electrical energy used is frequently called “consumed energy.” Strictly
speaking, this term is not correct, since the total amount of energy is invariant.
Actually, we are converting electrical energy into some other form of energy,
typically thermal energy. For embedded systems, the availability of electrical
power and energy (as the integral of power over time) is a deciding factor. This
was already observed in a Dutch road mapping effort: “Power is considered
as the most important constraint in embedded systems” [150].

Why should we care about the amount of electrical energy converted, i.e.,
why should there be energy awareness? There are many reasons for this. Most
reasons are applicable to most types of systems, but there are exceptions, as
shown in Table 1.1.

Table 1.1 Relevance of reasons to be energy-aware

Relevant during use?

System type Plugged Charged Unplugged

Example Factory Laptop Sensor network

Global warming Yes Hardly No

Cost of energy Yes Hardly Typically not

Increasing performance Yes Yes Yes

Unplugged uptime No Yes Yes

Problems with cooling, avoiding hot spots Yes Yes Yes

Avoiding high currents, metal migration Yes Yes Yes

Energy a very scarce resource No Hardly Yes
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Global warming is of course a very important reason for trying to be
energy-aware. However, typically very limited amounts of energy are avail-
able to unplugged systems, and, hence, their contribution to global warming
is small.5

The cost of energy is relevant whenever the amount of energy needed is
expensive. For plugged systems, this could happen due to large amounts of
consumed energy. For unplugged systems, these amounts are typically small,
but there could be cases for which it is very expensive to provide even a small
amount.

Increased computing performance usually requires additional energy and,
hence, has an impact on the resulting energy consumption.

Thermal effects are becoming more important and have to be considered
as well. The reliability of circuits decreases with increasing temperatures.
Hence, increased energy consumptions are typically decreasing the reliability.
It may be necessary to power-down parts of the system completely to cope
with thermal constraints. This effect has been called the dark silicon effect
(certain areas of silicon chips have to remain unpowered or “dark”) [153].

In some cases (like remote sensor nodes), energy is a really scarce resource.
It is interesting to look at those cases where certain reasons to save energy

can be considered irrelevant: For systems connected to the power grid, energy
is not a really scarce resource. Unplugged systems, due to the limited capacity
of batteries, consume very small amounts of energy, and their impact on global
warming is small. Systems which are only temporarily connected to the power
grid are somewhere between their plugged and unplugged counterparts.

The importance of power and energy efficiency was initially recognized
for embedded systems. The focus on these objectives was later taken up for
general-purpose computing as well and led to initiatives such as the green
computing initiative [11].

In general, not only the energy consumption during the use of some device
is important. Rather, the fabrication of the device should be considered as
well, due to the energy consumption during fabrication. Hence, we should
consider the entire life cycle of a product in the form of a so-called life-cycle
assessment (LCA) [374]. It is feasible to reduce the impact on the environment
by purchasing new devices less frequently.

2. Run-time: Embedded systems should exploit the available hardware architec-
ture as much as possible. Inefficient use of execution time (e.g., wasted pro-
cessor cycles) should be avoided. This implies an optimization of execution
times across all levels, from algorithms down to hardware implementations.

5This can be demonstrated by means of an example. Consider a mobile phone battery having a
capacity of 3600mAh. We assume an average voltage of 4V. This results in an energy of 14.4Wh.
A fully charged battery stores as much energy as is consumed by a typical residential gateway
(turned on 24/7) in about 1–2.5 h or a TV set in a fraction of an hour.



1.3 Challenges 15

3. Code size: For some embedded systems, code typically has to be stored on
the system itself. There may be tight constraints on the storage capacity of
the system. This is especially true for systems on a chip (SoCs), systems for
which all the information processing circuits are included on a single chip. If
the instruction memory is to be integrated onto this chip, it should be used
very efficiently. For example, there may be medical devices implanted into
the human body. Due to size and communication constraints of such devices,
code has to be very compact.

However, the importance of this design goal might change, when dynam-
ically loading code becomes acceptable or when larger memory densities
(measured in bits per volume unit) become available. Flash-based memories
and new memory technologies will potentially have a large impact.

4. Weight: All portable systems must be lightweight. A low weight is frequently
an important argument for buying a particular system.

