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Abstract One of the principal methods of preventing large earthquakes is stimu-
lation of a large series of small events. The result is a transfer of the rapid tectonic
dynamics in a creep mode. In this chapter, we discuss possibilities for such a transfer
in the framework of simplified models of a subduction zone. The proposed model
describes well the basic characteristic features of geo-medium behavior, in partic-
ular, statistics of earthquakes (Gutenberg Richter andOmori laws). Its analysis shows
that local relatively low-energy impacts can switch block dynamics from stick–slip
to creep mode. Thus, it is possible to change the statistics of seismic energy release
bymeans of a series of local, periodic, and relatively low energy impacts. This means
a principal possibility of “suppressing” strong earthquakes. Additionally, a modified
version of the Burridge-Knopoff model including a simple model for state dependent
friction force is derived and studied. The friction model describes a velocity weak-
ening of friction betweenmoving blocks and an increase of static friction during stick
periods. It provides a simplified but qualitatively correct stability diagram for the tran-
sition from smooth sliding to a stick–slip behavior as observed in various tribological
systems. Attractor properties of the model dynamic equations were studied under a
broad range of parameters for one- and two-dimensional systems.
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1 Introduction

An important and interesting application of studies of spatial–temporal pattern forma-
tion of mechanical systems is the formation of geological faults and their dynamics.
Of particular interest is the study of the possibility of changing the mode of the
fault dynamics into a slow one, thus preventing strong seismic shocks. The fact that
the statistics of earthquake magnitude and their time correlations meet the laws of
Gutenberg Richter [1, 2] and Omori [1, 3], typical for self-organized critical systems
[4, 5], is often used for the conclusion that it principally occurs on all spatial scales
ranging from microscopic to continental plate scale. Therefore, it is impossible to
exert a targeted influence on the dynamics of earthquakes by local effects of limited
energy. However, the works [6–10], based both on modeling by movable cellular
automaton and full-scale experiments (on one of the active faults of the Baikal rift
zone) suggest the principal possibility of releasing the accumulated elastic energy
due to controlled low energy actions (vibration load and watering).

Based on this idea, we develop and study a model of the behavior of contact zones
of block media and analyze the possibility of controlling the mode of displacement
as was found experimentally.

2 Mechanical Model

Minimalistic mechanical model demonstrating the time correlations typical for
systems showing self-organized criticality has been suggested by the authors. In
the conceptual form, it is shown in Fig. 1. The plate is moved by the external force of
Fext . The plate is inclined by an angle that determines the ratio between the vertical
component of the force Fext cos(α) acting against the force of Archimedes, which
supports the plate “in magma”, and the horizontal component, which results in the

Fig. 1 Schematic diagram of the mechanical model. The force exerted by the mainland, Fext, the
force of Archimedes FArch and the force of elastic interaction Finter are indicated. The circle shows
the event of “bark fracture”
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displacement of the entire system along the x-axis and deformation of the elastic
plate.

In a numerical simulation, the plate is transformed into a set of discrete elements
connected by a (nonlinear) elastic force that tries tomaintain a fixed distance between
them. Let us first consider the simplest, two-dimensional version of the problem. In
this case, the plate is transformed into an elastic chain, and the model equations are
reduced to the following form:

∂x/∂t = Finter, x + Fx + ξx ;
∂z/∂t = Finter, z + FArh, z + Fz + εz;
∂X/∂t =

∑

j

Fx ( j) + Fext, x + ε.

(1)

Here, Fx = Fext sin(α) and Fz = Fext cos(α) are the projections of the force of the
chain’s interaction with the “mainland plate” (we neglect the vertical movement of
the heavy mainland plate here), and the summation is made over all elements of the
chain. The external force is assumed to be constant (acting on the drifting continent
from the magma side). The levitation force of Archimedes FArch, z is given by a
condition:

FArch, z = const ·U0 > 0 at z < 0 and FArch, z = 0 at z > 0 (2)

and Finter, x and Finter, z, components of nonlinear elasticity between the segments of
the chain, are equal:

Finter, x = −∂Uinter/∂x and Finter, z = −∂Uinter/∂z, (3)

where the distance-dependent effective interaction potential Uinter looks like:

Uinter(r) = Kr2(1 − r2/r20 ). (4)

Here, K is the elastic constant. To fix the distance between the elements, in the
simplest, most widespread approach [11–14], the potential of the fourth order (4) is
used, for which the components of the forces between the elements contain cubic
nonlinearity, providing the required rigidity. At the same time, in 2D (or 3D) space,
the chain (surface) can bend under the influence of the force Fext and its elements
move in the vertical (and/or horizontal) direction.

In numerical modeling, this leads to the following fracture condition. If the x- or z-
projection of the vector connecting two consecutive segments of the chain is negative
and its absolute value exceeds some threshold value, then the “fracture” occurs in
this place. The fragment of the chain from its beginning to this point is subsequently
removed. In the absence of resistance on the part of the removed fragment, the speed
of the continental plate sharply increases, up to its deceleration by further segments of
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the chain. Random influences from the surrounding subsystems are included through
the δ-correlated noise source:

〈
ξxz(t, x, z)ξxz(t

′, x ′, z′)
〉 = D1δxzδ(t − t ′)δ(x − x ′)δ(z − z′);

〈
ξ(t, x, z)ξ(t ′, x ′, z′)

〉 = D2δ(t − t ′)δ(x − x ′)δ(z − z′). (5)

Here δ(. . .) is the impulse function of Dirac, δxz is the symbol of Kronnecker, and
in each case some effective temperature can be assigned to the “diffusion coeffi-
cient” D1,2 = 2kBT1,2. The dissipative constant can be selected arbitrarily. It sets
a characteristic time scale, and should be fitted a posteriori by experimental data.
Random influences on the heavy mainland plate can be neglected, which leads to the
assumption D1 � D2.

