Skip to main content

Sleep-Related Modulations of Heart Rate Variability, ECG, and Cardio-Respiratory Coupling

  • Chapter
  • First Online:
Physics of Biological Oscillators

Abstract

Background: Integrated physiological systems following regular rhythms are a prime example of biological oscillators. Such systems include the heart with an oscillatory activity on a time scale of 1-second and the circadian pacemaker leading to a close to 24 h sleep-wake rhythm. Other prominent physiological oscillations each characterized by specific time scales are brain waves, respiration, blood pressure and vascular activity, and sleep-stage transitions with non-REM/REM cycles. In the healthy organism, these oscillators interact with each other, and studying those interactions during physiological transitions and in patients with disorders helps to uncover and better understand the underlying mechanisms. Methods: In order to investigate the coupling of these oscillators, sleep studies with cardiorespiratory polysomnography are performed on persons with healthy sleep and with sleep disorders. Polysomnography includes the recording of the electrocardiogram (ECG), the sleep-electroencephalogram (EEG), respiration, blood pressure/pulse wave, oxygen saturation, and movement activity by means of electromyogram (EMG). The analysis is performed visually by sleep experts, and computer assisted with time domain, frequency domain, and non-linear methodologies. Results: The parameters obtained provide information on the regulation of the autonomic nervous system (ANS) during sleep. The ANS is regulated totally different during slow-wave (non-REM) and REM sleep. Beat-to-beat heart-rate variations allow us to estimate a scoring of sleep stages. To some degree it is possible to track transitions from wakefulness to sleep by solely analyzing heart-rate variations. ECG and heart rate analysis allow assessment of sleep disorders as well. Cyclical variations of heart rate combined with respiration-modulated changes in ECG morphology (amplitude of R wave and T wave) provides reliable detection of sleep-disordered breathing. Conclusions: The assessment of signals being easily accessible like ECG and heart rate can help to assess sleep, sleep stages and sleep disorders with an acceptable accuracy, even if reflecting physiological functions indirectly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Akselrod, D. Gordon, F.A. Ubel, D.C. Shannon, A.C. Bargerm, R.J. Cohen, Power spectrum analysis of heart rate fluctuations: A quantitative probe of beat-to-beat cardiovascular control. Science 213, 220–222 (1981)

    Article  ADS  Google Scholar 

  2. M. Angelova, C. Karmakar, Y. Zhu, S.P.A. Drummond, J. Ellis, Automated method for detecting acute insomnia using multi-night actigraphy data. IEEE Access 8, 74413–74422 (2020). https://doi.org/10.1109/access.2020.2988722

    Article  Google Scholar 

  3. R. Bartsch, J.W. Kantelhardt, T. Penzel, S. Havlin, Experimental evidence for phase synchronization transitions in the human cardiorespiratory system. Phys. Rev. Lett. 98, 054102 (2007)

    Article  ADS  Google Scholar 

  4. R.P. Bartsch, A.Y. Schumann, J.W. Kantelhardt, T. Penzel, P.C. Ivanov, Phase transitions in physiologic coupling. Proc. Natl. Acad. Sci. 109, 10181–10186 (2012)

    Article  ADS  Google Scholar 

  5. R.B. Berry, R. Brooks, C.E. Gamaldo, S.M. Harding, R.M. Lloyd, C.L. Marcus, B.V. Vaughn, for the American Academy of Sleep Medicine, The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, Version 2.1 (American Academy of Sleep Medicine, Darien, IL, 2014)

    Google Scholar 

  6. A. Bunde, S. Havlin, J.W. Kantelhardt, T. Penzel, J.H. Peter, K. Voigt, Correlated and uncorrelated regions in heart-rate fluctuations during sleep. Phys. Rev. Lett. 85, 3736–3739 (2000)

    Article  ADS  Google Scholar 

  7. S.M. Caples, C.L. Rosen, W.K. Shen, A.S. Gami, W. Cotts, M. Adams, P. Dorostkar, K. Shivkumar, V.K. Somers, T.I. Morgenthaler, E.J. Stepanski, C. Iber, The scoring of cardiac events during sleep. J. Clin. Sleep Med. 3, 147–154 (2007)

    Article  Google Scholar 

  8. V.C. Cunha Sequeira, P.M. Bandeira, J.C. Moreno Azevedo, Heart rate variability in adults with obstructive sleep apnea: a systematic review. Sleep Sci. 12(3), 214–221 (2019). https://doi.org/10.5935/1984-0063.20190082

    Article  Google Scholar 

  9. P. De Chazal, C. Heneghan, W.T. McNicholas, Multimodal detection of sleep apnoea using electrocardiogram and oximetry signals. Phil. Trans. R. Soc. A 367, 369–389 (2009)

