
Chapter 9
Evaluating Plant Potassium Status

T. Scott Murrell and Dharma Pitchay

Abstract Several methods exist for evaluating plant nutritional status. Looking for
visual deficiency symptoms is perhaps the simplest approach, but once symptoms
appear, crop performance has already been compromised. Several other techniques
have been developed. All of them require correlation studies to provide plant
performance interpretations. Reflectance is a remote sensing technique that detects
changes in light energy reflected by plant tissue. It has proven successful in detecting
nutrient deficiencies but does not yet have the ability to discriminate among more
than one deficiency. Chemical assays of leaf tissue, known as tissue tests, require
destructive sampling but are the standard against which other assessments are
compared. Sufficiency ranges provide concentrations of each nutrient that are
considered adequate for crop growth and development. They consider nutrients in
isolation. Other approaches have been developed to consider how the concentration
of one nutrient in tissue impacts the concentrations of other nutrients. These
approaches strive to develop guidelines for maintaining nutrient balance within the
plant. All approaches require large data sets for interpretation.

Ideally, a diagnostic test, whether of the soil or plant, meets four requirements: (1) it
is easy and inexpensive to perform; (2) it definitively identifies a potassium
(K) deficiency; (3) it allows farmers time to respond; and (4) it leads to interventions
with high probabilities of success. Soil tests have been widely used and have been
useful for assessing plant-available K, but they do have diagnostic limitations. As
Hall (1905) stated over 100 years ago:
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One of the main problems placed before the agricultural chemist is the estimation of the
requirements of a given soil for specific manures. . . . For various reasons the obvious
method of determining the proportions of nitrogen, phosphoric acid, and potash in the soil
fails in many cases to give the required information. . . . Hence from time to time attempts
have been made to attack the problem from another side and to use the living plant as an
analytical agent. The scheme is to take a particular plant grown upon the soil in question, and
determine in its ash the proportions of constituents like phosphoric acid and potash. Any
deviations from the normal in these proportions may then be taken as indicating deficiency
or excess of the same constituent in the soil and therefore the need or otherwise for specific
manuring in that direction.

Hall’s statement elucidates the shortcomings of a soil test as the sole guide for K
management and captures the rationale for adding plant measurements to the suite of
nutritional assessments. This chapter provides an overview of the many
“attempts. . .to use the living plant as an analytical agent.”

9.1 Visual Symptoms of Potassium Deficiency

When K is deficient, several processes are impaired (Marschner 2002). Low K
inhibits enzyme activation, making plants more susceptible to fungal attack.
Impaired stomatal activity results in poor control over gas exchange, impairing
photosynthesis and water control, making plants more susceptible to stresses from
drought, frost, water uptake, and soil salinity. Low K also impairs proton (H+)
exchange across the thylakoid membranes in chloroplasts, resulting in worsening
symptoms under higher light intensity (Marschner and Cakmak 1989). Transport of
photosynthates can also be impaired, resulting in a buildup of sugars and a reduction
in protein and starch synthesis, lowering the plant’s dry weight. Impaired lignifica-
tion of vascular bundles may result in weaker stalks and increased lodging. Potas-
sium is an abundant cation (K+) found in the cytoplasm, providing cell turgidity and
rigidity by maintaining the osmotic potential. The K+ concentration can be anywhere
between 10 and 200 mM and in some cases as high as 500 mM in guard cells and
pulvini of Fabaceae family member species. Lack of K results in reduced cell size
and number, causing reduced growth and affecting nyctinasty in the Fabaceae
family. Because K is mobile in the plant, it can be remobilized from older tissue to
younger tissue when uptake from the soil is insufficient; therefore, visual symptoms
generally occur first on older tissue, often the most recently matured.

Learning to recognize visual symptoms of deficiency requires training to become
familiar with symptoms that can be crop specific (Table 9.1). Potassium deficiency
may first appear as deep green plants with shorter and fewer internodes and smaller
leaves, followed by the rapid development of necrotic spots along the margins and
across leaf blades of recently matured leaves. In most cases, necrotic lesions begin
without prior chlorotic lesions. In some cases, chlorosis develops in the tissue
surrounding necrotic spots as the necrosis enlarges in advanced stages, or as necrosis
is followed by chlorosis on recently matured and maturing leaves.
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Table 9.1 Descriptions of visual symptoms of K deficiency for several horticultural crops

Crop Description

Brassica oleracea
L. (broccoli)

Internodes of maturing and recently matured leaves develop purplish
concentric circles with green, normal-looking tissues in the center.
Gradually, the undersides of these leaves’ petioles shrivel, followed
by the development of irregular sunken light green concentric circles
with normal islands on tissues (Fig. 9.1a). The lesions progress
further (Fig. 9.1b–d) with severe shriveling of petioles and the
spreading of purplish pigmentation on the internodes. Eventually,
necrosis develops across the entire lamina.

Cucumis sativus
L. (cucumber)

In the early stages of appearance, the leaf area is reduced (Fig. 9.2a,
b). As symptoms worsen, leaves appear deeper green (Fig. 9.2c), and
lesions of grayish necrosis develop on recently matured leaves and
on matured leaves below them (Fig. 9.2d).

Spinacia oleracea
L. (spinach)

Lesions of light greenish, sunken, irregular necrotic spots develop on
recently matured leaves (Fig. 9.3a). The lesions rapidly coalesce and
progress to distinct whitish necrotic spots on interveinal tissue on the
acropetal leaf area (Fig. 9.3b, c).

Cucurbita pepo
L. (zucchini squash)

In the early stages, leaves may appear darker green (Fig. 9.4a).
Necrotic spots of light whitish pin-head sized lesions develop on
interveinal tissue across the leaf blades closer to the primary veins
(Fig. 9.4b), which then enlarge to irregular sunken necrotic spots and
eventually into large necrotic spots of 0.5–1.0 cm (Fig. 9.4c).

Lactuca sativa
L. (romaine lettuce)

Lesions of dark grayish irregular sunken necrotic spots begin at the
acropetal area of recently matured leaves (Fig. 9.5a). These necrotic
lesions rapidly coalesce into large irregular necrotic patches ran-
domly across the lamina (Fig. 9.5b, c).

Carica papaya
L. (papaya)

Necrosis begins as greenish-gray patches just inside the leaflet mar-
gins of recently matured leaves and rapidly progresses to large
necrotic areas and the tissue collapses along the terminal margins
(Fig. 9.6a, b). As patches increase in size and number toward the leaf
base, areas between the necrotic patches turn chlorotic and the leaves
eventually abscise (Fig. 9.6c).

Solanum tuberosum
L. (potato)

Plants initially appear deeper green and compact due to fewer nodes
and shorter internodes (Fig. 9.7a). Further K deprivation results in
minor puckering and crinkling of leaves, with slight cupping of
recently matured leaves (Fig. 9.7b). Plant growth is reduced. These
symptoms progress rapidly to severe puckering and reduced leaf size
(Fig. 9.7c). Randomly spaced necrotic areas first appear on the
abaxial leaflet surface and along the secondary and tertiary veins of
outermost leaflets of recently matured leaves. The symptoms grad-
ually progress to the adjacent leaflets and then to the remaining
leaflets. As the deficiency becomes severe, dark necrotic spots
develop on the adaxial surface of maturing leaves and necrotic areas
enlarge.

Arachis hypogaea
L. (Peanut)

Recently matured/matured leaves initially appear slightly darker
green (Fig. 9.8a). As the K deprivation extends, lesions of light
grayish irregular sunken necrotic spots begin to develop across the
lamina (Fig. 9.8b). The lesions rapidly progress to distinct brownish
necrotic spots surrounded by chlorotic tissues (Fig. 9.8c).
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Fig. 9.1 Potassium
deficiency symptoms
exhibited on Brassica
oleracea L. (broccoli). For a
description, see Table 9.1
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Fig. 9.2 Potassium
deficiency symptoms
exhibited on Cucumis
sativus L. (cucumber). For a
description, see Table 9.1
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Fig. 9.3 Potassium
deficiency symptoms
exhibited on Spinacia
oleracea L. (spinach). For a
description, see Table 9.1
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Fig. 9.4 Potassium
deficiency symptoms
exhibited on Cucurbita pepo
L. (zucchini squash). For a
description, see Table 9.1
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Fig. 9.5 Potassium
deficiency symptoms
exhibited on Lactuca sativa
L. (romaine lettuce). For a
description, see Table 9.1
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Fig. 9.6 Potassium
deficiency symptoms
exhibited on Carica papaya
L. (papaya). For a
description, see Table 9.1
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Fig. 9.7 Potassium
deficiency symptoms
exhibited on Solanum
tuberosum L. (potato). For a
description, see Table 9.1
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Fig. 9.8 Potassium
deficiency symptoms
exhibited on Arachis
hypogaea L. (peanut). For a
description, see Table 9.1

9 Evaluating Plant Potassium Status 229



Nutrient deficiency symptoms can be used as a rapid diagnostic tool for identi-
fying factors that might limit crop yield and quality. Deficiency symptoms are not
the ideal approach for dealing with nutritional shortages, because by the time
symptoms are visible, plant productivity has already been impaired by the period
of malnutrition preceding the appearance of symptoms, a condition called “hidden
hunger.”

