
Chapter 1
Structure, Dynamics and Function
of the 26S Proteasome

Youdong Mao

Abstract The 26S proteasome is the most complex ATP-dependent protease
machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selec-
tively degrades ubiquitin-conjugated proteins and plays fundamentally indispens-
able roles in regulating almost all major aspects of cellular activities. To serve
as the sole terminal “processor” for myriad ubiquitylation pathways, the protea-
some evolved exceptional adaptability in dynamically organizing a large network
of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-
ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and
processing efficiency and to achieve regulation precision of a vast diversity of
substrates. The inner working of the 26S proteasome is among the most sophis-
ticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent
breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome
dynamics during polyubiquitylated substrate degradation elucidated an extensively
detailed picture of its functional mechanisms, owing to progressive methodolog-
ical advances associated with cryogenic electron microscopy (cryo-EM). Multiple
sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-
dependent substrate engagement. Theproteasomeconformation in the act of substrate
deubiquitylation provided insights into how the deubiquitylating activity of RPN11
is enhanced in the holoenzyme and is coupled to substrate translocation. Intrigu-
ingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric
AAA-ATPase motor were discovered to regulate intermediate functional steps of
the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initi-
ation of substrate translocation and processive substrate degradation. The atomic
dissection of the innermost working of the 26S proteasome opens up a new era in our
understanding of the ubiquitin-proteasome system and has far-reaching implications
in health and disease.
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Introduction

Human cells express more than 20,000 genes, which direct synthesis of a comparable
number of proteins by the ribosome. Intracellular constituents dynamically preserved
as proteins are continuously synthesized and degraded in cells. Newly synthesized
proteins might misfold into dysfunctional structures that are cytotoxic and must be
removed in a timely manner. Many initially well-folded proteins may need to be
partially degraded or cleaved to activate specific function. Functional proteins may
ultimately become unnecessary once they fulfil their missions. All these proteolytic
needs can be met by the master recycling machinery called the 26S proteasome
(Ciechanover and Kwon 2015; Mayer 2000; Meyer-Schwesinger 2019; Hnia et al.
2019; Coux et al. 1996; Finley and Prado 2019; Bard et al. 2018; Finley et al. 2016;
Collins and Goldberg 2017; Voges et al. 1999; Tanaka 2009). The 2.5-MDa 26S
proteasome counteracts the ribosome, by controlling the fate of synthesized proteins,
and tightly regulates intracellular protein contents (Livneh et al. 2016; Collins and
Goldberg 2017). To date, the 26S proteasome remains the largest, most enigmatic
degradation machinery known and is ubiquitously found in all eukaryotic kingdoms
(Darwin 2009; Muller and Weber-Ban 2019).

To be degraded by the proteasome holoenzyme, the targeted proteins must first
be covalently modified by ubiquitin moieties via a cascade of three types of enzyme,
namely, the E1 ubiquitin-activating enzyme, the E2 ubiquitin-conjugating enzyme,
and the E3 ubiquitin ligase (Ciehanover et al. 1978; Ciechanover et al. 1980a, b;
Hershko et al. 1979, 1980). Ubiquitin is a highly conserved protein with 76 amino
acids ubiquitously found in eukaryotic cells (Wilkinson et al. 1980; Goldstein et al.
1975). Regulated modification of protein substrates with ubiquitin initiates their
recognition and breakdown by the proteasome in anATP-dependent fashion (Etlinger
and Goldberg 1977; Arrigo et al. 1988; Wilkinson et al. 1980; Hershko et al. 1980).
Mammalian cells contain only very few E1 enzymes, several E2 enzymes and at
least several hundreds of different E3 ligases (Buetow and Huang 2016; Zheng and
Shabek 2017; Hua and Vierstra 2011). The hierarchical cascade of ubiquitylation
enzymes allows orthogonal regulation of hundreds of substrates in parallel. A large
network of proteins involved in ubiquitylation and ubiquitin-mediated degradation
by the 26S proteasome constitutes the ubiquitin-proteasome system (UPS) (Mayer
2000; Ciechanover 2005; Finley and Prado 2019; Livneh et al. 2016). Through the
UPS, the proteasome elegantly regulates all major aspects of cellular processes,
such as the cell cycle, gene expression, signal transduction, immune response, apop-
tosis and carcinogenesis (Ciechanover 2005). To serve as the sole terminal “pro-
cessor” for myriad ubiquitylation pathways, the proteasome evolved exceptional
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adaptability in dynamically organizing ubiquitin receptors, shuttle factors, deubiqui-
tinases, AAA-ATPase unfoldases, ubiquitin ligases and a large network of proteins
to enable substrate selectivity, processing efficiency and precision of intracellular
regulation (Finley and Prado 2019). The proteasome holoenzyme is one of the most
dynamic enzymes known. The inner working of the proteasome is among the most
sophisticated, enigmatic mechanisms of enzymatic machinery.

Indeed, owing to extremely complex dynamics in the 26S proteasome, the eluci-
dation of its atomic structures took about four decades following its first discovery
in the late 1970s (Etlinger and Goldberg 1977) despite continuous efforts by the
worldwide research community and several generations of scientists (Bard et al.
2018). Building upon recent cryogenic electron microscopy (cryo-EM) studies on
the human proteasome dynamics (Frank 2006; Chen et al. 2016a; Lu et al. 2017b; Zhu
et al. 2018), an eventual breakthrough in visualizing substrate-processing dynamics
of the human 26S proteasome at the atomic level (Dong et al. 2019) revealed the
inner working of this sophisticated holoenzyme for the first time, clarified many
long-term outstanding problems in the mechanisms by which a polyubiquitylated
substrate is recognized, deubiquitylated, unfolded and degraded by the proteasome.
These discoveries were partly echoed or complemented by separate structural studies
of the substrate-bound yeast proteasome (de la Pena et al. 2018) and of other related
systems in lower organisms (Puchades et al. 2017; Yu et al. 2018; Cooney et al. 2019;
Majumder et al. 2019; Puchades et al. 2019; Twomey et al. 2019; Ripstein et al. 2020;
Ding et al. 2019). These studies together establish the “central dogma” of the protea-
some, thus revolutionizing our mechanistic understanding of the UPS. Comparisons
among these studies further provide insights into conservation and variation of the
operating principles used by proteolytic machineries in general. In this chapter, I
offer a thorough account for our current understanding on the structure, dynamics
and function of the 26S proteasome. Throughout, all descriptions are presented in
the context of the human 26S proteasome in default, for brevity, unless otherwise
explicitly stated.

Overview of the Ubiquitin-Proteasome System

Ubiquitylation

Ubiquitin and its polymerized form serve as the degradation signals for substrate
recognition by the 26S proteasome (Komander and Rape 2012). Ubiquitin is an
essential member in the protein family that shares a globular β-grasp fold of around
70 amino acids with a surface-exposed C-terminal glycine residue. Canonical ubiq-
uitylation of a protein substrate is achieved via an isopeptide bond connecting the
C-terminal glycine of ubiquitin with the ε-amino group of any lysine side chain
exposed on the solvent-accessible surface of the substrate (Ciehanover et al. 1978,
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1980a, b; Hershko et al. 1979, 1980). In rare non-canonical cases, covalent attach-
ment of ubiquitin to cysteine, threonine, serine or the N-terminal amino group in the
substrate have also been observed (Kravtsova-Ivantsiv and Ciechanover 2012).

Ubiquitylation involves sequential, cascaded actions of the ubiquitin-activating
enzyme (E1), the ubiquitin-conjugating enzyme (E2), and the ubiquitin ligase (E3),
and the ubiquitin chain-elongation enzyme (E4) families (Fig. 1.1) (Koegl et al.
1999). The E1 enzyme catalyzes ATP-dependent activation of ubiquitin and isopep-
tide bond formation. The activated ubiquitin is then transferred to an E2 enzyme.
The activated intermediate of E2-ubiquitin functions as the ubiquitin donor to the
E3 ligase enzyme, which binds both the substrate and E2-ubiquitin intermediate via
different structuralmotifs and recruits the ubiquitylation target as the substrate for the
proteasome (Baek et al. 2020). Four families of E3 ligases have been discovered and
classified intoHECT,U-box, RINGandRING-between-RING (RBR), based on their
molecular architecture and enzymatic mechanisms. To enable selectivity and diver-
sity in substrate processing, eukaryotic cells have evolved at least hundreds of distinct
E3 ligases that feature a broad spectrum of substrate-interacting regions resembling a
limited number of structural scaffolds (Buetow and Huang 2016; Zheng and Shabek
2017; Hua and Vierstra 2011). For example, the multi-subunit cullin-RING ligases
(CRLs) in the RING family of E3 enzymes employ one of several cullin isoforms
to assemble the complex (Baek et al. 2020). The remarkable diversity of the E3
enzymes allows the UPS to operate in various intracellular contexts for tightly regu-
lating specific cellular activities via proteasomal degradation (Samant et al. 2018).
In some cases, the first set of ubiquitin molecules attached to a protein substrate is
further ubiquitylated so that the substrate becomes modified with longer polyubiq-
uitin chains. The additional ubiquitin moieties can be attached by the same E3 or by
a different ubiquitin ligase E4 (Koegl et al. 1999) that can only add more ubiquitin to
substrate-conjugated monoubiquitin or polyubiquitin chains such as UBE3C/Hul5
and Ufd2 (Crosas et al. 2006; Hanzelmann et al. 2010).

Many substrates of the proteasome are ubiquitylated on more than one lysine
residue. The ubiquitylation site on a substrate itself is not tightly bound to the
E3 so that structural flexibility of the ubiquitylation sites would allow several
different lysine residues to interact with the ubiquitin bound to the E2 in the E2-E3-
substrate intermediate complex (Baek et al. 2020). Through the conjugation cascade,
the substrates could be modified with only one ubiquitin, with several ubiquitin
molecules at distinct sites, or with polyubiquitin chains that are concatenated cova-
lently via any surface-exposed lysine residues (Lys6, Lys11, Lys27, Lys29, Lys33,
Lys48 and Lys63) or the N-terminal α-amino group of methionine (Met1) in ubiq-
uitin. These three types of ubiquitin conjugation are referred to as monoubiquityla-
tion, multiubiquitylation and polyubiquitylation, respectively (Kirisako et al. 2006;
Xu et al. 2009;Yau et al. 2017).With the growth of the polyubiquitin chains, branched
or tree-like heterotypic chain topologies have been observed (Yau et al. 2017). Such
a complexity in ubiquitin polymerization generates highly diverse, heterogeneous
degradation signals and allows ubiquitylation to regulate myriad cellular functions,
some of which are not directly linked to proteolysis (Oh et al. 2018). The complexity
of the ubiquitin signals is reversely “decoded” through the proteasome-dependent
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Fig. 1.1 Overview of the ubiquitin-proteasome system. Ubiquitylation is accomplished by the
covalent conjugation of ubiquitin to lysine residues exposed on the surface of targeted substrates.
Ubiquitin is first activated by the E1 in the presence of ATP. The ubiquitin is then transferred
from E1 to E2. A ubiquitin ligase (E3) recruits the ubiquitin-bound E2 enzyme and a substrate to
transfer the ubiquitin from E2 to the substrate. A specific type of ubiquitin ligase (E4) elongates the
ubiquitin chains after monoubiquitin or polyubiquitin. The formation of Lys48-linked polyubiquitin
chains, the main signal for proteasomal degradation, is mediated by successive cycles of ubiquitin
conjugation. Monoubiquitylation could be sufficient for proteasome targeting in certain scenario.
Themonoubiquitin and polyubiquitin are removed from the substrate by the deubiquitinases (DUBs)
associatedwith the proteasome.After being translocating into the proteasome, substrates are cleaved
into short peptides, which are further broken down to amino acids by aminopeptidases (APPs).
Released free polyubiquitin molecules are further recycled by cytosolic DUBs for another round of
ubiquitylation
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recruitment of several ubiquitin receptors (Husnjak and Dikic 2012; Lu et al. 2015;
Oh et al. 2018), and many deubiquitylating enzymes (DUBs) capable of selectively
processing substrates with various types of ubiquitin linkages (de Poot et al. 2017;
Clague et al. 2019; Komander et al. 2009).

26S Proteasome Holoenzyme

As the sole proteolytic “central processor” in the UPS, the 26S proteasome holoen-
zyme assembles through noncovalent association of two subcomplexes, core particle
(CP) and regulatory particle (RP). The RP caps either or both sides of the CP cylinder
(Fig. 1.2). The CP, also known as the 20S proteasome, ubiquitously exists in prokary-
otes and eukaryotes (Coux et al. 1996). The RP subcomplex, also known as PA700
or 19S, is a vital, indispensable proteasome activator found in all eukaryotic cells.
The RP recruits, deubiquitylates, unfolds and translocates protein substrates into the
CP chamber for degradation in an ATP-dependent fashion. In archaeal cells, one of
the equivalent ATP-dependent activators is the proteasome-activating nucleotidase
(PAN) complex, an ortholog of the eukaryotic proteasomal AAA-ATPase (Benaroudj
et al. 2003; Smith et al. 2005). Several ATP-independent activators, typically PA28

(a)

RPN1

Non-ATPase

CP

ATPase

Deubiquitination site

(b)

Ubiquitin receptor RPN10

ATPase coiled coil

OB ring of ATPase
OB channel

AAA ring of ATPase
AAA channel

α-ring of CP
CP gate

β-ring of CP

Proteolytic site

Deubiquitinase RPN11

Substrate entry port

Substrate translocation pathway

RPT1-6

RPN3

RPN7

RPN12

RPN2

RPN9

RPN8

RPN5
SEM1

Nucleotide-binding site

RP

RP

CP

RP

Fig. 1.2 Overall architecture of the 26S proteasome. a The cryo-EM reconstruction of the doubly
capped 26S proteasome. TheCP is shown as cyan. TheRP ismarked by the dashed box.b Illustrative
anatomy of the RP-CP subcomplex structure, with black silhouettes representing the central cross-
section along the ATPase channel colored opaque blue. Dashed green curve illustrates the substrate-
translocation pathway across the channel to the proteolytic sites in the CP chamber. Only upper half
of the CP is shown



1 Structure, Dynamics and Function of the 26S Proteasome 7

(11S/REG) and PA200 (Blm10), can also bind the CP for proteasome activation
(Stadtmueller and Hill 2011).

Core Particle

Proteasomal peptidase activities are housed in the CP. The CP is composed of 14
α-type and 14 β-type protein subunits (Lowe et al. 1995; Groll et al. 1997; Arrigo
et al. 1988; Dong et al. 2019). In eukaryotic cells, there are seven distinct α-type or
β-type subunits. Each type of subunit assembles into a heteroheptameric ring. Four
such rings stack into a cylinder-shaped barrel in an α1–7β1–7β1–7α1–7 arrangement
with an approximately two-fold symmetry (Lowe et al. 1995; Groll et al. 1997). In
prokaryotic cells, there is only one gene for either the α-type or β-type subunit that
assembles into a homoheptameric ring. Similar to the proteasomal CP, several other
proteolytic proteins also assemble into a barrel-shaped proteolytic chamber, such as
HslV (Bochtler et al. 1997) and ClpP (Wang et al. 1997). In eukaryotes, each β-
ring houses three proteolytically active threonine residues in β1, β2 and β5 and
forms the catalytic chamber. The active sites of the peptidase are sequestered inside
the catalytic chamber. Heptameric α-rings, positioned on both sides of the catalytic
chamber, control substrate entry into this space. Opening of an axial channel within
the α-ring is allosterically controlled by the interactions of the CP with the 19S RP
(PA700) or other activators such as PA200 and PA28 (Whitby et al. 2000; Zhu et al.
2018; Dong et al. 2019).

In lymphoid tissues or other interferon-γ (IFN-γ) stimulated cells, three consti-
tutively expressed β-subunits are substituted with the subtype subunits β1i, β2i and
β5i to assemble a variation of the CP named the immunoproteasome (Ferrington and
Gregerson 2012). Different subtypes of β subunits may be mixed and combined in a
single proteasome assembly to form an intermediate-type CP that exhibits different
enzymatic properties (Dahlmann et al. 2000). Other CP subtypes such as thymus-
specific (Murata et al. 2007) and testis-specific CPs (Uechi et al. 2014) have been
observed to contain subunits β5t and α4s, which replace β5 and α4, respectively.
These cell-type specific CPs were also termed the thymoproteasome (β5t) and sper-
matoproteasome (α4s), respectively (Murata et al. 2007, 2018). Subtype variations
of the CP fine-tune its catalytic activity to meet tissue-specific functional needs.

Regulatory Particle

The RP consists of at least 18 protein subunits and regulates substrate recogni-
tion, recruitment, and unfolding in an ATP-dependent manner. The RP is struc-
turally divided into two subcomplexes named the lid and the base that may
assemble separately (Glickman et al. 1998). The lid subcomplex comprises 9
Regulatory Particle Non-ATPase (RPN) subunits, i.e., RPN3 (PSMD3/S3), RPN5
(PSMD12), RPN6 (PSMD11/S9), RPN7 (PSMD6/S10), RPN8 (PSMD7/S12),
RPN9 (PSMD13/S11), RPN11 (PSMD14/Poh1/Pad1), RPN12 (PSMD8/S14), and
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RPN15 (PSMD9/Dss1/Sem1) (Table 1.1). Six subunits (RPN3, RPN5, RPN6, RPN7,
RPN9 andRPN12) exhibits similar architecture featuring anN-terminal Proteasome-
CSN-Initiation factor 3 (PCI) domain (Hofmann and Bucher 1998). Two subunits
(RPN8 and RPN11) feature an MPR1-PAD1 N-terminal (MPN) domain and form
an MPN dimer (Tran et al. 2003). All of the eight subunits are decorated with a C-
terminal α-helical domain separated via a structured linker from their core PCI/MPN
domains. The lid subcomplex is organized into a horseshoe-like architecture through
an elaborate bundle that is composed of the C-terminal α-helical domain of each lid
subunit except RPN15 (Estrin et al. 2013).

The base subcomplex includes RPN1 (PSMD2/S2), RPN2 (PSMD1/S1),
and six paralogous, distinct Regulatory Particle ATPase (RPT) subunits—RPT1
(PSMC2/S7), RPT2 (PSMC1/S), RPT3 (PSMC4/S6), RPT4 (PSMC6/S10), RPT5
(PSMC3/S6a) and RPT6 (PSMC5/S8)—from the classic ATPases Associated with
diverse cellular Activities (AAA) family (Table 1.1). The six RPT subunits of the
base share a general domain organization, consisting of an N-terminal coiled-coil
(CC) domain, an oligonucleotide- and oligosaccharide-binding (OB) domain, and
a C-terminal AAA domain. They form a heterohexameric ATPase ring that acts
as a mechanical motor. The well-folded domains of a substrate are unfolded by
the mechanical force produced by the ATPase motor ring and translocated via the
central pore of the ATPase ring by harvesting the chemical energy of ATP hydrolysis
catalyzed by the ATPases. Thus, the ring-like RPT hexamer is also referred to as an
unfoldase or translocase in the literature (Bard et al. 2018).

The first step of substrate processing by the proteasome is recognition of a ubiq-
uitylated substrate, which is mediated by the ubiquitin receptors within the base,
including RPN1 (PSMC2/S7) (Shi et al. 2016), RPN10 (PSMD4/S5a) (Deveraux
et al. 1994; van Nocker et al. 1996), and RPN13 (ADRM1) (Husnjak et al. 2008;
Schreiner et al. 2008). RPN13 can reversibly associate with RPN2 and is sub-
stoichiometric in the endogenously purified human proteasome. In addition to the
ubiquitin receptors intrinsically residing in the proteasome, ubiquitylated substrates
can also be recruited and delivered to the proteasome by extrinsic ubiquitin recep-
tors consisting of ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains,
including RAD23, DSK2, and DDI1 (Elsasser and Finley 2005; Elsasser et al. 2004;
Zhang et al. 2009a). These UBL-UBA proteins interact with the intrinsic ubiquitin-
binding sites in the proteasome via their UBL domain, functioning as shuttle factors
that diversify the routes of decoding the ubiquitin signals for substrate selection and
recognition.

During substrate engagement, an unstructured initiation region of the substrate
is recognized by the pore loops of the RPT subunits (Prakash et al. 2004; Yu and
Matouschek 2017; Bard et al. 2019; Dong et al. 2019). To allow substrate transloca-
tion into the CP, conjugated ubiquitin chains are cleaved from substrates by either the
DUBRPN11 (Verma et al. 2002;Yao andCohen2002;Worden et al. 2017;Dong et al.
2019) or other auxiliary DUBs like USP14 (ubiquitin-specific protease 14) (Lee et al.
2016) and UCH-L5 (ubiquitin carboxyl-terminal hydrolase isozyme L5) (Vander
Linden et al. 2015). RPN11 is a zinc-dependent DUB in the JAB1/MPN/MOV34
(JAMM) family protein (Ambroggio et al. 2004) and is intrinsically located above
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the OB ring, guarding the entry of substrates into the ATPase ring and CP. It catalyzes
en bloc substrate deubiquitylation when a substrate is threaded into the ATPase ring.