5. Cost: For high-volume embedded systems in mass markets, especially in
consumer electronics, competitiveness on the market is an extremely crucial
issue, and efficient use of hardware components and the software development
budget are required. A minimum amount of resources should be used for
implementing the required functionality. We should be able to meet require-
ments using the least amount of hardware resources and energy. In order to
reduce the energy consumption, clock frequencies and supply voltages should
be as low as possible. Also, only the necessary hardware components should
be present, and over-provisioning should be avoided. Components which do
not improve the worst case execution time (such as many caches or memory
management units) can sometimes be omitted.

Due to resource awareness targets, software designs cannot be done indepen-
dently of the underlying hardware. Therefore, software and hardware must be
taken into account during the design steps. This, however, is difficult, since
such integrated approaches are typically not taught at educational institutes. The
cooperation between electrical engineering and computer science has not yet
reached the required level.

A mapping of specifications to custom hardware would provide the best
energy efficiency. However, hardware implementations are very expensive and
require long design times. Therefore, hardware designs do not provide the
flexibility to change designs as needed. We need to find a good compromise
between efficiency and flexibility.

• CPS and IoT systems are frequently collecting huge amounts of data. These large
amounts of data have to be stored and they have to be analyzed. Hence, there is a
strong link between the problems of big data (or machine learning) and CPS/IoT.
This is exactly the topic of our collaborative research center SFB 876.6 SFB 876
focuses on machine learning under resource constraints.

6See http://www.sfb876.tu-dortmund.de.

http://www.sfb876.tu-dortmund.de
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• Impact beyond technical issues: Due to the major impact on society, legal,
economic, social, human, and environmental impacts must be considered as
well:

– The integration of many components, possibly by different providers, raises
serious issues concerning liability. These issues are being discussed, for
example, for self-driving cars. Also, ownership issues must be solved. It is
unacceptable to have one of the involved companies own all rights.

– Social issues include the impact of new IT devices on society. This has led
to the introduction of the term Cyber-Physical-Social Systems (CPSS) [140].
Currently, this impact is frequently only detected long after the technology
became available.

– Human issues comprise user-friendly man-machine interfaces.
– Contributions to global warming and the production of waste should be at an

acceptable level. The same applies to the consumption of resources.

• Real systems are concurrent. Managing concurrency is therefore another major
challenge.

• Cyber-physical and IoT systems are typically consisting of heterogeneous hard-
ware and software components from various providers and have to operate in
a changing environment. The resulting heterogeneity poses challenges for the
correct cooperation of components. It is not sufficient to consider only software
or only hardware design. Design complexity requires adopting a hierarchical
approach. Furthermore, real embedded systems consist of many components and
we are interested in compositional design. This means, we would like to study
the impact of combining components [213]. For example, we would like to know
whether we could add a GPS system to the sources of information in a car without
overloading the communication bus.

• CPS design involves knowledge from many areas. It is difficult to find staff
members with a sufficient amount of knowledge in all relevant areas. Even
organizing the knowledge transfer between relevant areas is already challenging.
Designing a curriculum for a program in CPS design is even more challenging,
due to the tight ceilings for the total workload for students [379]. Overall, tearing
down walls between disciplines and departments or at least lowering them
would be required.

A list of challenges is also included in a report on IoT by Sundmaeker et al. [516].

1.4 Common Characteristics

In addition to the challenges listed above, there are more common characteristics of
embedded, cyber-physical and IoT systems, independently of the application area.
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• CPS and IoT systems use sensors and actuators to connect the embedded system
to the physical environment. For IoT, these components are connected to the
Internet.

Definition 1.9 Actuators are devices converting numbers into physical effects.

• Typically, embedded systems are reactive systems, which are defined as follows:

Definition 1.10 (Bergé [567]) “A reactive system is one that is in continual
interaction with its environment and executes at a pace determined by that
environment.”

Reactive systems are modeled as being in a certain state, waiting for an input.
For each input, they perform some computation and generate an output and a
new state. Hence, automata are good models of such systems. Mathematical
functions, describing the problems solved by most algorithms, would be an
inappropriate model.

• Embedded systems are under-represented in teaching and in public discus-
sions. Real embedded systems are complex. Hence, comprehensive equipment is
required for realistically teaching embedded system design. However, teaching
CPS design can be appealing, due to the visible impact on the physical behavior.

• These systems are frequently dedicated toward a certain application. For
example, processors running control software in a car or a train will typically
always run that software, and there will be no attempt to run a game or
spreadsheet program on the same processor. There are mainly two reasons for
this:

1. Running additional programs would make those systems less dependable.
2. Running additional programs is only feasible if resources such as memory are

unused. No unused resources should be present in an efficient system.