9.2 Light Reflectance

Potassium deficiency can cause changes in both individual plant organs and, collec-
tively, the crop canopy. When leaf tissue becomes chlorotic or necrotic, it no longer
reflects light the same way it did when it was healthy. Visibly, leaves change from
green to yellow or brown, but changes also occur outside the visible spectrum,
particularly at the nexus of visible and infrared wavelengths.

When incident energy hits the surface of a leaf or other plant organ, it is either
absorbed, reflected, or transmitted through the tissue. Several types of detectors can
measure, over a range of wavelengths, the energy not absorbed by the plant. Under
controlled conditions, positioning both the light source and the energy detector on
the same side of the plant tissue measures reflected energy. Positioning the light
source behind the tissue and the detector in front of the tissue measures transmitted
energy. In spectral analysis, the reflectance is the reflected energy expressed as a
percentage of the incoming energy. To calculate this percentage, the energy of the
light source must be known. Some instruments provide their own light source of
known energy. Instruments without a light source require reference materials with a
known reflectance, such as a white panel (Albayrak et al. 2011). A higher reflectance
means a lower energy absorbance. Because energy measurements do not require
contact with plant tissue, they are considered a type of “remote sensing.” For
agricultural uses, energy detectors have been mounted on tractors, airplanes,
unmanned aerial vehicles, and satellites.

Figure 9.9 is an example of a reflectance spectrum. Reflectance (%) is plotted
over a range of wavelengths (nm). Reflectance in the visible spectrum, 400–700 nm,
is less than reflectance in the infrared spectrum (700 nm–1 mm). Chlorophylls,
carotenoids, and anthocyanins absorb light in the visible spectrum (Knipling
1970), and combined they absorb more energy in the blue and red wavelengths
and less in the green wavelengths (Shull 1929). The longer wavelength infrared light
is not absorbed by the aforementioned phytochemicals, resulting in a rapid increase
in reflectance at the end of the visible and the beginning of the infrared spectrum,
termed the “red edge” (Horler et al. 1983). Farther into the longer wavelength range
of the infrared spectrum (not shown in Fig. 9.9) several compounds in the plant
absorb energy. Among these are protein, oil, starch, lignin, cellulose, water, and
sugar (Curran 1989). Additionally, water absorbs energy across both visible and
infrared spectra.

230 T. S. Murrell and D. Pitchay



A red edge at lower wavelength is associated with K deficiency. Figure 9.9 shows
two spectra for wheat (Triticum aestivum L.), one where K was added to the nutrient
solution (+K) and the other where K was omitted (�K) (Ayala-Silva and Beyl 2005).
The K deficiency resulted in a red edge at shorter wavelengths and increased
reflectance in the visible range (400–700 nm). When tissue yellows or becomes
necrotic due to nutritional deficiencies or other damage, less chlorophyll is available
to absorb energy in the visible spectrum, and reflectance increases (Shull 1929).
Also, when tissue dries, it typically reflects more energy (Woolley 1971). A
confounding factor in analyzing shifts in the red edge is that as plant tissue ages,
the red edge shifts to longer wavelengths (Horler et al. 1983; Milton et al. 1991).
Therefore, a red edge occurring at shorter wavelengths under K deficiency could be
interpreted as an “. . .inhibition of the normal shift to longer wavelengths” (Milton
et al. 1991).

Spectral analysis usually involves creating indexes that are diagnostic of plant
nutritional status. Commonly used metrics of nutritional status are K concentration
in dry tissue [g K (kg dry matter)�1] and total K accumulation in plant biomass
(kg K ha�1). Indexes are created from the combinations of wavelength reflectance
measurements that correlate most strongly with K concentration or K accumulation.
In remote sensing applications, spectra are the result not only of the absorption of
light by the crop canopy but also absorption by water and other compounds in the
atmosphere and in the soil not covered by the canopy.

Vegetative indexes are calculated by a normalization technique that uses ratios of
wavelength combinations. The normalized difference vegetation index (NDVI) is a
commonly used ratio. It is a combination of reflectance in the near-infrared spectrum
(RNIR) and reflectance in the red region (Rred). Specifically, NDVI ¼ (RNIR � Rred)/

Fig. 9.9 Reflectance spectra for wheat (Triticum aestivum L.) without K (�K) and with K (+K),
and all other nutrients at sufficient levels. (adapted from Ayala-Silva and Beyl 2005)
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(RNIR + Rred) (Tarr et al. 2005). Another often used index is the simple ratio RNIR/Rred

(Birth and McVey 1968).
For example, Albayrak et al. (2011) correlated NDVI and the simple ratio to leaf

K concentrations of shoot tissues of three vetch (Vicia) species. Figure 9.10 shows
the correlations with both indexes for Vicia villosa Roth, which was representative of
the correlations of the other two Vicia species. The NDVI correlation was somewhat
better than that of the simple ratio. Many other vegetative indices have been tested
using tissue K concentration: green-to-red and near-infrared-to-green ratios (Gómez-
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reflectance to reflectance in the red region (RNIR/Rred). (adapted from Albayrak et al. 2011)
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Casero et al. 2007); green normalized difference vegetation index (GNDVI), soil
adjusted vegetation index (SAVI), optimized soil adjusted vegetation index
(OSAVI), N_870_1450 and N_1645_1715 (Mahajan et al. 2014; Pimstein et al.
2011); P_1080_1460, S_660_1260, and S_660_1080 (Mahajan et al. 2014); vege-
tation vigor index (VVI) (Noori and Panda 2016); the GM Index, the Vogelmann
Index (VOG), the Green Leaf Index (GLI), the normalized difference index (NDI),
and a simple ratio RI (Anderson et al. 2016); and the re-normalized difference
vegetation index (RDVI) (Guo et al. 2017). Other normalization procedures are
continuum removal and band depth (BD) normalization (Kokaly and Clark 1999);
continuum-removed derivative reflectance (CRDR), the normalized band depth ratio
(BDR), and the normalized band depth index (NBDI) (Mutanga et al. 2004).

Statistical techniques are commonly used to create multivariate models of wave-
lengths that account for the most variation in either tissue K concentration or total K
accumulation. The approach is to develop a statistical model with one set of data,
termed a calibration or training data set, then test how well that model predicts either
K concentration or total K accumulation in another data set, termed the validation,
prediction, or test data set (Geladi and Kowalski 1986). The most widely used
statistical technique has been stepwise regression; however, uninformed use of this
approach can lead to overfitting, making a model “. . .unlikely to be replicated if the
experiment is repeated” (Mutanga et al. 2004). Another criticism of stepwise regres-
sion has been that the wavelengths most highly correlated with plant chemical
content may not relate to known absorption features of those chemicals (Curran
et al. 1992). To address concerns of overfitting, researchers are turning to other
techniques to build models, such as partial least squares (PLS) regression (Geladi
and Kowalski 1986), kernel partial least squares regression (KPLSR), and support
vector regression (SVR) (Pullanagari et al. 2016).

The major difficulty that has yet to be overcome is the inability of reflectance to
discriminate among more than one deficient element. Predictive models have been
built for individual nutrients, but not for combinations of nutrients. Fridgen and
Varco (2004) conducted a study with a factorial combination of nitrogen (N) and K
fertilizer application rates applied to cotton (Gossypium hirsutum L.). They built a
predictive model for leaf N content using partial least squares regression. When K
was limiting, the model performed poorly, as measured by the correlation between
predicted and observed N content (r2 ¼ 0.06); however, when K was adequate, the
model performed markedly better (r2 ¼ 0.70). From their experiment examining
several isolated nutrient deficiencies, Pacumbaba and Beyl (2011) concluded that
spectral analysis could detect nutrient stress but was not able yet to identify which
nutrient was causing the stress.

An additional consideration is when to take reflectance measurements. Early
detection of K deficiency is the goal. As discussed in the previous section, K
deficiency can progress rapidly from “hidden hunger” to complete tissue necrosis.
Creating diagnostic interpretations of reflectance spectra needs to consider the
dynamic nature of K deficiency during the plant’s lifecycle.
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9.3 Plant Tissue Chemical Content

The most widely adopted determinations of plant tissue K content are those
performed in the laboratory on tissue samples collected from the field. Farmers or
consultants gather samples of specific tissue at specific growth stages (Jones 1998).
After the laboratory receives the samples, technicians dry them, typically in a forced-
air oven, then grind them to reduce particle size. A small subsample of the ground
material is weighed out and digested in an acid solution (Campbell and Plank 1998;
Hanlon 1998). The quantity of K in an aliquot of the digestate is determined using
either an atomic absorption spectrophotometer (Hanlon 1998) or an inductively
coupled plasma atomic emission spectrometer (Isaac and Johnson 1998). Although
laboratory determination of K content is the scientific standard, it is not available
everywhere, since it requires capital to set up the laboratory, an appropriate business
plan to sustain laboratory operations, trained personnel, well-developed infrastruc-
ture to transport samples and maintain equipment, and quality assurance and quality
control procedures to ensure results are accurate and precise.

For meaningful interpretation, tissue test results must be correlated to crop
performance. The stronger the correlation, the more useful tissue analyses become
as a diagnostic tool. Yield has traditionally been the performance metric of universal
interest; however, crop quality and plant health can be just as important, depending
on the crop and the requirements for marketable yield. The objective of correlations
is to identify test levels associated with K sufficiency and balanced nutrition.