The axial entrance of the CP proteolytic chamber, named the CP gate, is closed
in the resting state (Chen et al. 2016a; Huang et al. 2016; Schweitzer et al. 2016).
Opening of the CP gate is allosterically triggered by insertion of the C-termini of
all RPT subunits except RPT4 into the outward pockets of the α-ring (α-pockets)
located between adjacent α-subunits (Chen et al. 2016a; Zhu et al. 2018; Dong
et al. 2019; Eisele et al. 2018; de la Pena et al. 2018; Smith et al. 2007; Rabl et al.
2008). The PA200 and PA28 complexes are two alternative CP-activating regulators
that can replace the 19S RP in an assembled holoenzyme (Table 1.1). They trigger
CP gate opening in an ATP-independent manner due to lack of ATPase domain.
PA200 is a monomeric protein of ~250 kDa and conserved from the yeast to human
(Schmidt et al. 2005;Blickwedehl et al. 2008). ThePA28 family is expressed in higher
eukaryotes and some unicellular eukaryotes such as trypanosomes. In mammalian
cells, three isoforms (PA28α, PA28β, PA28γ) form two kinds of activators with
distinct properties of expression, localization and activation. PA28α and PA28β are
28-kDa proteins that assemble into heteroheptameric ring structures in vertebrates
(Ma et al. 1992; Dubiel et al. 1992) (Table 1.1).

History of Proteasome Structure Determination

X-Ray Crystallography of Proteasome Components

It has been half century since the first image of the human CP was recorded
by negative-stain electron microscopy when its function was unknown (Fig. 1.3)
(Harris 1968). The gradual elucidation of the proteasome structure and function was
propelled and accompanied by innovations in a broad set of methods and tools in
biochemistry and structural biology. Because the proteasomal CP is highly stable
overall, it became the first key component to be crystallized. In the 1990s, both
atomic structures of archaeal and yeast 20S proteasome were solved by X-ray crys-
tallography (Lowe et al. 1995; Groll et al. 1997). The crystal structure of the human
CP was solved much later (Harshbarger et al. 2015; Schrader et al. 2016). Crystal
structures of the isolated CP or immunoproteasome CP are available for several
species (Groll et al. 1997; Unno et al. 2002; Harshbarger et al. 2015; Huber et al.
2012). These structural works defined three conserved proteolytic sites in the β1,
β2 and β5 subunits, laying an important foundation for understanding the activation
of the CP and the mechanism of proteolysis. However, all these high-resolution CP
structures represent a basal resting state with a closed gate in their α-rings. The first
yeast CP with an open gate in the α-ring was determined by X-ray crystallography in
the presence of activation by the PA26 (11S) regulator (Whitby et al. 2000), whereas
the activated human CP in an open-gate state was only determined much later by
cryo-EM (Chen et al. 2016a; Zhu et al. 2018; Dong et al. 2019).



10 Y. Mao

Ta
bl
e
1.
1

N
om

en
cl
at
ur
e,
st
ru
ct
ur
e
an
d
fu
nc
tio

n
of

pr
ot
ea
so
m
e
su
bu
ni
ts
an
d
pr
ot
ea
so
m
e-
as
so
ci
at
ed

pr
ot
ei
ns

Su
bc
om

pl
ex

Sy
st
em

at
ic

no
m
en
cl
at
ur
e

H
um

an
ge
no
m
e

na
m
e

O
th
er

m
am

m
al
ia
n

na
m
e

Y
ea
st
na
m
e

St
ru
ct
ur
e

Fu
nc
tio

n

C
P
(2
0S

)
α
-r
in
g

α
1

PS
M
A
6

io
ta

Sc
l1
,Y

C
7

α
/β
/β
/α

sa
nd
w
ic
h,

N
L
S

R
P
do
ck
in
g

α
2

PS
M
A
2

C
3

Pr
e8
,Y

7
α
/β
/β
/α

sa
nd
w
ic
h,

N
L
S

C
P
ga
tin

g,
R
P
do

ck
in
g

α
3

PS
M
A
4

C
9

Pr
e9
,Y

13
α
/β
/β
/α

sa
nd
w
ic
h,

N
L
S

C
P
ga
tin

g,
R
P
do

ck
in
g

α
4

PS
M
A
7

C
6

Pr
e6

α
/β
/β
/α

sa
nd
w
ic
h

C
P
ga
tin

g,
R
P
do
ck
in
g

α
5

PS
M
A
5

ze
ta

Pu
p2
,D

O
A
5

α
/β
/β
/α

sa
nd
w
ic
h

R
P
do
ck
in
g

α
6

PS
M
A
1

C
2

Pr
e5

α
/β
/β
/α

sa
nd
w
ic
h

R
P
do
ck
in
g

α
7

PS
M
A
3

C
8

Pr
e1
0,

Y
C
1

α
/β
/β
/α

sa
nd
w
ic
h

C
P
(2
0S

)
β
-r
in
g

β
1

PS
M
B
6

Y
,d

el
ta

Pr
e3

α
/β
/β
/α

sa
nd
w
ic
h,

N
tn

C
as
pa
se
-l
ik
e
ac
tiv

ity

β
2

PS
M
B
7

Z
Pu

p1
α
/β
/β
/α

sa
nd
w
ic
h,

N
tn

T
ry
ps
in
-l
ik
e
ac
tiv

ity

β
3

PS
M
B
3

C
10

Pu
p3

α
/β
/β
/α

sa
nd
w
ic
h

β
4

PS
M
B
2

C
7

Pr
e1

α
/β
/β
/α

sa
nd
w
ic
h

β
5

PS
M
B
5

X
,M

B
1,

ep
si
lo
n

Pr
e2
,D

O
A
3

α
/β
/β
/α

sa
nd
w
ic
h,

N
tn

C
hy
m
ot
ry
ps
in
-l
ik
e

ac
tiv

ity

β
6

PS
M
B
1

C
5

Pr
e7

α
/β
/β
/α

sa
nd
w
ic
h

β
7

PS
M
B
4

N
3,

be
ta

Pr
e4

α
/β
/β
/α

sa
nd
w
ic
h

(c
on
tin

ue
d)



1 Structure, Dynamics and Function of the 26S Proteasome 11

Ta
bl
e
1.
1

(c
on
tin

ue
d)

Su
bc
om

pl
ex

Sy
st
em

at
ic

no
m
en
cl
at
ur
e

H
um

an
ge
no
m
e

na
m
e

O
th
er

m
am

m
al
ia
n

na
m
e

Y
ea
st
na
m
e

St
ru
ct
ur
e

Fu
nc
tio

n

Im
m
un
op
ro
te
as
om

e
β
1i

PS
M
B
9

L
M
P2

,R
IN

G
12

–
α
/β
/β
/α

sa
nd
w
ic
h,

N
tn

C
hy
m
ot
ry
ps
in
-l
ik
e

ac
tiv

ity

β
2i

PS
M
B
10

M
E
C
L
-1
,L

M
P1

0
–

α
/β
/β
/α

sa
nd
w
ic
h,

N
tn

T
ry
ps
in
-l
ik
e
ac
tiv

ity

β
5i

PS
M
B
8

L
M
P7

,R
IN

G
10

–
α
/β
/β
/α

sa
nd
w
ic
h,

N
tn

C
hy
m
ot
ry
ps
in
-l
ik
e

ac
tiv

ity

T
hy
m
op
ro
te
as
om

e
β
5t

PS
M
B
11

–
α
/β
/β
/α

sa
nd
w
ic
h,

N
tn

C
hy
m
ot
ry
ps
in
-l
ik
e

ac
tiv

ity

R
P
(P
A
70
0,

19
S)

B
as
e

R
PT

1
PS

M
C
2

S7
,M

ss
1,

p4
8

R
pt
1,
C
IM

5,
Y
TA

3
A
A
A

U
nf
ol
da
se

R
PT

2
PS

M
C
1

S4
,p

56
R
pt
2,
Y
H
S4

,
Y
TA

5,
m
ts
2

A
A
A

U
nf
ol
da
se

R
PT

3
PS

M
C
4

S6
,T

bp
7,

p4
7

R
pt
3,
Y
N
T
1,

Y
TA

2
A
A
A

U
nf
ol
da
se

R
PT

4
PS

M
C
6

S1
0b
,p

42
R
pt
4,
C
R
L
13
,

PC
S1

,S
U
G
2

A
A
A

U
nf
ol
da
se

R
PT

5
PS

M
C
3

S6
’,
T
bp
1

R
pt
5,
Y
TA

1
A
A
A

U
nf
ol
da
se

R
PT

6
PS

M
C
5

S8
,P

45
,T

ri
p1

R
pt
6,
C
IM

3,
SU

G
1,

le
t1

A
A
A

U
nf
ol
da
se

R
PN

1
PS

M
D
2

S2
,P

97
R
pn
1,

H
R
D
2,

N
A
S1

,m
ts
4

To
ro
id
al
L
R
R
,P

C
U
b/
U
B
L
re
ce
pt
or

R
PN

2
PS

M
D
1

S1
,P

11
2

R
pn
2,

SE
N
3

To
ro
id
al
L
R
R
,

PC
,N

L
S

R
PN

13
do
ck
in
g

R
PN

10
PS

M
D
4

S5
a,
p5
4

R
pn
10
,M

C
B
1,

SU
N
1

V
W
A
,U

IM
U
b/
U
B
L
re
ce
pt
or

(c
on
tin

ue
d)



12 Y. Mao

Ta
bl
e
1.
1

(c
on
tin

ue
d)

Su
bc
om

pl
ex

Sy
st
em

at
ic

no
m
en
cl
at
ur
e

H
um

an
ge
no
m
e

na
m
e

O
th
er

m
am

m
al
ia
n

na
m
e

Y
ea
st
na
m
e

St
ru
ct
ur
e

Fu
nc
tio

n

R
PN

13
A
D
R
M
1

R
pn
13
,D

A
Q
1

PR
U

U
b/
U
B
L
re
ce
pt
or

R
P
(P
A
70
0,

19
S)

L
id

R
PN

3
PS

M
D
3

S3
,p

58
R
pn
3,

SU
N
2

PC
I,
PA

M
Sc

af
fo
ld

R
PN

5
PS

M
D
12

p5
5

R
pn
5,

N
A
S5

PC
I

A
A
A
re
gu
la
tio

n

R
PN

6
PS

M
D
11

S9
,p

44
.5

R
pn
6,

N
A
S4

PC
I,
PA

M
A
A
A
re
gu
la
tio

n

R
PN

7
PS

M
D
6

S1
0a
,p

44
R
pn
7

PC
I

A
A
A
re
gu
la
tio

n

R
PN

8
PS

M
D
7

S1
2,

p4
0,

M
O
V
34

R
pn
8

M
PN

A
ss
is
tin

g
de
ub

iq
ui
ty
la
tio

n

R
PN

9
PS

M
D
13

S1
1,

p4
0.
5

R
pn
9,

N
A
S7

PC
I

Sc
af
fo
ld

R
PN

11
PS

M
D
14

S1
3,

Po
h1

R
pn
11
,M

PR
1

M
PN

,D
U
B

D
eu
bi
qu

iti
na
se

R
PN

12
PS

M
D
8

S1
4,

p3
1

R
pn
12
,N

IN
1

PC
I

Sc
af
fo
ld

R
PN

15
PS

M
D
9

S1
5,

p2
7L

,D
SS

1
Se
m
1,

H
O
D
1

H
el
ic
al

Sc
af
fo
ld

PA
28

(1
1S

R
E
G
)

PA
28

α
PS

M
E
1

PA
28

α
,R

E
G

α
–

C
P
ac
tiv

at
or

PA
28

β
PS

M
E
2

PA
28

β
,R

E
G

β
–

C
P
ac
tiv

at
or

PA
28

γ
PS

M
E
3

PA
28

γ
,R

E
G

γ
,K

i
–

C
P
ac
tiv

at
or

PA
20
0

PA
20
0

PS
M
E
4

PA
20
0,

T
E
M
O

B
lm

10
H
E
A
T,

A
R
M

C
P
ac
tiv

at
or

C
P-
as
so
ci
at
ed

pr
ot
ei
ns

PA
C
1

PS
M
G
1

Pb
a1
,P

oc
1

α
-r
in
g
ch
ap
er
on
e

PA
C
2

PS
M
G
2

Pb
a2
,P

oc
2,

A
D
D
66

α
-r
in
g
ch
ap
er
on
e

PA
C
3

PS
M
G
3

Pb
a3
,P

oc
3,

D
m
p2

α
-r
in
g
ch
ap
er
on
e

PA
C
4

PS
M
G
4

Pb
a4
,P

oc
4,

D
m
p1

α
-r
in
g
ch
ap
er
on
e

U
M
P1

PO
M
P

hU
m
p1
,

Pr
ot
ea
ss
em

bl
in

U
m
p1

β
-r
in
g
ch
ap
er
on
e

(c
on
tin

ue
d)



1 Structure, Dynamics and Function of the 26S Proteasome 13

Ta
bl
e
1.
1

(c
on
tin

ue
d)

Su
bc
om

pl
ex

Sy
st
em

at
ic

no
m
en
cl
at
ur
e

H
um

an
ge
no
m
e

na
m
e

O
th
er

m
am

m
al
ia
n

na
m
e

Y
ea
st
na
m
e

St
ru
ct
ur
e

Fu
nc
tio

n

R
P-
as
so
ci
at
ed

pr
ot
ei
ns

R
A
D
23
A
/B

R
A
D
23
A
/B

hH
R
23
A
/B

R
ad
23

U
B
L
,U

B
A

E
xt
ri
ns
ic
U
b
re
ce
pt
or

U
B
Q
L
N
1/
2/
3/
4

U
B
Q
L
N
1/
2/
3/
4

hP
L
IC
-1
/2
/3
/4
,

ub
iq
ui
lin

-1
/2
/3
/4

D
sk
2

U
B
L
,U

B
A

E
xt
ri
ns
ic
U
b
re
ce
pt
or

D
D
I1

D
D
I1

D
di
1

U
B
L
,U

B
A

E
xt
ri
ns
ic
U
b
re
ce
pt
or

Z
FA

N
D
5

Z
FA

N
D
5

Z
N
F2

16
Z
in
c-
fin

ge
r

E
xt
ri
ns
ic
U
b
re
ce
pt
or

U
SP

14
U
SP

14
U
bp
6

U
B
L
,D

U
B

D
eu
bi
qu

itj
na
se

U
C
H
37

U
C
H
L
5

U
C
H
37

U
ch
37
,U

ch
2

U
C
H
,D

U
B

D
eu
bi
qu

iti
na
se

U
B
E
3C

U
B
E
3C

K
IA

A
10

H
ul
5

H
E
C
T

E
3
lig

as
e

Pa
rk
in

PA
R
K
2

U
B
L
,R

B
R

E
3
lig

as
e

E
C
M
29

K
IA

A
03
68

E
cm

29
H
E
A
T
re
pe
at
s

R
eg
ul
at
io
n
of

pr
ot
ea
so
m
e
as
se
m
bl
y

PI
31

PS
M
F1

H
bY

X
m
ot
if
,

Pr
ol
in
e-
ri
ch

In
hi
bi
tio

n
of

pr
ot
ea
so
m
e
as
se
m
bl
y

N
A
S6

PS
M
D
10

p2
8,

ga
nk
yr
in

N
as
6

A
nk
yr
in

re
pe
at
s

R
P
as
se
m
bl
y

ch
ap
er
on
e

N
A
S2

PS
M
B
9

p2
7,

B
R
ID

G
E
,R

ac
2

N
as
2

PD
Z

R
P
as
se
m
bl
y

ch
ap
er
on
e

H
SM

3
PS

M
D
5

S5
b,

R
ac
3,
p5
0.
5

H
sm

3
H
E
A
T
re
pe
at
s

R
P
as
se
m
bl
y

ch
ap
er
on
e

R
PN

14
PA

A
F1

FL
J1
18
48

R
pn
14
,

Y
G
L
00
4C

W
D
-4
0

R
P
as
se
m
bl
y

ch
ap
er
on
e

A
A
A
:
A
T
Pa
se

as
so
ci
at
ed

w
ith

di
ve
rs
e
ce
llu

la
r
ac
tiv

iti
es
.
A
R
M
:
A
rm

ad
ill
o
re
pe
at
s.
D
U
B
:
D
eu
bi
qu

ity
la
tin

g
en
zy
m
e.

H
E
A
T
:
H
un

tin
gt
in
,
el
on

ga
tio

n
fa
ct
or

3
(E
F3

),
pr
ot
ei
n
ph
os
ph
at
as
e
2A

(P
P2

A
),
an
d
th
e
ye
as
tk
in
as
e
T
O
R
1.
H
E
C
T
:a

do
m
ai
n
ho
m
ol
og
ou
s
to
th
e
E
6A

P
ca
rb
ox
yl
te
rm

in
us
.H

bY
X
:h
yd
ro
ph
ob
ic
-t
yr
os
in
e-

X
.
M
PN

:
M
pr
1/
Pa
d1

/N
-t
er
m
in
al
.
N
L
S:

N
uc
le
ar

lo
ca
liz

at
io
n
si
gn

al
.
N
tn
:
N
-t
er
m
in
al

nu
cl
eo
ph

ile
hy
dr
ol
as
e.

PA
C
:
Pr
ot
ea
so
m
e
as
se
m
bl
in
g
ch
ap
er
on

e.
PA

M
:

PC
I-
as
so
ci
at
ed

m
od
ul
e.
PC

I:
pr
ot
ea
so
m
e/
C
O
P9

/e
IF
3.

PD
Z
:P

SD
-9
5/
D
L
G
/Z
O
-1
.P

R
U
:P

le
ck
st
ri
n-
lik

e
re
ce
pt
or

fo
r
ub
iq
ui
tin

.R
B
R
:R

in
g-
be
tw
ee
n-
ri
ng

.U
B
A
:

U
bi
qu

iti
n
as
so
ci
at
ed
.U

B
L
:U

bi
qu

iti
n-
lik

e.
U
IM

:U
bi
qu

iti
n-
in
te
ra
ct
in
g
m
ot
if
.V

W
A
:v

on
W
ill
eb
ra
nd

fa
ct
or

ty
pe

A



14 Y. Mao

201820101997 20151968 1976 1980
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Fig. 1.3 Timeline and milestones in the elucidation of structure and function of the 26S protea-
some. In 1968, the first image of the human proteasome CP was captured by negative-stain EM
when there was no knowledge about its function (Harris 1968). In the 1970s, concerted discoveries
revealed the functional role of the proteasome by studying ATP- and ubiquitin-dependent degra-
dation system in eukaryotic cells (Etlinger and Goldberg 1977; Ciehanover et al. 1978; Hershko
et al. 1979; Ciechanover et al. 1980a, b; Hershko et al. 1980; Wilkinson et al. 1980). In the 1980s,
the approaches of purification of mammalian 26S proteasome were developed, paving the way to
its structural analysis (Tanaka et al. 1983; Hough et al. 1986, 1987). In 1993, the first image of the
mammalian 26S proteasome was captured by negative-stain EM (Peters et al. 1993). Soon after,
X-ray crystallography revealed the proteasome CP structures in both Archaea and yeast (Lowe et al.
1995; Groll et al. 1997). In 2010, the first subnanometer resolution structure of a yeast 26S protea-
somewas reconstructed by cryo-EM (Bohn et al. 2010). During 2015–2017, the first high-resolution
structures of the substrate-free human proteasomewere determined by cryo-EM, which revealed six
coexisting conformations (Chen et al. 2016a; Huang et al. 2016; Schweitzer et al. 2016; Zhu et al.
2018), whereas cryo-EM structures of their yeast counterparts were also determined at the similar
resolution range in the following years (Eisele et al. 2018; Wehmer et al. 2017; Ding et al. 2017,
2019). In 2018, the first atomic structures of the substrate-engaged human 26S proteasome in seven
functional states were determined to higher resolution by cryo-EM (Dong et al. 2019), whereas the
yeast counterparts in four substrate-engaged states were analyzed at slightly lower resolutions (de
la Pena et al. 2018)

In stark contrast to conformational stability of the CP, the structure of the RP is
highly dynamic and samples an extensively expanded conformational landscape (Lu
et al. 2017b; Unverdorben et al. 2014; Chen et al. 2016a; de la Pena et al. 2018;
Zhu et al. 2018; Dong et al. 2019). Thus, the RP structure in the 26S proteasome
has completely evaded X-ray crystallography. However, many but not all of the RP
subunits were separately solved in certain domains or regions by X-ray crystallog-
raphy or nuclear magnetic resonance (NMR) (He et al. 2012; Pathare et al. 2012;
Boehringer et al. 2012; Riedinger et al. 2010;Worden et al. 2014; Pathare et al. 2014;
Zhang et al. 2009b, c; Schreiner et al. 2008; Shi et al. 2016). Despite its simplicity, the
archaeal PAN complex, an ATPase homohexamer, is thought to represent an evolu-
tionary precursor to the eukaryotic proteasomal ATPases. TheOB andAAAdomains
of the PANATPase have been separately crystallized and solved in a fragmented form
(Zhang et al. 2009b, c).
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Early Electron Microscopy Studies of Proteasome at Low
Resolution

The 19S RP in the 26S proteasome is highly dynamic and prevents the 26S protea-
some from being crystallized. Thus, electron microscopy reconstruction became
the only option to obtain the molecular shape of the 26S proteasome in the 1990s
(Peters et al. 1993; Frank 2006). The first cryo-EM reconstruction of the 26S protea-
some from Drosophila at 1–2 nm resolution was documented in 2009 (Nickell et al.
2009). Following the improvement of single-particle reconstruction method, the
cryo-EM structure of substrate-free Schizosaccharomyces pombe 26S proteasome
at a subnanometer resolution (9.1 Å) was reported (Bohn et al. 2010). This level of
resolutionwas insufficient to allowdirect identification of subunit organization. Thus,
other methods in biochemistry and cross-linking mass spectrometry were used in an
integrative fashion to define the subunit architecture of the RP (Beck et al. 2012;
Lander et al. 2012; Lasker et al. 2012; da Fonseca et al. 2012). Using the crystal
structures of individual RP subunits, the first pseudo-atomic model for the yeast 26S
proteasomewasbuilt using~8Åmaps (Beck et al. 2012). In the followingyears, addi-
tional cryo-EM reconstructions of the yeast proteasome at subnanometer resolutions
were analyzed under various substrate-free conditions and revealed three distinct
conformational states (designated s1, s2 and s3), which were hypothetically inter-
preted as the substrate-accepting, commitment and translocating states, respectively
(Matyskiela et al. 2013; Unverdorben et al. 2014; Sledz et al. 2013). Meanwhile, a
9-Å map of the substrate-bound yeast proteasome was reconstructed but the density
of substrate inside the proteasome was averaged out (Matyskiela et al. 2013). Never-
theless, the overall conformation of the substrate-bound yeast proteasome resembles
that of state s3, although they are not completely identical. The limited resolution,
however, precludes understanding of the structural mechanisms for ATP-dependent
degradation by the 26S proteasome (Forster et al. 2013). Inter-subcomplex regula-
tion, coordinated ATP hydrolysis in the AAA-ATPases, and substrate-proteasome
interactions remained particularly elusive in these studies.