3 Statistical Properties of the Model

At a constant external force Fext, the movement occurs with a constant—on the large
time scales—average velocity 〈V 〉 = dX/dt . If we subtract V t from the X (t) curve,
the fine structure of the derivative dX/dt becomes clearly visible when the chain
breaks (see Fig. 2). The right side of Fig. 2 shows the distribution of the lengths of
“jumps” and intervals between them.

Let us compare these distributions at different noise intensities. With exception
of the expected reduction in the average interval between the jumps, the results do
weakly dependend on the noise intensity up to the values comparable to the fracture
threshold.Moderate noise (which does not exceed the dynamic chaos intensity of this

Fig. 2 The fine structure of the jumps a obtained by subtracting V t and typical distributions
of lengths of the chain fragments removed after fracture events (b) intervals between the jumps
(c) obtained for parameter values α = π/6, Fext = 10, U0 = 0.1, K = 0.1 + 0.9ξ
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nonlinear system) only increases standard deviations. Therefore, we present below
the results obtained at negligibly low noise.

Of interest is an analysis of the influence of regular (periodic) spatially local-
ized actions on the system. We simulated the influence of sinusoidal and impulse
actions of different intensity. Note that exactly the latter type of action is used in field
experiments.

In the presence of noise, such actions reduce the average time between jumps.
However, being spatially localized, they fix quite precisely both the time and length
of each jump. This can be achieved by selecting resonant frequencies, amplitudes and
force application points. Weak impact plays here the role of the trigger mechanism,
provoking its own, more powerful processes in the system.

Formally, themodel is able to achieve an accurate resonance optimumsuch that the
random components are practically suppressed. In field conditions, the parameters
are not as controlled as in the numerical experiment, and the histogram of jump
distribution acquires additional lines near the resonant one.

4 Three-Dimensional System and Reduced Frontal Motion
Model

Real tectonic systems are three-dimensional. Therefore, even for a minimalistic
model, in addition to coordinates (x, z) also the y-coordinate along the edge of
the fault has to be considered. In a self-consistent approximation, we can assume
that the 3D system is composed of many equivalent 2D systems, which interact only
through a common front of contact with the “continent”. All system Eq. (1) acquire
an additional index [layer number (x, z)] along the y-axis

∂x(k)/∂t = Finter, x (k) + Fx (k) + ξx (k),

∂z(k)/∂t = Finter, z(k) + FArh, z(k) + Fz(k) + ξz(k). (6)

The last equation of the system (1) is modified into equation:

∂X (k)/∂t =
∑

j

Fx (k)( j) + Fext, x (k) + K [X (k + 1) + X (k − 1) − 2X (k)]. (7)

At small deviations between the neighboring layers, they behave quasi-independently
according to the 2D model described above. If the deviations between X (k + 1) +
X (k−1) and 2X (k) increase, they are suppressed by the elastic bond K [X (k+1)+
X (k − 1) − 2X (k)] determined by the constant K .

In the following, we will shift each following action along the front by some
value so that at the present moment the small jump will be (with certain probability)
provoked in another place of the front. Figure 3 illustrates the resulting propagation
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Fig. 3 The movement of the frontal area of X (k) caused by periodic impacts along it

of the front on example fraction of the front. Moving the impact point along the front
(asterisk in Fig. 3) generates multiple front jumps (instead of one), thus facilitating
small jumps. The corresponding histograms contain some contribution of jumps,
large in amplitude and time intervals between them, which, however, is much smaller
than for an unperturbed system.

Taking into account the practical importance of such a problem, as well as the
general scientific interest, it is useful to construct a simplified minimalist model
of frontal motion, in which the connection between the layers would be taken into
account in the rules of advancement of its fragments. For this purpose, let us consider
a 2D front line in the plane (x, y), each segment of which moves forward under the
action of a constant external force.

Such a minimalistic model successfully reproduces the basic properties of a
more general 3D-model, and is compact enough for large parameter studies. It is
stable against varying model parameters in a very wide range. First, we checked that
the change of the elastic constant by three orders of magnitude did not led to any
substantial change in the distribution function P [y(k)].

The method of inducing local surges described above works with the reduced
model in the same manner as described above in a 3D model. In other words, it is
possible to select such periodicity and distance between the local impacts that they
provoke a wave of small jumps, which leads to an almost regular movement of the
entire front line. The instantaneous state of this process is shown in Fig. 4. For the
sake of clarity, the planar front has been chosen here as the initial condition. The area
near the artificial influence is marked with a grey circle. The instantaneous position
of the impact zone is shown by a dark solid circle; the spontaneous jumps caused by
it are marked with bold dots inside the circle.

The numerical model above, in its minimalistic variant, was published by the
authors [12] in 2006 and was used to study the dynamics of subduction zone
dynamics. Later on, in 2008, the detected correlations were used by us [13] to select
the optimal scenarios of other “weak and cheap” local energy effects. As a result, the
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Fig. 4 The initial stage of the formation of an equilibrium distribution of probability P[y(k)] in
the minimalist model at the 2D front

efficiency of such impactswas significantly increasedmaking it possible to switch the
movement of blocks between “stick–slip” and creep modes. The average energy of
single seismic shocks was significantly reduced and it became possible to “suppress”
strong earthquakes. The model adequately described the laws of deformation for a
block system and the temporal correlations typical of systems with self-organized
criticality. The proposedmodel differs in principle from those studied previously (see,
e.g., [2–11]) by taking into account the real topology of the creep of a continental
platform on a thinner oceanic platform.