Balance considers concentrations of other nutrients in plant tissues. The tissue
concentration of K is influenced by the supply of other cations such as ammonium,
magnesium (Mg), calcium (Ca), iron, manganese, copper, and zinc. The growing
environment also plays an important role in the determination of the critical level
of K, since tissue K concentrations are influenced by factors such as incident
radiation, light intensity, air and soil temperature, soil moisture, etc. The demand
for K also changes during the season, as discussed in Chap. 1, with increases in many
species during the reproductive stage, especially during flowering and fruiting. The
following sections discuss approaches that have been developed to create diagnostic
criteria.

9.3.1 Sufficiency Ranges (SR)

Macy (1936) formulated many of the concepts used today for interpreting tissue test
correlations. He assembled data from studies that added or subtracted a given
nutrient from the plant-available supply and measured changes in biomass produc-
tion and nutrient concentration in plant tissue. He defined yield response as the
decrease in any given yield from the maximum yield. He plotted those yield
decreases against the associated tissue nutrient concentrations to create correlations
like the one in Fig. 9.11. His approach considered one nutrient at a time and assumed
levels of other nutrients were adequate. He defined “poverty adjustment” as the
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range where biomass yield climbed toward maximum yield as tissue nutrient
concentration increased. At higher nutrient concentrations, biomass no longer
increased, a range he termed “luxury consumption.” He then defined the “critical
percentage” as the tissue concentration dividing poverty adjustment from luxury
consumption. He also observed that a range of the largest yield decreases occurred
within a relatively narrow range of low nutrient concentrations. He termed this range
“minimum percentage.” As Macy’s concept was adopted by others, relative yield or
actual yield was used as the dependent variable rather than the decrease from
maximum yield. Relative yield is the ratio of observed yield to maximum yield.
Research has been going on for decades on numerous crops to develop correlations
between tissue concentrations and crop yields, and studies are periodically summa-
rized in reviews such as Hardy et al. (1967) and Westerman (1990). While correla-
tions of yield or relative yield with tissue concentrations provide the basis for
diagnosing a K deficiency, they do not indicate how much K needs to be applied
to rectify the deficiency. Calibration experiments, like those discussed in Chap. 1,
provide that kind of information.
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Fig. 9.11 Interpretation of oat (Avena sativa L.) tissue test correlation data into three categories:
minimum percentage, poverty adjustment, and luxury consumption, the latter two divided by the
critical percentage. (Macy 1936)
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The selection of models fit to correlation data influences the determination of
critical level or range. As an example, we compare models fit to data correlating
maize (Zea mays L.) yield to K concentration in the leaf blade opposite and below
the ear, sometimes called the “sixth leaf” or the “ear leaf.” Tyner (1947) modeled his
ear leaf correlation data set using actual yields and a linear model. His data did not
have a clear “flex point” where yield no longer increased with K concentration
(no luxury consumption). He set the critical concentration at the concentration where
only two higher yielding observations at lower concentrations fell outside the
standard error interval. Stammer and Mallarino (2018), correlating leaf concentra-
tions to maize and soybean (Glycine max (L.) Merr.) relative yields, defined a critical
range, rather than a single level, from two different least squares statistical models fit
to the same data. The inflection of the linear-plateau model set the lower limit of the
range and the plateau of the quadratic-plateau model set the upper limit. In addition
to those already mentioned, other statistical models commonly used in nutrient
response or correlation studies are: linear segmented models (Anderson and Nelson
1975); quadratic, exponential, and square root functions (Cerrato and Blackmer
1990; Mombiela et al. 1981); and the “Cate-Nelson” procedure (Cate and Nelson
1971).

Empirical data comprising tissue test correlations are gathered under specific
conditions. When conditions change, interpretations may also change. For instance,
Kovács and Vyn (2017) correlated yields and ear leaf K concentrations of modern
maize hybrids and found that the lower limit of the sufficiency range in existing
interpretations was too low. Their more recently collected data revealed that a higher
range in tissue K concentrations needed to be recommended to farmers. This
example demonstrates that tissue test correlations must be reevaluated when current
practices or growing conditions differ from the historical ones upon which the
recommendations were based. Unfortunately, funds for conducting such research
are usually sparse and only sporadically available. Unmet funding needs have
limited scientists’ ability to update data sets in a timely manner, resulting in
interpretations and recommendations that may reflect older cropping practices,
genetics, and climatic conditions.

Tissue K concentration is affected by factors other than the quantity of plant-
available K in soil. Over 100 years ago, Hall (1905) noted that environmental factors
can alter nutrient concentrations as much as variations in the K content of the soil. To
quiet the noise from other factors, Mallarino and Hagashi (2008) used relative rather
than absolute tissue concentrations. In their field experiments, they calculated
relative concentrations for a given season at a given site (site-year) by dividing
tissue K concentrations from unfertilized plots by the tissue K concentration of the
highest treatment mean. They then aggregated data across all site-years and exam-
ined the relationship between soil test level and either absolute or relative tissue
concentration. Relative tissue concentrations were better related to changes in soil
test levels than absolute concentrations; however, they did not examine the relation-
ship between relative concentration and relative yield, likely because only small
yield responses to K fertilization occurred in the study.
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Although correlation studies are essential, they do not completely define the
process used to develop diagnostic criteria for tissue tests. To quote Melsted et al.
(1969):

Critical plant composition values can seldom be derived through a single carefully designed
experiment. Rather they evolve through hundreds of fertility trials and the resulting thou-
sands of plant analyses. Slight variations in plant composition may result through differences
in individual plants, in plant varieties, in seasonal changes, in nutrient levels, in nutrient
ratios, and in various other factors. There is no good way to evaluate or balance some of
these differences except through personal judgement.

To elucidate the process of deriving tissue test interpretations for production
settings, we explore an example from the citrus industry in California. We begin
with the current recommendations. Embleton et al. (1978) published the interpreta-
tions for leaf tissue K concentration reproduced in Table 9.2 which are still used
today. Farmers and consultants compare their own test results with those in the table
to assess the K status of their orange trees. The interpretations are valid for specific
plant tissue: 5–7-month-old, spring cycle, terminal leaves from nonfruiting, and
nonflushing shoots that are 0.9–1.5 m above the ground. These interpretations
apply to orange (Citrus sinensis (L.) Osbeck), grapefruit (Citrus paradisi Macfad.),
and lemon (Citrus limon (L.) Osbeck). To reach the desired number of fruit per tree,
farmers manage fertilizer K to keep tissue tests in the optimum range
(7.0–10.9 g kg�1). To attain the desired fruit size and quality, a higher concentration
in the range of 10.0–12 g kg�1 is recommended. Although not shown in Table 9.2,
ranges are provided for other nutrients too. The presentation of interpretation ranges
for individual nutrients with associated descriptions of tissue at a given range of
positions on the plant and an associated age range is representative of guidelines in
use for many crops and nutrients (Mills and Jones 1996; Shear and Faust 2011;
Uchida 2000). Commonly, the optimum range is called the “sufficiency range.”
Baldock and Schulte (1996) classified sufficiency ranges as an independent nutrient
index (INI), because they represent the sufficiency of one nutrient independently of
other nutrients.

The tissue K interpretations in Table 9.2 are a result of a long period of work. We
explore the process followed to create the entries in that table. Doing so reveals the
many steps required to create tissue test interpretations.

Southern California farmers’ desire for evidence-based management practices for
oranges sparked the long process of creating tissue test interpretations. The Citrus
Experiment Station was established at Riverside, California in 1907. Field trials

Table 9.2 Interpretations of
leaf K concentrations of
mature Valencia and navel
orange (Citrus sinensis (L.)
Osbeck) leaves. (Embleton
et al. 1978)

Leaf K concentration

Interpretation g K (kg dry matter)�1

Deficient <4.0

Low 4.0–6.9

Optimum 7.0–10.9

High 11.0–20.0

Excess >23.0
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were also started that year. Research summaries published in 1922 (Vaile 1922) and
1942 (Parker and Batchelor 1942) concluded that N was the limiting nutrient for
Valencia and navel oranges, not K; however, Chapman and Brown (1943) stated that
despite the lack of experimental evidence, many farmers continued to believe that K
was necessary to sustain fruit yield and quality.

Chapman and his colleagues began investigating K nutrition more closely. Their
initial work focused on characterizing the effects of K deficiency, sufficiency, and
excess on the growth and fruit production of Valencia and navel orange trees
(Chapman and Brown 1943; Chapman et al. 1947). To do this, they initially
conducted greenhouse studies using nutrient solutions with and without K to com-
pare differences in leaf tissue concentrations as well as visual deficiency symptoms.
They also conducted “controlled-culture experiments” on 4-year old trees growing in
large (700 L) pots outdoors under ambient conditions and fed with nutrient solutions
with varying levels of K (3–7 ppm K, 30–40 ppm K, and 300–400 ppm K)
(Chapman et al. 1947). They noted that in the early stages of K deficiency, trees
showed only faint symptoms and set fruit normally, but at harvest, their fruit was
much smaller. Although the K-deficient trees did not exhibit clear visual symptoms,
the K concentrations in their leaves were much lower than those where K was
sufficient. Driven by their concern that “incipient” K deficiencies likely went
unnoticed in commercial orchards (termed “hidden hunger” earlier in this chapter),
Chapman and Brown (1950) set up a series of investigations to determine if the K
concentration in leaves could serve as a diagnostic test.