High-Resolution Cryo-EM Studies of Substrate-Free
Proteasome

My colleagues and I started working on the human proteasome structure in 2014.
Our first near-atomic resolution reconstruction of proteasome was determined in the
late 2015 (Chen et al. 2016a). However, it showed closed gates on both sides of the
CP, in contradiction to early conclusions derived from the lower resolution cryo-EM
maps (Beck et al. 2012; Lander et al. 2012; Lasker et al. 2012; da Fonseca et al.
2012). To clarify this issue, additional analysis was conducted to test the hypothesis
on a possible coexisting conformational state with an open CP gate. A focused
classification strategy was devised by subtracting the CP density from the original
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raw single-particle cryo-EM images, following which exhaustive 3D classification
eventually sorted out four coexisting conformations (designated states SA, SB, SC
and SD) of the human proteasome in presence of ATP/Mg2+, among which only
one state SD was open in the gate of CP (Chen et al. 2016a). This allowed us to
observe that insertion of five RPT C-terminal tails into the CP albeit at a moderate
resolution (6–8 Å) for the first time (Chen et al. 2016a). The cryo-EM structure of the
human proteasome in state SA but no other states were also reported at comparable
resolutions by two other groups (Huang et al. 2016; Schweitzer et al. 2016). In
the following year, a high-resolution structure of the yeast proteasome in state s1
(analogous to human SA) was reported, along with an open CP state s4 (analogous
to human SD) at ~8-Å resolution discovered when the yeast proteasome was bound
to ATP analogs instead of ATP (Wehmer et al. 2017).

Following the first reconstruction of human proteasome at the atomic level, several
groups set out to determine the atomic structures of the substrate-bound proteasome
holoenzyme. However, the exceptional dynamics prevent the complex from being
reconstructed at high resolutionbyusing the samecryo-EMprocedure practiced in the
determination of the substrate-free proteasome in the resting state (SA). It was soon
realized that unprecedented challenges in cryo-EM and biochemical methodology
must be conquered before one can obtain an atomic structure of the substrate-bound
proteasome. First, how can one capture the complex before substrate degradation
is completed? Second, how can one deconvolute the exceptional conformational
heterogeneity in the sample not otherwise commonly encountered? Third, how can
one push asmanyproteasome conformations as possible to the near-atomic resolution
range (2.5–3.6 Å)? To confront these formidable challenges and to find a feasible
path forward, we devised two pilot studies along with several parallel cryo-EM
methodology developments (Xu et al. 2016; Zhu et al. 2017; Wu et al. 2017; Wang
et al. 2019), with the anticipation of gaining new ideas for devising novel methods
for solving the substrate-bound proteasome at the atomic level.

In one study, the free RP complex was analyzed by cryo-EM in states presumably
prior to its assembly with the CP. In the free RP, the AAA-ATPase ring exhibited
continuous motion of a broad conformational landscape, captured in seven confor-
mational states at ~9 Å resolution in the AAA-ATPase but 4.6 Å for the rest of the
free RP (Lu et al. 2017b). In another study, the 26S proteasome was analyzed in the
presence of ATPγS that replaces ATP. It was aimed to improve the open-gate state
to high resolution (Zhu et al. 2018). Surprisingly, ATPγS induced a dramatic shift
in the conformational landscape of the proteasome from state SA to SD. To improve
the resolution of state SD, we had to further classify the dataset corresponding to
state SD into three distinct sub-states SD1, SD2 and SD3, which were then improved
to 4.3–4.9 Å (Zhu et al. 2018). Averaging of the three sub-states instead gave rise
to a 6-Å resolution with smeared features in the center of the ATPase ring. These
studies taught us an important lesson that 3D classification of a highly heterogeneous
datasetwith significantly improved clustering accuracy is crucial for achieving higher
resolution for those lowly populated conformational states. The observations of six
coexisting states of the ATPγS-bound human proteasome was soon echoed by the
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discovery of states s5 and s6 of the yeast proteasome (Eisele et al. 2018), confirming
the conservation of the proteasome dynamics in the absence of a substrate.

Visualizing Atomic-Level Dynamics of Functional Proteasome

In the early summer of 2018, seven distinct states of the substrate-engaged protea-
some at 2.8–3.6 Å resolution (Fig. 1.4), which are referred to as EA1, EA2, EB, EC1,
EC2, ED1 and ED2, eventually emerged after a few years of marathon-like repeated
protein purification, data collection and analysis (Dong et al. 2019), in sharp contrast
to some of our other cryo-EM structures solved in a month (Zhang et al. 2015). These
exciting results would not be made possible without several lines of methodology
innovation and improvement. First, instead of completely replacingATPwithATPγS
or nucleotide analogs like several studies (Sledz et al. 2013; Wehmer et al. 2017;
Eisele et al. 2018; Zhu et al. 2018; Yu et al. 2018), a novel “nucleotide-substitution”
strategy that dilutes ATP with ATPγS in a time-dependent manner was deliberately
devised to capture the functional proteasome conformations in action that are as
diverse as possible (Dong et al. 2019). The proteasome was first primed with a bona
fide polyubiquitylated substrate Sic1PY and ATP/Mg2+ for 30 s, then exchanged in
a buffer containing both ATP and ATPγS at a 1:1 stoichiometric ratio (Dong et al.
2019). The choice of 30 s delay in ATPγS dilution after substrate-proteasomemixing
was based on the approximate half-life of the substrate degradation reaction, which
is consistent with a recent kinetic measurement on proteasomal degradation (Bard
et al. 2019). This strategy decelerated the hydrolysis activity of AAA-ATPases by
partially replacingATPwithATPγS in the proteasome. This is expected tomaximally
preserve the conformational landscape and native heterogeneity of the substrate-
engaged proteasome being captured before the completion of substrate degradation
reactions (Dong et al. 2019) (Fig. 1.4).

Second, to overcome the difficulties of cryo-EM data analysis entailed by an
extreme degree of conformational heterogeneity in this case, we decided to collect
a considerably larger cryo-EM dataset (44,664 raw micrographs) that is necessary

EA1 EB EC1 ED1 ED2EC2EA2

Ubiquitin recognition Ubiquitin transfer Deubiquitylation Translocation initiation Processive unfolding and degradationCP gate opening

Fig. 1.4 Seven cryo-EM maps of the substrate-engaged Homo sapiens 26S proteasome at 2.8–
3.6 Å resolution capture the key intermediate steps of substrate processing and provide important
insights into the chemical cycle of proteasome-mediated degradation (Dong et al. 2019)
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for improving resolutions for those lowly populated conformational states (Dong
et al. 2019), which would otherwise be either invisible or of low resolution with a
normally sized dataset. Note that a much larger dataset would drastically complicate
the computational task of 3D classification rather than straightforwardly ensuring
higher classification accuracy or higher resolution, because it could readily break the
upper limit of high-performance computational resources, causing frequent failure
of popular cryo-EM software. In fact, more data can effectively reduce resolution
rather than increasing it if the data classification accuracy is not warranted (Wu et al.
2017).

Third, we extensively used the latest data processing tools developed in my labo-
ratory, including deep-learning-based particle selection (Zhu et al. 2017), manifold-
learning-based 2D clustering (Wu et al. 2017), and hardware-accelerated 3D classi-
fication to optimize the data processing. Without these new computational tools, it
could have taken at least another year or longer to analyze the same dataset. Further-
more, building upon lessons learnt from previous studies, we further fine-tuned a
hierarchically focused 3D classification strategy with stepwise zoomed-in masking
and eventually sorted out seven conformations of the substrate-bound proteasome
covering the nearly complete cycle of substrate processing from substrate recruitment
and deubiquitylation to processive degradation (Dong et al. 2019).

Before fully committed to the “nucleotide substitution” strategy, therewas adebate
in my group regarding whether we should instead follow amore conventional, lower-
risk strategy of stabilizing the substrate-bound proteasome by inhibiting the deubiq-
uitylating activity of RPN11, which was previously used in a cryo-EM study of
the substrate-bound yeast proteasome (Matyskiela et al. 2013). But concerns were
that this treatment might be insufficient to lock the proteasome into a single confor-
mation, could fail in capturing the proteasome in functional steps other than substrate
translocation and also potentially create some artificial structural features that are not
physiologically relevant. These concerns turned out to be mostly the case when four
alternative cryo-EM structures of the substrate-bound yeast proteasome at 4.2–4.7 Å
resolution were obtained by inactivating the yeast Rpn11 with the inhibitor ortho-
phenanthroline (de la Pena et al. 2018). The inhibition of the yeast Rpn11 results
in certain structural features in state 1D* that are potentially off-pathway. However,
the AAA-ATPase structures in states 5D, 5T and 4D of the substrate-engaged yeast
proteasome are remarkably comparable to their human counterparts in states ED1 and
ED2 within the limit of their reconstruction quality and resolution (de la Pena et al.
2018; Dong et al. 2019). This suggests that the molecular mechanisms of substrate
processing by the proteasome must be highly conserved throughout the eukaryotic
kingdom.

With hindsight, the proteasome has served as an extraordinary model system
or “gold-standard trial” for furthering methodology development in cryo-EM for
its potential in solving atomic-level dynamics of complex enzymes (Dong et al.
2019). By retrospective comparison, it appears that the structural determination
of functional substrate-engaged proteasome was perhaps much more difficult than
those of the ribosome and spliceosome, the other two well-known dynamic protein
complexes. The conventional cryo-EMmethodology presumes a homogeneous core
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structure or fewdominating conformations that can afford high-accuracy image align-
ment leading to high-resolution reconstructions. However, the substrate-engaged
proteasome samples a significantly expanded, highly frustrated energy landscape
and severely violates the presumption of the conventional cryo-EM methodology.
Misclassification of conformers was found to be the major cause for limited resolu-
tions when the proteasome samples an expanded energy landscape (Zhu et al. 2018).
However, improved curation in initial particle ensemble with deep learning, higher
accuracy in data clustering using manifold learning, a fine-tuned, object-optimized
3D classification strategy and a significantly larger dataset all seem to contribute to
the improvement of 3D classification accuracy beyond the realm of the conventional
cryo-EM methodology. A more detailed account for the methodology advancement
leading to the breakthrough of atomic structure determination of functional human
proteasome will be provided elsewhere.

Structures and Dynamics of the Proteasome

Molecular Architecture of the Proteasome

Due to the highly dynamic nature of the proteasome, no single reconstructions of the
26S proteasome provided the best resolved local features for all components (Chen
et al. 2016a; Huang et al. 2016; Schweitzer et al. 2016; Zhu et al. 2018; Dong et al.
2019; de la Pena et al. 2018; Eisele et al. 2018; Ding et al. 2019). Overall, the CP and
AAA-ATPase motor in the RP were best resolved in state EA at 2.8-Å resolution;
the non-ATPase subunits in the RP were best resolved in states ED1 and ED2 at 3.3
and 3.2 Å (Dong et al. 2019). The early high-resolution structures of the proteasome
in state SA all presented poorer local density quality in the lid and the non-ATPase
subunits in the base, where the local resolution did not go beyond the range of 4–8 Å
(Chen et al. 2016a; Huang et al. 2016; Schweitzer et al. 2016; Zhu et al. 2018).
This issue was addressed in the recent study at higher resolution in these subunits
(Dong et al. 2019). Putting together, these atomic structures provide thus-far the
nearly complete understanding of the 26S proteasome assembly. In this subsection,
I intended to summarize the overall organization and architecture of the proteasome
holoenzyme based on the highest resolution structures available. More details about
conformational dynamics of the proteasome associated with distinct functional steps
are discussed in the following subsections.

The Lid Subcomplex

The ~370-kDa lid subcomplex in the RP has an overall dimension of 170 × 150 ×
140 Å3. The architecture of the ~370-kDa lid subcomplex in the RP bears topo-
logical similarity to those of the COP9 signalosome (Lingaraju et al. 2014) and
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the eukaryotic translation initiation factor 3 (eIF3) (des Georges et al. 2015). The
PCI domain of six RPN subunits (RPN9, RPN5, RPN6, RPN7, RPN3, and RPN12
from the left to right side in Fig. 1.5a) features N-terminal helical repeats (HR)
connected to a winged-helix (WH) subdomain. The lid subcomplex is stabilized by
two organizational centers (Fig. 1.5): a half-sized open ring formed through side-
by-side oligomerization of three-stranded β-sheets of the WH subdomains from the
six PCI proteins (PCI ring) (Fig. 1.5a), and an elaborate α-helical bundle comprising
the C-terminal regions from all of eight PCI/MPN subunits (Fig. 1.5b). The N-
terminal helical repeats of the six PCI proteins radially protrude from the PCI ring
of 18-stranded β-sheet, forming a horseshoe-like architecture.
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Fig. 1.5 Atomic structures of the lid subcomplex in the human 26S proteasome (PDB ID: 6MSB)
(Dong et al. 2019). a The lid-base interface lateral to the ATPase ring is composed of three local
inter-subunit interfaces of RPN5-RPT3, RPN6-RPT6 and RPN7-RPT6, which are highlighted by
dashed boxes 1, 2 and 3, respectively. b, c The atomic model of the lid subcomplex viewed from
two perspectives orthogonal to that in (a). The central helical bundle is highlighted in cartoon
representation. The rest of the lid structure is shown in a ribbon representation. The right inset
zooms into the central helical bundle. The asterisk symbols label the N-terminal ends of the lid
subunits



1 Structure, Dynamics and Function of the 26S Proteasome 21

The PCI and MPN proteins form largely two separate subassemblies that are
united in the central helical bundle. The central helical bundle is connected to the
PCI ring from one side and to the MPN dimer of RPN8-RPN11 from the other side
via structured linkers at the C-termini of the WH subdomains. Outside the helical
bundle, the MPN dimer does not directly contact the PCI ring. It is separated by
the base subunit RPN2 from one end and the von Willebrand factor type A (VWA)
domain of another non-lid subunit RPN10 from the other end. Only theMPN domain
of isopeptidase RPN11 in the lid subcomplex harbors a catalytic active zinc ion.

The Base Subcomplex

Thebase subcomplex is organized around theATPase ring (RPT1-RPT6). The coiled-
coil (CC) dimers ofRPT1-RPT2,RPT3-RPT6, andRPT4-RPT5harborRPN1,RPN2
and RPN10, respectively.While the interaction between the RPT3-RPT6 CC domain
and RPN2 was apparent in the cryo-EM maps of the proteasome in the resting state
(SA), the other two pairs of interactions were insufficiently visualized due to the local
conformational dynamics of RPN1 in the absence of a substrate (Chen et al. 2016a;
Huang et al. 2016; Schweitzer et al. 2016; Zhu et al. 2018). The interface between
RPT1-RPT2 CC and RPN1 was best visualized in the substrate-bound proteasome
in states ED1 and ED2 at higher resolution (Dong et al. 2019).

RPN10 was originally thought to be part of the base (Glickman et al. 1998), but
later considered to be neither part of the base nor the lid (Bard et al. 2018), based on
the structural observation that the RPN10VWAdomain interacts directly with the lid
subunits RPN8 and RPN9 in the proteasome and does not contact any base subunits
in the resting state of the proteasome (Chen et al. 2016a). Nevertheless, cryo-EM
structures of substrate-interacting proteasome did show a direct interaction of RPN10
with the base at the RPT4-RPT5 CC in state ED2 (Dong et al. 2019). Furthermore, the
RPT4-RPT5 CC dimer seems to harbor auxiliary ubiquitin-binding sites that assist
ubiquitin recognition by RPN10 and peptide-proximal ubiquitin transfer to RPN11
for deubiquitylation (Dong et al. 2019; Chen et al. 2020; Lam et al. 2002). The
ubiquitin-interacting motifs (UIM) of RPN10 are structurally flexible and missing
in all available cryo-EM reconstructions (Chen et al. 2016a; Huang et al. 2016;
Schweitzer et al. 2016; Zhu et al. 2018; Dong et al. 2019). In the yeast proteasome,
Rpn13 binds the C-terminal region of Rpn2 with a sub-stoichiometric ratio (Sakata
et al. 2012).

The OB domains of six RPT subunits form a ring with an inner diameter of 10 Å
(Fig. 1.6). This is the substrate entry port into the interior of the proteasome. Its narrow
dimension indicates that the OB ring imposes the restriction against translocation
of folded substrates. Each of the OB domains folds into a five-stranded β-barrel,
whose axis lies orthogonal to that of the OB ring and is directed radially (Fig. 1.6h).
Residues in loop L23 appear to impose the narrowest constriction in the central pore
of the OB ring subcomplex. Despite being surrounded by highly dynamic structures,
the OB ring mostly moves as a whole rigid body during ATP or substrate turnover.
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Fig. 1.6 The atomicmodel of theATPase heterohexamer in theEA/SA state (PDB ID: 6MSB) (Dong
et al. 2019). a The overall structure of the ATPase viewed from the perspective of the substrate entry
port. The OB ring is in the foreground and is shown with transparent surface superimposed on a
cartoon representation of the AAA domains. b Overall structure of the ATPase ring viewed from a
perspective rotated 90° from that in panel (c). c–e The component structures of the OB ring (panel
c), large AAA subdomains (panel d) and small AAA subdomains (panel e) viewed from the same
perspective as that in panel (b). f–h The component structures of the OB ring (panel f), large AAA
subdomains (panel g) and small AAA subdomains (panel h) viewed from the same perspective as
that in panel (a)

The link between the CC and OB domains is marked by a conserved proline
residue in the cis configuration in RPT2 (Pro106), RPT3 (Pro86) and RPT5 (Pro87)
at homologous residue positions in the structure. Thus, a cis-Pro residue in every other
subunit is essential for dimerization of the CC domains of three RPT heterodimers
(RPT1-RPT2, RPT3-RPT6 and RPT4-RPT5). Alternating cis-Pro residues at this
position have also been found in the archaeal PAN homohexamer—a remarkable
instance of evolutionary conservation (Zhang et al. 2009b; Arcus 2002).