However, the situation is slowly changing. For example, the AUTOSAR
initiative [28] demonstrates more dynamism in the automotive industry.

• Most embedded systems do not use keyboards, mice, and large computer
monitors for their user interface. Instead, there is a dedicated user interface
consisting of push buttons, steering wheels, pedals, etc. Because of this, the user
hardly recognizes that information processing is involved. This is consistent with
the introduction of the term disappearing computer.

Table 1.2 highlights some distinguishing features between the designs of PC-like
or data center server-like systems and embedded systems.

Compatibility with traditional instruction sets employed for PCs is less impor-
tant for embedded systems, since it is typically possible to compile software
applications for architectures at hand. Sequential programming languages do not
match well with the need to describe concurrent real-time systems, and other
ways of modeling applications may be preferred. Several objectives must be
considered during the design of embedded/cyber-physical systems. In addition to the
average performance, the worst case execution time, energy consumption, weight,
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Table 1.2 Distinction between PC-like and embedded system designs

Embedded PC-/server-like

Frequently heterogeneous Mostly homogeneous

Architectures very compact not compact (x86, etc.)

x86 compatibility Less relevant Very relevant

Architecture fixed? Rarely Yes

Models of computation (MoCs) C+multiple models (data flow,
discrete events, . . . )

Mostly von Neumann (C,
C++, Java)

Optimization objectives Multiple (energy, size, . . . ) Average performance
dominates

Safety-critical? Possibly Usually not

Real-time relevant Frequently Hardly

Apps. known at design time Yes, for real-time systems Only some (e.g., WORD)

reliability, operating temperatures, etc. may have to be optimized. Meeting real-
time constraints is very important for CPS but hardly so for PC-like systems. Time
constraints can be verified at design time only if all the applications are known
at this time. Also, it must be known, which applications should run concurrently.
For example, designers must ensure that a GPS application, a phone call, and data
transfers can be executed at the same time without losing voice samples. For PC-like
systems, knowledge about concurrently running software is almost never available
and best effort approaches are typically used.

Why does it make sense to consider all types of embedded systems in one book?
It makes sense because information processing in embedded systems has many
common characteristics, despite being physically so different.

Actually, not every embedded system will have all the above characteristics. We
can define the term “embedded system” also in the following way:

Definition 1.11 Information processing systems meetingmost of the characteris-
tics listed above are called embedded systems.

This definition includes some fuzziness. However, it seems to be neither neces-
sary nor possible to remove this fuzziness.

1.5 Curriculum Integration of Embedded Systems,
CPS, and IoT

Unfortunately, embedded systems are hardly covered in the 2013 edition of the
Computer Science Curriculum, as published by ACM and the IEEE Computer
Society [10]. However, the growing number of applications results in the need for
more education in this area. This education should help overcome the limitations of
currently available design technologies. Surveys of requirements and approaches
to CPS education have been published by the National Academies of Sciences,
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Engineering, and Medicine [409] and by Marwedel et al. [379]. There is still a
need for better specification languages, models, tools generating implementations
from specifications, timing verifiers, system software, real-time operating systems,
low-power design techniques, and design techniques for dependable systems. This
book should help in teaching the essential issues and should be a stepping stone for
starting more research in the area. Additional information related to the book can
be obtained from the following web page: http://ls12-www.cs.tu-dortmund.de/~
marwedel/es-book

This page includes links to slides, videos, simulation tools, error corrections, and
other related materials. Videos are directly accessible from: https://www.youtube.
com/user/cyphysystems

Users of this material who discover errors or who would like to make
comments on how to improve the material should send an e-mail to:
peter.marwedel@tu-dortmund.de

Due to the availability of this book and of videos, it is feasible and recommended
to try out flipped classroom teaching [375]. With this style of teaching, students
are requested to watch the videos (or read the book) at home. The presence of the
students in the classroom is then used to interactively solve problems. This helps to
strengthen problem-solving competences, team work, and social skills. In this way,
the availability of the Internet is exploited to improve teaching methods for students
actually present at their university. Assignments could use the information in this or
in complementary books (e.g., [593], [81], and [174]).

With flipped classroom teaching, existing lab session slots can be completely
dedicated to gaining some practical experience with CPS. Toward this end, a course
using this textbook should be complemented by an exciting lab, using, for example,
small robots, such as Lego Mindstorms™ or micro-controllers (e.g., Raspberry
Pie, Arduino, or Odroid). For micro-controller boards which are available on the
market, educational material is typically available. Another option is to let students
gain some practical experience with finite state machine tools. Teaching from this
book should be complemented by a course on machine learning (or data analysis)
[188, 204, 453, 560], since the (possibly noisy) values returned by sensors must be
interpreted.