Although they had been analyzing leaves in their work, Chapman and Brown
(1950) were not sure leaves were the best tissue for diagnosing tree nutrient status.
They took samples from a long-term experiment where navel orange trees had been
growing for over 13 years on differentially fertilized plots. Given the long time they
had to respond to differences in fertility, trees on these plots were the most likely to
exhibit clear differences in tissue K concentration. Unfortunately, the effects of K
could not be isolated, since S was applied with K. They sampled: leaves; small,
“pencil-sized” terminal shoots (twigs); blossoms; immature fruit; and mature fruit.
An excerpt from their results is in Table 9.3. Comparing the pair of treatments
without K (N and N + P) to treatment with K (N + P + K + S and manure) showed
that leaves were the plant organs most sensitive to changes in K nutritional status. In
a separate study, Chapman and Brown (1950) also tested petioles and found they
offered no advantage over leaves. Foundational work of others on a variety of crops,
summarized by Ulrich (1952), showed that nutrient concentrations in vegetative
organs of plants were often more sensitive to changes in soil nutrient supply than
those in fruits, seeds, or tubers.

Chapman and Brown (1950) investigated the best time to sample leaf tissue.
Under southern California conditions, orange trees, which are evergreen, have three
cycles of new leaf growth (flushes) during the following approximate times of the
year: April (first or spring flush), June (second flush), and August through September
(third flush). Experiments examining the time of sampling revealed that K concen-
trations generally decreased in leaves as they aged, a phenomenon noted by many
other researchers working on many other crops, for example, Thomas (1937)
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studying potato leaves, Bell et al. (1987) examining soybean leaves, and Xue et al.
(2016) analyzing rice (Oryza sativa L.) leaves. Using data from the “controlled-
culture experiments,” Chapman and Brown (1950) determined that K concentrations
in 12-month-old leaves taken from shoots that had been spring flush, fruit-bearing
terminal shoots the previous year had the lowest K concentration (Fig. 9.12). They
posited that by 12 months, some of the K in these older leaves had translocated to
newly developing tissue. The K concentration in the older leaves had the clearest
separation between deficient, slightly deficient, and ample K nutrition; however,
accurately identifying these leaves in commercial orchards was questionable. Also,
sampling at this leaf age was limited to a short period in the spring. Both of these
practical limitations led to recommendations for sampling younger leaves, 4–7
months old, located immediately behind the fruit on spring flush, terminal fruiting
shoots (Chapman 1949, 1960; Chapman and Brown 1950; Embleton et al. 1962).
These leaves were more readily identifiable and could be sampled over a several-
month period, giving them practical value as a diagnostic test.

Chapman and Brown (1950) conducted additional studies to provide further
details on sampling leaves. They examined how high to sample on the tree and
found that leaf K concentrations at the top (3.0–4.9 m) were slightly lower than other
positions. Samples taken at 1.5–3.0 m were no different than those at 0.6–1.5 m. The
lowest height was easiest to reach and that height has carried through to the current
recommendation of 0.9–1.5 m. Other investigations by Chapman and Brown (1950)
showed that leaf K concentrations were relatively constant on various sides of the
tree. Large and small leaves were also similar in concentration. Chapman and Brown
(1950) summarized their own as well as other scientists’ data, including international
data sets, and published the first set of interpretations.

In later work, Jones et al. (1955) and Embleton et al. (1962) found that sampling
the youngest fully expanded leaf from nonfruiting, rather than fruiting, terminal
shoots resulted in more reliable interpretations. The current recommendation in
California is to sample 5–7-month-old, spring cycle, terminal leaves from
nonfruiting, and nonflushing shoots (Embleton et al. 1978). That approach has
proven so reliable that it is used by the citrus industry worldwide.

In developing sufficiency ranges, both Chapman and Embleton gathered data
from farmers’ orchards. They surveyed leaf concentrations in orchards of

Table 9.3 Tissue K concentrations in various organs of navel orange trees (Citrus sinensis (L.)
Osbeck) growing for over 13 years on differentially fertilized plots in a long-term experiment.
(Chapman and Brown 1950)

Twig bark Twig wood Leaves Blossoms Immature fruit Mature fruit

Treatmenta g K (kg dry matter)�1 g K (kg fresh weight)�1

N 3.9 1.2 6.5 12.9 2.5 1.4

N + P 3.3 1.5 6.8 12.9 2.4 1.4

N + P + K + S 2.1 1.1 10.7 12.6 2.6 1.5

Manure 3.8 2.0 13.2 15.5 3.1 1.4
aN¼ nitrogen applied as urea; P¼ phosphorus applied as triple superphosphate; K + S¼ potassium
and sulfur co-applied as potassium sulfate; manure ¼ dairy manure
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top-producing farmers. Additionally, Embleton worked with growers whose
orchards were deficient in one or more nutrients and established fertilizer rate trials
there. Stemming from such practical research, Embleton et al. (1974) stated that one
of the reasons for setting 7.0 g kg�1 as the threshold between “low” and “optimum”

was their experience that it was difficult to increase leaf K concentration once it fell
below this level. Also, Embleton et al. (1978) looked beyond the number of fruit per
tree and examined other quality parameters, such as fruit size and quality. On-farm
research, on-farm surveys, on-farm experience, and goals for not only yield but also
crop quality helped define the interpretations used today.

An important observation by Chapman and Brown (1950) was that K concentra-
tions in leaves were influenced by the concentrations of other nutrients and vice
versa. Table 9.4 shows that when K was deficient, the leaf concentrations of N, Ca,
and Mg increased. Additionally, when the other listed nutrients were deficient, the
concentration of K in leaves increased.

The implication of the findings in Table 9.4 is that accurate interpretations of
adequate and higher K concentrations depend upon knowing the concentrations of
other nutrients. Higher K concentrations considered in isolation could be
misinterpreted as sufficient when other nutrients are deficient. Chapman and
Brown (1950) concluded that low leaf K concentrations were diagnostic and
would not produce a false positive for K deficiency. However, when other nutrients
were limiting, higher K concentrations could produce a false negative for K defi-
ciency. The possibilities for misdiagnosis have led to ongoing research on how to
consider more than one nutrient at a time when interpreting tissue analyses.
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9.3.2 Diagnosis and Recommendation Integrated System
(DRIS)

The importance of nutrient interactions on tissue concentrations was an early
observation. Hall (1905) noted that the total quantity of sodium (Na) and K, summed
together, was relatively constant but the cation that contributed more to the sum was
the one in greater supply in the soil. He observed that,

Any abundance of soda acts as a diluent and reduces the proportion of potash in the mangel
ash, even though the plant may have an excess of potash available. In consequence the
normal proportion of potash in the ash of the mangel will vary with factors other than the
potash content of the soil. . .

The most well-known approach for considering multiple nutrients is the Diagnosis
and Recommendation Integrated System (DRIS), developed by Beaufils (1973) in
South Africa from his work on maize and rubber trees. The objective of DRIS is to
rank nutrients in their order of sufficiency to one another. The rank reveals which
nutrients are most limiting and which are least, relative to each other. The rank does
not, however, indicate whether a crop will respond favorably to fertilization if the
lowest-ranked nutrient or nutrients are added (Sumner 1990). Baldock and Schulte
(1996) classified DRIS as a dependent nutrient index (DNI), because it considers two
or more nutrients in its interpretations.

DRIS begins by assembling all available data, typically hundreds to thousands of
records, into a database. The minimum data required for each record are yield and the
tissue nutrient concentrations associated with that yield. This large data set is parsed
into at least two subpopulations based on yield: low and high. Often, the yield
delineating the subpopulations is chosen from experience. For example, Sumner
(1977a) set the delineating soybean grain yield at 2.6 Mg ha�1.

The next step is to create parameters, which are ratios of two nutrient concentra-
tions. Continuing with the soybean example, Sumner (1977a) created the following
parameters for the nutrients N, phosphorus (P), and K: N/P, N/K, and K/P

Table 9.4 Directional changes in nutrient concentrations of orange (Citrus sinensis (L.) Osbeck)
leaves when other nutrients are deficient. (adapted from Chapman and Brown 1950)

Nutrient

Directional change in K leaf
concentration due to a deficiency in the
nutrient in the first column

Directional change in leaf concentration
of the element in the first column due to
a deficiency in Ka

Nitrogen Increase Increase

Phosphorus Increase ?

Calcium Increase Increase

Magnesium Increase Increase

Sulfur Increase ?

Boron Increase ?

Iron Increase ?

Zinc Increase ?
a? indicates the direction is not known with certainty
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(Table 9.5). He calculated descriptive statistics for each one: mean, variance,
standard deviation (sd), and coefficient of variation (CV). Beaufils (1973) advised
ensuring the distribution of each parameter in each yield subpopulation be normally
distributed. None of the statistics for the parameters have units, since nutrient
concentrations are expressed as ratios of one another. In the soybean example,
Sumner calculated statistics for N/P, N/K, and K/P within each yield subpopulation.
Table 9.5 shows all of these statistics for the high yield subpopulation but displays
only the variance for the low-yielding one. To determine if a parameter should be
included, Sumner (1977a) calculated the ratio of the low-yielding variance to the
high-yielding variance. The assumption was that higher yields were less variable
than lower yields. If the variance ratio was statistically significant, that parameter
was included. Beaufils and Sumner (1976) interpreted significance to mean that,
“. . .a relationship between yield and. . .plant composition is possible and that this
relationship. . .can be exploited to suit diagnostic purposes.” Table 9.5 shows that the
variance ratios of all three parameters were highly statistically significant, so he
included all of them.