    Article  ADS  MATH  Google Scholar 

  10. P.P. Einbrodt, Über den Einfluss der Athembewegungen auf Herzschlag und Blutdruck. Sitzungsberichte der math.-naturw. Classe der kaiserlichen Akademie der Wissenschaften. K. K. Hof- und Staatsdruckerei (Wien) (Band XI, 1860), pp. 361–418

    Google Scholar 

  11. N.E. Fultz, G. Bonmassar, K. Setsompop, R.A. Stickgold, B.R. Rosen, J.R. Polimeni, L.D. Lewiset, Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 366(6465), 628–631 (2019). https://doi.org/10.1126/science.aax5440

  12. M. Glos, I. Fietze, A. Blau, G. Baumann, T. Penzel, Cardiac autonomic modulation and sleepiness: physiological consequences of sleep deprivation due to 40 h of prolonged wakefulness. Physiol. Behav. 125, 45–53 (2014)

    Article  Google Scholar 

  13. A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet components of a new research resource for complex physiologic signals. Circulation 101, e215–e220 (2000)

    Google Scholar 

  14. C. Guilleminault, S. Connolly, R. Winkle et al., Cyclical variation of the heart rate in sleep apnoea syndrome. Mechanisms, and usefulness of 24 h electrocardiography as a screening technique. Lancet 8369, 126–131 (1984)

    Article  Google Scholar 

  15. P.M. Holloway, M. Angelova, S. Lombardo, A. St. Clair Gibson, D. Lee, J. Ellis, Complexity analysis of sleep and alterations with insomnia based on non-invasive techniques. J. R. Soc. Interface 11(93), 1–8 (2014). https://doi.org/10.1098/rsif.2013.1112

  16. C. Huygens, Horologium Oscillatorium: sive de motu pendulorum ad horologia aptato demostrationes geometricae (1673)

    Google Scholar 

  17. P.C. Ivanov, M.G. Rosenblum, C.K. Peng, J. Mietus, S. Havlin, H.E. Stanley, A.L. Goldberger, Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis. Nature 383, 323–327 (1996)

    Article  ADS  Google Scholar 

  18. H.P. Koepchen, K. Thurau, Über die Entstehungsbedingungen der atemsynchronen Schwankungen des Vagustonus (Respiratorische Arrhythmie). Pflügers Archiv 269, 10–30 (1959)

    Google Scholar 

  19. G.B. Moody, R.G. Mark, A. Zoccola et al., Clinical validation of the ECG-derived respiration (EDR) technique. Comput. Cardiol. 13, 507–510 (1986)

    Google Scholar 

  20. A. Müller, M. Riedl, T. Penzel, J. Kurths, N. Wessel, Ereignisbasierte Charakterisierung kardiovaskulärer Interaktionen während des Schlafs. Somnologie 18, 243–251 (2014)

    Article  Google Scholar 

  21. A. Müller, M. Riedl, N. Wessel, J. Kurths, T. Penzel, Methoden zur Analyse kardiorespiratorischer und kardiovaskulärer Kopplungen. Somnologie 16, 24–31 (2012)

    Article  Google Scholar 

  22. G. Parati, M. Di Rienzo, G. Mancia, How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J. Hypertens. 18, 7–19 (2000)

    Article  Google Scholar 

  23. G. Parati, J.P. Saul, M. Di Rienzo, G. Mancia, Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension 25, 1276–1286 (1995)

    Article  Google Scholar 

  24. T. Penzel, J.W. Kantelhardt, R.P. Bartsch, M. Riedl, J.F. Kraemer, N. Wessel, C. Garcia, M. Glos, I. Fietze, C. Schöbel, Modulations of heart rate, ECG, and cardio-respiratory coupling observed in polysomnography. Front. Physiol. 7, 460 (2016). https://doi.org/10.3389/fphys.2016.00460

    Article  Google Scholar 

  25. T. Penzel, G. Amend, K. Meinzer, J.H. Peter, P. von Wichert, MESAM: a heart rate and snoring recorder for detection of obstructive sleep apnea. Sleep 13, 175–182 (1990)

    Article  Google Scholar 

  26. T. Penzel, C. Garcia, M. Glos, M. Renelt, C. Schöbel, J.W. Kantelhardt, R.P. Bartsch, A. Müller, M. Riedl, N. Wessel, I. Fietze, Herzfrequenz und EKG in der Polysomnographie. Somnologie 19, 254–262 (2015). https://doi.org/10.1007/s11818-015-0033-5

    Article  Google Scholar 

  27. T. Penzel, G. Hajak, R.M. Hoffmann, R. Lund, T. Podszus, T. Pollmächer, T. Schäfer, H. Schulz, W. Sonnenschein, I. Spieweg, Empfehlungen zur Durchführung und Auswertung polygraphischer Ableitungen im diagnostischen Schlaflabor. Ztschr. EEG - EMG 24, 65–70 (1993)

