Skip to main content

Three-Dimensional Vascular Imaging and Power Doppler Angiographic Imaging

  • Reference work entry
  • First Online:
Noninvasive Vascular Diagnosis

Abstract

Current ultrasound technology allows noninvasive flow imaging techniques to generate images similar to conventional angiography as well as the efficient rendering of volumetric data into three-dimensional (3-D) images. Power Doppler particularly has been useful in this regard to more thoroughly evaluate the extracranial carotids and the peripheral arterial system. Enhanced diagnostic data has been seen in 76% of carotid studies and in 71% of studies of the peripheral arteries, including the aortoiliac system and renal arteries. Differentiation of total versus near total carotid artery occlusion was improved using power Doppler angiography compared to conventional duplex ultrasound with color Doppler imaging. 3-D image reconstruction allows more precise lumen measurements, with 87% agreement with conventional angiography. The sensitivity of 3-D imaging to a >50% diameter stenosis was 100% with positive predictive value of 81%. 3-D imaging was also able to detect all plaque surface ulcerations seen on conventional angiography. Additional vascular applications for 3-D imaging and power Doppler angiography include transcranial evaluation of the circle of Willis and its major branches, evaluation of overall perfusion of organs such as the kidney or liver, tumor vascularity and differentiation of benign versus malignant masses, and, in conjunction with an ultrasound contrast agents, better characterization of solid masses and atherosclerotic plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Miele F. Clinical safety. In: Hedrick WR, Hykes DL, Starchman DE, editors. Ultrasound physics and instrumentation. 4th ed. Forney: Pegasus Lectures; 2006.

    Google Scholar 

  2. Howry DH, Posakony G, Cushman R, et al. Three dimensional and stereoscopic observation of body structures by ultrasound. J Appl Physiol. 1956;9:304–6.

    Article  Google Scholar 

  3. Steen E, Olstad B. Volume rendering of 3D medical ultrasound data using direct feature mapping. IEEE Trans Med Imaging. 1994;13:517–25.

    Article  CAS  PubMed  Google Scholar 

  4. Detmer PR, Bashein G, Hodges T, et al. 3D ultrasonic image feature location based on magnetic scan head tracking: in vitro calibration and validation. Ultrasound Med Biol. 1994;20:923–36.

    Article  CAS  PubMed  Google Scholar 

  5. Franceschi D, Bondi JA. Rubin JR. a new approach for three-dimensional reconstruction of arterial ultrasonography. J Vasc Surg. 1992;15:800–5.

    Article  CAS  PubMed  Google Scholar 

  6. Rankin RN, Fenster A, Downey DB, et al. Three-dimensional sonographic reconstruction: techniques and diagnostic applications. AJR. 1993;161:695–702.

    Article  CAS  PubMed  Google Scholar 

  7. Roelandt JR, DiMario C, Pandian NG, et al. Three-dimensional reconstruction of intracoronary ultrasound images: rationale, approaches, problems and directions. Circulation. 1994;90:1044–55.

    Article  CAS  PubMed  Google Scholar 

  8. Di Mario C, von Birgelen C, Prati F, et al. Three-dimensional reconstruction of two-dimensional intravascular ultrasound: clinical or research tool? Br Heart J. 1995;73(Suppl 2):26–32.

    Article  PubMed  PubMed Central  Google Scholar 

  9. von Birgelen C, Kutryk MJB, Gil R, et al. Quantification of the minimal luminal cross-sectional area after coronary stenting by two- and three-dimensional intravascular ultra-sound versus edge detection and video densitometry. Am J Cardiol. 1996;78:520–5.

    Article  Google Scholar 

  10. Fine D. Three-dimensional ultrasound imaging of the gall-bladder and dilated biliary tree: reconstruction from real-time B-scans. Br J Radiol. 1991;64:1056–7.

    Article  CAS  PubMed  Google Scholar 

  11. Levine RA, Weyman AE, Handschumacher MD. Three-dimensional echocardiography: techniques and applications. Am J Cardiol. 1992;69:121H–30H.

    Article  CAS  PubMed  Google Scholar 

  12. Kelly IM, Gardener JE, Brett AD, et al. Three-dimensional US of the fetus: work in progress. Radiology. 1994;192:253–9.

    Article  CAS  PubMed  Google Scholar 

  13. Moskalik A, Carson PL, Meyer CR, et al. Registration of three-dimensional compound ultrasound scans of the breast for refraction and motion corrections. Ultrasound Med Biol. 1995;21:769–78.

    Article  CAS  PubMed  Google Scholar 

  14. Nelson TR, Pretorius DH, Slansky M, et al. Three-dimensional echocardiographic evaluation of fetal heart anatomy and function. J Ultrasound Med. 1996;15:1–9.