The AAA domains of RPT subunits have a common architecture, featuring an
N-terminal α/β subdomain (large AAA subdomain) linked to a smaller C-terminal
α-helical subdomain (small AAA subdomain) via a short loop. The concave pocket
between the large and small AAA subdomain houses the nucleotide-binding site. In
the resting state (SA) of the proteasome, the AAA domains of RPT subunits form
a spiral staircase resembling a lock washer, in which RPT3 is located at the top
position and RPT2 at the bottom, with RPT6 bridging RPT2 and RPT3 at the “split
seam”. RPT6 possesses the most divergent fold in its AAA domain, consistent with
its unique role in driving the initial substrate engagement (Dong et al. 2019).
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The Lid-Base Interface

The interfaces between the lid and the base play crucial roles in coordinating substrate
recognition, deubiquitylation and translocation (Greene et al. 2019). The lid-base
interface is organized around the DUB RPN11, a metalloprotease fold, which is
positioned at the substrate entrance of the OB ring of the ATPase heterohexamer. On
one side of RPN8-RPN11, the MPN dimer is demarcated from RPN2, and the other
side from the VWA domain of RPN10. There are three types of lid-base interfaces:
(1) the central interface between RPN11 and the CC-OB domains of the ATPase
ring; (2) the interface defined by the CC domains of the adjacent RPT3 and RPT6
subunits, which project distally from the central interface; and (3) the lateral interface
between the AAA domains of ATPases and RPN5-RPN7. The interfaces between
the lid and the ATPase ring bury a ~3900 Å2 surface area in total. Specifically, the
CC-OB domains of RPT3-RPT6 contribute a ~3100 Å2 interfacial area with the lid.
The RPT3-RPT6 CC domain is encircled by the helices in RPN2, RPN3, RPN8 and
RPN11. This interfacial architecture appears to stabilize the lid-base association.

The lateral lid-base interface implicates distinct roles of interacting subunits in
the conformational transitions that follow substrate engagement. The AAA domains
of RPT3 and RPT6 bury ~1800 Å2 of interface area with RPN5-RPN7. One side
of N-terminal helical repeats in the RPN7 PCI domain, consisting of four helix-
connecting loops, makes extensive interaction (~940 Å2) with the RPT6 AAA
domain. In contrast, the AAA domains of RPT3-RPT6 contact RPN5 and RPN6,
with smaller buried footprints of ~340 Å2 and ~480 Å2, respectively. The interfaces
of RPN7-RPT6, RPN6-RPT6 and RPN5-RPT3 may serve as “switches” to alloster-
ically regulate the conformations of the RPT subunits, thus communicating between
adjacent subcomplexes during substrate degradation (Greene et al. 2019; Dong et al.
2019).

The CP Subcomplex

The CP has a cylindrical shape, with overall dimensions of 148 × 113 × 75 Å3

(Fig. 1.7). While the archaeal CP is composed of 28 subunits arranged in four
homoheptameric rings α7β7β7α7 coaxially stacked with D7 symmetry, the eukary-
otic CP is assembled from four heteroheptameric rings, α1–7β1–7β1–7α1–7, with only
C2 symmetry. The CP conceals the proteolytic active sites in the inner surface of
β-ring. As defined by the characteristics of the P1 cleavage sites of chromogenic
reporter groups, the Thr1 residues in β1, β2, and β5 subunits have been ascribed
with caspase-like (acidic; peptidylglutamyl-peptide hydrolytic (PGPH)), trypsin-like
(basic), and chymotrypsin-like (hydrophobic) activities. However, these specificities
are not reflected in the cleavage-site pattern of its substrates that are cleaved at almost
arbitrary positions.

In eukaryotic cells, five β-subunits are synthesized as proproteins,which are prote-
olytically cleaved to become the mature forms during the final steps of proteasome
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Fig. 1.7 The atomic structure of the human CP (PDB ID: 6MSB) (Dong et al. 2019). a The overall
structure of the CP from a lateral view. The color codes of the subunits are displayed on the right.
b The CP structure from a top view. c and d The atomic models of α1-subunit (c) and β1-subunit
(d) are shown in cartoon representations, which are typically homologous among all the α- and
β-type subunits. The names of the secondary structures are labelled

assembly (Chen and Hochstrasser 1995; Seemuller et al. 1995a; Frentzel et al. 1994).
The proforms of β1, β2, and β5 subunits are cleaved between Gly(-1) and Thr1,
which liberates the active site at residue Thr1. β6 is cleaved between His(-10) and
Gln(-9) and β7 is cleaved between Asn(-9) and Thr(-8). β1 and β3 are not further
processed and remain in their primary translational forms. All seven α-subunits and
seven β-subunits share the common α/β/β/α sandwich-like fold characteristic of Ntn
(N-terminal nucleophile)-hydrolase superfamily (Oinonen and Rouvinen 2000). It
exhibits two five-stranded antiparallel β-sheets sandwiched by three helices (H3, H4
and H5) on the top and two helices (H1 and H2) on the bottom. Structural differ-
ences between the subunits are entailed by the length variations (often by one or two
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residues) in theN-terminal and C-terminal regions, in turning loops and in long inser-
tions bridging adjacent secondary structural elements. For instance, the subunits α3
and α4 have longer C-terminal helices (H5) sticking out from the CP surface toward
the RP, potentially making direct contact with the base subunits.

The intersubunit interactions mediating the assembly of the CP can be categorized
into α-cis, β-cis, α-trans-β, and β-trans-β contacts. The α-cis contacts are mediated
by the N-terminal loop, the helix H0, the strand S7, the loop L, and the loop linking
H2 with S5. The β-cis contacts are mediated by loop L, the N-terminus of helix H1,
strand S7 and the turn connecting helix H3 and strand S8. The α-trans-β contacts
are mediated by the helix-loop-helix motifs spanning H1 and H2, which interdigitate
with the same motifs of two adjacent α-subunits. This mode of intersubunit contacts
is conserved in both prokaryotes and eukaryotes (Lowe et al. 1995; Groll et al.
1997; Dong et al. 2019). β-trans-β contacts are more specifically formed by the C-
terminal arm of β7 intercalating between β1′ and β2′ from adjacent β′-ring, and by
the intercalation of β5 C-terminal arm with β3′ and β4′ in a similar configuration.

The CP gate refers to the central axial pore controlled by the N-terminal loops of
α-type subunits (Groll et al. 2000). The CP stays in an inactive state in its free 20S
form and in the resting state after its assembly with the RP. In this inactive state, the
CP gate is blocked by stacking of N-terminal loops of only three α-type subunits, α2,
α3 and α4. Particularly, the N-terminal loop of α3 occupies the majority of the space
at the CP gate, resembling a linchpin that is stabilized by the N-terminal loops of α2
and α4. Opening of this gate is allosterically controlled by interactions between the
CP and RP.

The RP-CP Interface

TheRP associateswith theCP through a symmetry-mismatched interface (~3600Å2)
between the hexameric AAA-ATPase motor and the heptameric α-ring in the resting
state (SA). All RPT subunits but RPT6 directly contact the α-ring. The large void
between the RPT6 and α2 subunits is sided by the N-terminal helical repeats in the
PCI domain of RPN6. The helical repeats of RPN6 PCI domain protrudes down to
the lateral surface of α2, making ~620-Å2 contact. Similarly, the N-terminal helical
repeats of RPN5 PCI domain also make a lateral contact with the α1 subunit via a
small footprint area (~50 Å2) (Chen et al. 2016a; Eisele et al. 2018; Zhu et al. 2018;
Dong et al. 2019).

In the resting state, the conserved hydrophobic-Tyr-X (HbYX) motifs of RPT3
and RPT5 are docked into the α1-α2 and α5-α6 pockets, respectively (Chen et al.
2016a; Huang et al. 2016; Schweitzer et al. 2016) (Fig. 1.8). The terminal oxygen of
the penultimate tyrosine in the HbYX motifs (Tyr417 in RPT3 and Tyr438 in RPT5)
forms a hydrogen bond with the carbonyl oxygen in the mainchain of the glycine
residue in the correspondingα-pocket (Gly20 inα1 andGly19 inα5). Similar contacts
have also been observed between PA26 and archaeal 20S proteasome precursors
(Stadtmueller et al. 2010). These structural features explain the notion that RPT3
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Fig. 1.8 Asymmetric opening of the CP gates in the 26S proteasome (Chen et al. 2016a; Zhu et al.
2018). a The cryo-EM density map of the CP in the SD state viewed from the side (left), the top
(upper right), and the bottom (lower right). The RP density is not shown. The upper half of the CP
faces the RP in the SD state and is in the open conformation. b The atomic models of the α-rings
in the open (upper left) and closed (lower left) states in cartoon representation, viewed from the
perspective of the RP-CP interface. The two panels in the right show the central parts of the α-rings
in the open (upper right) and closed states (lower right). c Cryo-EM density map of the RP-CP
interface in the open gate state, in which the local densities of the C-terminal tails of RPT1, RPT2,
RPT6, RPT3 and RPT5 are highlighted by different colors for clarity. Two empty α-pockets are
marked by asterisks. d The atomic models of α-rings in the closed (blue) and open (closed) states
are superimposed

and RPT5 are the only two ATPase subunits whose C-terminal HbYX motifs are
indispensable for assembly of the human 26S proteasome (Kim and DeMartino
2011). By contrast, in the yeast proteasome, the HbYX motifs of RPT2, RPT3 and
RPT5 are inserted into the α-pockets (Tian et al. 2011; Stadtmueller et al. 2010; Ding
et al. 2017; Wehmer et al. 2017).
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Complex Dynamics of the Proteasome

Common Traits of Proteasome Dynamics and Plasticity

The 26S proteasome was consistently observed to sample multiple coexisting
conformers in bothHomo sapiens and Saccharomyces cerevisiae (Unverdorben et al.
2014; Chen et al. 2016a; Luan et al. 2016;Wehmer et al. 2017; de la Pena et al. 2018;
Eisele et al. 2018; Zhu et al. 2018; Ding et al. 2019; Dong et al. 2019). Although
several conformers of the substrate-free proteasome preserve architectural features
of the substrate-bound proteasome, certain conformers and crucial substrate interac-
tions are not accessible in the absence of substrates. This underscores the importance
of understanding the conformational landscape of the substrate-engaged proteasome
under physiological conditions, which is characterized at large by the seven atomic
structures of substrate-bound proteasome as summarized in Table 1.2. Because the
conformational state in the RP and its interacting α-ring on one side of a doubly
capped proteasome can be different from that of the interacting pair on the other
side, the states listed in Table 1.2 refer to the conformations of either the RP-CP
subcomplex or the singly capped proteasome. There is currently insufficient evidence
showing functional difference between the RP-CP subcomplex in a doubly capped
proteasome and the singly capped proteasome (Asano et al. 2015).

There are several common patterns of pronounced conformational changes occur-
ring in the proteasome under distinct biochemical conditions. First, the CP confor-
mation assumes states of either closed or open gate. The human CP structures with a
closed gate are virtually identical in all corresponding states including EA1, EA2, EB,
EC1, EC2, SA, SB and SC (Dong et al. 2019). The same is true for the human CP with
an open gate in the remaining states. This reflects a bistability of the CP gate that
has been also observed for the yeast CP. Second, the lid rotation is generally accom-
panied with the conformational transitions between different states. Most notably, a
prominent lid rotation of 25–40° is commonly observed during state transitions of
EB-to-EC (substrate-engaged) (Dong et al. 2019), SA-to-SB transition (substrate-free)
(Chen et al. 2016a; Zhu et al. 2018), C1-to-C3 (tetraubiquitin-bound yeast protea-
some) (Ding et al. 2019), and s1-to-s2 (substrate-free yeast proteasome) (Wehmer
et al. 2017; Eisele et al. 2018; Ding et al. 2017). Third, the quaternary structural
relationship between RPN11 and the OB ring is also approximately bistable. The
RPN11 blocks the entrance of the OB ring in states EC1, EC2, ED1, ED2, SB, SC, SD1,
SD2, SD3, 5D, 5T, 4D, C3-a, C3-b, s2, s3, s4, s5, and s6 (Dong et al. 2019; de la Pena
et al. 2018; Eisele et al. 2018; Ding et al. 2019; Chen et al. 2016a; Zhu et al. 2018).
By contrast, RPN11 is rotated to the side of the OB ring and leaves a wide entrance
to the ATPase channel in all remaining states. Fourth, whenever the CP gate is open
in states ED1, ED2, SD1, SD2, SD3, 5T, 4D, C3-a, C3-b, s4, s5, and s6, the conforma-
tions of the ATPase ring in these states are always remodeled and translated above
the CP to positions that confer a better axial alignment of the ATPase channel with
the CP gate as compared to the resting state (SA). Fifth, the pore-loop staircase is
similarly observed in states ED1, 5D and 5T, whereas a different pore-loop staircase
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is comparably observed in states ED2, SD2, and 4D. Taken together, these common
characteristics indicate that the conformational dynamics of the proteasome is evolu-
tionarily conserved to meet its critical functional needs. Despite these shared traits in
conformational dynamics of the proteasome holoenzyme, the exact structures of the
RP are all somehow different, more or less, among all the states enlisted in Table 1.2,
illustrating a structural plasticity of the proteasome to an exceptionally large extent,
which is yet to be comparably found in other protein complexes.

Key States of Proteasome in the Act of Substrate Degradation

States EA1 and EA2 overall resemble the SA conformation of the substrate-free human
proteasome holoenzyme (Dong et al. 2019). Several remarkable features distinguish
states EA1 and EA2 from SA. Foremost, a ubiquitin density is observed around the
T1/T2 site of RPN1 (Shi et al. 2016). Two ubiquitin densities are found at the N-
terminal CC domain of RPT4-RPT5 near RPN10. The ubiquitin near RPN11 is
attached to the RPT4-RPT5 CC but does not directly contact RPN11 in state EA1.
This ubiquitin is bound with RPN11 and detached from the RPT4-RPT5 CC in state
EA2. However, no substrate is observed inside the AAA-ATPase motor, indicating
that substrate engagement is not yet completed in these states. These suggest that
states EA1 and EA2 represents the steps of initial ubiquitin binding and ubiquitin
transfer to RPN11, respectively, presumably before a substrate is fully engaged with
the proteasome for deubiquitylation.

State EB presents a quaternary structure in the act of substrate deubiquitylation and
finds no rigorous counterparts among those substrate-free proteasome conformations
(Dong et al. 2019). It reveals an interesting conformation that has been absent in all
other studies (Chen et al. 2016a; Huang et al. 2016; Schweitzer et al. 2016; de la Pena
et al. 2018;Zhuet al. 2018).Although theoverallRP-CP relationship is closer to states
SA and EA, the lid swings outward away from the OB ring relative to state EA, toward
an opposite direction against that seen in the EB-to-EC transition. This results in a
wider access to the AAA-ATPase ring. Notably, the isopeptide bond linking substrate
lysine to the C-terminal glycine of RPN11-bound ubiquitin has been observed in the
vicinity to the zinc ion bound at the catalytically active site of the DUB RPN11. This
DUB-substrate interaction is achieved through extensive quaternary rearrangements
also involving RPT5 and RPN8. The lysine residue linking to the RPN11-bound
ubiquitin via the isopeptide bond is located above the OB ring and is about 15 Å
away from the central pore of theATPase ring,where the substrate density is observed
all the way from the ubiquitin-conjugated lysine down to the end of the central pore
of the ATPase ring.

States EC1 and EC2 present two successive snapshots that capture the initiation
steps of substrate translocation (Dong et al. 2019).While the RPN11-bound ubiquitin
remains in state EC1, its isopeptide bond linking the substrate appears to have been
broken. In state EC2, this ubiquitin is released from RPN11. As the overall lid-base
relationship resembles the substrate-free state SC, the lid is rotated ~40° clockwise
relative to states EA and EB. Although the ATPase conformation is nearly invariant in
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states EC1 and EC2, the ATPase ring exhibits a rigid-body translation of ~5 Å above
the CP, with a small rotation in the lid. The substrate inside the AAA-ATPase ring
is presumably advanced toward the CP relative to state EB. The two states exhibit
similar features in the RP-CP interface with a closed CP gate.

States ED1 and ED2 present two sequential conformations in which substrate-pore
loop interactions are consistent with processive substrate translocation (Dong et al.
2019). The substrate is presumably moved toward the CP relative to states EC1 and
EC2.Noubiquitin densities are found onRPN11. The overall lid-base relationship, the
RP-CP interface and the open state of CP gate are compatible with the substrate-free
states SD1, SD2 and SD3 of the human proteasome (Chen et al. 2016a; Zhu et al. 2018),
and the substrate-engaged states 5T, 4D (de la Pena et al. 2018), the tetraubiquitin-
bound states C3-a, C3-b (Ding et al. 2019), and substrate-free states s4, s5 and s6 of
the yeast proteasome (Wehmer et al. 2017; Eisele et al. 2018). It is noteworthy that
the pore-loop staircase architecture of states 5D, 5T, C3-b and s6 closely resembles
that of state ED1, whereas the pore-loop topologies of states SD2, 4D, C3-a and s4
match state ED2.

Allosteric Regulation of Proteasome Dynamics

Ligand binding and substrate interactions substantially modify the energy landscape
of the proteasome and thus regulate both the distribution of coexisting conformers
and the key features of these conformers (Fig. 1.9). In the presence of ATP/Mg2+,
the substrate-free human proteasome exhibits four conformational states SA, SB, SC
and SD in the particle populations at 76.1%, 10.2%, 5.8% and 7.9%, respectively.
In the presence of ATPγS (that completely replaces ATP), the expanded states SA,
SB, SC, SD1, SD2 and SD3 represent 51.8%, 3.5%, 5.3%, 14.9%, 17.0% and 7.5%
of the total particles, respectively (Zhu et al. 2018). The particle population of the
human proteasome in an open-gate state is about five times higher in the presence
of ATPγS than ATP. Indeed, the peptide-hydrolyzing activity of the proteasome has
been observed to be substantially stimulated by ATPγS (Li and Demartino 2009). In
contrast to the shift of conformational equilibria toward the open-gate states, binding
of the small-molecule inhibitor Oprozomib to the β5 subunit in the CP stabilizes
the resting state (SA) by substantially narrowing the ground funnel on the energy
landscape and inhibiting the human proteasome from sampling those states with an
open CP gate (Haselbach et al. 2017).

Structural and biochemical studies on the substrate-free yeast proteasome also
agree with this ligand-dependent regulatory picture in general. Binding of ATPγS
or other nucleotide analogs, such as AMP-PNP, ADP-AlFx and ADP-BeFx, substan-
tially induces ATPase conformations resembling those substrate-engaged states and
shifts the conformational landscape of the proteasome from the resting state (s1)
toward the open-gate states (s4, s5 and s6) (Wehmer et al. 2017; Eisele et al. 2018;
Ding et al. 2017). Similar allosteric effects have also been observed for the Lys48-
linked tetraubiquitin-bound yeast proteasome (Ding et al. 2019). In this case, the
conformational equilibria of the proteasome are driven toward two open-gate states
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Fig. 1.9 Conceptual schematic illustrating the regulation of the energy landscape of the 26S protea-
some by substrates and nucleotides. The replacement of ATP with slowly hydrolyzed ATPγS
enhanced the conformational states corresponding to an openCPgate. The engagement of a substrate
with the proteasome further stabilizes these states and induces more sub-states corresponding to a
closed CP gate

(C3-a and C3-b), which resemble the substrate-engaged human states ED2 and ED1,
respectively (Dong et al. 2019). Notably, the resting state no longer dominates the
energy landscape in some conditions. For example, 2 mM ATPγS significantly
expands the particle population of state s3, s4 and s5, whereas 4 mM ATPγS even
further promotes the distributionof state s3 and s4, allowing the two states to dominate
the energy landscape of the yeast proteasome (Eisele et al. 2018).

Because the resolution of most yeast proteasome reconstructions was insufficient
to define the nucleotide states in the proteasomal ATPases, a genetic approach has
been developed to evaluate how individual ATP-binding events influence the confor-
mational landscape of the proteasome (Eisele et al. 2018). The conserved Walker B
glutamatewasmutated to glutamine in eachATPase subunit in yeast,whichwas code-
named rpt-EQ. While mutations in three ATPases caused cytotoxic effects, mutant
proteasomes from rpt2-EQ, rpt3-EQ, and rpt6-EQ enabled cryo-EM analysis that
showed a consistent stimulation of states s4, s5 and even discovery of a new confor-
mational state s6 of the yeast proteasome. While states s4 and s5 were observed in
rpt2-EQ and rpt6-EQ proteasomes, state s6 was exclusively observed in rpt3-EQ
proteasome, in which the ATPase conformation resembles state ED1.