In DRIS, the means of each parameter from the high-yielding subpopulation are
“norms.” When the yield is normally distributed across levels of a parameter, the
parameter mean is associated with the highest yields in the high yield subpopulation.
Walworth et al. (1986) noted that high-yielding subpopulations were less likely to be
skewed and more likely to follow the normal distribution, providing an additional
reason for using them when creating norms. Norms are the standards used for
interpreting tissue concentrations from individual data sets and represent the target
levels of each parameter. The DRIS norms are the basis for ordering nutrients
according to their sufficiency in the plant. There are two ways of creating this
ranking: (1) graphically using a DRIS chart or (2) numerically using DRIS indexes.

Table 9.5 An example of DRIS parameters and norms for N, P, K concentrations in soybean
(Glycine max (L.) Merr.) leaves derived from 879 observations in the low-yielding subpopulation
and 366 observations in the high-yielding subpopulation. (excerpted from Sumner 1977a)

High-yielding subpopulation

Parameter
Mean or
“norm”

a

Standard
deviation
(sd)

Coefficient
of variation
(CV) (%) Variance

Variance in the
low-yielding
subpopulation

Ratio of
variances
(low/high)b

N/P 13.77 2.72 20 7.40 19.89 2.69**

N/K 2.43 0.50 21 0.25 1.88 7.52**

K/P 5.97 1.47 25 2.16 6.81 3.15**

aBecause units of concentrations ratios are unity, units of all descriptive statistics except the
coefficient of variation are also unity. The means of each parameter from the high-yielding
subpopulation are the DRIS “norms”
b** Indicates the variance ratio is highly statistically significant
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9.3.2.1 DRIS Chart

The DRIS chart (Fig. 9.13) ranks three nutrients qualitatively. When more than three
nutrients are analyzed, the user interprets multiple DRIS charts simultaneously, as
outlined in Beaufils and Sumner (1976). In the soybean example, the chart is
composed of three axes, one for each parameter. The arrowheads on each axis
indicate the direction of the increase in each parameter. The intersection of the
three axes is the norm for each parameter (the “norms” in Table 9.5): 13.77 for
N/P, 2.43 for N/K, and 5.97 for K/P. The inner circle has a radius of (2/3) � sd for
each parameter (Sumner 1977a). For example, the radius of the circle for the N/P line
is (2/3) � 2.72 ¼ 1.813. Adding and subtracting that value from the N/P norm
(13.77) calculates the two intersection points of the inner circle on the N/P line:
13.77 + 1.813 ¼ 15.6 and 13.77–1.813 ¼ 12.0. The outer circle has a radius of
(4/3) � sd. Calculations are repeated for the other two lines to find their intersection
points with both circles. The arrows next to the element symbols denote the balance
of the nutrients on either side of a given axis. Keeping with the N/P axis, the inner
circle represents nutrient balance between N and P, denoted by the horizontal arrows
next to each nutrient. Within this circle, tissue concentrations are close to norms and
are therefore associated with the highest yields in the high yield subpopulation.
Moving upward on the N/P axis to the zone between the two concentric circles, the
level of N begins to become too high, denoted by the upward slanted arrow, and the
level of P starts to become too low, denoted by the downward slanted arrow. This is a
transition zone. Moving still farther upward outside the second circle is nutrient
imbalance. N is too high (arrow straight up) and P is too low (arrow straight down).
An N/P ratio outside the second circle is associated with the lowest yields in the high

Fig. 9.13 DRIS chart for
the parameters N/P, N/K,
and K/P. The radius of the
inner circle is (2/3) � sd and
that of the outer circle is
(4/3) � sd. The blue points
are the values of the
parameters for the second
entry (92 days after
emergence) in Table 9.6:
N/P ¼ 17.00; N/K ¼ 3.86;
K/P ¼ 4.40

9 Evaluating Plant Potassium Status 243



yield subpopulation. Imbalances between N and P move in the opposite direction
downward from the center on the N/P axis, with P being too high and N being too
low outside the second circle on the bottom of the N/P axis. Similar interpretations
exist for the other nutrients on the other two axes (N/K and K/P).

DRIS charts like that in Fig. 9.13 rank three nutrients from most deficient to least
deficient. For example, Sumner (1977a) applied the soybean DRIS norms in
Table 9.5 to soybean tissue concentrations he interpolated from a study by Hanway
and Weber (1971) (Table 9.6). The general method for using a DRIS chart was best

described by Sumner (1977b). We apply that method to the soybean tissue concen-
trations listed in the second entry in Table 9.6 (92 days after emergence):
42.5 g N kg�1, 2.5 g P kg�1, and 11.0 g K kg�1.

First, we calculate tissue nutrient concentration ratios to create parameters that
match the axes in Fig. 9.13, shown in columns 5–7 in Table 9.6: N/P ¼ 17.00,
N/K ¼ 3.86, and K/P ¼ 4.40.

Next, we locate 17.00 along the N/P axis (top leftmost point in Fig. 9.13) and see
that it falls between the inner and outer circles. We then find the nutrients and arrows
to the left and right of the axis where the point is located. To the left of the N/P axis is
a P\ and to the right is an N/. In the typeset used in this chapter, “\” denotes an arrow
slanted downward and “/” denotes an arrow slanted upward. For each nutrient, we
tally only the horizontal or downward-facing arrows. We record a “\” next to P, as
shown in the first step of the tally in Table 9.7.

Next, we locate N/K ¼ 3.86 along the N/K axis, which falls outside the outer
circle (point in the upper right of Fig. 9.13). To the right of the N/K axis outside the
outer circle is a K# and to the left of the N/K axis is an N". We record only the
downward-facing arrow and add it to K in the second step of the tally in Table 9.7.
The \ arrow next to P from the first step is copied down into the second step.

Next, we locate K/P¼ 4.40 along the K/P axis, which falls between the inner and
outer circles (the point in the lower right in Fig. 9.13). To the right of this axis next to
the point is a K\ and to the left of this axis is a P/. We record only the downward
slanted arrow next to K in step 3 in Table 9.7, again copying all arrows from the
previous step.

Table 9.6 Soybean (Glycine max (L.) Merr.) leaf tissue nutrient concentrations from Hanway and
Weber (1971) as interpolated by Sumner (1977a), concentration ratios, and rank in order of most
yield-limiting to least yield-limiting

Days after emergence

Na P K Parameters

g (kg dry matter)�1 N/P N/K K/P Rankb

73 64.5 4.2 17.5 15.36 3.69 4.17 K > P � N

92 42.5 2.5 11.0 17.00 3.86 4.40 K > P > N

102 29.0 2.0 9.5 14.50 3.05 4.75 K > P � N
aTissue data are from the top leaves, above node 14
bRank differs slightly from that published by Sumner (1977a) who used computational methods
rather than the DRIS chart to rank nutrients
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By convention, after all, three parameters have been read from the DRIS chart, the
nutrient not yet assigned an arrow receives a horizontal one (!), which we have
added in the fourth entry in Table 9.7.

The last step is to order the nutrients from most limiting to the least limiting.
Straight downward arrows are more yield-limiting than slanted downward arrows. In
the example in Table 9.7, K with both a # and a “\” is more limiting than P with only
a “\.” Finally, N is the least limiting since it has no downward arrows. The final
ranking, from most to least yield-limiting is therefore: K > P > N. Repeating this
process for the other two entries in Table 9.6 (73 and 102 days after emergence) fills
out the remaining rankings for the earlier sampled and later sampled soybean tissue.
We see that in each entry in Table 9.6, K is identified as the most limiting nutrient,
with P possibly the next limiting, and N the least limiting.