    Google Scholar 

  28. T. Penzel, J.W. Kantelhardt, L. Grote, J.H. Peter, A. Bunde, Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEE Trans. Biomed. Eng. 50, 1143–1151 (2003)

    Google Scholar 

  29. T. Penzel, J. McNames, P. de Chazal, B. Raymond, A. Murray, G. Moody, Systematic comparison of different algorithms for apnoea detection based on electrocardiogram recordings. Med. Biol. Eng. Comput. 40, 402–407 (2002)

    Article  Google Scholar 

  30. A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge Univ Press, UK, 2001)

    Book  MATH  Google Scholar 

  31. F. Raschke, Coordination in the circulatory and respiratory systems, in Temporal Disorder in Human Oscillatory Systems ed. by L. Rensing, U. An der Heiden, M.C. Mackey (Springer, Berlin, Heidelberg, New York, 1987), pp. 152–158

    Google Scholar 

  32. M. Riedl, A. Müller, J.F. Kraemer, T. Penzel, J. Kurths, N. Wessel, Cardio-respiratory coordination increases during sleep apnea. PLoS ONE 9, e93866 (2014)

    Article  ADS  Google Scholar 

  33. A. Roebuck, V. Monasterio, E. Gederi, M. Osipov, J. Behar, A. Malhotra, T. Penzel, G.D. Clifford, A review of signals used in sleep analysis. Physiol. Meas. 35, R1–R57 (2014)

    Article  ADS  Google Scholar 

  34. M. Roos, W. Althaus, C. Rhiel, T. Penzel, J.H. Peter, P. von Wichert, Vergleichender Einsatz von MESAM IV und Polysomnographie bei schlafbezogenen Atmungsstörungen (SBAS). Pneumologie 47, 112–118 (1993)

    Google Scholar 

  35. C. Schäfer, M.G. Rosenblum, J. Kurths, H.H. Abel, Heartbeat synchronized with ventilation. Nature 392, 239–240 (1998)

    Article  ADS  Google Scholar 

  36. P. Schramm, S. Magnusdottir, R. Thomas, Cardiopulmonary Coupling—Clinical Atlas. Document Number D-4.00026, Revision 3.2 (MyCardio LLC, 2014)

    Google Scholar 

  37. F. Snyder, J.A. Hobson, D.F. Morrison, F. Goldfrank, Changes in respiration, heart rate, and systolic blood pressure in human sleep. J. Appl. Physiol. 19, 417–422 (1964)

    Article  Google Scholar 

  38. V.K. Somers, M.E. Dyken, A.L. Mark, F.M. Abboud, Sympathetic-nerve activity during sleep in normal subjects. N. Engl. J. Med. 328, 303–307 (1993)

    Article  Google Scholar 

  39. A. Stefanovska, Coupled oscillators. Complex but not complicated cardiovascular and brain interactions. IEEE Eng. Med Biol. Mag. 25–29 (2007). https://doi.org/10.1109/memb.2007.907088

  40. Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Circulation 93, 1043–1065 (1996)

    Article  Google Scholar 

  41. R.J. Thomas, J.E. Mietus, C.K. Peng, A.L. Goldberger, An electrocardiogram -based technique to assess cardiopulmonary coupling during sleep. Sleep 28, 1151–1161 (2005)

    Article  Google Scholar 

  42. E. Tobaldini, L. Nobili, S. Strada, K.R. Casali, A. Braghiroli, N. Montano, Heart rate variability in normal and pathological sleep. Front. Physiol. 16(4), 294 (2013)

    Google Scholar 

  43. F. Togo, M. Takahashi, Heart rate variability in occupational health: a systematic review. Ind. Health 47, 589–602 (2009)

    Article  Google Scholar 

  44. E. Toledo, S. Akselrod, I. Pinhas, D. Aravot, Does synchronization reflect a true interaction in the cardiorespiratory system? Med. Eng. Phys. 24, 45–52 (2002)

    Article  Google Scholar 

  45. R.L. Verrier, J.E. Muller, J.A. Hobson, Sleep, dreams, and sudden death: the case for sleep as an autonomic stress test for the heart. Cardiovasc. Res. 31, 181–211 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Penzel .

Editor information

Editors and Affiliations

Ethics declarations

This study was supported by the German-Israeli Foundation (GIF) Grants I-1298-415.13/2015 and I-1372-303.7/2016 and the German National Cohort study (www.nationale-kohorte.de) funded by the Federal Ministry of Education and Research (BMBF) and the Helmholtz Association. TP was partially supported by a Russian Federation Government Grant No. 075-15-2019-1885.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Penzel, T. et al. (2021). Sleep-Related Modulations of Heart Rate Variability, ECG, and Cardio-Respiratory Coupling. In: Stefanovska, A., McClintock, P.V.E. (eds) Physics of Biological Oscillators. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-59805-1_20

Download citation

Publish with us

Policies and ethics