5 Correlation Functions

The simplicity and numerical efficiency of the model described in the previous
Sections can be used to accumulate the statistics of correlations of the motion of
separate blocks at the front. These correlations, in turn, can be used for selecting
an optimum scheme of external action leading to the transformation of the system
dynamics into a creep regime. Consider a 2D front in the (x, y) plane, each segment
of which is moved forward by an over damped external force. Let us assume that
every subsequent “tectonic” jump of each segment takes place upon its displace-
ment by a certain distance, which is generated by a random number generator〈
ξ(t, x, z)ξ(t ′, x ′, z′)

〉 = D2δ(t − t ′)δ(x − x ′)δ(z − z′) with zero mean value
〈ξ(t, x, z)〉 = 0.

The jump magnitude ψ is also assumed to be a random quantity with zero mean
value 〈ψ(k, t)〉 = 0 and is set by the average weak noise intensity Dψ � Dξ as
follows:

〈
ψ(k, t)ψ(k ′, t ′)

〉 = Dψδkk ′δ(t − t ′). (8)

The particular noise intensity Dψ has to be reconstructed a posteriori from exper-
imental data. Following article [12], we assumed that the coordinate X (k) depends
on the number of layers k and that different layers are coupled by the elastic force
Felastic = K [X (k + 1) + X (k − 1) − 2X (k)] already used in Eq. (7). Other details
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Fig. 5 Spatial–temporal map of jump distribution represented by the M(t, x) matrix, with the
intensities indicated by grayscale on the right. The initial stage corresponds to the establishment of
a stationary process. Dashed lines correspond to the characteristic velocities of wave propagation
(pre- and aftershocks). The inset shows the corresponding G(t, x) correlation function

of the model are the same as described in [12] and above in this Chapter. The initial
condition for the further studywas selected in the form of a planar front. The resulting
spatio-temporal map of jump length distribution along the front is depicted in Fig. 5.

At every step of the numerical procedure, system (1)–(3) is solved and a set
of tectonic displacements δX (k) (including zero shifts) distributed along the y-
coordinate is obtained, which represents a row of the M(t, y) matrix at the given
time. This procedure is repeated and the entire geological history of the system
is recorded in the form of the M(t, y) matrix, which is represented in Fig. 5 by a
gray scale map. This spatial–temporal map exhibits a clear initial transition period. A
particular scenario is determined by the initial configuration (here, a planar front). As
can be seen from Fig. 5, the stationary regime reveals a well-pronounced correlated
character. The neighboring regions at the front interact by means of the elastic force
Felastic = K [X (k + 1) + X (k − 1) − 2X (k)], so that large jumps of one segment
induce several jumps in the neighboring segment that propagate as decaying waves
in both directions from a strong local “earthquake.” Arriving at a certain “weak”
segment, i.e., a segment potentially close to a spontaneous break, such waves can
initiate this break, inducing a new “tectonic shear” with accompanying waves and
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so on. In other words, each significant event in the system is surrounded by a set of
pre- and aftershocks that lead to correlations in the M(t, y) matrix.

The dashed lines in Fig. 5 correspond to the characteristic velocities of wave prop-
agation. Although the velocity of these waves is not universal and varies depending
on the constants in Eqs. (1)–(3) their existence is a consequence of the structure of the
system under consideration. Physically, the velocity of correlation spreading depends
on the composition and strength of rocks, the level of friction forces between blocks,
etc.; therefore, each geo-logical region has a certain characteristic velocity, which can
be determined from experimental statistics of local secondary shocks accompanying
earthquakes. The correlation can be quantitatively described by a spatial–temporal
correlation function G(t − t ′, y − y′) = 〈

M(t, y)M(t ′, y′)
〉
similar to that depicted

in the inset to Fig. 5.
This correlation function was calculated for a particular realization of the M(t, y)

matrix over the t − t0 time interval (beginning with the time t0 found from the
termination of the transient process). The gray scale reflects the absolute values of
correlations between jumps at the front. The slopped ridges of densityG(t−t ′, y−y′)
on both sides of the central maximum correspond to the averaged (typical) velocities
of propagation of the interacting events in the given system.

The aim of our investigations is the practical usage of a theoretically justified
effect of weak controlled spatially localized impacts on a given system. Previously,
we modeled the effect of periodic pulses of variable intensity and preset on/off
ratios. If the action is localized in a single (x, z)-layer, this layer gradually proceeds
forward and pulls the neighboring layers behind to form a protrusion on the X (k)
front. Then, increasing deviations X (k+1)+X (k−1)−2X (k) are sup-pressed by the
elastic coupling with neighboring layers. Nevertheless, we succeeded in suggesting
a strategy [12] that retained the applicability of the proposed method in a distributed
system. For this purpose, each subsequent point of action was shifted over several
(x, z) layers along the front so that a small jump would be initiated at a different site
of the front, stimulating new neighboring regions. This shift was selected in both the
3D-model and its reduced variant.

Figure 6a illustrates such an artificially stimulated process in the same system (and
same notation) as in Fig. 5. Here, the clearly distinguished straight lines correspond
to periodic impacts regularly shifted along the front, which virtually completely
suppress the spontaneous jumps in the systems. Unfortunately, this scenario requires
large-scale preliminary works irrespective of whether the probable earthquakes will
actually take place. At the same time, the correlations of spontaneous events suggest
a constructive idea; it is possible to apply the artificial impacts at the sites of statisti-
cally anticipated aftershocks rather than over the entire front, thus only producing a
controlled initiation of small jumps at the sites where these jumps are stimulated by
intrinsic correlations.