    Article  CAS  PubMed  Google Scholar 

  15. Lee W, Comstock CH, Kirk JS, et al. Birthweight prediction by three-dimensional ultrasound volumes of the fetal thigh and abdomen. J Ultrasound Med. 1997;16:799–805.

    Article  CAS  PubMed  Google Scholar 

  16. Marks LS, Dorey FJ, Macairan ML, et al. Three-dimensional ultrasound device for rapid determination of bladder volume. Urology. 1997;50:341–8.

    Article  CAS  PubMed  Google Scholar 

  17. Cusumano A, Coleman DJ, Silverman RH, et al. Three-dimensional ultrasound imaging: clinical applications. Ophthalmology. 1998;105:300–6.

    Article  CAS  PubMed  Google Scholar 

  18. Barry CD, Allott CP, John NW, et al. Three-dimensional freehand ultrasound: image reconstruction and volume analysis. Ultrasound Med Biol. 1997;23:1209–24.

    Article  CAS  PubMed  Google Scholar 

  19. von Ramm OT, Smith SW, Carroll BA. Real-time volumetric US imaging. Radiology. 1994;193(P):308.

    Google Scholar 

  20. Riccabona M, Nelson TR, Pretorius DH, et al. Distance and volume measurement using three-dimensional ultrasonography. J Ultrasound Med. 1995;14:881–6.

    Article  CAS  PubMed  Google Scholar 

  21. Rosenfield K, Kaufman J, Pieczek A, et al. Real-time three dimensional reconstruction of intravascular images of iliac arteries. Am J Cardiol. 1992;70:412–5.

    Article  CAS  PubMed  Google Scholar 

  22. Bendick PJ, Brown OW, Hernandez D, et al. Three-dimensional vascular imaging using Doppler ultrasound. Am J Surg. 1998;176:183–7.

    Article  CAS  PubMed  Google Scholar 

  23. Delcker A, Turowski B. Diagnostic value of three-dimensional transcranial contrast duplex sonography. J Neuroimaging. 1997;7:139–44.

    Article  CAS  PubMed  Google Scholar 

  24. Kenton AR, Martin PJ, Evans DH. Power Doppler: an advance over colour Doppler for transcranial imaging? Ultrasound Med Biol. 1996;22:313–7.

    Article  CAS  PubMed  Google Scholar 

  25. Postert T, Federlein J, Przuntek H, et al. Insufficient and absent acoustic temporal bone window: potential and limitations of transcranial contrast-enhanced color-coded sonography and contrast-enhanced power-based sonography. Ultrasound Med Biol. 1997;23:857–62.

    Article  CAS  PubMed  Google Scholar 

  26. Griewing B, Morgenstern C, Driesner F, Kallwellis G, Walker ML, Kessler C. Cerebrovascular disease assessed by color-flow and power Doppler ultrasonography: comparison with digital subtraction angiography in internal carotid artery stenosis. Stroke. 1996;27:95–100.

    Article  CAS  PubMed  Google Scholar 

  27. Steinke W, Ries S, Artemis N, Schwartz A, Hennerici M. Power Doppler imaging of carotid artery stenosis. Stroke. 1997;28:1981–7.

    Article  CAS  PubMed  Google Scholar 

  28. Keberle M, Jenett M, Beissert M, Jahns R, Haerten R, Hahn D. Three-dimensional power Doppler sonography in screening for carotid artery disease. J Clin Ultrasound. 2000;28:441–51.

    Article  CAS  PubMed  Google Scholar 

  29. Bucek RA, Reiter M, Dirisamer A, Haumer M, Fritz A, Minar E, Lammer J. Three-dimensional color Doppler sonography in carotid artery stenosis. AJNR Am J Neuroradiol. 2003;24:1294–9.

    PubMed  PubMed Central  Google Scholar 

  30. AbuRahma AF, Jarrett K, Hayes JD. Clinical implications of power Doppler three-dimensional ultrasonography. Vascular. 2004;12:293–300.

    Article  PubMed  Google Scholar 

  31. Chiu B, Egger M, Spence JD, et al. Quantification of carotid vessel wall and plaque thickness change using 3D ultrasound images. Med Phys. 2008;35:3691–710.

    Article  PubMed  Google Scholar 

  32. Mallett C, House AA, Spence JD, et al. Longitudinal ultrasound evaluation of carotid atherosclerosis in one, two and three dimensions. Ultrasound Med Biol. 2009;35:367–75.

    Article  PubMed  Google Scholar 

  33. Seabra JC, Pedro LM, Fernandes JF, et al. A 3-D ultrasound-based framework to characterize the echo morphology of carotid plaques. IEEE Trans Biomed Eng. 2009;56:1442–53.