In the presence of bothATP/Mg2+ andATPγS/Mg2+, the substrate-engaged human
proteasome shows seven conformers EA1, EA2, EB, EC1, EC2, ED1 and ED2 in the
particle populations at 8.4%, 6.4%, 19.4%, 9.0%, 5.7%, 23.1% and 27.9%, respec-
tively (Dong et al. 2019). The open-gate states ED1 and ED2 dominate the energy
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landscape, in stark contrast to the conformational distributions of substrate-free
proteasome. Because all these seven states have been reconstructed at a resolution no
worse than 3.6 Å, these human proteasome structures afforded unambiguous deter-
mination of the nucleotide states of the ATPase, allowing the elucidation of how the
nucleotide hydrolysis and exchange trigger state transitions of the proteasome (Dong
et al. 2019). Similar allosteric effectswere also noted for the substrate-boundRPN11-
inactivated yeast proteasome (de la Pena et al. 2018). These structural data explain
why substrate engagement considerably stimulates the ATPase activity and serve
as a foundation to further understand how ubiquitin-like (UBL) proteins stimulate
proteasome activation (Kim and Goldberg 2018; Collins and Goldberg 2020).

In vivo experimental studies using cryo-electron tomography (cryo-ET) and subto-
mogram classification suggest that the 26S proteasome mostly stays at the resting
state in intact hippocampal neurons in the absence of proteotoxic stress, and exhibits
several alternative conformations (Asano et al. 2015; Guo et al. 2018). Although the
subtomogramaveraging fromcryo-ET reconstructions has a low resolution compared
to single-particle reconstruction, the large RP rotation between the resting state
(SA) and the substrate-degrading states (ED) is discernible at a nanometer reso-
lution. Subtomogram classification has been conducted on the proteasome within
intact neurons showing poly-Gly-Ala (poly-GA) aggregates,which results fromaber-
rant translation of an expanded GGGCCC repeat in the C9orf72 gene. Mutation in
C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and fron-
totemporal dementia (FTD) (Edbauer and Haass 2016; Freibaum and Taylor 2017;
Gendron et al. 2013; Lin et al. 2017). The poly-GA aggregates in neurons densely
pack into twisted ribbons and recruit a large number of 26S proteasomes that exist in
either the substrate-degrading states (ED) or the resting state (SA) (Guo et al. 2018).
The cryo-ET studies provide strong evidence supporting that the in vivo proteasome
conformational dynamics regulated by the endogenous substrates are reflected in
those analyzed in vitro at the atomic level.

Activation Dynamics of the CP

By studying the Thermoplasma acidophilum CP, which provides a lower structural
complexity, the NMR quantification of structural dynamics of activator binding and
specifically labeled residues (Sprangers and Kay 2007) elucidated the mechanism of
CP gating by the unstructured N-termini of α-subunits in the archaeal proteasomes.
It was observed that on average two of the chains move through the CP gate to
the proteolytic chamber, and block the passage for translocating protein substrates
(Religa et al. 2010). TheNMR studies of the CPwere conducted bymethyl transverse
relaxation optimized spectroscopy, which takes advantage of deuterated proteins and
selectively labellingmethyl groups of isoleucine, leucine,methionine andvaline (Kay
2011).

How the CP gate is regulated by its activators has been informed by
numerous structural studies. Crystal structure of the human PA28α/REGα homolog
reveals a toroidal heptamer architecture. The CP-interacting C-terminal residues and
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internal activation loop exhibit sevenfold symmetry (Knowlton et al. 1997). The 20-
Å pore inside this heptamer was initially suggested to be a substrate translocation
channel. However, it was later found that this pore is occupied in the PA26 homolog
of Trypanosoma brucei distantly related to PA28 (Forster et al. 2005). Crystal struc-
tures of PA26 in complex with the CPs in Saccharomyces cerevisiae (Whitby et al.
2000; Forster et al. 2003) and Thermoplasma acidophilum (Forster et al. 2005) indi-
cate that the C-termini of PA26 are docked into the α-pockets, whereas the activation
loops trigger the opening of the CP gate by repositioning the Pro17 turn of the CP
in a sevenfold symmetric fashion.

Crystal structures of a Blm10-CP complex exhibit an architecture distinct from
that of PA28. The single-chain ~250-kDaBlm10 activator binds theα-ring and resem-
bles the shape of a turban (Iwanczyk et al. 2006; Sadre-Bazzaz et al. 2010; Schmidt
et al. 2005). Interestingly, Blm10 docking onto the CP induces a disordered confor-
mation of the CP gate. There appears to be only limited access to the turban-like
architecture of Blm10 above the CP gate, consistent with a lower level of peptidase
activities in the presence of Blm10 compared to PA26 (Iwanczyk et al. 2006). One
C-terminal tail of PA200 docks the α5-α6 pocket, with the three C-terminal residues
closely resembling the C-termini structure of PA26, forming comparable mainchain
hydrogen bonds and electrostatic interactions (salt bridge) with the surface-exposed
lysine in the α6 subunit. This is insufficient to open the CP gate, because other α-
pockets are not occupied and conserved Blm10 residues sterically impedes the gate
opening. The structures of the PA28 and Blm10/PA200 in complex with the CP point
to the same binding mechanism of the CP activators in general. In both cases, a salt
bridge is formed between the C-terminal carboxylate of the activator and the surface-
exposed lysine of the CP (Forster et al. 2005; Dange et al. 2011; Sadre-Bazzaz et al.
2010) and the Pro17 turns of the CP is repositioned, resembling their configuration in
the PA26-CP complexes. These features underscore the functional importance of the
penultimate tyrosine (or phenylalanine) in the C-termini of the CP activators (Smith
et al. 2007). This mechanism of CP gating has been further supported by crystal
structures of the PA26 mutants binding the archaeal CP (Stadtmueller et al. 2010;
Yu et al. 2010), a cryo-EM structure of the CP in complex with the PAN C-terminal
peptides (Rabl et al. 2008), and high-resolution cryo-EM structures of the human
26S proteasome (Chen et al. 2016a; Zhu et al. 2018; Dong et al. 2019).

The structures of the PA28 and PA200 complexes do not intuitively clarify their
elusive biological function (Rechsteiner and Hill 2005). The expression of PA28α
and PA28β can be induced by interferon-γ, implicating a potential role in T-cell
antigen presentation mediated by major histocompatibility complex class I (MHC-I)
(Sijts et al. 2002). However, the mechanism underlying this process remains elusive,
because many species that do not seem to encode MHC-I also express a PA28
homolog (Sijts and Kloetzel 2011). PA28γ/REGγ was observed to mediate ATP-
independent and ubiquitin-independent degradation of some natively unstructured
transcription factors (Chen et al. 2007; Li et al. 2007a). PA200 has been proposed
to play a role in maintenance of mitochondrial inheritance, in DNA repair and in
spermatogenesis. The abundance of the PA200-CP complexes was increased when
either activated or disrupted CP prevails (Savulescu and Glickman 2011). Both PA28
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and PA200 can participate in the assembly of hybrid proteasomes, in which different
types of CP regulators bind to opposite sides of the same CP (Cascio et al. 2002;
Kopp et al. 2001; Tanahashi et al. 2000). Such hybrid proteasomes with the PA28
or PA200 at one side and the RP at the other side have indeed been observed on the
endogenously purified eukaryotic proteasome by cryo-EM in my laboratory (unpub-
lished data). The hybrid proteasome is expected to possess distinct gating dynamics
on opposite sides of the sameCP. Interestingly, the gate conformations at the opposite
sides of the archaeal CP appear to be coupled, which might allosterically regulate the
assembly of hybrid proteasomes (Yu et al. 2020). Structural and functional studies
of the hybrid proteasomes are anticipated to clarify their roles in regulating cellular
processes.

In the 26S proteasome, the conformation of the CP gate is controlled by the RP-
CP interface in an ATP-dependent fashion. The intermediate states of the RP-CP
interface are characterized in the substrate-engaged proteasome. Perhaps the most
interesting observation at this critical interface is the insertion of one additional
C-terminal tail of RPT subunits into one α-pocket at a time, when the proteasome
navigates from state EA, through states EB and EC to state ED. In the resting state
(SA) or substrate-accepting states (EA1 and EA2), RPT3 and RPT5 have already
docked their C-terminal HbYX motifs into two α-pockets (α1-α2 and α5-α6). State
transition to EB is accompanied with RPT2 HbYX motif insertion into the α3-α4
pocket, followed by RPT6 C-terminus insertion into the α2-α3 pocket in State EC

and RPT1 HbYXmotif insertion into the α4-α5 pocket in State ED (Fig. 1.10) (Dong
et al. 2019). Particularly, the RP-CP interaction modes of substrate-engaged human
states EC and ED were consistently found in those of substrate-free yeast states s3
and s4-s6, respectively (Eisele et al. 2018).

The principal gate-blocking N-terminal loops are from the α2 and α4 subunits
(Groll et al. 2000). The α3 N-terminal loop behaves as a lynchpin of the CP gate
overlaid with the N-terminal loops of α2 and α4 (Tian et al. 2011). Destabilization of
the α3 lynchpin is necessarily but insufficiently controlled by RPT2. By comparison,
the yeast RP-CP interaction in the resting state (s1) exhibits the same mode observed
in state EB of the human proteasome, in which three HbYX motifs from RPT2,
RPT3 and RPT5 are inserted in the α-pockets (Wehmer et al. 2017; Dong et al.
2019). In contrast to the sequential insertion of RPT C-terminal tails in the human
proteasome during the process of CP activation, the yeast CP apparently requires
fewer intermediate steps in full activation (Eisele et al. 2018). It is also notable that
once four RPT C-terminal tails docked into the α-pockets, the CP gate starts to show
partial opening, as captured in the substrate-bound state 5D (de la Pena et al. 2018),
states EC1 and EC2 (Dong et al. 2019) and substrate-free state s3 (Wehmer et al.
2017).

The insertion of five RPT C-terminal tails also demands the repositioning of the
ATPase ring above the CP, as well as necessary RPT conformational rearrangements
to satisfy the geometrical requirement. In states ED or SD, the N-terminal loops of
α2, α3 and α4 are rotated ~90° to approximately align along the heptameric axis
to open the CP gate. However, the secondary structural elements surrounding the
gate-blocking loops in the α-ring remain largely unchanged with only very subtle
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Fig. 1.10 Gating mechanism of the CP in the human proteasome (Chen et al. 2016a; Zhu et al.
2018; Dong et al. 2019). a Comparison of the cryo-EM densities of the RPT C-termini binding
the α-pockets of the CP in different conformational states of the human proteasome. The cryo-EM
reconstructions of theRP-CP interfaces are shown in grey surface representation.The colored dashed
circles highlight the densities of the RPT C-terminal tails. b A schematic diagram summarizes the
RPT C-terminal interaction with the α-pockets and the state of the CP gate in all states shown in
(a). The ATPase ring is represented as a hexagon, the CP as a heptagon and the RPT C-terminal
interaction as a colored sphere

movements relative those in other states; indeed, the overall outer diameter of the
opened α-ring is dilated by only ~3 Å (Zhu et al. 2018; Dong et al. 2019). A similar
allosteric effect has also been observed in the open gate of yeast CP in complex with
the PA26/11S regulator from Trypanosoma brucei (Whitby et al. 2000; Stadtmueller
et al. 2010). Importantly, in both the RP-activated human CP and the PA26-activated
yeast CP, the same α-pockets (α6-α7 and α7-α1) are the only two that are empty,
indicating a highly conserved mechanism of CP gating regulation by its activators.

The CP is not only externally regulated by the RP, but is also internally affected by
the interactions at the proteolytic sites in the β-type subunits (Haselbach et al. 2017;
Osmulski et al. 2009). Studies of the yeast CP in the absence of RP using atomic force
microscopy have suggested that the CP gating is either stimulated or suppressed by
the proteolytic active-site engagement with a substrate or small-molecule inhibitors
such as Bortezomib and Epoxomicin (Osmulski et al. 2009). The CP gate opening
appears to be stimulated by a tetrahedral transition state at the proteolytic active sites.
Notably, such a short-range allosteric effect on the CP gate can be further transmitted
to the conformational state of RP through the RP-CP interface in a long-range fashion
(Haselbach et al. 2017).
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Quaternary Allosteric Regulation

The activity of proteasomal ATPase motor is regulated by the lid subunits, RPN1 and
RPN2 in an asymmetric fashion (Greene et al. 2019). While in states ED1 and ED2,
RPN1andRPN2 formadimer by a long-range association through a long turning loop
from RPN2, such a quaternary architecture was less clearly observed in other states
(EA-C) (Dong et al. 2019). During state transition from EA to EB, RPN1 undergoes
a prominent rotation. In states EC1 and EC2, the RPN1 density is blurred, indicating
strongmotions potentially disrupting theRPN1-RPN2associations observed in states
ED1 and ED2. Thus, the variation of RPN1 motion appears to be highly coordinated
with theATPhydrolytic cycle coupledwith conformational remodeling of theATPase
motor during substrate translocation.

The CC domains of RPT4-RPT5 also seem to coordinate substrate translocation
by its interactionwith the lid subunit. In states EC1, EC2, ED1 andED2, theRPT4-RPT5
CC domain interacts with either RPN9 or RPN10 in different contacts. By contrast, it
resides several nanometer away from any RPN subunit and recruits peptide-proximal
ubiquitin in state EA and transfers it to RPN11 for deubiquitylation in state EB.
Thus, the lid-base interaction regulates substrate interactions with the proteasome
through a combination of short-range and long-range allosteric regulations,which are
supported by a recent biochemical study (Snoberger et al. 2018). The conformational
regulation between the lid and base or CP is similarly observed in the absence of
substrates (Zhu et al. 2018).

The lateral RP-CP interface, particularly between the RPN6 PCI domain and the
α2 subunit, also demonstrates prominent fluctuations that interconvert between open
and closed configurations. This interfacial instability ismore prominently observed in
the states corresponding to an openCPgate or in the presence of substrates, indicating
an ancillary role of this interface in the regulation of the conformational changes of
the axial substrate-translocation pathway (Zhu et al. 2018; Dong et al. 2019). Indeed,
the interaction of RPT6with the α2 subunit is regulated by phosphorylation onRPT6,
which stimulates proteasome activity (Satoh et al. 2001; Asai et al. 2009)

Summary of Proteasome Dynamics

In this section, complex dynamics of the proteasome in the act of substrate processing
at the atomic level are compared in detail with structural characterization of protea-
some dynamics at the near-atomic or pseudo-atomic level under various in vitro
biochemical conditions. This retrospective comparison on 29 conformational states
of the proteasome not only reveals the common traits of proteasome dynamics, but
also makes clear several outstanding revelations that were relatively weak or less
obvious in single studies, as summarized in the following bullet points.

• The resting state is least active in its CP in the presence of ATP. Replacing ATP
with other nucleotides or nucleotide analogs, the presence of ubiquitin and UBL
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proteins, or the engagement of substrates generally re-equilibrates the proteasome
conformations toward the open-CP states and stimulates proteasome activation.

• Both the RPN11-OB interface and the CP gate controlling the substrate entrance
are approximately bistable. Their state transitions are desynchronized to coordi-
nate the timing between deubiquitylation and translocation events.

• The lid rocking is generally observed to regulate both the ATPase and CP confor-
mations. It becomes increasingly apparent that the lid interactions with the base
and CP favor two sets of ATPase conformations characterized in two sets of
comparable states [ED1, 5D/5T, C3-b, s6] and [ED2, SD2, 4D, C3-a, s4]. (See
below: sectionOperatingPrinciples of Proteasomal AAA-ATPaseMotor, formore
details).

• Substrate engagement stabilizes the states with the open CP gate, and via its inter-
actions with the proteasome at multiple sites along the substrate-translocation
pathway, coordinates the actions of ubiquitin recognition, deubiquitylation, initi-
ation of unfolding and processive translocation through the ATPase ring and the
CP gate. Such a multi-enzymatic coordination is allosterically assisted by the lid
subcomplex interacting with the base and CP at multiple peripheral sites.

• The dynamic CP gate is regulated both externally and internally via allosteric
effects. This enables the CP gating to be highly responsive to inter-subcomplex
coordination for processive substrate degradation without generating proteolytic
errors.

• The allosteric regulation between RP and CP is bidirectional via both short-range
and long-range pathways. While the interactions of ubiquitin receptors with ubiq-
uitin or UBLs can allosterically impact the CP state, the interaction of the CP
proteolytic active sites with substrates or inhibitors can also influence the RP
state. Once the RP and CP are assembled into a holoenzyme, the conformational
dynamics of all subunits are allosterically, coherently, and globally coupled. No
single subunit acts alone without triggering coherent allosteric effects within the
holoenzyme.

Life Cycle of the Proteasome

Proteasome Biogenesis

Constitutive Proteasome Expression

The cellular abundance of the proteasome is dynamically regulated by a genetic
circuit of negative feedback at the transcriptional level (Motosugi and Murata 2019)
(Fig. 1.11). Specific transcription factors regulating expression of the proteasome
subunits have been identified (Budenholzer et al. 2017; Rousseau and Bertolotti
2018). In Saccharomyces cerevisiae, a transcription factor Rpn4 control coordi-
nated gene expression of proteasome subunits (Wang et al. 2008). Rpn4 is a zinc-
finger protein and binds a conserved sequence motif (5′-GGTGGCAAA-3′) known
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Fig. 1.11 Life cycle of the 26S proteasome. Biosynthesis of proteasome subunits from individual
amino acids is regulated by transcription factors such as NRF1 in mammals, NAC53/NAC78 in
plants and Rpn4 in yeast. With assistance of CP and RP assembly chaperones, the expressed
subunits assemble into the mature form of the 26S proteasome in a coordinated manner. Protea-
somes are localized in either the nucleus or cytosol, where their activities can be regulated by
numerous proteasome-associated proteins and by post-translational modifications. Extrinsic and
intrinsic ubiquitin receptors recognize and deliver polyubiquitylated substrates to the proteasome
for degradation. Damaged proteasomes are degraded in the lysosome or vacuole via autophagy,
which is mediated by signals from the nutrient-responsive ATG1 kinase, subunit ubiquitylation,
and several autophagy receptors, including p62/SQSTM1 in mammals, RPN10 in plants, and Cue5
in yeast
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as proteasome-associated control element (PACE) in the promoter region of genes
expressing proteasomal subunits and assembly chaperones (Mannhaupt et al. 1999;
Shirozu et al. 2015). Rpn4 is rapidly degraded by the proteasome and is thus short-
lived (t1/2 ≈ 2 min). Through such a negative feedback circuit, Rpn4 promotes
proteasome expression whenever the proteasome function is compromised (Xie and
Varshavsky 2001). Loss of RPN4 gene or PACE sequences compromises protea-
some activity and cell viability under various stress conditions such as oxidative
DNA damage (Wang et al. 2008). Rpn4 abundance is also regulated by many stress-
inducible transcription factors, such as Hsf1, Pdr1, Pdr3, and Yap1 (Owsianik et al.
2002; Ma and Liu 2010). Increasing proteasome expression might be a common
mechanism for cells to adapt to diverse challenging conditions (Hahn et al. 2006).

Although mammalian cells lack of any Rpn4 orthologs, several transcription
factors regulating the mammalian proteasome expression have been identified. One
of such transcription factors is nuclear factor erythroid-derived 2-related factor 1
(NFE2L1) also named NRF1 (Radhakrishnan et al. 2010). NRF1 promotes expres-
sion of all genes encoding proteasome subunits and their assembly chaperones in
the presence of proteasomal dysfunction, leading to de novo proteasome synthesis.
In Arabidopsis thaliana, the transcription factors NAM/ATAF1/CUC2 78 (NAC78)
and NAC53 were proposed to play a similar role as Rpn4 and NRF1 in upregulating
proteasome synthesis that help plants survive proteotoxic stress (Gladman et al.
2016).

In contrast to NRF1, several transcription factors specifically regulate the induc-
tion of a portion of proteasome subunits in mammalian cells. Nuclear transcription
factor Y (NF-Y) is a complex consisting of three proteins, NF-YA, NF-YB, and NF-
YC.NF-Y recognizes theCCAATmotif in the promoter regionof certain proteasomal
genes and upregulates cellular proteasome activity. The CCAATmotif is found in the
genes of six CP subunits (α2, α5, α7, β3, β4, and β6), five RP subunits (RPT1, RPT5,
RPT6, RPN10, and RPN11) and one RP assembly chaperone (p28) (Xu et al. 2012).
Other transcription factors, such as the forkhead box protein O4 (FOXO4) and the
signal transducer and activator of transcription 3 (STAT3), exhibit seemingly greater
specificity in the regulation of proteasome subunit expression. FOXO4 specifically
regulates RPN6 expression and maintains the proteasome activity at a higher level
in human embryonic stem cells (Vilchez et al. 2012; Webb and Brunet 2014). In the
JAK/STAT pathway, JAK phosphorylation upon cytokine signaling activates STAT3,
which upregulates PSMB5 (β5 subunit) expression through epidermal growth factor
(EGF) induction (Vangala et al. 2014).