Figure 6b shows the distribution of events caused by such a self-consistent action.
This pattern appears as more densely filled with jumps as compared to that in Fig. 6a.
However, the scales of jump lengths in Fig. 6a, b are also substantially different. The
main consequence of this procedure is a sharp drop in the fraction of spontaneous
events taking place when the system reaches the level of critical stresses.



152 A. E. Filippov and V. L. Popov

Fig. 6 Spatial–temporal map as in Fig. 5, but in the presence of artificial impacts initiating local
jumps of the front segments in the case of a regular shift of the impact site along the entire front
and b adaptive reaction to events selected using the G(t, x) correlation function

Figure 7 shows the temporal variation of the number of such events that were
not prevented by the economic adaptive scenario mentioned previously. As can be
seen, the relative fraction of critical events is formally large (even reaching unity)
only in the initial transient stage, where the events are not yet correlated. However,
this stage is an evident artifact of the numerical procedure with a planar initial front
(since the initial configuration was a priori not known). In a stationary stage, where
the system attains a self-consistent regime, the fraction of spontaneous jumps not
prevented by the economic adaptive action falls within 0.1–0.2. In other words, the

Fig. 7 Temporal variation of the fraction of spontaneous jumps not prevented by the proposed
adaptive scenario (mapped in Fig. 6b). In the initial transient stage, the events are not yet correlated
and the fraction of spontaneous jumps can be large (reaching unity), while in a stationary stage this
fraction falls within 0.1–0.2
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economic scenario allows 80–90% of spontaneous earthquakes in the system to be
prevented.

6 Burridge-Knopoff (BK) Model

In addition to the above model, we also studied in [14] the well known Burridge-
Knopoff (BK) model [15] initially proposed to investigate statistical properties of
earthquakes. Numerical studies by Carlson et al. [16, 17] have demonstrated that the
BKmodel can reproduce characteristic empirical features of tectonic processes such
as the Gutenberg-Richter law for the magnitude distribution of earthquakes, or the
Omori law for statistics of aftershocks [16–19], both properties stemming from the
so called “self-organized criticality” of this system. It has been intensively used to
simulate different aspects of the problem [18–38] and to discuss general properties
of earthquakes statistics as well as predictability of earthquakes.

Numerical simulations give evidences that the self-organized criticality and the
corresponding fractal attractor of the system is closely related to dynamic structures
with “traveling waves” [21], their ordering and specific “phase transitions” [22]
controlled by a number of parameters (external driving velocity, springs stiffness,
number of blocks, their mutual interaction and so on). It is in particular the depen-
dence of the dynamic properties of the BK model on the spring stiffness, which
makes it necessary to introduce the generalization of the friction law proposed in this
paper.

The physical reason for the stick–slip instability in the Burridge-Knopoff model is
the assumed decrease of the friction force with the sliding velocity [16, 17]. Motion
of a single block with this friction law is always unstable which does not corre-
spond to properties of real tribological systems. The real law of rock friction is more
complicated [26–31]. In this article, we proceed from more realistic friction laws
described in [31, 32]. The main qualitative picture of a realistic law is: (a) approx-
imately logarithmic increase of the static friction force as a function of contact
time—the property, found already by Coulomb [39], and (b) a logarithmic depen-
dence of the sliding friction on the sliding velocity. Both properties can be described
in the framework of “state dependent” friction laws by introducing additional internal
variables describing the state of the contact. Up to now, there were no attempts to
study the dynamic and statistic properties of the Burridge-Knopoff model with a
state dependent friction law.

In the paper [14], we proposed a modified version of the BK model with a state
dependent friction force, reproducing in the simplestwayboth the velocityweakening
friction and the increase of static friction with time when the block is not moving.
To validate the model, we studied the stability diagram. It qualitatively reproduces
typical diagrams found for almost all tribological systems. The state dependent fric-
tion law was also used in [40, 41] where an extensive numerical simulation of the
one-dimensional spring-block model with such a friction law has been performed
and the magnitude distribution and the recurrence-time distribution were studied.
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Fig. 8 Burridge-Knopoff (BK) model. Subplot a presents a conceptual scheme of the model. In
the simulations we use m = 1 for the mass and a = 1 for the distance between the blocks. Subplot
b reproduces the original velocity weakening stick–slip friction law used in the Carlson, Langer
version of the BK model

Let us start from the original BK model, the conceptual structure of which is
depicted in Fig. 8. Blocks of mass m are attached to a moving surface by springs
with stiffness k1 and are coupled to eachother by springswith stiffness k2. Themoving
surface has a velocity v, and the blocks are in contact with a rough substrate. The
friction force F between the blocks and the rough surface is assumed to depend only
on the velocity. Subplot (b) of Fig. 8 reproduces the original velocity dependence of
the friction force used in Carlson and Langer version of the BKmodel. The equations
of the BK model can be written in the following form:

m
∂2u j

∂t2
= k2

(
u j+1 + u j−1 − 2u j

) + k1
(
vt − u j

) − F(v j ) (9)

where v = const is the external driving velocity and v j ≡ ∂u j

∂t is an array of individual
block velocities ( j = 1, . . . , N ).

In the BKmodel, the sliding friction force is supposed to decreases monotonously
from a constant initial value F0. It is further supposed that the static friction F(v j →
0) can possess any necessary negative value to prevent back sliding:

F(v j ) =
{

F0
1+2αv j /(1−σ)

, F0 = 1 − σ ; ∂u j/∂t > 0

(−∞, 0] ∂u j/∂t = 0
(10)

Here, according to the original works [16, 17], the parameter α defines a rate of
friction decrease when block starts to slide, and σ is the acceleration of a block at
the instant when slipping begins.