1.5.1 Prerequisites

The book assumes a basic understanding in several areas:

• Computer programming (including foundations of software engineering and
some experiences with programming of micro-controllers)

• Algorithms (graph algorithms, optimization algorithms, algorithm complexity)
• Computer organization, for example, at the level of the introductory book by J.L.

Hennessy and D.A. Patterson [212], including finite state automata
• Fundamentals of operating systems

http://ls12-www.cs.tu-dortmund.de/~marwedel/es-book
http://ls12-www.cs.tu-dortmund.de/~marwedel/es-book
https://www.youtube.com/user/cyphysystems
https://www.youtube.com/user/cyphysystems
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Fig. 1.7 Positioning of the topics of this book

• Fundamentals of computer networks (important for IoT!)
• Fundamental mathematical concepts (tuples, integrals, and linear algebra)
• Electrical networks and fundamental digital circuits such as gates and registers

These prerequisites can be grouped into the courses in the top row of Fig. 1.7.
Missing fundamental knowledge on electrical circuits, operational amplifiers,

memory management, and integer linear programming can be compensated by
reading appendices of this book. Knowledge in statistics and Fourier transforms
are welcome.

1.5.2 Recommended Additional Courses

The book should be complemented by follow-up courses providing a more special-
ized knowledge in some of the following areas (see the bottom row in Fig. 1.7):7

• Control systems
• Digital signal processing
• Machine vision
• Real-time systems, real-time operating systems, and scheduling
• Robotics
• Application areas such as telecommunications, automotive, medical equipment,

and smart homes
• Middleware

7The partitioning between undergraduate courses and graduate courses may differ between
universities.
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• Specification languages and models for embedded systems
• Sensors and actuators
• Dependability of computer systems
• Low-power design techniques
• Physical aspects of CPS
• Computer-aided design tools for application-specific hardware
• Formal verification of hardware systems
• Testing of hardware and software systems
• Performance evaluation of computer systems
• Ubiquitous computing
• Advanced communication techniques for IoT
• The Internet of Things (IoT)
• Impact of embedded, CPS, and IoT systems
• Legal aspects of embedded, CPS, and IoT systems

1.6 Design Flows

The design of the considered systems is a rather complex task, which has to be
broken down into a number of subtasks to be tractable. These subtasks must be
performed one after the other and some of them must be repeated.

The design information flow starts with ideas in people’s heads. These ideas
should incorporate knowledge about the application area. They must be captured
in a design specification. In addition, standard hardware and system software
components are typically available and should be reused whenever possible (see
Fig. 1.8). In Fig. 1.8 (as well as in other similar diagrams in this book), we are
using boxes with rounded corners for stored information and rectangles for
transformations on information. In particular, information is stored in the design
repository. The repository allows keeping track of design models. In most cases,
the repository should provide version management or “revision control,” such as
CVS [87], SVN [108], or “git” (see https://www.git-scm.com). A good design
repository should also come with a design management interface which would also
keep track of the applicability of design tools and sequences, all integrated into
a comfortable graphical user interface (GUI). The design repository and the GUI
can be extended into an integrated development environment (IDE), also called
design framework (see, e.g., [345]). An integrated development environment keeps
track of dependencies between tools and design information.

Using the repository, design decisions can be taken in an iterative fashion. At
each step, design model information must be retrieved. This information is then
considered.

During design iterations, applications are mapped to execution platforms,
and new (partial) design information is generated. The generation comprises the
mapping of operations to concurrent tasks, the mapping of operations to either

https://www.git-scm.com
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hardware or software (called hardware/software partitioning), compilation, and
scheduling.

Designs should be evaluated with respect to various objectives including
performance, dependability, energy consumption, and thermal behavior. At the
current state of the art, usually none of the design steps can be guaranteed to be
correct. Therefore, it is also necessary to validate the design. Validation consists of
checking intermediate or final design descriptions against other descriptions. Thus,
each design decision should be evaluated and validated.

Due to the importance of the efficiency of embedded systems, optimizations
are important. There are a large number of possible optimizations, including high-
level transformations (such as advanced loop transformations) and energy-oriented
optimizations.

Design iterations could also include test generation and an evaluation of the
testability. Testing needs to be included in the design iterations if testability issues
are already considered during the design steps. In Fig. 1.8, test generation has been
included as optional step of design iterations (see the dashed box). If test generation
is not included in the iterations, it must be performed after the design has been
completed.