Proteasome abundance is also regulated at the post-transcriptional or translational
level (Rousseau and Bertolotti 2016; Kors et al. 2019; Motosugi and Murata 2019).
In yeast, the mitogen-activated protein kinase 1 (Mpk1) regulates expression of the
proteasome subunits and RP assembly chaperones (RACs) under stress conditions or
in response to rapamycin and tunicamycin. However, mRNA levels are comparable
between wild-type and Mpk1-deficient cells, suggesting that Mpk1-mediated regu-
lation of the proteasome occurs at the translational level. Moreover, the translation
of RPT5 mRNA can be suppressed by haploinsufficiency of ribosomal genes, which
primarily causes Diamond-Blackfan anemia (Khajuria et al. 2018). In hematopoietic



42 Y. Mao

stem and progenitor cells, translation of proteasome mRNA is selectively inhibited
by the storage of ribosomes, thus impeding erythroid lineage commitment.

The growth-controlling kinase mTORC1 (Mammalian or mechanistic target of
rapamycin complex 1) is activated in response to growth factors or increased nutrient
levels. It activates protein translation and lipid synthesis to promote cell growth
and proliferation (Dibble and Manning 2013). The mTORC1 pathway has been
found to control proteasome abundance at multiple levels (Zhang et al. 2014; Zhang
and Manning 2015; Rousseau and Bertolotti 2016; Zhao et al. 2015). The inhibi-
tion of mTORC1 can induce ERK5, the human orthologs of Mpk1, which upreg-
ulates the RACs and proteasome subunits (Rousseau and Bertolotti 2016). Stimu-
lated by growth factor signaling, mTORC1 can activate sterol regulatory element
binding protein (SREBP-1) that regulates expression of lipogenic genes (Ricoult
and Manning 2013). The mTORC1-activated SREBP-1 is related to NRF1 expres-
sion that regulates proteasome expression (Zhang et al. 2014). On the other hand,
mTORC1 also phosphorylates and inactivates ATG proteins required for autophagy
induction, such as ATG1 and ATG13 (Hosokawa et al. 2009; Dibble and Manning
2013). Since the proteasome is destructed by autophagy (Marshall andVierstra 2015;
Marshall et al. 2015; Marshall et al. 2016; Cohen-Kaplan et al. 2016; Waite et al.
2016; Nemec et al. 2017), mTORC1 regulates both the proteasome biosynthesis and
breakdown in response to nutrient conditions.

Immunoproteasome Expression

Proteasomal subtypes are differentially expressed in response to certain cellular
conditions to meet specific functional needs (Motosugi andMurata 2019; Ferrington
and Gregerson 2012). Immune cells constitutively express the immunoproteasomes
at high levels. The immunoproteasome primarily processes antigens for their presen-
tation in the MHC-I pathway by degrading the antigens into short polypeptides.
The transporter associated with antigen processing (TAP) complex, a TAP1-TAP2
heterodimer, then transports the antigen polypeptides to the ER, where the MHC-I
molecules recognize the polypeptides for antigen presentation on the cell surface
(Leone et al. 2013). The three catalytic subunits β1, β2, and β5 are replaced by
subtype subunit β1i, β2i, and β5i, respectively, in the immunoproteasome (Kloetzel
2001). While PSMB10 (β2i) is located outside the MHC locus, PSMB9 (β1i) and
PSMB8 (β5i) resides in the MHC-II region next to the genes encoding TAP1-TAP2.

The expressions of β1i, β2i, and β5i are induced by interferon-γ in response to
oxidative stress or inflammatory stimuli (Aki et al. 1994; Hallermalm et al. 2001;
Hussong et al. 2010; Hisamatsu et al. 1996). Interferon-γ induces protein expression
involved in antigen presentation, including the proteasome activator PA28α/β, and
TAP1/TAP2 (Ma et al. 1997; Realini et al. 1994; Ahn et al. 1995). β1i expression
requires the GC boxes and the transcription factor SP1 (Wright et al. 1995). The
genes encoding β1i and TAP1 share a bidirectional promoter that lacks any TATAbox
and includes several GC boxes, interferon consensus sequence 2 and γ-interferon-
activated sequence sites, which are recognized by the interferon regulatory factor 1
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(IRF1) andSTAT1 (Wright et al. 1995;Chatterjee-Kishore et al. 2000).β1i expression
is induced by IRF1 and STAT1 under interferon-γ stimulation. The nuclear factor-κB
(NF-κB), a family of transcription factors, is required for the tumor necrosis factor-α
(TNF-α) dependent induction (Wright et al. 1995). Theβ2i promoter containsNF-κB,
IRF1 and SP1 consensus sequences that lack the CAAT or TATA boxes (Cruz et al.
1997;Hayashi et al. 1997). The β5i promoter contains anNF-κBconsensus sequence,
a GC-rich region and a TATA box (Zanelli et al. 1993). In neurons, expression of β1i
and β5i is induced by the transcription factor Zif268 (James et al. 2006).

Thymoproteasome Expression

Thymic cortex specifically expresses the thymoproteasome, another proteasome
subtype that plays an important role in the selection of CD8+ T cells (Murata et al.
2007; Murata et al. 2018). In the thymic cortex and medulla, immature thymocytes
are subject to positive and negative selection, respectively. In contrast to the immuno-
proteasomes expressed in medullary thymic epithelial cells (mTECs), the thymopro-
teasomes is assembled from the subtype subunit β5t in replacement of β5 and is
specifically expressed in cortical thymic epithelial cells (cTECs). The PSMB11 gene
encoding β5t is adjacent to PSMB5 encoding β5. The gene product is encoded by a
single exon in both the human andmouse genomes. The forkhead transcription factor
FOXN1 promotes both TEC lineage specification and β5t expression (Romano et al.
2013; Uddin et al. 2017). The β5t promoter contains the conserved FOXN1-binding
sequence 5′-ACGC-3′, in which a single mutation impairs CD8+ T cell production
and β5t expression. Paradoxically, because FOXN1 is present in mTECs that do not
express β5t at any detectable level, FOXN1 alone does not sufficiently regulate β5t
expression, suggesting that other unknown cellular factors might contribute to the
induction of β5t expression.

Proteasome Assembly

CP Assembly Chaperones

The assembly of the eukaryotic CP is more complex than their prokaryotic coun-
terparts and requires a set of extrinsic and intrinsic chaperones (Table 1.1) (Murata
et al. 2009; Tanaka 2009; Rousseau and Bertolotti 2018; Budenholzer et al. 2017).
The complex process of CP assembly can be understood as three consecutive steps in
eukaryotes (Fig. 1.12a) (Murata et al. 2009; Tomko andHochstrasser 2013; Rousseau
and Bertolotti 2018): (1) α-ring formation, (2) β-ring formation and (3) half-CP
dimerization and proteasome maturation. These intermediate assembling steps are
assisted by five proteasome chaperones named proteasome assembling chaperone-
1 (PAC1)-PAC4 and proteasome maturation protein (POMP) in human (Witt et al.
2000; Murata et al. 2009). The yeast orthologs of PAC1-PAC4 and POMP are known
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Fig. 1.12 Models of the RP and CP assembly in eukaryotic cells. a Assembly pathway of the
constitutive CP. The α-ring is assembled with the help of two heterodimers of chaperones: PAC1-
PAC2 and PAC3-PAC4. β2 and POMP then associate with the α-ring. The incorporation of β3 and β4
coincides with the dissociation of PAC3-PAC4, followed by sequential incorporation of β5, β6, β1
and β7. Dimerization of two half-CP forms the preholoproteasome. In the last step, the propeptides
of the β-ring is auto-cleaved to activate the CP; POMP and PAC1-PAC2 are then degraded to form
the mature CP. b Hypothetical assembly pathway of the RP. The base assembly is assisted by four
RACs: S5b, PAAF1, p27 and p28. The lid can be assembled via a hierarchical pathway without any
chaperones. It starts with the formation of two subcomplexes Module 1 and LP3. They associate to
form LP2. The final step occurs with RPN12 joining LP2 to form the mature lid. The lid then binds
the free base. Note that in yeast the base may first assemble with the CP before its association with
the lid
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as proteasome biogenesis-associated 1 (Pba1)-Pba4 and underpinning maturation of
proteasome 1 (Ump1), respectively.

Four CP assembly chaperones guide the assembly procedure of the α-ring. They
form two heterodimers, PAC1-PAC2 (Hirano et al. 2005) and PAC3-PAC4 in human
(Pba1-Pba2 and Pba3-Pba4 in yeast) (Hirano et al. 2006; Le Tallec et al. 2007).
The PAC1-PAC2 heterodimer promotes the assembly of the α-ring intermediate and
prevents premature binding of the RP to the α-ring, as well as aberrant dimerization
of α-rings (Hirano et al. 2005; Wani et al. 2015; Stadtmueller et al. 2012; Kusmier-
czyk and Hochstrasser 2008). Knockdown of PAC1 or PAC2 expression decreases
the amount of α-rings and results in accumulation of off-pathway products of aber-
rant α-ring dimers. PAC1-PAC2 binds to proteasome precursors until the complete
formation of the CP. PAC1-PAC2 is degraded by the newly assembled CP and has a
half-time of about half an hour (t1/2 ≈ 30min),which is consistentwith thematuration
time of the CP.

In yeast, the Pba1-Pba2 heterodimer ensures the appropriate incorporation of
the α5 and α6 subunits, whereas the Pba3-Pba4 heterodimer interacts with the α5
subunit of the CP intermediate to ensure the appropriate assembly. Crystal structure
of the Pba3-Pba4-α5 complex exhibits pronounced similarity to the structure of the
PAC3 homodimer (Yashiroda et al. 2008). Notably, the structures of Pba3 and Pba4
are mostly homologous to the CP subunits. Structural analysis of the Pba3-Pba4-
α5 complex suggests that Pba3-Pba4 binds the facet of the α-ring opposite that
contacted by Pba1-Pba2, thus sterically clashing with the incoming β4 subunit. This
explains why Pba3-Pba4 has to dissociate as β-subunits are incorporated. Deletion
of the Pba3 or Pba4 gene causes the accumulation of proteasome intermediates and
produces diverse aberrant CP, including those lack of α4 or harboring a second
copy of α4 instead of α3 (Velichutina et al. 2004; Kusmierczyk and Hochstrasser
2008; Padmanabhan et al. 2016). Thus, Pba3-Pba4 promotes and guides the proper
assembly of the α-subunits, especially α3 and α4.

The α-ring serves as a template for the assembly of the β-ring, which begins with
the sequential incorporation of β2, β3 and β4 subunits. POMP/Ump1 is incorporated
alongwith the first β-subunits, whereas the PAC3-PAC4/Pba3-Pba4 dimer is released
from the α-ring upon β3 integration (Hirano et al. 2006; Hirano et al. 2008; Li et al.
2007b). The resulting intermediate, known as the 13S complex, then progressively
recruits β5, β6, β1 and β7 to form a half CP assembly, also named the 15S complex.
Half-CP dimerization is immediately initiated after β7 incorporation (Li et al. 2016b).

The final stage of joining two half CP assemblies together is regulated by
POMP/Ump1. POMP prevents premature dimerization of half CP by hindering their
dimerization until all β-subunits are incorporated properly (Ramos et al. 1998). After
half CP dimerization, the N-terminal propeptides from the β1, β2, β5, β6 and β7
subunits are cleaved in the nascent CP for maturation. Human POMP and PAC1-
PAC2 are then degraded by the newly assembled proteasome (Hirano et al. 2006),
whereas yeast Pba1-Pba2 is recycled for assembly of newly synthesized CP subunits
in yeast (Ramos et al. 1998; Kock et al. 2015). Although there is lack of structural
information for POMP/Ump1 interactions, crystal structures of the Rhodococcus
proteasome mutants with its intact propeptides have offered insights into the final
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step of CP maturation (Kwon et al. 2004; Witt et al. 2006). These structures show
that the propeptide contacts two adjacentα-subunits, thereby promotingCP assembly
and maturation.

RP Assembly Chaperones (RACs)

The lid and base subcomplexes of the RP can assemble separately without and with
the RACs, respectively (Fig. 1.12) (Isono et al. 2007). Recombinant lid subunits
can self-assemble into a correct subcomplex in the absence of the CP or the base
subcomplex in vitro (Lander et al. 2012; Tomko and Hochstrasser 2014). The lid
assembly in yeast is preceded by the formation of two intermediate complexes,
one named LP3 containing Rpn3, Rpn7 and Sem1, and the other named Module 1
composed of Rpn5, Rpn6, Rpn8, Rpn9 and Rpn11 (Tomko and Hochstrasser 2014;
Fukunaga et al. 2010). The intermediate subassemblies LP3 and Module 1 associate
to form the subassembly LP2 through the formation of the C-terminal helical bundle,
which is finalized by the incorporation of the lid subunit RPN12 (Estrin et al. 2013;
Tomko et al. 2015). It remains to be clarified if there are unknown RACs assisting
the lid assembly in vivo. The pathway of lid assembly in mammalian cells is not well
understood.

Assembly of the base subcomplex is regulated by four RACs in mammalian cells
(Table 1.1): S5b (Roelofs et al. 2009; Kaneko et al. 2009), p28 (gankyrin) (Krzywda
et al. 2004; Nakamura et al. 2007a), PAAF1 (proteasomal ATPase-associated factor
1) and p27 (Park et al. 2010). Their yeast orthologs areHsm3,Nas6, Rpn14 andNas2,
respectively. The base assembly is centered around the formation of the heterohex-
americ ring of AAA-ATPases (RPT1-RPT6). Each RP assembly chaperone binds
the C-terminal domain of a distinct RPT subunit in pairs of S5b-RPT1, p28-RPT3
and p27-RPT5, forming three intermediate complexes S5b-RPT1-RPT2-RPN1, p28-
RPT3-RPT6-PAAF1 and p27-RPT5-RPT4, respectively (Kaneko et al. 2009; Park
et al. 2009; Roelofs et al. 2009; Thompson et al. 2009; Tomko andHochstrasser 2013;
Saeki et al. 2009b). In yeast, an intermediate in base assembly named BP1 has been
identified,which contains threeRpts,Rpn1, andHsm3 (Park et al. 2009).Despite their
functional similarity, the four baseRACs adopt different structures. Crystal structures
reveal that S5b/Hsm3 comprises HEAT repeats (Takagi et al. 2012), that p28/Nas6
comprises ankyrin repeats (Nakamura et al. 2007a), and that PAAF1/Rpn14 forms a
WD40 propeller (Kim et al. 2010). The p27/Nas2 sequence predicts a PDZ domain.
Modeling of the crystal structure of yeast Hsm3-Rpt1 and Nas6-Rpt3 complexes
(Nakamura et al. 2007a, 2007b; Takagi et al. 2012) into the proteasomal ATPase ring
suggests that Hsm3 and Nas6 physically occlude the formation of proper RP-CP
contacts.
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Mechanism of RP-CP Association

There remain two possible assembly pathways for the proteasome holoenzyme.
The first pathway is that the CP templates the assembly of the base and the CP-
base assembly intermediate further templates the lid assembly for the completion of
the 26S assembly. This pathway might dominate in yeast cells, given evidence of
observing the base-CP assembly intermediates (Park et al. 2009; Park et al. 2013).
The second pathway is that the lid and base assembled into a free RP intermediate,
which then assembles with the CP into the holoenzyme. This pathway might domi-
nate in mammalian cells, because the assembly intermediates of the lid with a partial
base have been observed in mammalian cells and there is lack of evidence on the
base-CP subassemblies in these studies (Lu et al. 2017b; Thompson et al. 2009).
Whether the two distinct assembly pathways can coexist and work in parallel in the
same system will require further investigations.

Cryo-EM structures of an endogenously purified human p28-RP complex provide
important insights into themechanism of p28/Nas6 in assisting the last step of protea-
some assembly and maturation prior to the RP-CP association (Lu et al. 2017b).
Surprisingly, the isolated endogenous p28-RP complex samples a very wide confor-
mational landscape. Pronounced conformational dynamics of the complex have been
captured by cryo-EM in seven intermediate states designated TA1 to TA7, in which
the RPT subunits, RPN1 and p28 were reconstructed to subnanometer resolutions
whereas the remaining components of RP were solved at 4.6 Å resolution (Lu et al.
2017b). The AAA domains of RPT subunits form a lock-washer-like shape with an
opening between RPT2 and RPT6 in all but states TA6 and TA7. The opening width
is variant in each state, revealing a continuum of conformational changes during
an open-to-closed transition of the AAA ring (Fig. 1.12). Remarkably, p28 strongly
clashes with the α2 subunit in all conformational states except TA7 when the p28-
RP is docked into the atomic model of the 26S proteasome. This analysis reveals a
functional role of p28 in guiding the CP to select a specific conformational state TA7

of the RP to facilitate the last step of proteasome assembly by increasing interfacial
complementarity while introducing no significant occlusion. This elegant mecha-
nism is supported by several functional and genetic studies of yeast Nas6 in the RP
assembly (Li et al. 2017; Nemec et al. 2019; Park et al. 2013).

A marked structural feature in the free p28-RP lies in the OB ring being blocked
by RPN11 that appears to be even tighter than that in states ED and SD of the mature
proteasome (Lu et al. 2017b). This quaternary arrangement prevents substrates from
being prematurely recruited by theAAAunfoldase. Comparison of the p28-RP struc-
ture with that of the mature proteasome in the resting state reveals marked conforma-
tional changes of the lid upon RP-CP association (Chen et al. 2016a; Lu et al. 2017b).
The lid is rotated ~40° around the heptameric axis of the CP. As a consequence, the
RPN7 PCI domain is translated ~15 Å towards the CP with repositioning of RPT3
and RPT6, whereas the N-terminal helical repeat region of the RPN6 PCI domain
undergoes a prominent rotation of 40° to allow the association of RPN6 with the α2
subunit.
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Structural and functional studies have unraveled a conformation-selective,
enthalpy-driven mechanism for p28 release upon RP-CP association (Fig. 1.13)
(Lu et al. 2017b; Li et al. 2017; Nemec et al. 2019). The presence of p28 facil-
itates the selection of one p28-RP conformation (TA7) by the CP to form a first-
encounter complex of p28-RP-CP,whereas other p28-RP conformations prohibit RP-
CP association. The first-encounter complex p28-RP-CP is transient and undergoes
pronounced remodeling driven by enthalpic gain at inter-subunit and inter-domain
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Fig. 1.13 The mechanism of RP-CP assembly. a Two possible pathways of RP-CP assembly. b A
proposedmodel of the p28 chaperone-guided conformational selection for RP recognition by the CP
for proteasome holoenzyme assembly (Lu et al. 2017b). The schematic illustrates the hypothetical
CP-independent assembly pathway of the RP prior to the 26S formation. However, this hypothesis
is subject to further tests and does not exclude alternative RP assembly pathways (Park et al. 2009;
Roelofs et al. 2009)
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interfaces. The gap closure between RPT3 and RPT4, which stabilized the ATPase
hexamer, and the stronger interaction of the ATPases with the α-ring all contribute to
the minimization of the free energy of RP-CP association, which allosterically drives
p28 eviction from RPT3 (Lu et al. 2017b). Specifically, RPT3 is translated ~15 Å
in order to tighten its association with RPT4, to dock its C-terminal HbYX motif
into the α-pocket, and to reposition its p28-binding site toward the α1-α2 surface
for p28 ejection. Consistent with this picture, a yeast proteasome mutant rpt3-Δ1,
in which the C-terminal residue from Rpt3 was deleted, was observed to be unable
to release Nas6 (Park et al. 2009), because the mutated Rpt3 loses the affinity of
its C-terminal tail with the α-pocket and is unable to complete the Rpt3 remodeling
that ejects Nas6. Although there is no structural information regarding other RACs
in complex with intermediate base assembly, it is conceivable that this intriguing
conformation-selective, enthalpy-driven model might similarly underlie the action
mechanism of other RACs.

Cellular Proteasome Regulation

Localization of Proteasome

The cellular proteasome is not only highly dynamic in structure but also in compo-
sition and location (Marshall and Vierstra 2019). It could dissociate into free RP
and CP subcomplexes and shuttle between the nucleus and cytosol under different
physiological conditions during growth, development or proteotoxic stress. Using
the fluorescent microscopy, it has been visualized in mammals, plants and yeast that
the free RP and CP diffuse throughout both the compartments of nucleus and cytosol
(Reits et al. 1997; Enenkel et al. 1998; Russell et al. 1999; Brooks et al. 2000; Pack
et al. 2014; Marshall et al. 2015; Gan et al. 2019). In different compartments, the
measured proteasome activities exhibit a large variation (Gardner et al. 2005; Chen
and Madura 2014; Dang et al. 2016). The local concentration of the 26S proteasome
is 830–980 nM in the nucleus of actively dividing yeast cells, but only 140–200 nM in
the cytoplasm measured by fluorescence correlation spectroscopy (Pack et al. 2014).
Similar results were observed in mammalian neuronal cells (Asano et al. 2015).

Transport of the proteasome between the nucleus and the cytosol could be chal-
lenging through the nuclear pores (Beck and Hurt 2017). It was suggested that the
nuclear proteasome may dissociate into free CP and RP subcomplexes to enable
their exportation separately (Nemec et al. 2017). In proliferating yeast, CP and RP
assembly intermediates, each of which carries certain nuclear localization signals
(NLS), are imported into the nucleus (Tanaka et al. 1990; Nederlof et al. 1995).
An importin-α/β heterodimer comprising Srp1/Kap60 and Kap95, which are two
members of the β-karyopherin family, can recognize the NLS carried by a small
portion of proteasome subunits and facilitate the transportation (Enenkel et al. 1995).
It has been suggested that the CP, lid and base subcomplexes are transported to the
nucleus separately by the importin-α/β and the final steps of proteasome assembly
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occur in the nucleus (Lehmann et al. 2002; Wendler et al. 2004; Isono et al. 2007).
The CP or its assembly intermediates might exist in either import-incompetent or
import-competent states, depending on solvent-accessibility of the NLS motifs in
certainα-subunits (Tanaka et al. 1990). In support of this hypothesis, cryo-EMstudies
have shown that NLS sequences are exposed on CP assembly intermediates (Kock
et al. 2015; Wani et al. 2015), but are concealed in the mature proteasomes. Import
of the base subcomplex into the nucleus was suggested to be mediated by an NLS
in RPN2 or RPT2 (Wendler et al. 2004; Isono et al. 2007; Savulescu et al. 2011;
Weberruss et al. 2013).

The proteasomes are exported from the nucleus and reversibly sequestered into
cytoplasmic proteasome storage granules (PSGs) in quiescent cells (Bingol and
Schuman 2006; Laporte et al. 2008; Yedidi et al. 2016; Gu et al. 2017; Marshall
and Vierstra 2018b). Supply of a fresh carbon source reverses this process by stimu-
lating rapid import of the free RP and CP back into the nucleus. Blm10 was found to
facilitate nuclear import of the mature CP dissociated from PSGs, when cells restart
growth from quiescence (Weberruss et al. 2013). In mouse embryonic fibroblasts, the
proteasomes of over 3 days old were also observed to be localized in the cytosolic
compartment (Tomita et al. 2019). In the green alga Chlamydomonas reinhardtii,
cryo-ET imaging has found that the proteasomes are enriched at the inner nuclear
membranewith a local concentrationof over 8μMaround thenuclear pore complexes
(Enenkel et al. 1998; Takeda and Yanagida 2005; Albert et al. 2017). Curiously, after
neuronal stimulation, a plasma membrane-associated CP was found to specifically
degrade ribosome-associated nascent polypeptides associated with the ribosome in
a ubiquitin-independent fashion (Ramachandran andMargolis 2017; Ramachandran
et al. 2018).

Several studies found that the proteasome can also fulfill nuclear transportation
without disassembly (Reits et al. 1997; Chen et al. 2011; Savulescu et al. 2011; Pack
et al. 2014), as the size of the nuclear pore complex is large enough to allow free
transportation of macromolecular complexes with a diameter of up to 39 nm (Pante
andKann 2002; Burcoglu et al. 2015). To examine this conception, a 26S proteasome
is genetically modified by translationally fusing the α4 subunit to RPT1 or RPT2 to
stabilizeRP-CP association,which did not result in detectable structural defects in the
reengineered proteasome. Such a stabilized variant of the 26S proteasome appears to
be normally distributed in the nucleus (Laporte et al. 2008; Pack et al. 2014). Because
protein synthesis is paused during quiescence, CP intermediates would be absent for
nuclear import. This suggests a transport pathway in which the older, stabilized 26S
proteasomes are directly imported to the nuclear (Pack et al. 2014).

Post-translational Modifications of Proteasome

Post-translational modifications regulate proteasome assembly, abundance, local-
ization and activity. In total, there are about 350 post-translational modifications
detected in the 26S proteasome. These can be categorized into 11 different types
of modifications: phosphorylation, N-acetylation, N-methylation, N-myristoylation,
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poly(ADP-ribosyl)ation, O-glycosylation, oxidation, sumoylation, ubiquitylation,
succinylation and proteolytic truncation (Kikuchi et al. 2010; Cui et al. 2014; Hirano
et al. 2016; Zong et al. 2014). These modifications provide complex layers of func-
tional regulation that endows the proteasome with exceptional adaptability to many
conditions.

Catalyzed by proteasome-associated phosphatases or kinases, phosphorylation
is a more extensively studied post-translational modification in the proteasome,
and affects many proteasome subunits (Iwafune et al. 2002; Lu et al. 2008; Kikuchi
et al. 2010; VerPlank and Goldberg 2017; Liu et al. 2020; VerPlank et al. 2019). The
proteasome disassembles into the free CP and RP after treatment with alkaline phos-
phatase (Satoh et al. 2001). The protein kinase A (PKA) catalyzes phosphorylation
of Ser120 in RPT6, which modulates the association of RPT6 and the α2 subunit and
can be dephosphorylated by the protein phosphatase 1γ (PP1γ) (Satoh et al. 2001;
Asai et al. 2009). Phosphorylation of RPN6 at Ser14 by PKA stimulates multiple
proteasomal activities, including peptide hydrolysis by the CP and ATP hydrolysis
by the RP, leading to an overall enhanced degradation rate (Lokireddy et al. 2015;
VerPlank et al. 2019). The phosphatase UBLCP1 dephosphorylates Ser361 of RPN1
by binding its UBL domain to RPN1, which controls nuclear proteasome assembly
bymodifying theRP-CP interaction (Guo et al. 2011; Sun et al. 2017; Liu et al. 2020).
Similarly, phosphorylation of the α7 subunit regulates the association of Ecm29 with
the proteasome (Wani et al. 2016).

Ubiquitylation of the proteasome subunits themselves also provides versatileways
to regulate the proteasome function. For instances, in Saccharomyces cerevisiae
and Arabidopsis, extensive ubiquitylation of the inactive proteasome targets itself
for autophagic clearance (Marshall et al. 2015; Cohen-Kaplan et al. 2016). Ubiq-
uitylation of RPT5 seems to regulate an intermediate checkpoint during the base
assembly (Fu et al. 2018). Ubiquitylation of the ubiquitin receptors RPN10 and
RPN13 downregulates their substrate-binding affinity or orchestrates their associ-
ation with UBL-UBA receptors (Isasa et al. 2010; Lipinszki et al. 2012; Jacobson
et al. 2014; Zuin et al. 2015).

Although numerous studies have started revealing their potential importance in
functional regulation of the proteasome, the exact function and mechanism remain
unknown for the majority of these post-translational modifications. Besides phos-
phorylation and ubiquitylation of the proteasome that have been subject to more
studies than others as mentioned above, a few additional examples of these efforts
are briefly summarized in the following. N-myristoylation of RPT2 can tether the
proteasome to membrane surfaces (Shibahara et al. 2002; Gomes et al. 2006; Kimura
et al. 2012; Kimura et al. 2016). Attachment of O-linked N-acetylgalactosamine to
RPT2 inhibits the activity of the AAA-ATPase motor and reduces the overall protea-
some activity (Zhang et al. 2003). In yeast, methylation of the Rpt1 N-terminus is
linked to proteotoxic stress induced by the amino acid analog canavanine or hydrogen
peroxide (Kimura et al. 2013). S-glutathionylation of the α5 subunit appears to regu-
late the yeast CP gating (Demasi et al. 2003; Silva et al. 2012). The NatB complex
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catalyzes N-acetylation of the proteasome subunits that regulates proteasome local-
ization in assembling PSGs and cell fitness during aging (van Deventer et al. 2015;
Marshall and Vierstra 2018b).

Proteasome-Associated Proteins

Proteasome functions are also regulated by numerous cellular factors that are tran-
siently or reversibly associated with the 26S proteasome (Verma et al. 2000; Wang
et al. 2007; Guerrero et al. 2006). These proteins are referred to as proteasome-
associated proteins and can be categorized into two groups (Tanaka 2009; Finley
2009). The first group contains proteins related to the ubiquitylation pathway. The
extrinsic DUBs USP14 and UCH37 can be recruited to the proteasome by associa-
tion with RPN1 and RPN13, respectively (Borodovsky et al. 2001; Lee et al. 2016;
Verma et al. 2000; Hamazaki et al. 2006; Qiu et al. 2006; Yao et al. 2006). The
extrinsic ubiquitin receptors RAD23, DSK2, DDI1 may be considered to belong
to this group (Elsasser and Finley 2005; Elsasser et al. 2004; Zhang et al. 2009a).
Many E3 ubiquitin ligases, such as UBE3C/Hul5, parkin, and UBE3A/E6AP, are
transiently associated with the proteasome (Crosas et al. 2006; Leggett et al. 2002;
Sakata et al. 2003; Martinez-Noel et al. 2012; Kuhnle et al. 2018). Other E3s such as
Ur1, anaphase-promoting complex/cyclosome (APC/C), SCFCDC4, UFD4 and some
E2 enzymes have also been suggested to transiently associated with the proteasome
(Demartino and Gillette 2007; Xie and Varshavsky 2000, 2002).

The second group includes other cellular factors that regulate proteasome func-
tions in a non-essential, auxiliary fashion. For example, Ecm29 (Extracellular
mutants 29) is a 205-kDa HEAT-repeat-containing protein that recognize a RP-
CP intermediate (Leggett et al. 2002). Another example is a proline-rich protein
called PI31 (Proteasomal Inhibitor of 31kD) that suppresses proteasome activities
by preventing the association of RP and CP and regulates proteasome transport in
axons (Zaiss et al. 1999; McCutchen-Maloney et al. 2000; Zaiss et al. 2002; Bader
et al. 2011; Li et al. 2014; Minis el al. 2019). In yeast, Ecm29 appears to suppress
the ATPase activity of the proteasome (Lee et al. 2011; De La Mota-Peynado et al.
2013). Ecm29 binds the RP-CP intermediate when the CP assembly is prematurely
paused due to lack of specific β-subunits (Lehmann et al. 2010). The RP recruits
Ecm29 in response to oxidative stress, which induces proteasome disassembly (Park
et al. 2011; Wang et al. 2010). It was suggested that the free CP but not the 26S
proteasome mediates degradation of oxidized proteins (Davies 2001; Breusing and
Grune 2008). Ecm29-regulated disassembly of the proteasome increases the abun-
dance of the free CP and allows cells to adapt to the oxidative stress (Haratake et al.
2016). In addition, by associating with various molecular motors and endosomal
components, mammalian ECM29 promotes localization of the proteasome at the
ER, the centrosome and likely other cellular locations (Gorbea et al. 2004; Gorbea
et al. 2010).
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Proteasome Destruction

Autophagic Control of Proteasome

Proteasomes are stable complexes exhibiting a half-life of 16 h in the embryonic
fibroblasts of mouse and more than 2 weeks in the liver cells of rat (Tanaka and
Ichihara 1989; Pack et al. 2014; Tomita et al. 2019). Their degradation could be also
rapid under specific conditions. Three pathways have been discovered to control
proteasome turnover (Marshall and Vierstra 2019; Karmon and Ben Aroya 2019).
The first pathway is by caspase-catalyzed cleavage.Upon apoptosis induction, RPN2,
RPN10 and RPT5 are cleaved by the caspase-3, which impairs proteasome activity
in human cells (Sun et al. 2004). In Drosophila melanogaster, the caspase-3 cleaves
the α2, α4, β4, and RPT1 subunits (Adrain et al. 2004). The second pathway is by the
breakdown of dysfunctional proteasome subunits by theUPS itself to avoid their mis-
assembly into the proteasome holoenzyme. It was shown that yeast Hsp42 coalesces
the dysfunctional subunits into cytoplasmic condensates that can be removed by the
proteasome itself (Peters et al. 2015; Nahar et al. 2019). The third pathway is by
proteaphagy that relies on the autophagy system, which degrades large heteroge-
neous cytoplasmic constituents, such as organelles, protein aggregates and invasive
pathogens (Marshall et al. 2015; Marshall et al. 2016; Marshall and Vierstra 2015).

There are two forms of proteaphagy, one that is induced by nutrient starvation
and the other that clears inactive proteasomes through ubiquitylation of dysfunc-
tional proteasome itself (Marshall and Vierstra 2015; Marshall et al. 2015; Marshall
et al. 2016; Cohen-Kaplan et al. 2016; Waite et al. 2016; Nemec et al. 2017).
During the autophagy process, cytoplasmic materials are delivered to the lysosome
in mammals or the vacuole in plants and yeast for breakdown by resident hydrolases
(Reggiori andKlionsky 2013;Gatica et al. 2018;Marshall andVierstra 2018a; Levine
and Kroemer 2019). During the macroautophagy process, a cup-shaped, isolated
membrane named the phagophore is formed de novo and suspended in the cytoplasm.
An autophagosome is eventually formed upon the closure of elongated phagophore
into a double-layer membrane sphere. The outer membrane of the autophagosome
then fuses with the lysosome or vacuole to form an autophagic body. By breaking
the inner membrane, the cargos inside the autophagosome are exposed to the entire
autophagic body and broken down by lysosomal or vacuolar hydrolases at acidic pH
optima, recycling constituents of amino acids, nucleotides, carbohydrates and fatty
acids for new biosynthesis (Parzych and Klionsky 2019).

The autophagy is carried out by a series of autophagy-related (ATG) proteins.
Upon stimulation by upstream signals from nutrient-responsive kinases, such
as Tor1/2 and Snf1, the autophagy is initiated by the serine/threonine kinase
complex ATG1. Membrane delivery required by the autophagy is controlled by
the transmembrane protein ATG9. Autophagosome nucleation is mediated by the
phosphatidylinositol-3-phosphate (PI3P) signal that is generated by the class III
phosphatidylinositol-3-kinase (PI3K) complex.Membrane extension is controlled by
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the ATG2-ATG18 complex at the site of PI3P labeling. Cargo recruitment is medi-
ated by the ubiquitin-like protein ATG8 (MAP1LC3 or GABARAP in mammals)
and its conjugation enzymes in a way highly analogous to ubiquitylation (Ohsumi
2001; Marshall and Vierstra 2018a; Levine and Kroemer 2019). Specifically, ATG8
is activated by the E1 enzyme ATG7, transferred to the E2 enzyme ATG3, and conju-
gated via an ether linkage to the lipid phosphatidylethanolamine (PE) by a hexameric
E3 ligase complex ATG5-ATG12-ATG16. Membrane-bound ATG8 interacts via an
ATG8-interacting motif (AIM, also named an LC3-interaction region, LIR) with
autophagy adaptors or receptors that recruit the vesicular transport machinery or
specific cargo (Rogov et al. 2014; Farre and Subramani 2016; Gatica et al. 2018;
Marshall and Vierstra 2018a; Marshall et al. 2019; Noda et al. 2008; Noda et al.
2010; Klionsky and Schulman 2014; Maqbool et al. 2016; Rogov et al. 2017).

Autophagic Clearance of Inactive Proteasome

In plants and yeast, a proteaphagic pathway independent of ATG1 can be stim-
ulated by genetic mutations that impair proteasome assembly, by proteasome
inhibitors, such as Bortezomib and MG132, and by pathogenic effectors, such as
HopM1 from Pseudomonas syringae (Marshall et al. 2015; Marshall et al. 2016;
Ustun et al. 2018; Nemec et al. 2017). Proteasome inhibition stimulates ubiquity-
lation of the proteasome itself and causes its accumulation (Book et al. 2010; Kim
et al. 2013; Marshall et al. 2015; Marshall et al. 2016). It is unclear which and how
proteasome subunits are ubiquitylated. The ubiquitin receptors in the autophagy
system then recognize and deliver the ubiquitylated inactive proteasomes to ATG8.
In Arabidopsis, RPN10 serves as the autophagy receptor, which uses two distinct
UIMs to deliver proteasomes to the autophagosome. One UIM recognizes the ubiq-
uitylated proteasome, while the other UIM recognizes ATG8 in its UIM docking site
(UDS) (Marshall et al. 2015;Marshall et al. 2019). The yeast Rpn10 lacks the second
UIM forAtg8 binding and has no detectable activity in proteaphagy. Instead, the yeast
receptor Cue5 uses a CUE domain to recognize the ubiquitylated proteasome and an
AIM domain to recognize Atg8 (Marshall et al. 2016; Lu et al. 2014).

In yeast, aggregation of the 26S proteasome into a superstructure named
peri-vacuolar insoluble protein deposit (IPOD) often precedes the ubiquitylation-
dependent proteaphagy (Kaganovich et al. 2008; Marshall et al. 2016). The Hsp42
chaperonemediates the formationof IPODbycoalescing aggregatedproteins (Specht
et al. 2011; Malinovska et al. 2012; Miller et al. 2015). The IPODs are structurally
distinct from PSGs (Marshall and Vierstra 2018b; Peters et al. 2016). They can be
differentiated based on the co-localized proteins, such as the prion protein Rnq1 in
IPODs or Blm10 in PSGs.

The RP-CP association has been observed to be allosterically stabilized through
small-molecule inhibitor engagement at the proteolytic active sites in the CP, which
appears to induce autophagic degradation of both CP and RP (Kleijnen et al. 2007;
Haselbach et al. 2017). By contrast, mutations that compromise the integrity of
proteasome assembly induce clearance of the affected CP or RP separately (Marshall
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et al. 2016). Thus, the proteaphagy can be carried out for both the proteasome holoen-
zyme and for the free CP or RP separately. How inhibitor-induced proteaphagy
discriminates between functional and dysfunctional proteasomes is very likely linked
to the conformational landscape of the proteasome regulated by inhibitor interac-
tions (Haselbach et al. 2017). It is possible that the inhibitor-bound proteasome is
strictly stabilized in the conformation of the resting state (SA) that is better recognized
by the ubiquitylation machinery and Hsp42, which directs their accumulation into
IPODs, whereas the functional proteasome samples a significantly more expanded
energy landscape that can effectively evade proteaphagy machinery (Dong et al.
2019).

Mechanism of Substrate Selection and Ubiquitin Recognition

Degradation Signals

Most proteins targeted for proteasomal degradation are recognized through ubiq-
uitin signals (Komander and Rape 2012), although ubiquitylation is also used for
signal transduction in other cellular processes (Kulathu and Komander 2012; Yau
and Rape 2016). Another essential requirement for efficient substrate degradation
is an unstructured initiation region in the substrate (Prakash et al. 2004; Takeuchi
et al. 2007; Zhao et al. 2010). Localization of a protein with such an initiation region
to the proteasome could lead to its degradation even in the absence of ubiquityla-
tion (Janse et al. 2004; Erales and Coffino 2014; Murakami et al. 1992). Lack of
an effective unfolded initiation site protects a protein from proteasomal degrada-
tion (Fishbain et al. 2011; Heinen et al. 2011; Elsasser and Finley 2005). Variations
in the length and composition of the unstructured segments affect protein half-life
presumably due to the changes of binding affinity with the initial substrate-binding
sites in the proteasome (Fishbain et al. 2015; van der Lee et al. 2014). The require-
ment of an unstructured initiation segment of a substrate has been visualized in the
cryo-EM structure of the proteasome in state EB, whereas the initial ubiquitin recog-
nition steps are observed in the structures of state EA1 and EA2 (Dong et al. 2019).
Although the entire ubiquitin chains have not been visualized in the proteasome,
these structural snapshots suggest an intriguing model for consecutive steps in the
coordinated ubiquitin recognition and the engagement of the unfolded initiation site
with the proteasome, which appears to be also coordinated with the catalytic step of
deubiquitylation regulated by the ATP hydrolytic cycles.