7 Modified BK Model

The friction Eq. (10) is a drastic oversimplification of real properties of static and
kinetic friction. This equation does not reproduce the correct stability diagram for
sliding; with this friction equation the system is always unstable. Experiments show
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that, in most cases of dry friction, sliding stabilizes for either sufficiently large veloc-
ities or a sufficiently large stiffness of the system. These friction properties are now
well understood and explained in details in the books [31, 32]. Based on friction
experiments with rocks, Dieterich [26, 27] has proposed friction equations with
internal variables. In his approach, the friction force depends on an additional vari-
able that describes the state of the contact zone. This variable is, in a sense, a “melting
parameter.” The friction force at non-zero velocity drops down from its initial value
due to a “shear melting” effect which may have various physical origins [14–17].
When the motion stops, the surfaces start to form new bonds and the static friction
increases with time. These observations become especially important if the model is
to be used for describing phenomena with geological characteristic times like earth-
quakes. Below we follow the ideology of “shear melting effect” and use additional
kinetic equations for the friction force.

The dynamics of systems with state dependent friction has been investigated in
a number of papers [26–34]. All these studies have been devoted to the simple one-
particle version of the model. In the present paper, we investigate dynamics of the
many-body BKmodel with a state dependent friction. The basic dynamics equations
of the model are the same.

m
∂2u j

∂t2
= k2

(
u j+1 + u j−1 − 2u j

) − η
∂u j

∂t
+ k1

(
vt − u j

) − Fj [v j (t)]. (11)

However, the friction force is not a function of velocity, but is definedby the additional
kinetic equation:

∂Fj [v j (t)]
∂t

= β1
(
F0 − Fj

) + β2v j , withβ2 < 0 v j > 0, (12)

F(v j ) = −∞ v j ≤ 0. (13)

The parameters in first of these equations β1 and β2 have the following physical
(and geophysical) meaning. When a block starts to slide with v j > 0, its friction
force monotonously decreases from an initial value F0. The general time scale of
this process [in relation to other time-scales of the problem, defined by the terms of
Eq. (11)] is determined by the first parameter β1 and an effectiveness of the melting
is given by a relation between the absolute value of the negative parameter β2 < 0
and β1.

Static friction F(v j → 0) in second line of Eq. (12) can possess any necessary
negative value to prevent back sliding, as in Eq. (10). It is the only nonlinear part
of the system, which is found to be enough to create all nontrivial properties of the
model. For general applicability to tribological problems Eq. (11) contains also a
viscous term η∂u j/∂t . Our calculations show that attractor properties are weakly
influenced by the viscous term. Moreover, this influence exists only at sufficiently
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high velocities v j . For generality, in the results presented below, we keep small
nonzero value η = 0.05.

It should be noted that other forms of the kinetic equations for ∂Fj/∂t =
β1

(
F0 − Fj

) + β2v j have been proposed [14, 15] leading to qualitatively similar
decreasing behavior of the dynamic friction at v j > 0. Equation (12) is the simplest
form. It is also linear.Another reason for this choice is the following.A realisticmodel
must reproduce the correct stick–slip and sliding behavior in appropriate parameter
regions. In particular, it must reproduce the correct stability diagram on the plane
{v, k1}, which typically has an unstable region at small system velocities and small
system stiffness [14, 15]. Note that the original BK model in the form of Eqs. (9)
and (10) does not reproduce a stable sliding regime at small sliding velocities and
large stiffness. Themodifiedmodel qualitatively reproduces a typical known stability
diagram for sliding friction under various conditions. We have studied the stability
diagram by direct dynamic simulation of the BK-system. For this sake, we control
the behavior of the complete velocity arrays {v j (t)} for all blocks j = 1, . . . , N . To
visualize the dynamics of the system, it is convenient to calculate the mean velocity:

〈v〉 ≡ 〈
v j (t)

〉 =
∑N

j=1 v j (t)

N
. (14)

Unless otherwise specified, we keep the number of the blocks equal to N = 512. The
main control parameters of the system are the driving velocity v and the stiffness k1
of the “springs” connecting the block with the external subsystem. In order to study
general properties of the model, let us vary parameters v and k1 around the values
of order of unity. Typical time dependencies of the mean velocity 〈v〉 found at free
boundary conditions for three representative regions of driving velocity and stiffness
constant v = 0.7 and k1 = 0.2; v = 0.7 and k1 = 2; v = 2 and k1 = 0.2 are shown
in Fig. 9 subplots (a–c), respectively.

In regions (b) and (c), the fluctuations of the velocity disappear after a transient
period, whereas in the stick–slip region (a) the velocity fluctuates continuously. The
dynamics of the friction force

〈
Ff ric

〉 = 〈
Fj (t) + ηv j (t)

〉
(15)

is shown in the same plot.
Performing the simulation for various combinations of parameters, we have found

the desired stability diagram, shown inFig. 10, for themodifiedBKmodel in the plane
{v, k1}. The line separates the regions of sliding and stick–slip motion. Higher inten-
sity of gray color corresponds to bigger oscillations of friction force. As discussed
above, this characterizes the amplitude of the force variation at different spring stiff-
ness k1 and driving velocity v. If the interaction between the blocks is relatively
weak, these strong variations of friction can lead, in principle, to a state in which
different blocks of the chain can simultaneously be found in moving and stacked
states. This observation is important for studying of the model further. Below we
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Fig. 9 Time dependencies of mean velocity 〈v〉 and friction force
〈
Ff ric