At the end of each step, the repository should be updated. Version support would
be welcome.

Details of the flow between the repository, application mapping, evaluation, vali-
dation, optimization, testability considerations, and storage of design information
may vary. These actions may be interleaved in many different ways, depending
on the design methodology used. This book presents embedded system design
from a broad perspective, and it is not tied toward particular design flows or tools.
Therefore, we have not indicated a particular list of design steps. For any particular
design environment, we can “unroll” the loop in Fig. 1.8 and attach names to
particular design steps.

For example, this leads to the particular case of the SpecC [173] design flow
shown in Fig. 1.9. In this case, a particular set of design steps, such as architecture
exploration, communication synthesis, and software and hardware compilation are
included. The precise meaning of these terms is not relevant in this book. In the case
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of Fig. 1.9, validation and evaluation are explicitly shown for each of the steps but
are wrapped into one larger box.

A second instance of an unfolded Fig. 1.8 is shown in Fig. 1.10. It is the V-model
of design flows [550], which has to be adhered to for many German IT projects.

The model is used especially in the public sector but also beyond. Figure 1.10
very clearly shows the different steps that must be performed. The steps correspond
to certain phases during the software development process (the precise meaning is
again not relevant in the context of this book). Note that taking design decisions
and evaluating and validating designs are lumped into a single box in this diagram.
Application knowledge, system software, and system hardware are not explicitly
shown. The V-model also includes a model of the integration and testing phase
(right “wing”) of the diagram. This corresponds to an inclusion of testing into the
integration phase. The shown model corresponds to the V-model version “97”. The
more recent V-model XT allows a more general set of design steps. This change
matches very well to our interpretation of design flows in Fig. 1.8. Other iterative
approaches include the waterfall model and the spiral model. More information
about software engineering for embedded systems can be found in a book by J.
Cooling [109].

Our generic design flow model is also consistent with flow models used in
hardware design. For example, Gajski’s Y-chart [171] (see Fig. 1.11) is a very
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Fig. 1.11 Gajski’s Y-chart
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popular model. Gajski considers design information in three dimensions: behavior,
structure, and layout. The first dimension just reflects the behavior. A high-level
model would describe the overall behavior, while finer-grained models would
describe the behavior of components. Models at the second dimension include
structural information, such as information about hardware components. High-
level descriptions in this dimension could correspond to processors and low-level
descriptions to transistors. The third dimension represents geometrical layout infor-
mation of chips. Design paths will typically start with a coarse-grained behavioral
description and finish with a fine-grained geometrical description. Along this path,
each step corresponds to one iteration of our generic design flow model. In the
example of Fig. 1.11, an initial refinement is done in the behavioral domain. The
second design step maps the behavior to structural elements and so on. Finally, a
detailed geometrical description of the chip layout is obtained.

The previous three diagrams demonstrate that a number of design flows are using
the iterative flow of Fig. 1.8. The nature of the iterations in Fig. 1.8 can be a source
of discussions. Ideally, we would like to describe the properties of our system and
then let some smart tool do the rest. Automatic generation of design details is called
synthesis.

Definition 1.12 (Marwedel [370]) “Synthesis is the process of generating the
description of a system in terms of related lower-level components from some high-
level description of the expected behavior.”

Automatic synthesis is assumed to perform this process automatically. Automatic
synthesis, if successful, avoids many manual design steps. The goal of using
automatic synthesis for the design of systems has been considered in the “describe-
and-synthesize” paradigm by Gajski [172]. This paradigm is in contrast to the more
traditional “specify-explore-refine” approach, also known as “design-and-simulate”
approach. The second term stresses the fact that manual design typically has to be
combined with simulation, for example, for catching design errors. In the traditional
approach, simulation is more important than in automatic synthesis.
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1.7 Structure of This Book

Consistent with the design information flow shown above, this book is structured as
follows: Chapter 2 provides an overview of specification techniques, languages, and
models. Key hardware components of embedded systems and the cyphy-interface
are presented in Chap. 3. Chapter 4 deals with system software components, partic-
ularly embedded operating systems. Chapter 5 contains the essentials of embedded
system design evaluation and verification. Mapping applications to execution
platforms is one of the key steps in the design process of embedded systems.
Standard techniques (including scheduling) for achieving such mapping are listed
in Chap. 6. Due to the need for generating efficient designs, many optimization
techniques are needed. From among the abundant set of available optimization
techniques, several groups are mentioned in Chap. 7. Chapter 8 contains a brief
introduction to testing mixed hardware/software systems. The Appendix comprises
prerequisites for understanding the book, and it can be skipped by students familiar
with the topics covered there.