    Article  PubMed  Google Scholar 

  34. Krasinski A, Chiu B, Spence JD, et al. Three-dimensional ultrasound quantification of intensive statin treatment of carotid atherosclerosis. Ultrasound Med Biol. 2009;35:1763–72.

    Article  PubMed  Google Scholar 

  35. Rubin JM, Adler RS, Fowlkes JB, et al. Fractional moving blood volume: estimation with power Doppler US. Radiology. 1995;197:183–90.

    Article  CAS  PubMed  Google Scholar 

  36. Carson PL, Moskalik AP, Govil A, et al. The 3D and 2D color flow display of breast masses. Ultrasound Med Biol. 1997;23:837–49.

    Article  CAS  PubMed  Google Scholar 

  37. Huang YL, Kuo SJ, Hsu CC, et al. Computer-aided diagnosis for breast tumors by using vascularization of 3-D power Doppler ultrasound. Ultrasound Med Biol. 2009;35:1607–14.

    Article  PubMed  Google Scholar 

  38. Alcazar JL, Rodriguez D, Royo P, Galvan R, AJossa S, Guerriero S. Intraobserver and interobserver reproducibility of 3-dimensional power Doppler vascular indices in assessment of solid and cystic-solid adnexal masses. J Ultrasound Med. 2008 Jan;27(1):1–6.

    Article  PubMed  Google Scholar 

  39. Kudla MJ, Alcazar JL. Does sphere volume affect the performance of three-dimensional power Doppler virtual vascular sampling for predicting malignancy in vascularized solid or cystic-solid adnexal masses? Ultrasound Obstet Gynecol. 2010 May;35(5):602–8.

    Article  CAS  PubMed  Google Scholar 

  40. Xu HX, Lu MD, Xie XH, et al. Three-dimensional contrast-enhanced ultrasound of the liver: experience of 92 cases. Ultrasonics. 2009;49:377–85.

    Article  PubMed  Google Scholar 

  41. Leen E, Kumar S, Khan SA, et al. Contrast-enhanced 3D ultrasound in the radiofrequency ablation of liver tumors. World J Gastroenterol. 2009;15:289–99.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Luo W, Numata K, Morimoto M, et al. Differentiation of focal liver lesions using three-dimensional ultrasonography: retrospective and prospective studies. World J Gastroenterol. 2010;16:2109–19.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Numata K, Luo W, Morimoto M, et al. Contrast enhanced ultrasound of hepatocellular carcinoma. World J Radiol. 2010;2:68–82.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pfister K, Rennert J, Greiner B, Jung W, Stehr A, Gossmann H, et al. Pre-surgical evaluation of ICA-stenosis using 3D power Doppler, 3D color coded Doppler sonography, 3D B-flow and contrast enhanced B-flow in correlation to CTA/MRA: first clinical results. Clin Hemorheol Microcirc. 2009;41(2):103–16.

    Article  CAS  PubMed  Google Scholar 

  45. Jung EM, Kubale R, Jungius KP, Jung W, Lenhart M, Clevert DA. Vascularization of liver tumors - preliminary results with coded harmonic Angio (CHA), phase inversion imaging, 3D power Doppler and contrast medium-enhanced B-flow with second generation contrast agent (Optison). Clin Hemorheol Microcirc. 2006;34(4):483–97.

    CAS  PubMed  Google Scholar 

  46. von Birgelen C, DiMario C, Reimers B, et al. Three-dimensional intracoronary ultrasound imaging: methodology and clinical relevance for the assessment of coronary arteries and bypass grafts. J Cardiovasc Surg. 1996;37:129–39.

    Google Scholar 

  47. Goldberg SL, Colombo A, Nakamura S, et al. Benefit of intravascular ultrasound in the deployment of Palmaz–Schatz stents. J Am Coll Cardiol. 1994;24:996–1003.

    Article  CAS  PubMed  Google Scholar 

  48. White RA, Donayre CE, Walot I, et al. Preliminary clinical outcome and imaging criterion for endovascular prosthesis development in high-risk patients who have aortoiliac and traumatic arterial lesions. J Vasc Surg. 1996;24:556–71.

    Article  CAS  PubMed  Google Scholar 

  49. Chengelis DL, Glover JL, Bendick P, et al. The use of intravascular ultrasound in the management of thoracic outlet syndrome. Am Surg. 1994;60:592–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali F. AbuRahma .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

AbuRahma, A.F., Abu-Halimah, S., Bendick, P.J. (2022). Three-Dimensional Vascular Imaging and Power Doppler Angiographic Imaging. In: AbuRahma, A.F., Perler, B.A. (eds) Noninvasive Vascular Diagnosis. Springer, Cham. https://doi.org/10.1007/978-3-030-60626-8_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60626-8_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60625-1

  • Online ISBN: 978-3-030-60626-8

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics