Skip to main content

Comparison Between PS and SBAS InSAR Techniques in Monitoring Shallow Landslides

  • Chapter
  • First Online:
Understanding and Reducing Landslide Disaster Risk (WLF 2020)

Part of the book series: ICL Contribution to Landslide Disaster Risk Reduction ((CLDRR))

Included in the following conference series:

Abstract

The main aim of this study is to compare the two commonly used multi-temporal interferometric synthetic aperture radar (InSAR) techniques, i.e. permanent scatterers (PS) and small baseline subset (SBAS), in monitoring shallow landslides. PS and SBAS techniques have been applied to ascending and descending Sentinel-1 SAR data to measure the rate of surface deformation and the displacement time series in the Rovegliana area (NE Italian pre-Alps) from 2014 to 2019. As expected, PS results cover only urban areas, while those obtained by SBAS cover up to the 85% of the investigated area. Velocity maps obtained by the two techniques show that some sectors of the investigated slope are affected by active shallow landslides which threaten the stability of buildings, walls and road network. The comparison between ascending and descending velocity maps along the satellite line of sight reveals the presence of a horizontal component in the east–west direction which is consistent with the landslide kinematic. The analysis of the displacement time series shows that, in the case of linear deformation trends, PS and SBAS results are similar, whereas, in the case of high oscillations and non-linear behavior, SBAS technique can provide a better estimation of the displacements. Besides, SBAS provides smoother and less noisy displacement time series. However, both the techniques showed their high capability in monitoring the evolution of the landslides, which is crucial for the implementation of effective risk prevention and mitigation strategies. To deep investigate the differences between the two techniques, other geomatic methodologies, based on global navigation satellite system and terrestrial laser scanning, should be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40(11):2375–2383

    Article  Google Scholar 

  • Casu F, Manzo M, Lanari R (2006) A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens Environ 102(3):195–210

    Article  Google Scholar 

  • Costantini M (1998) A novel phase unwrapping method based on network programming. IEEE Trans Geosci Remote Sens 36(3):813–821

    Article  Google Scholar 

  • Colesanti C, Ferretti A, Prati C, Rocca F (2003) Monitoring landslides and tectonic motions with the permanent scatterers technique. Eng Geol 68(1–2):3–14

    Article  Google Scholar 

  • Crosetto M, Monserrat M, Cuevas-Gonzales M, Devanthery N, Crippa B (2016) Persistent scatterer interferometry: a review. ISPRS J Photogramm Remote Sens 115:78–89

    Google Scholar 

  • Ferretti A, Prati C, Rocca F (2000) Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens 38(5):2202–2212

    Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20

    Article  Google Scholar 

  • Goldstein RM, Werner CL (1998) Radar interferogram filtering for geophysical applications. Geophys Res Lett 25(21):4035–4038

    Article  Google Scholar 

  • Hilley GE, Bürgmann R, Ferretti A, Novali F, Rocca F (2004) Dynamics of slow-moving landslides from permanent scatterer analysis. Science 304(5679):1952–1955

    Article  Google Scholar 

  • Pasquali P, Cantone C, Riccardi P, Defilippi M, Ogushi F, Gagliano S, Tamura M (2014) Mapping of ground deformations with interferometric stacking techniques. Land Appl Radar Remote Sens, Holecz F, Pasquali P, Milisavljevic N, Closson D, IntechOpen. https://doi.org/10.5772/58225

    Article  Google Scholar 

  • Tessari G, Floris M, Achilli V, Fabris M, Menin A, Monego M (2017) Testing sentinel-1A data in landslide monitoring: a case study from North-Eastern Italian pre-Alps. Workshop on world landslide forum, 29 May–2 June 2017. Ljubljana, Slovenia, pp 209–217

    Google Scholar 

  • Toaldo M, Tessari G, Monego M, Achilli V, Fabris M, Menin A, Floris M (2016) Preliminary study of conditions influencing slope dynamics in the area of Rovegliana (North-Eastern Italian pre-Alps). Rend Online Soc Geol Ital 41:207–209

    Google Scholar 

  • Wasowski J, Bovenga F (2014) Investigating landslides and unstable slopes with satellite multi temporal interferometry: current issues and future perspectives. Eng Geol 174:103–138

    Article  Google Scholar 

  • Zeni G, Pepe A, Zhao Q, Bonano M, Gao W, Li X, Ding X (2014) A differential SAR interferometry (DInSAR) investigation of the deformation affecting the coastal reclaimed areas of the Shanghai megacity. In: IEEE geoscience and remote sensing symposium, 13–18 July 2014. Quebec, Canada, pp 482–485

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, X., Tessari, G., Fabris, M., Achilli, V., Floris, M. (2021). Comparison Between PS and SBAS InSAR Techniques in Monitoring Shallow Landslides. In: Casagli, N., Tofani, V., Sassa, K., Bobrowsky, P.T., Takara, K. (eds) Understanding and Reducing Landslide Disaster Risk. WLF 2020. ICL Contribution to Landslide Disaster Risk Reduction. Springer, Cham. https://doi.org/10.1007/978-3-030-60311-3_17

Download citation

Publish with us

Policies and ethics