〉 = 〈F + ηv〉 found for
three representative regions of the driving velocity and stiffness constant v = 0.7 and k1 = 0.2;
v = 0.7 and k1 = 2; v = 2 and k1 = 0.2 shown in (a)–(c) subplots, respectively. In the sliding
regionsb and c the fluctuations of the velocity disappear after a transient period of initial oscillations,
whereas in stick–slip region (a) bothmean velocity and a correlated friction force remain perpetually
variant

Fig. 10 Stability diagram for the modified BK model (MBK). The line separates the region of
stable sliding from that of variable stick–slip motion. The grayscale map represents the standard
deviation value of the complete friction force

〈
Ff ric

〉 = 〈
Fj [v j (t)] + ηv j (t)

〉
in stationary stick–

slip regime. It characterizes the amplitude of the force variation at different spring constants k and
driving velocities v. Higher gray color saturation corresponds to bigger friction force oscillations
(with black color corresponding to maximum of standard deviation equal to 0.72)
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study the dynamic and statistical properties of the new model with the previously
described realistic state dependent friction law. We will refer to the set of Eqs. (12),
(13) as the modified BK model (MBK).

8 Attractor Properties, Wave State and Phase Transition
in a 1-Dimensional Model

The equations of motion in (12) are a discrete representation of a nonlinear wave
equation. During the last few decades various nonlinear wave equations have been
widely studied, starting from the very early implementation of the numerical simu-
lations [35]. In particular, in the context of dynamic “thermalization” it has been
shown that N interacting segments of the nonlinear chain form a collective attractor
with energy transfer performed by nonlinear excitations [36, 37, 42, 43]. Depending
on the total energy and/or on the strength of the interaction between the blocks k2,
the chain can form (nearly) uniform or strongly non-uniform structures and phase
patterns.

Analogous behavior should be expected in the MBK model as well. It is obvious
that instantaneously moving blocks must be involved with stationary ones in the
overall motion. This causes a “detachment” wave, propagating along the chain. Such
solitary waves were found and studied in the original BK model [15], and the anal-
ogous process exists in the MBK model. There are two possible types of traveling
waves: (a) after a transition time all the blocks are provoked to move simultaneously,
(b) in steady-state, some of the blocks can be found instantaneously motionless while
others move. One would expect that the response of the chain will depend on the
strength of the interaction between the blocks. This has been studied for the orig-
inal BK model in [17], and a specific “phase transition” between correlated and
uncorrelated behavior has been found.

Let us study this problem for the MBK model. Figure 11 presents typical waves
of local block velocities in a “stationary” regime for parameter values k2 = 4, k1 =
1 and v = 0.2. Non-zero velocities are shown here by the spatiotemporal mesh
surface. Traveling and mutually scattering waves are clearly visible. Let us draw
the attention to the areas of intensive local spikes appearing as result of mutually
scattering of waves. These spikes have displacement amplitudes

∣∣u j

∣∣ � 〈
u j

〉
and

velocities
∣∣v j

∣∣ � 〈
v j

〉
much higher than the mean values. They are relatively rare

(the area occupied by these events is much smaller than the total space–time area),
and in applications for geodynamics they should be treated as “earthquake events”.

To characterize the difference of the correlated and uncorrelated behavior, an order
parameter has been introduced in Ref. [22]. If we define a value h j in block number
j by the condition:

h j =
{
1 ∂u j/∂t �= 0 (the block ismoving);
0 ∂u j/∂t = 0

(16)
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Fig. 11 Typical waves of the local velocity (of each discrete block of the system) for the developed
regime in a one-dimensional system. The non-zero velocities are shown by the spatiotemporal mesh
surface. The areas of intensive local events due to mutual scattering of waves are clearly visible.
Parameter values: v = 0.7, k1 = 0.2, k2 = 4, N = 512, β1 = 1, β2 = 25, η = 0.05, m =
1.

then the local density of the order parameter H∗
j can be written as H

∗
j = h j (h j+1 +

h j−1). This function takes the unit value H∗
j = h j (h j+1 + h j−1) = 1 if block j

is moving and exactly one of its nearest neighbors is also moving. Further, H∗
j =

h j (h j+1+h j−1) = 2when both nearest neighbors of themoving block are inmotion.
All other cases yield H∗

j = 0.
Our observations with the MBK model show that even for blocks at vanishing

inter-block interaction k2 → 0 (when the motion of neighboring blocks is almost
uncorrelated), the fraction of configurations with moving sets of neighboring blocks
is still relatively high. The combination H∗

j = h j (h j+1 + h j−1) does not vanish in
such an uncorrelated system. It is therefore convenient to construct another simple
combination:

Hj = h jh j+1h j−1 =
{
1 all 3 blocks j, j + 1, j − 1 in contact aremoving
0 otherwise

. (17)

This yields Hj = h jh j+1h j−1 = 0 zero in all cases except when both neighboring
blocks of a central sliding block are also in motion. This combination can be used
as an “order parameter”.
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Fig. 12 Order parameter density and its time dependence in two different regimes. Subplots a and
b show the grayscalemaps of the order parameter density depending on time and space for strong and
weak coupling between the neighboring blocks (k2 = 4 and k2 = 1.2 respectively). Time evolution
of the ensemble-averaged order parameter for (a) and (b) cases are presented in the subplot (c) by
black and gray tick lines respectively. The time averages for these values are shown by the bold
lines of corresponding color. Parameter values: v = 0.7, k1 = 0.2, k2 = 4, N = 512, β1 =
1, β2 = 25, η = 0.05, m = 1.