9.3.2.2 DRIS Indexes

DRIS indexes rank multiple nutrients quantitatively. Nutrient indexes combine
functions of each parameter. For the soybean example, three functions exist: f
(N/P), f(N/K), f(K/P) (Sumner 1977a). Each function (not displayed here) is com-
posed of (1) the distance a particular parameter is from its norm, (2) a weighting
factor, and (3) a sensitivity coefficient that is simply a multiple of 10. The distance is
negative when the parameter is less than its norm and positive when the parameter is
greater than its norm. The distance is zero when the parameter equals its norm.
Distances are on a continuous scale. The weight in the function is the inverse of the
coefficient of variation (CV) associated with the parameter norm. The DRIS index
for a particular nutrient is an average of the functions containing that nutrient.
Keeping to the three nutrients N, P, and K, their respective indexes are:

Table 9.7 Ranking of the N, P, and K tissue concentrations listed in Table 9.6 for the entry
associated with samples taken 92 days after soybean (Glycine max (L.) Merr.) emergence

Progressive
steps in the tally

Parameter
interpreted

Parameter
value

Nutrient with a
horizontal or downward
arrowa

Tally of horizontal
and downward
arrowsb

1 N/P 17.00 P\ N P\ K

2 N/K 3.86 K# N P\ K#
3 K/P 4.40 K\ N P\ K#\
Nutrient not
assigned an
arrow

N ! N! P\ K#\

Final ranking (from most limiting to least yield-limiting) K > P > N
aAn arrow slanting downward is denoted by “\” in the typeset of this chapter. These arrows are read
from the DRIS chart in Fig. 9.13
bDownward slanting arrows are given a lower ranking (less limiting) than straight downward arrows
(more limiting), so in order of most to least yield-limiting, the combination “#\” denotes a more
limiting nutrient than “\” alone
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N Index ¼ IN ¼ f N=Pð Þ þ f N=Kð Þ½ �=2
P Index ¼ IP ¼ �f N=Pð Þ � f K=Pð Þ½ �=2
K Index ¼ IK ¼ f K=Pð Þ � f N=Kð Þ½ �=2

ð9:1Þ

Because weights are in the functions, the average that calculates an index is a
weighted average. The index calculation assigns a negative sign to a function that
has the nutrient of interest in the denominator and a positive sign to a function with
the nutrient of interest in the numerator. Therefore, for the K index, f(N/K) is
negative and f(K/P) is positive. Indexes provide a continuous scale for ranking
nutrients as opposed to the DRIS chart which provides only qualitative rankings.

When Sumner (1977a) used indexes rather than a chart to rank the data in
Table 9.6, his ranking was K > P > N, and this ranking was the same across all
plant ages. This is notable, since the actual concentrations of N, P, and K in tissue
decreased over time in Table 9.6. Sumner considered the stability of rankings with
plant age one of the major contributions of DRIS to tissue test interpretations.
Interpretations for sufficiency ranges, discussed previously, are for specific growth
stages. Sumner (1990) argued that the ranking stability arose from the use of tissue
concentration ratios. Nutrient concentrations are normally reported on a dry matter
basis, such as g K (kg dry matter)�1. In ratios of two concentrations, such as K/N, the
dry matter units cancel each other, making the ratios less sensitive to changes in dry
matter content as tissue ages.

When setting up nutrient ratios, Sumner (1990) advised accounting for how
nutrient concentrations of each element changed as tissue aged. The most consistent
ranking of nutrients over time occurred when all nutrient concentrations in the
analysis changed in the same direction, for instance becoming less concentrated,
as is the case for N, P, and K. However, some nutrients increase in concentration at
later growth stages, like Ca in sugarcane (Saccharum officinarum L.) leaf tissue
(Sumner 1990). Taking the inverse (1/Ca) of concentrations that increase with tissue
age shifts their direction to match those that decrease. So instead of using a ratio of
N/Ca, one would instead use a ratio of N/(1/Ca), which results in the product
N � Ca. Creating such consistency in directional change produced much more
consistent rankings across tissue ages (Sumner 1990), and increased the accuracy
of predicting yield responses (Hallmark et al. 1988). In addition, Hallmark et al.
(1988) observed that not taking the inverse of Ca concentration resulted in Ca often
appearing in rankings as the most limiting nutrient.

Jones (1981) suggested two modifications to the DRIS procedure. DRIS used one
function when a parameter was greater than its norm and another function when a
parameter was less than its norm. Jones (1981) pointed out that the functions did not
weight parameter values equivalently. The difference in weighting biased the
indexes. In his first modification, Jones advocated for a single functional form that
weighted variances equivalently regardless of how a parameter value compared to its
norm (Eq. 9.2). In that equation, the parameter function f( pij) is equal to the value of
parameter j in a given tissue sample i ( pij) minus the norm of that parameter (Mj)
divided by the standard deviation of the norm of that parameter (sdj). BothMj and sdj
are calculated using the high yield subpopulation. The weight in Eq. (9.2) is 1/sdj.
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The equation calculates negative values when the parameter is less than its norm,
positive values when it is greater, and zero when the two are equal. In later work,
DRIS adopted Jones’ single equation as the parameter function (Hallmark et al.
1987).

f pij
� � ¼ pij �M j

� �
=sd j ð9:2Þ

Jones (1981) also questioned the use of only variance ratios, like those in
Table 9.5, to select which parameters to include. He observed that parameter
means between high and low-yielding subpopulations could be significantly differ-
ent even though their variances were not. In his second modification, he argued for
testing means in addition to variances for selecting parameters. He also noted that
more parameters would be statistically selected as the number of observations in the
yield subpopulations increased.

One of the assumptions of the DRIS system was that yield distributions across
levels of any ratio were normally distributed. Beverly (1987a, b) demonstrated that
in some cases, those ratios were positively skewed. Lack of normality created
different norms for the same ratio when the numerator and denominator in that
ratio were switched. Taking the natural log of the concentration ratio corrected this
problem. The log transformation was the major modification. That change also led to
a simplification of the index calculation.

Elwali and Gascho (1984) created the nutrient balance index (NBI) for DRIS, also
termed by some the nutrient imbalance index (NII). It is the sum of the absolute
values of all of the nutrient indexes. For N, P, and K the NBI is:

NBI ¼j IN j þ j IP j þ j IK j ð9:3Þ

The closer the nutrient balance index is to 0, the more balanced are the nutrient
concentrations. The NBI does not indicate which nutrients are out of balance. It
indicates only the overall magnitude of imbalance.

9.3.3 The Modified DRIS System (M-DRIS)

DRIS, as originally created, did not have a method for predicting the probability of
crop response to applications of nutrients that it ranked as most yield-limiting.
Researchers have tested several methods targeted at fulfilling this need. Jones
(1981) observed in his sugarcane data set that negative, rather than positive, index
values more accurately identified when crops would respond. Walworth et al.
(1986), working with alfalfa (Medicago sativa L.), proposed including an index
for dry matter (DM) when ranking nutrients. The DM index served as an internal
standard. Nutrients with indexes less than the DM index were likely yield-limiting
and alfalfa was more likely to respond to additions of those nutrients. Alfalfa
performed better when applying all nutrients with indexes less than the DM index
compared to applying only the nutrient with the most negative index. Walworth
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(1986) did provide the caveat that using the DM index as a delineation level for crop
response might work best for crops where total DM production is desired, like forage
crops. Hallmark et al. (1987) included DM as a factor when diagnosing nutrient
balance in soybean leaves. They confirmed that including DM improved predictions
of crop response for grain crops too and that such improvements were not limited to
only forage crops.

Including DM as a factor is what differentiates the modified DRIS (M-DRIS)
from DRIS. Additionally, M-DRIS uses the single-parameter function (Eq. 9.2)
proposed by Jones (1981). As Walworth et al. (1986) noted, including DM as a
factor made M-DRIS more susceptible to changes in plant age than DRIS.

9.3.4 Plant Analysis with Standardized Scores (PASS)

Baldock and Schulte (1996) developed the Plant Analysis with Standardized Scores
(PASS) system to combine the respective strengths of sufficiency range and DRIS
interpretations. They did this to better relate indexes to probabilities of crop
response. The PASS system consists of two sections. The PASS Dependent Nutrient
Index (PASS DNI) is an interpretation based on DRIS. The PASS Independent
Nutrient Index (PASS INI) is an interpretation based on sufficiency ranges.

PASS DNI creates indexes for nutrient ratios. It uses the Jones (1981) parameter
function in Eq. (9.2). Like DRIS, the PASS DNI for a given nutrient is the average of
all parameter functions using nutrient ratios containing that nutrient. Unlike DRIS,
PASS DNI includes only “common response nutrients.” To be classified as a
common response nutrient: (a) the crop must have a high requirement of that
nutrient, and (b) the correlation of the concentrations of that nutrient to the yield
responses of that crop must have a well-defined critical concentration. Failure to
meet both of these criteria categorize a nutrient as a “rare response nutrient.”

PASS INI is an index for nutrient concentrations, not nutrient ratios. It uses the
critical concentration (Cj) as the reference for its values. The function that transforms
nutrient concentration to the PASS INI is based on Eq. (9.2). Instead of using the
parameter mean (Mj), Baldock and Schulte substituted the critical concentration plus
one standard deviation (Cj + sdj) based on the assumption that Mj � (Cj + sdj). They
also introduced a sensitivity coefficient by multiplying the numerator in Eq. (9.2) by
10:

PASS INIij ¼ 10 pij � C j þ sd j

� �� �
=sd j

which simplifies to

PASS INIij ¼ 10 pij � C j

� �
=sd j

� �� 10 ð9:4Þ
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According to Eq. (9.4), when a sample nutrient concentration is equal to the
critical concentration, PASS INI equals �10. Values between or equal to �10 and
10 are sufficient, which is equivalent to the range Mj � sdj. Index values less than
�10 are deficient. The more negative an index becomes, relative to �10, the greater
the chances become that a crop will respond to an application of that nutrient. Index
values greater than 10 indicate that the nutrient concentration is high and that crops
are not likely to respond to additions of that nutrient. PASS INI uses the same
division of nutrients as PASS DNI (common response and rare response).

PASS uses three interpretation categories: (1) probable nutrient deficiency,
(2) slightly possible nutrient deficiency, and (3) nutrient sufficiency. PASS places
common response nutrients with PASS INIs below �10 in the “probably nutrient
deficient” category. It places rare response nutrients with PASS INIs below �10 in
the “slightly possible nutrient deficiency” category. Also into this category go
nutrients that have both PASS INIs less than zero and PASS INI and PASS DNI
sums that are less than �10. Into the third category, “nutrient sufficiency,” go all
nutrients not already in the first two categories.