It may be necessary to design special-purpose hardware or to optimize processor
architectures for a given application. However, hardware design is not covered in
this book. Coussy and Morawiec [113] provide an overview of high-level hardware
synthesis techniques.

The content of this book is different from the content of most other books on
embedded systems or CPS design. Traditionally, the focus of many such books is on
explaining the use of micro-controllers, including their memory, I/O, and interrupt
structure. There are many such books [38, 175–177, 279, 317, 425]. We believe
that, due to the increasing complexity of embedded and cyber-physical systems,
this focus has to be extended to include at least different specification paradigms,
fundamentals of hardware building blocks, the mapping of applications to execution
platforms, as well as evaluation, validation, and optimization techniques. In the
current book, we will be covering all these areas. The goal is to provide students
with an introduction to embedded systems and CPS, enabling students to put the
different areas into perspective.

For further details, we recommend a number of sources (some of which have also
been used in preparing this book):

• Symposia dedicated toward embedded/cyber-physical systems include the
Embedded Systems Week (see http://www.esweek.org) and the Cyber-Physical
Systems Week (see http://www.cpsweek.org).

• The web site of the virtual CPS Organization in the USA contains numerous links
to current projects and their results [115].

• The web page of a special interest group of ACM [9] focuses on embedded
systems.

• The web site of the European network of excellence on embedded and real-time
systems [25] also provides numerous links for the area.

• A book written by Edward Lee et al. also includes physical aspects of cyber-
physical systems [335].

http://www.esweek.org
http://www.cpsweek.org
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• Approaches for embedded system education are covered in the Workshops on
Embedded Systems Education (WESE; see [89] for results from the workshop
held in 2018) and in proceedings of the first (and only) Workshop on CPS
Education [424].

• Other sources of information about embedded systems include books by Laplante
[322], Vahid [552], the ARTIST road map [63], the “Embedded Systems
Handbook” [614], and books by Gajski et al. [174], and Popovici et al. [457].

• There are a large number of sources of information on specification languages.
These include earlier books by Young [609], Burns and Wellings [80], Bergé
[567], and de Micheli [124]. There are a huge amount of information on
languages such as SystemC [407], SpecC [173], and Java [71, 131, 574].

• Real-time scheduling is covered comprehensively in the books by Buttazzo [81],
by Krishna and Shin [310], and by Baruah et al. [41].

• Approaches for designing and using real-time operating systems (RTOSes) are
presented in a book by Kopetz [303].

• Robotics is an area that is closely linked to embedded and cyber-physical
systems. We recommend the book by Siciliano et al. [487] for information on
robotics.

• There are specialized books and articles on the Internet of Things [185, 192, 193].
• Languages and verification are covered in a book by Haubelt and Teich (in

German) [206].

1.8 Problems

We suggest solving the following problems either at home or during a flipped
classroom session [375].

1.1 Please list possible definitions of the term “embedded system”!

1.2 How would you define the term “cyber-physical system (CPS)”? Do you
see any difference between the terms “embedded systems” and “cyber-physical
systems”?

1.3 What is the “Internet of Things” (IoT)?

1.4 What is the goal of “Industry 4.0”?

1.5 In which way does this book cover CPS and IoT design?

1.6 In which application areas do you see opportunities for CPS and IoT systems?
Where do you expect major changes caused by information technology?

1.7 Use the sources available to you to demonstrate the importance of embedded
systems!

1.8 Which challenges must be overcome in order to fully take advantage of the
opportunities?
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1.9 What is a hard timing constraint? What is a soft timing constraint?

1.10 What is the “Zeno effect”?

1.11 What is adaptive sampling?

1.12 Which objectives must be considered during the design of embedded and
cyber-physical systems?

1.13 Why are we interested in energy-aware computing?

1.14 What are the main differences between PC-based applications and embed-
ded/CPS applications?

1.15 What is a reactive system?

1.16 On which web sites do you find companion material for this book?

1.17 Compare the curriculum of your educational program with the description
of the curriculum in this introduction. Which prerequisites are missing in your
program? Which advanced courses are available?

1.18 What is flipped classroom teaching?

1.19 How could we model design flows?

1.20 What is the “V-model”?

1.21 How could we define the term “synthesis”?
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