Figure 12 shows the order parameter density and time dependence of its ensemble
average

〈
Hj (t)

〉
in two different regimes. Subplots (a) and (b) show grayscale maps

of the order parameter density depending on time and space for strong and weak
coupling between neighboring blocks (k2 = 4 and k2 = 1.2 respectively). Time
dependence of the mean value

〈
Hj (t)

〉
is presented in the subplot (c) with black and

gray thick lines for the (a) and (b) cases, respectively.
To extract integral quantitative information about the steady ordered and disor-

dered states let us calculate the time evolution of the ensemble-averaged order
parameter:

H(t) ≡ 〈
Hj (t)

〉 = 1

t

t∫

0

〈
Hj (t)

〉
dt . (18)

These time-averaged values for the cases (a) and (b) are shown in the subplot (c) by
the bold lines overlapping respective thick curves

〈
Hj (t)

〉
. The long-time stationary

asymptote
〈
Hj (t)

〉 → const can characterize the behavior of the system in an integral
manner.
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Fig. 13 Phase transition from correlated to uncorrelated motion of blocks in a one-dimensional
system. The order parameter tends to a constant asymptote at high mutual interaction k2 � 1
and vanishes below transition point k2 = kcri tical2  1. Other parameters are the same as in
Fig. 5. The ordered state corresponds to the nearly regular waves (seen clearly in Fig. 11). Two
intermediate fluctuation regions A and B correspond to states with short-range and long-range
correlated nonlinear excitations, respectively

The dependence of the integrated order parameter on the stiffness k2, showing a
transition from correlated to uncorrelated blockmotion in a one-dimensional system,
is shown in Fig. 13. Two limiting cases can be identified: (a) the order parameter
tends to a constant non-zero asymptote

〈
Hj (t)

〉 → const �= 0 at strong interaction
k2 � 1, and (b) it vanishes

〈
Hj (t)

〉 → 0 below the transition point k2 ≈ 1.
The ordered state corresponds to the nearly regular waves presented in Fig. 12.

We distinguish two fluctuation regions A and B at intermediate interaction. These
regions can be characterized by two clearly different order parameter mean values in
Fig. 13. One can verify further that they also differ dynamically and correspond to
states with short range- and long-range correlated nonlinear excitations, respectively.
This intermediate behavior may characterize the physically important features of the
model under consideration.

9 Study of the 2-Dimensional Model

The real contact of two surfaces is two-dimensional. Let us generalize the MBK
model for the 2D case. The generalized model is very similar to the 1-dimensional
model, but incorporates a 2D array of blocks connected by elastic springs in both
directions. All other components of the MBK remain unchanged.

The system of equations of motion takes the form:

m
∂2u j,n

∂t2
= k2

(
u j+1,n + u j−1,n + u j,n+1 + u j,n−1 − 4u j,n

)

− η
∂u j,n

∂t
+ k1

(
vt − u j,n

) + F(v j,n); (19)
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∂Fj,n(v j,n(t))

∂t
= β1

(
F0 − Fj,n

) + β2v j,n; withβ2 < 0, v j,n > 0, (20)

F(v j,n) = −∞ v j,n ≤ 0

where: j = 1, . . . , Nx and n = 1, . . . , Ny . Nx and Ny are the numbers of elements
in the x- and y-directions. It is possible to repeat all the simulations of the previous
section, reproduce all the results presented in Figs. 9, 10, 11, 12 and 13, and show
that these properties are quite common between the 1D and 2D MBK models.

In particular, one can obtain a wave state in two dimensions. The only difficulty
appears in a visualization of the results, depending on 3 coordinates {x, y; t}. As an
example, Fig. 14 presents the mentioned wave state in the two-dimensional model.
In contrast to the 2-dimensional {x; t} space–time maps with a complete history
of events in Figs. 11 and 12 the subplots (a) and (b) now represent instantaneous

Fig. 14 Wave state in the two-dimensional model. Subplots a and b represent snapshots of the
instantaneous densities of the local displacements u = u(x, y; t) and velocities v = v(x, y; t) ≡
∂u/∂t , respectively. The darkest color corresponds to the value 3 indimensionless units and white
corresponds to zero.Mutual scatteringmanifests itself in high sharp peaks of the “events” reproduced
here by the dark gray spots of the corresponding densities. A time–space representation of this
process is shown in (c) by the cross-section of the {x, y; t}-space along one of the x = const
planes. Ensemble averaged area of the events corresponding to the same process is plotted in
subplot (d). The number of blocks is equal to Nx × Ny = 128 × 128 and other parameters are the
same as in Fig. 12
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snapshots of the density distribution (for the local displacements u = u(x, y; t) and
velocities v = v(x, y; t) ≡ ∂u/∂t respectively). However, direct observation of the
time-dependent numerical simulations shows that the waves (clearly visible in the
Fig. 14) are moving 2D fronts of the excitations. These fronts conserve their shape
for relatively long periods of time. Their mutual scattering manifests itself in high
and sharp peaks of the “events”. Corresponding spikes are well reproduced by dark
gray spots of the density distributions in subplots (a) and (b) of Fig. 14.

Some record of the process which has led to the presented instantaneous distri-
butions is shown in subplot (c) by means of a cross-section of the {x, y; t}-space
along one of the planes where x = const. One can also calculate an ensemble aver-
aged area of the events corresponding to the same process. This is plotted in Fig. 14
subplot (d). There is obvious correlation between the subplots (c) and (d); however,
the correlation is not complete. In reality, the total area of events includes a summa-
tion over all the planes j = 1, . . . , Nx and involves plenty of impacts from other
x = const planes which are invisible in the subplot (c).

Nevertheless, the correlation is easily seen and looks much stronger than one
would expect in such case. The traveling waves influence themotion of blocks neigh-
boring in both directions {x, y}. Therefore, there is a certain correlation between the
densities along all 3 time–space coordinates {x, y; t}. In order to reproduce this in
a static picture, we present a 3-dimensional density distribution for the exact same
process in Fig. 15. This figure combines the density of “events” (black volumes) with
the grayscale maps discreetly depicted for certain sub-planes: t = const , x = const
and y = const .

Fig. 15 Density of events (black volumes) in a two-dimensional system Nx × Ny = 128× 128 at
the same parameters as in Figs. 12 and 13. Grayscale maps (with the same gradations as in previous
figure) for some representative planes t = const , x = const and y = const are added to compare
with Fig. 13
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Fig. 16 Fourier transform C(ω) of the two-time correlation function G(t2 − t1)

There is a noticeable periodicity in the total area of events in Figs. 14 and 15.
To illustrate this, we have calculated a two-time correlation function G(t2 − t1)
for the total area and taken its Fourier transform Gω. The resulting Fourier trans-
form is presented in Fig. 16. It smoothes random impacts from the time-fluctuations
and possesses obvious maxima corresponding to a characteristic frequency of the
total area oscillation. The frequency of these large-scale collective oscillations is
determined by the parameters of the problem. According to our numerical exper-
iments, the characteristic frequency can be varied mainly by changing the driving
velocity, external springs and constants β1,2 in the equation ∂Fj,n[v j,n(t)]/∂t =
β1

(
F0 − Fj,n

) + β2v j,n . It is important to stress here that the observed behavior
corresponds to a global attractor of the dynamic system (19) and (20). This means
that it corresponds to the stationary asymptotic behavior of the system, independent
of initial conditions.

In all the cases presented in previously mentioned figures, we omitted initial
time intervals corresponding to the transient period. This part of the evolution
can be different and depends on the initial conditions. We have checked this by
starting the simulations from almost uniform distribution of the low velocities, from
small displacements, from intensive random noise, or by changing open boundary
conditions (normally used here) to the periodic ones, and so on. In all cases, the
system quickly suppresses unfavorable fluctuations, vents to an attracting “large
river” common for all the transient scenarios, and slowly attracts along the “river”
to the stationary scenario. This kind of evolution is mathematically typical for many
nonlinear systems [38] and the MBK model is no exception.

The attractor manifests itself in a stationary distribution ρ = ρ{u, Ff ric, v, . . .} of
the dynamic variables in a phase space. Figure 17a, b present its projections in two
different sub-planes of the phase-space: planes {u, v} and {Ff ric, v}, respectively.
By accumulating the density ρ = ρ{u, . . . , v, . . .} onto a grayscale map in sub-
space {u, v}, one can see the correlation between the time-depending fluctuations of
displacements u(x, y; t) and velocities v(x, y; t).

It can be shown that the dense central part of the distribution is mainly due to
multiple but weak oscillations of small amplitude (“phonons”) and basal areas of the
traveling waves. The widely extended depopulated gentle slopes with low density
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Fig. 17 a Grayscale map of the density of dissipative attractor states projected onto the phase
sub-space {u, v}. b The same attractor as in Fig. 17a projected onto the sub-space {v, Ff riction},
where

〈
Ff riction

〉 = 〈
Fj [v j (t)] + ηv j (t)

〉

ρ = ρ{u, . . . , v, . . .} in peripheral regions of the {u, v} surface are produced by
rare intensive “events” [which cause high spikes of displacements u(x, y; t) and
velocities v(x, y; t)]. In other words, statistical study of the rare “earthquake events”
in the frame of the MBK model is equivalent to the study of the outer periphery of
its dissipative attractor.

Another projection of the attractor onto the {Ff ric, v} subspace shown in the
Fig. 17b can be used to control correct correspondence between statistically prefer-
able behavior of the dynamically complete friction force Ff ric = F[vn, j (t)] +
ηvn, j (t)with the “naive”, physically expected dependence F = Ff ric(v). Finally, let
us return again to the discussion of Fig. 17a. The inherent structure of the attractor
with extended gentle slopes of the density ρ = ρ{u, . . . , v, . . .} corresponding to
rare intensive “events” gives a simple and clear image for the origination of scaling
asymptotic distributions. To obtain these, one must cut off the outer areas along
both the displacement and velocity coordinates. Corresponding asymptotic distri-
butions obtained after such a cut-off are reproduced in subplots (a) and (b) of
Fig. 18, respectively. The inserts to the figures illustrate the power-law nature of
both distributions.

Comparing the models one can conclude that the standard BK model utilizes
a velocity weakening friction force to reproduce the correct statistical behavior of
“events”. In contrast, theMBKmodel includes an additional phenomenological equa-
tion, subsequently providing a self-consistent dynamic description of the velocity
depending friction force. This modification has at least two advantages: it realis-
tically generates the velocity weakening friction force of the moving blocks and
provides growth of static friction for the locked blocks. The model was studied for
different driving velocities and driving springs elastic constants. It was possible to
build a stability diagram for the transition between smooth sliding and stick–slip
behavior, which was in good qualitative agreement with what is expected experi-
mentally. Further numerical study under a broad range of parameters proved that the
MBK model reproduces all important features of the standard BK model (traveling
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Fig. 18 Scaling relations in the model. To get scaling behavior one must cut-off the external light-
gray regions with power-law density of states from the attractor in Fig. 17. Physically it corresponds
to a selectionof the rare but intensive “events”,which is compatiblewith the ideologyof the empirical
Gutenberg-Richter law

waves, attractor properties of dynamic equations in one- and two-dimensional cases,
and so on).
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