When making fertilizer decisions, a combination of PASS INI and PASS DNI is
helpful. PASS INI identifies nutrients that are yield-limiting. If more than one
nutrient is yield-limiting, PASS DNIs order them in a rank from most yield-limiting
to least. This ranking helps prioritize which nutrients to apply.

To simplify interpretations and give greater weight to PASS INI values that were
more negative, Baldock and Schulte (1996) created the PASS yield index (PASS
YI). The PASS YI reassigns all values greater than �10 to zero, since no crop
response is expected at those index levels. All values less than �10 are squared,
giving exponentially greater weight to diminishing tissue concentrations. The PASS
YI subtotals all of the squared values across all nutrients within each group: both
common and rare response nutrients. The subtotal of the sums of squares in the
common response group is multiplied by 2 to give it more weight than the subtotal of
the sums of squares of the rare response group. After the multiplication, the two
subtotals are added to calculate the PASS YI across all nutrients. Because PASS YI
uses squared values, its minimum is zero. That minimum value means all nutrients
considered are at or above their respective critical concentrations and no crop
response to any of them is likely. With no restrictions from nutrient limitations,
yields are expected to be higher. Conversely, as PASS YI values become greater,
more nutrient restrictions exist and yields will likely be lower unless nutrients are
applied.

The PASS approach has not been tested by researchers to the extent DRIS has
been. We were able to locate only two relatively recent studies that compared PASS
to other methods of interpretation (Simón et al. 2013; Urricariet et al. 2004). Both
showed PASS to be a promising diagnostic approach.
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9.3.5 Compositional Nutrient Diagnosis (CND)

Compositional nutrient diagnosis (CND) arose from analysis techniques developed
for geological sediment compositions (Aitchison 1982, 1983). Compositions are
made up of individual compounds. Each compound comprises a given percent of the
total composition. The percentages of all compounds add up to 100%. Traditional
statistical approaches assume that levels of factors are unbounded; however, in
compositions, there is an upper bound (100%) to the level of any one factor. In
addition, if the percentage of one compound increases, the percentage of at least one
other compound must decrease. Therefore, compositions are not independent.
Finally, compositional data are not normally distributed, as Beverly (1987a, b)
pointed out when working with DRIS. Consequently, compositions require their
own statistical approaches.

Parent and Dafir (1992) adapted the work of Aitchison (1982, 1983) to plant
tissue nutrient compositions. They termed their approach “compositional nutrient
diagnosis” or CND. Parent created two approaches to CND: (1) one that uses
centered log ratios (CND-clr) and (2) one that uses isomeric log ratios (CND-ilr).
Both approaches examine the interactions of nutrients in plant tissue. Compositional
nutrient diagnosis falls under Baldock and Schulte’s (1996) classification as a DNI.
CND-clr was developed first and shared many characteristics with DRIS (Parent and
Dafir 1992). Both CND-clr and DRIS analyze all possible combinations of nutrients
first, leaving the user to interpret the results afterward. CND-ilr was developed to
provide the user the ability to incorporate knowledge of nutrient interactions into the
analysis ahead of time (Parent 2011). Therefore CND-ilr allows users to test for
certain interactions in a given sample.

9.3.5.1 CND-clr

CND-clr examines all possible interactions of one nutrient concentration with all
other measured concentrations (Parent and Dafir 1992). In this regard, it is funda-
mentally different than the DRIS approach which considers the interaction of only
two nutrient concentrations at a time. Parameters in CND-clr differ from those in
DRIS. Interaction parameters formed from N, P, and K in DRIS are nutrient
concentrations ratios like N/P, N/K, and K/P. In CND-clr, interaction parameters
for N, P, and K are logarithms of ratios, like log[N/(N � P � K � R)1/4], log
[P/(N � P � K � R)1/4], and log[K/(N � P � K � R)1/4]. The denominator in all
three CND-clr parameters is the same and is the geometric mean of all measured
nutrient concentrations and the “filling-up value” R. The filling-up value is the
percent remaining after summing all of the nutrient concentrations:
R ¼ 100 � (N + P + K). The filling-up value is always an additional term in the
geometric mean. The general formula for the interaction of any one nutrient with all
other elements is:
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Vij ¼ log xij=Gi

� � ð9:5Þ

where Vij is the parameter for nutrient j in sample i, xij is the concentration of nutrient
j in sample i, and Gi is the geometric mean of the following concentrations: nutrient
j in sample i (xij); the filling-up parameter R; and the concentrations of all other
nutrients in sample i.

The filling-up parameter and the logarithmic function come from considering leaf
tissue to be a closed compositional system (Parent and Dafir 1992). The percentages
of all compounds and elements in tissue must add up to 100%. Increasing the
percentage of one element decreases the percentage of at least one other element
or compound. Adjustments in composition do not have to occur with other elements
that are measured. They may occur with any number of compounds not measured
but included in the filling-up value, resulting in a lower value for R.

Just as in DRIS, CND-clr computes indexes for each nutrient (Parent and Dafir
1992). The equation CND-clr uses to calculate indexes is similar to the equation
DRIS uses (Eq. 9.2) to calculate parameter functions:

Iij ¼ Vij � V j
�� �
=sd j

� ð9:6Þ

where Iij is the CND-clr index for nutrient j in a given tissue sample i, Vij is the
CND-clr parameter for nutrient j in sample i (Eq. 9.5), Vj

* is the CND-clr norm for
nutrient j (the average Vj of the high-yielding subpopulation), and sdj

* is the standard
deviation of Vj in the high yield subpopulation. In DRIS, the yield level separating
high and low-yielding subpopulations is usually chosen from experience. For
CND-clr, Khiari et al. (2001) developed a statistical method to separate those
populations. In DRIS, Eq. (9.2) calculates parameter values for each ratio of two
nutrients. Since a given nutrient may be in more than two ratios, DRIS requires
Eq. (9.1) to combine all ratios containing that nutrient. In CND-clr, an equation like
Eq. (9.1) is not needed, since each nutrient has only one log ratio (Eq. 9.5). Just like
in DRIS, CND-clr indexes classify nutrients in order of their limitation (Parent et al.
1994a), with more negative values indicating greater deficiency and more positive
values indicating greater excess.

Akin to the DRIS NBI (Eq. 9.3), CND-clr provides quantitative evaluation of
overall nutrient balance. Two metrics have been developed for this purpose. The first
one developed was a Euclidian distance d (Parent et al. 1994a, b). The greater the
value of d, the more overall nutrient imbalance exists. The second metric developed
was the CND r2 value, defined as the sum of the squares of all CND-clr indexes for a
particular sample (Khiari et al. 2001). The farther CND r2 is from zero, the greater
the nutrient imbalance.

For practical use in production settings, a tool has been developed to implement
CND-clr analyses for guava (Rozane et al. 2012). Users enter nutrient concentrations
as received from an analytical laboratory, and the tool returns CND-clr indexes for
each nutrient, presented in three ways: numerically, displayed in a radar chart, and
displayed in a bar chart. The tool also provides the associated CND r2 value.
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9.3.5.2 CND-ilr

CND-ilr compares two user-specified subsets of nutrients. The user selects these
groups ahead of analysis. Table 9.8 provides an example of how a user can create a
subset (Parent 2011). The first row (Sample) is the concentration of nutrients in a leaf
tissue sample. The second through sixth rows are sets that define the groups to
compare. Each set examines two groups. In a given set, all nutrients with a 1 are in
one group and all nutrients with a �1 are in the other group. By assigning 1s and
�1s, users can group nutrients in meaningful ways. The number of sets is equal to
one less than the number of components of the composition, including the filling-up
value R. Because the composition is made up of six components (N, P, K, Ca, Mg,
and R), 5 sets can be compared.

After creating subsets, the next step is to calculate isometric log ratio (ilr)
coordinates for each set i. The general formula is:

ilri ¼ r � sð Þ= r þ sð Þ½ �1=2 � ln g xþð Þ=g x�ð Þ½ � ð9:7Þ

where ilri is the ilr coordinate of set i, r is the number of components assigned a 1 in
set i, s is the number of components assigned a �1 in set i, g(x+) is the geometric
mean of the percentages of components assigned a 1 in set i, and g(x�) is the
geometric mean of the percentages of components assigned a �1 in set i. For
example, for set 4 in Table 9.8, K versus Ca + Mg, the ilr coordinate for the sample
(ilr4) is [(1 � 2)/(1 + 2)]1/2 � ln[(2.64)/(1.15 � 0.11)1/2] ¼ 1.637. According to
Parent (2011), the average ilr coordinate for this set in the high-yielding subpopu-
lation is ilr4

*¼ 1.154. The difference ilr4� ilr4
* determines how far the ilr of sample

set 4 is from that of the same set in the high-yielding subpopulation:
1.637–1.154 ¼ 0.483. This difference is the second highest of the sets and indicates
that K is out of balance with Ca + Mg (set 4, Table 9.8). The difference that was
greater belonged to set 5, which showed that Ca was out of balance with
Mg. Because it had a greater difference, Ca and Mg were more out of balance than

Table 9.8 Orthogonal partitions of N, P, K, Ca, Mg concentrations, and R (the filling-up value)
nutrient concentrations subgroups for an apple (Malus domestica Borkh.) leaf analysis. (Parent
2011)

Components

N P K Ca Mg R Interpretation

Concentration (%)

Sample: 2.50 0.22 2.64 1.15 0.11 93.38

Orthogonal partitions

Set 1: 1 1 1 1 1 �1 Nutrients versus filling-up value

Set 2: 1 1 �1 �1 �1 0 Anions versus cations

Set 3: 1 �1 0 0 0 0 N versus P

Set 4: 0 0 1 �1 �1 0 K versus Ca + Mg

Set 5: 0 0 0 1 �1 0 Ca versus Mg
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were K and Ca + Mg. Parent (2011) concluded that the Mg supply needed to be
increased and K fertilization needed to be either decreased or halted. The power of
CND-ilr is the ability to test specific nutrient combinations for their relative balance.

9.3.6 Multiple Regression Approaches

Statistical approaches, like multiple regression, are another avenue for considering
more than one nutrient at a time when evaluating nutrient concentrations in plant
tissue. Lissbrant et al. (2010) used a combination of cluster analysis, logistic
regression, and concentration ratios like that in DRIS to predict alfalfa yield in an
experiment examining various rates of applied P and K. Cluster analysis classified
crop yield into groups, then those groups were further classified as “acceptable”
(high and medium-high-yielding groups) or “unacceptable” (all lower-yielding
groups). To best predict acceptable or unacceptable performance for May cuttings,
binary logistic regression identified a combination of tissue P, K, and the K/P ratio as
model factors. For the later June cutting, the regression model included only tissue K
and the K/P ratio. Other statistical approaches have also been developed, like
multiple regression using combinations of concentrations of multiple nutrients
(Martinez et al. 2003; Srivastava et al. 2001).

9.3.7 Metabolite Profiles

Potassium-deficient plants have different metabolite profiles than plants with suffi-
cient K. For instance, shoot tissue of K-deficient Arabidopsis exhibited higher
concentrations of the soluble sugars sucrose, glucose, and fructose; higher concen-
trations of several basic or neutral amino acids; and lower concentrations of the acid
amino acids glutamic acid and aspartic acid (Armengaud et al. 2009). In their review,
Amtmann et al. (2008) concluded that while increased concentrations of soluble
sugars, organic acids, and amino acids were often observed in tissue from
K-deficient plants, there was great variability and not all crops showed increases.
Some crops, in fact, showed decreases in some of these same metabolites. A
particularly insightful observation by Armengaud et al. (2009) was that the observed
changes in metabolite concentrations, “. . .were not always related to tissue K
content.” This demonstrates the shortcomings of using tissue K concentration as
the sole metric of K deficiency. While metabolite profiles have the potential to be
diagnostic of K deficiency, there is much yet to be learned before they can be
incorporated into fertilizer recommendations and on-farm decision-making.
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9.3.8 Potassium Content in Plant Sap

Another approach to diagnosing K status is to analyze the K content of plant sap. Sap
is extracted by pressing plant tissue with tools such as a pliers (Syltie et al. 1972), a
garlic press (Gangaiah et al. 2016), or a press attached to a syringe (Burns and
Hutsby 1984). Freshly sampled petioles and leaf midribs are the typical samples.
Hand-held analytical equipment makes in-field testing possible. Hand-held meters
with ion-selective electrodes provide quantitative evaluations of the K concentration
in the sap. Also available are test strips or spot tests that react the sap with reagents to
create a color. The user compares that color with standardized colors representing
different K concentrations. Unless the color matches perfectly with that of a stan-
dard, the user must interpolate concentrations between two adjacent color standards
(Burns and Hutsby 1984). With test strips or spot tests, there is a limited range of
detection, and the user cannot infer values beyond either end of that range (Syltie
et al. 1972).

When sampling sap, it is important to recognize that its chemical composition
changes throughout the day. Meitern et al. (2017) sampled branches of hybrid aspen
(Populus tremula L. x Populus tremuloidesMichx.) saplings. They found that the K
concentration in xylem sap increased quickly after 6:00 am, plateaued at 12:00 pm to
3:00 pm, then decreased again. These changes started after dawn as photon flux
density increased, air temperature increased, and relative humidity decreased. For
this reason, diagnostic interpretations need to specify the times of day for collecting
samples.

Like tissue K concentration, sap K concentration also changes with organ and
age. Age is usually specified by position on the plant. For instance, the “uppermost”
leaf specifies the youngest leaf. Burns (1992) observed that when K supply was cut
off from actively growing lettuce (Lactuca sativa L.), sap K concentration dropped
more quickly in the youngest leaf than in the older ones. This meant the youngest
leaf was more sensitive to changes in K supply, making it a good choice for
diagnosis. Further support for sampling young tissue was provided by Vruegdenhil
and Koot-Gronsveld (1989) when they observed that the K concentration in the sap
was highest in the uppermost fully developed leaf of castor bean (Ricinus
communis L.).

Creating diagnostic interpretations for plant sap K concentrations requires corre-
lations to yield or other metrics of crop performance, like those previously discussed
for tissue K concentration. As an example, Hochmuth et al. (1993) grew eggplant
(Solanum melongena L.) on a K deficient soil and applied incremental rates of K
fertilizer. Several times during the season they used a hand-held ion-specific elec-
trode to measure the K concentration in plant sap extracted from petioles of the
youngest fully expanded leaves. At the same time, they also collected whole leaf
samples, including petioles, and analyzed them for K concentration with traditional
laboratory techniques. Third, they measured total marketable eggplant yield,
summed over the yields of various market grades throughout the season. They
determined critical plant sap K concentrations and confirmed sap analysis as a viable
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diagnostic tool. In a later review of 10 years of his and his colleagues’ research,
Hochmuth (1994a) published interpretations of sap K concentration for other veg-
etable crops, along with tissue K concentration (Table 9.9). Those interpretations are
used in nutrient management guidance for growers (Hochmuth 1994b).

Some studies focus on correlating sap K concentration to leaf K concentration
and do not include correlations to yield. This is often done in exploratory studies
examining new analytical methods (Gangaiah et al. 2016; He et al. 1998; Iseki et al.
2017). Eventually, however, each new method must be correlated to yield or some
metric of crop performance.

9.4 Conclusions

We have reviewed a number of ways scientists have determined the nutritional status
of plants. Visual symptoms detect moderate to severe deficiencies where plant
metabolism has already been irreversibly and negatively impacted. Measuring
light reflectance is non-invasive and non-destructive, but to date, methods have
not uncovered spectral combinations specific to K nutritional status. Tissue sampling
is destructive but has been the most diagnostic approach to date. Sufficiency ranges
consider nutrients in isolation and do not account for nutrient interactions. Interpre-
tation methods that do account for interactions are DRIS, M-DRIS, PASS, CND-clr,
CND-ilr, and multifactor statistical models. Metabolite profiles show promise, but
more research is needed to determine if the level of certain metabolites or their
interactions with other components are diagnostic of K deficiency. Sap analysis
provides rapid results while in the field. Interpretation of results has been so far
limited to sufficiency ranges. Sap analysis results can be highly variable because of
diurnal fluctuations in K content.

Moving forward, an important theme throughout all of the tissue sampling
interpretations is the value of large, crop-specific data sets composed of nutrient

Table 9.9 Sufficiency ranges for sap K concentration in petioles of the most recently matured
leaves and K concentration in the most recently matured, whole leaves of various vegetable crops
sampled during the day from 9:00 to 16:00. (excerpted from Hochmuth 1994a)

Petiole sap K
concentration

Whole leaf K
concentration

Cropa Growth stage mg K L�1 g kg�1

Eggplant First fruit (5 cm long) 4500–5000 35–50

Pepper First open flowers 3000–3200 45–50

Potato First open flowers 4500–5000 30–50

Tomato
(field)

First open flowers 3500–4000 35–40

Watermelon Vines 15 cm long 4000–5000 35–40
aEggplant (Solanum melongena L.); pepper (Capsicum spp.), potato (Solanum tuberosum L.),
tomato (Solanum lycopersicum L.), watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai)
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contents and associated yield and quality levels. At the least, such a data set must
centralize data from as many high-yielding production settings as possible. Large
data sets representing high-yielding and/or high-quality crops have been used for
creating sufficiency ranges as well as norms for DRIS, M-DRIS, PASS, CND-clr,
and CND-ilr. Indeed, this was Beufils (1973) original vision. He saw the need for
large, multinational databases that contained large amounts of meta-data for each
yield observation. He divided these meta-data into two categories: (1) “external
characters” comprised of soil properties, climatic conditions, and farming practices,
and (2) “internal characters” comprised of data on the chemical and physical
characteristics of various plant organs, including nutrient concentration. In his
vision, data could come from farmers’ fields or controlled experiments. Data from
both sources would be merged and used to create norms. Further, querying large
databases rich in meta-data could potentially guide a user to enough relevant studies
to develop quantifiable recommendations, such as rates of specific K sources to
apply, to rectify any given nutrient deficiency. While many isolated databases have
been developed, there is a lot more to be done, both in centralization as well as in
completeness of meta-data, to realize a vision Beaufils had decades ago but which is
just as relevant today.
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