Ubiquitin Code

Polyubiquitin chains are the predominant degradation signals in vivo (Fig. 1.14)
(Komander and Rape 2012). The compactness and flexibility of the polyubiquitin
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Fig. 1.14 The ubiquitin code and initiation region of substrates. a Structures of diubiquitin chains
with different linkages. The diubiquitin chains are linked through their N and C-termini (Met1)
(PDB ID: 3WXE) (Sato et al. 2015), Lys6 (PDB ID: 3ZLZ) (Hospenthal et al. 2013), Lys11 (PDB
ID: 2MBQ) (Castaneda et al. 2013), Lys29 (PDB ID: 4S22) (Kristariyanto et al. 2015a), Lys33 (PDB
ID: 4XYZ) (Kristariyanto et al. 2015b), Lys48 (PDB ID: 1AAR) (Cook et al. 1992). b Structures
of tetraubiquitin chains with two different linkages. The PDB IDs for the Lys48- and Lys63-linked
tetraubiquitin chains are 2O6V and 3HM3, respectively (Eddins et al. 2007; Datta et al. 2009). c The
initiation signal recognized by the AAA-ATPase channels. The ATPase structure in the substrate-
bound proteasome in state EB (PDB ID: 6MSE) is shown from the perspective of side view (left)
and top view (middle) (Dong et al. 2019). The right insert shows the close-up view of the substrate
interaction with the pore-1 loops, with the aromatic residues in the pore loop highlighted by the
transparent sphere representations. The putative location of the substrate sidechains intercalating
with these pore-loop aromatic sidechains are marked by dashed red boxes
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chains are dependent on the lysine-linkage type and serve as a “ubiquitin code” to
control selectivity and specificity of substrate targeting. Ubiquitin-ubiquitin adducts
have been observed to form via all possible Lys residues (Lys6, Lys11, Lys27, Lys29,
Lys33, Lys48 and Lys63) as well as the N-terminal Met1 in cells by mass spectrom-
etry. The ubiquitin chains can be either formed by homogeneous linkage types or
by heterogeneous ones leading to diverse chain topologies including branches. The
most commonly detected linkages are through Lys48, followed by Lys11 and Lys63
in yeast (Xu et al. 2009) and Lys63, Lys29, and Lys11 in human (Dammer et al.
2011). The type of chain linkage is determined by the E2 enzyme that works with
the E3 ubiquitin ligases or by the class of E3 enzymes that form covalent ubiquitin
intermediates (i.e., the HECT and ring-between-ring E3s). Different E2s can work
with the same E3 ligase to construct polyubiquitin chains of various linkages and
lengths at distinct locations on the same substrate (Ye and Rape 2009). In parallel
to their polymerization, ubiquitin chains are trimmed by DUBs associated with the
proteasome, or free DUBs in the cytosol (Komander et al. 2009).

The type of chain linkage partly dictates the conformational dynamics of the
polyubiquitin signals and thus contributes to the selectivity of substrate targeting by
the ubiquitin receptors. The lysine residues in ubiquitin are distributed throughout
the molecular surface so that different linkages result in different geometries and
flexibility of the polyubiquitin chain. The N- and C-termini are located at opposite
ends of the ubiquitin fold, whereas Lys63 is located near the N terminus of ubiquitin
(Datta et al. 2009). As a result, both Met1-linked and Lys63-linked polyubiquitin
chains adopt extended, highly flexible conformations (Liu et al. 2015; Varadan et al.
2004; Datta et al. 2009). In contrast, Lys48 is positioned roughly halfway between
N- and C-termini so that Lys48-linked chains form a more compact, less flexible
structure (Eddins et al. 2007). Presumably due to higher conformational entropy
of polyubiquitin chains, binding of Met1-linked linear ubiquitin chains with the
proteasome is weaker than that of Lys48-linked chains (Thrower et al. 2000). Lys11-
linked chains also form a compact structure that is distinct from the structure of
Lys48-linked chains (Castaneda et al. 2013).

The ubiquitylated proteins can be recognized by many families of proteins that
contain a ubiquitin-binding domain (UBD) (Husnjak and Dikic 2012). The UBD-
containing proteins themselves can also be ubiquitylated in certain cases so that
ubiquitin regulates the formation of intramolecular interactions to effect specific
protein function. At least 20 families of UBDs have been identified (Husnjak and
Dikic 2012). Most UBDs have a length between 30 and 120 amino acids and recog-
nize only one or two ubiquitin molecules. The interaction surface on ubiquitin facing
its receptors is a hydrophobic patch centered on conserved Ile44, Leu8, and Val70
residues. A smaller area around Phe4, Thr12, and Asn2mediates the ubiquitin recog-
nition as an endocytosis signal but is not essential in proteasomal degradation (Beal
et al. 1996; Sloper-Mould et al. 2001). Due to flexibility of polyubiquitin conforma-
tions, chains of different linkages could be recognized by the same UBDs (Alfano
et al. 2016). Post-translational modifications of ubiquitin itself have been shown to
regulate their interactions with UBDs (Yau and Rape 2016). One notable modifi-
cation is the phosphorylation of Ser65. Ser65-phosphorylated ubiquitin binds the
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proteins at the surface of damaged mitochondria and leads to the clearance of the
mitochondria by an autophagic process called mitophagy (Yau and Rape 2016).

Tetraubiquitin chains linked through Lys48 are the canonical signal for protea-
somal targeting (Thrower et al. 2000; Pickart 2000; Komander and Rape 2012). The
proteasome-binding affinity of Lys48-linked polyubiquitin chain rapidly increases
with more ubiquitin units added to the same chain until it becomes a tetraubiquitin
chain, beyond which the affinity slowly increases (Thrower et al. 2000). The surfaces
of every second ubiquitin molecule at positions i, i +2, i + 4, etc., in Lys48-linked
chains are recognized by the proteasome (Thrower et al. 2000). A single tetraubiq-
uitin chain is much more effective in substrate delivery to the proteasome than a
single monoubiquitin (Kravtsova-Ivantsiv et al. 2009). However, multiple sites of
monoubiquitylation or short polyubiquitylation with different linkages can also lead
to efficient degradation both in vitro and in vivo (Hofmann and Pickart 2001; Kirk-
patrick et al. 2006; Saeki et al. 2009a; Xu et al. 2009; Kim et al. 2011; Lu et al. 2015;
Shabek et al. 2012; Braten et al. 2016; Martinez-Fonts and Matouschek 2016).

Lys63-linked polyubiquitin chains are the second most abundant linkages (14–
40% of all ubiquitin chains) in mammalian cells (Dammer et al. 2011; Kaiser et al.
2011) and the third most common chains (16%) in yeast (Xu et al. 2009). In yeast,
Lys63-linked chains have been shown to mediate partial degradation of the transcrip-
tion factor Mga2-p120 (Saeki et al. 2009a). Lys11-linked ubiquitin chains are about
2–5% of all ubiquitin chains in mammalian cells (Dammer et al. 2011; Kaiser et al.
2011), and are as abundant (28%) as Lys48-linked chains in yeast (Xu et al. 2009).
They play a crucial role in cell cycle regulation. The E3 ubiquitin ligase anaphase-
promoting complex/cyclosome (APC/C) assembles both Lys48- and Lys11-linked
ubiquitin chains on many cell-cycle regulators to control their degradation, such as
Aurora A, cyclin A, cyclin B1, securin, geminin, Nek2A, Plk1, and E2F1 (Craney
and Rape 2013; Peters 2006). On some substrates, APC/C first coordinates with the
UBE2C to synthesize short chains with Lys48, Lys63 and Lys11 linkages (Jin et al.
2008). The chains could be further extended by APC/C working with the UBE2S
that primarily synthesizes Lys11-linked chains (Williamson et al. 2009; Wu et al.
2010). Interestingly, APC/C-synthesized branched polyubiquitin chains containing
both Lys11 and Lys48 linkages are more efficient degradation signals than homo-
geneous Lys11-linked chains (Meyer and Rape 2014). Lys11-linked chains mediate
proteasomal degradation of the hypoxia-inducible factor 1α (HIF-1α) (Bremm et al.
2014), as well as targeted degradation in response to the endoplasmic-reticulum
stress (Xu et al. 2009). IRF3 degradation can be targeted by both Lys11- and Lys48-
linked chains, which is induced by interferon pathways after viral infection (Qin
et al. 2014). In Drosophila, the E3 ligase Cul1-Slimb synthesizes similar portions
of ubiquitin conjugates with Lys11 and Lys48 linkages on the transcription factor
Cubitus interruptus (Ci) targeted for partial degradation by the proteasome (Zhang
et al. 2013).

Tandem repeats of the ubiquitin sequence are encoded in the UBI4 gene in yeast,
and in the UBB and UBC genes in human genome. They express Met1-linked linear
polyubiquitin chains that can be cleaved into individual ubiquitin molecules by ubiq-
uitin C-terminal hydrolases. Linear ubiquitin chains can also be synthesized by the
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600-kDa linear ubiquitin chain assembly complex (LUBAC) and are used as a scaf-
fold in the assembly of signaling complexes in several pathways (e.g., NF-κB, ERK,
Wnt, TNF) (Kirisako et al. 2006; Iwai et al. 2014; Shimizu et al. 2015). The linear
polyubiquitin chains do not mediate proteasomal degradation in vitro (Martinez-
Fonts and Matouschek 2016). However, a linear chain with a minimum of tetraubiq-
uitin is sufficient for proteasomal targeting assistedby theCdc48-Npl4-Ufd1 complex
in vivo (Kirisako et al. 2006; Zhao and Ulrich 2010), and physiologically mediate
the degradation of protein kinase C and TRIM25 (Inn et al. 2011; Nakamura et al.
2006).

The ubiquitin code is not exclusively used by the proteasome but also involved
in other proteasome-independent processes such as innate immunity and chromatin
remodeling (Komander and Rape 2012; Kulathu and Komander 2012). In yeast,
Met4 (Flick et al. 2004) and Cdc34 (Fishbain et al. 2015; Goebl et al. 1994) can
be ubiquitylated with Lys48-linked polyubiquitin chains that do not lead to protea-
somal degradation. Shorter ubiquitin chains or Lys63-linked polyubiquitin chains are
involved in processes like intracellular membrane trafficking during autophagy and
endocytosis (Erpapazoglou et al. 2014), DNA repair (Schwertman et al. 2016), cell
signaling (Chen and Sun 2009), immune responses (Wu and Karin 2015), mRNA
splicing (Song et al. 2010), and the regulation of translation (Silva et al. 2015; Spence
et al. 2000). Lys11-linked polyubiquitin chains targetMHC-I receptor (Boname et al.
2010) for internalization from the cell surface by endocytosis. Heterotypic linkages
mixed with Lys11 and Lys63 on receptor-interacting serine/threonine-protein kinase
1 (RIP1) mediate its binding to the IκB kinase (IKK) complex when the transcription
factor NF-κB is activated by TNF-α (Dynek et al. 2010). Monoubiquitylation also
functions in membrane trafficking as an endocytosis signal, in the regulation of tran-
scription and in the DNA damage response (Hurley and Stenmark 2011; Ramanathan
and Ye 2012).

Initiation Region of Substrates

The presence of an unfolded initiation region is an indispensable prerequisite for
initiating substrate degradation by the proteasome (Kraut and Matouschek 2011;
Prakash et al. 2009; Yu and Matouschek 2017). Such an unstructured region was
found to either flank at the terminus or appear as an internal loop of the substrate.
The receptor sites for this initiation region in the proteasome is expected to be the
interior of the axial channel of the AAA-ATPasemotor in the base (Fig. 1.14c) (Dong
et al. 2019). As illustrated in the atomic structure of substrate-bound proteasome in
state EB representing the initial commitment step (Dong et al. 2019), the minimum
length requirement for a terminal initiation region spans from the ubiquitin-linking
isopeptide bond, across the OB-ring, to the inner end of the ATPase channel, which
is equivalent to ∼20–30 amino acids (Fig. 1.14c). This structural estimation is well
consistent with several biochemical studies (Prakash et al. 2004; Takeuchi et al.
2007; Verhoef et al. 2009; Yu and Matouschek 2017). The distance of the initia-
tion region from the substrate-conjugated ubiquitin signal apparently determines the



60 Y. Mao

initial affinity of the substrate binding to the AAA channel and hence influences
the rate of proteasomal processing (Inobe et al. 2011; Lu et al. 2015; Fishbain et al.
2011). Proteasome-associated proteins such as extrinsicUBL-UBA receptors lacking
flexible segments suitable for initial engagement can thus avoid proteasomal degra-
dation. For instance, an unstructured segment intrinsic to RAD23 is not long enough
to mediate its recognition by the proteasomal ATPase motor, whereas artificial intro-
duction of a flexible initiation loop at the terminus of RAD23 leads to its proteasomal
degradation (Fishbain et al. 2011).

An unstructured initiation loop with a sufficient length is necessary for commit-
ting substrates to the proteasome for efficient deubiquitylation and translocation
(Peth et al. 2010). This commitment step is crucial for coupling of substrate deubiq-
uitylation with translocation at the proteasome, as shown in the state-EB structure
of the proteasome (Fig. 1.14c) (Dong et al. 2019; Worden et al. 2017). Decoupling
of substrate translocation with deubiquitylation can reverse the commitment step,
leading to futile substrate processing by the proteasome. The sequence composition
of the initiation region has strong correlative effects on the rate of substrate degra-
dation both in vivo and in vitro (Fishbain et al. 2015; Kraut et al. 2012; Yu et al.
2016b). Compared with diverse initiation sequences, those with small sidechains or
lower structural complexity (i.e., stretches of glycines, alanines or serines) impair
substrate degradation (Hoyt et al. 2006; Sharipo et al. 1998; Yu et al. 2016b). Chem-
ical properties of the initiation region, such as hydrophobicity, electrostatic charge
and flexibility further modulate its recognition by the proteasome.

The sequence dependence of the initiation region in the substrate could be
explained at least in part by its interaction with the pore loops in the AAA domains of
the proteasomal ATPase ring (Fig. 1.14c). In the state-EB structure of the proteasome,
the aromatic residues in the pore-1 loops appear to touch the substrate mainchain
backbone and occupy the space between adjacent side chains of the fully stretched
substrate polypeptide that assumes a conformation similar to a β-strand. The stair-
case of the pore-loop aromatic residues intercalating substrate sidechain resembles a
“rachet wheel” gripping a “cable tie” via its “teeth”. The force generated through this
“ratchet teething” model will be dependent of the depth of the “rachet teeth” of the
substrate. Large sidechains on the substrate polypeptide chain allow a tighter grip,
which can both prevent backsliding and apply a high enough unfolding force. Indeed,
introducing a low-complexity sequence of small sidechain residues at the terminus
of a highly stable globule domain appears to compromise the gripping force gener-
ated by the ATPase motor, thus promoting substrate slippage and releasing partially
processed substrate (Hoyt et al. 2006; Sharipo et al. 1998; Kraut and Matouschek
2011; Kraut et al. 2012; Yu et al. 2016b; Tian et al. 2005). Thus, an unstructured
but slippery internal loop can serve as degradation-stop signals and allow for partial
substrate degradation by the proteasome that then activates transcription factors such
as NF-κB, Spt23, and Mga2 (Tian et al. 2005; Piwko and Jentsch 2006; Hoppe et al.
2000, 2001).
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Ubiquitin Recognition at the Proteasome

The recruitment of ubiquitylated substrates to the proteasome can be mediated
through direct ubiquitin binding with the intrinsic receptors RPN1, RPN10 and
RPN13. These intrinsic receptors can also indirectly recruit ubiquitylated substrates
by reversibly binding the UBL domains of extrinsic ubiquitin receptors, also known
as shuttle factors, that are canonically made of UBL-UBA proteins, such as RAD23,
DSK2, and DDI1 families. In yeast, the cellular abundances of the extrinsic and
intrinsic receptors are quite comparable (Ghaemmaghami et al. 2003). The intrinsic
ubiquitin receptors also provide docking sites for certain DUBs and E3/E4 ligases,
which builds up additional layers of complexity in the functional regulation of the
proteasome. Binding of either UBL-containing proteins or ubiquitin chains alone,
mostly via the intrinsic ubiquitin receptors, are found to generally stimulate the
ATPase activity and peptide hydrolysis in the proteasome (Collins and Goldberg
2020; Ding et al. 2019; Kim and Goldberg 2018). This effect suggest that, similar
to the influence of substrate engagement, ubiquitin or UBL binding re-equilibrates
the ensemble of conformational states of the proteasome toward the ED-like states
(Table 1.2 and Fig. 1.9) (de la Pena et al. 2018; Ding et al. 2019; Dong et al. 2019).

RPN1

The importance of RPN1 is reflected in its ability to recognize both polyubiquitin
chains and UBL domains of UBL-UBA proteins. RPN1 is structurally homologous
to RPN2, which anchors another ubiquitin receptor RPN13. Both RPN1 and RPN2
resemble a tobacco pipe, with a central proteasome/cyclosome (PC) domain of 11
leucine-rich repeats (LRR) that make up the toroid-shaped “barrel” of the pipe
(Fig. 1.15). This toroidal “barrel”, composed of only tightly packed α-helices, is
demarcated on one side by an N-terminal α-helical domain comprising the wedge-
like stem, and on the orthogonal side by a C-terminal domain (CTD) comprising
mostly β-stranded barrel-like globular fold (He et al. 2012; Dong et al. 2019). In the
toroidal PC domain of RPN1/RPN2, the pore formed by the LRRs is occupied by
two α-helices. This packing is mediated by the highly hydrophobic residues in these
two central α-helices that sequester them from solvent.

RPN1 and RPN2 are positioned distally from the proteasomal long axis and are
the two most surface-exposed RP subunits. RPN1 and RPN2 engage with the RPT1-
RPT2 and RPT3-RPT6 CC domains, respectively. In RPN2, both the N-terminal
wedge-like domain and the concave side of the PC domain bind the N-terminal CC
ofRPT3andRPT6,with thePCdomain andCTDbeing positioned above the entrance
of theOB ring. Similarly, theN-terminalCCdomains ofRPT1andRPT2 interactwith
the concave side of the PCdomain ofRPN1 (Fig. 1.15). TheRPN1PCdomain and the
RPT1-RPT2 CC domain form a surface cavity that is inserted by a short α-helix from
RPN2. This α-helix is the middle part of a long loop (residues 820–871) extending
from the RPN2 PC domain. Through such a long-range interaction of RPN1-RPN2,
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Fig. 1.15 Long-range interaction between RPN1 and RPN2 (PDB IDs: 6MSJ, 6MSK) (Dong et al.
2019). a Long-range association between RPN1 and RPN2 via a long looping (residue 820–871)
structure extending from the RPN2 PC domain observed in state ED1. b Comparison of the RPN1-
RPN2 structures between states ED1 and ED2 shows a prominent translation of RPN1 relative to the
CP

a more extensive interface is stabilized between RPT1-RPT2 and RPN1-RPN2 at the
concave side of theRPN1PCdomain facingRPN2. Such a quaternary interface is best
reconstructed in states ED1 and ED2, but less clearly observed in other states (EA-C)
(Dong et al. 2019). It appears that RPN1 is most dynamic in state EC, presumably
due to the requirement of ubiquitin release following deubiquitylation.

Structural and mutagenesis studies have revealed that the yeast Rpn1 harbors two
receptor sites, designated T1 and T2, which preferentially bind ubiquitin and UBL
proteins, respectively (Fig. 1.16) (Shi et al. 2016; Chen et al. 2016b). Although the
T2 site was found to only bind UBL proteins such as RAD23, cryo-EM structures of
the substrate-bound human proteasome suggest that this site can also engage polyu-
biquitin (Dong et al. 2019). It is likely that the ubiquitin or UBL-binding affinity
is different between the two sites, making one site primary and the other auxil-
iary under certain scenarios. When the primary site captures a polyubiquitin chain,
the auxiliary site could still directly bind a distal ubiquitin molecule in the chain
despite lower local affinity.

RPN10

RPN10/S5a seems to represent a “canonical” intrinsic ubiquitin receptor in the
proteasome, given its unique proximity to the essential DUB RPN11 than any other
intrinsic ubiquitin receptors in the proteasome. RPN10 recognizes polyubiquitin
chains via its α-helical UIM domains (Deveraux et al. 1994; Fu et al. 1998; van
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Fig. 1.16 Mechanism of ubiquitin recognition by the 26S proteasome (PDB IDs: 6MSB, 6MSD,
6MSE) (Dong et al. 2019). a The cryo-EM maps of states EA1 and EA2. b Ubiquitin densities
in state EA1 (left) and EA2 (right). The T1 and T2 sites are labelled by fitting the yellow cartoon
representation of the NMR structure (PDB ID 2N3U) of RPN1 T1/T2 element in complex with
two ubiquitin molecules into our density, showing the ubiquitin on RPN1 is bound to a site very
close to the T1/T2 sites (Shi et al. 2016). The density maps are low-pass filtered to 8 Å to show the
ubiquitin features clearly, due to the lower local resolution of the ubiquitin density in these maps.
c Comparison of two ubiquitin moieties between RPN11 and RPT4/5 CC among EA1, EA2 and
EB. The cryo-EM densities rendered as grey mesh representations are low-pass filtered to 8 Å. The
atomic model of ubiquitin is shown as a magenta cartoon representation

Nocker et al. 1996). RPN10 includes one to three UIMs at its C terminal region.
The exact number of UIMs in RPN10 depends on the species. Yeast Rpn10 that
possesses only a single UIM still prefers polyubiquitin chains over monoubiquitin
(Zhang et al. 2009a, d). Solution NMR structural studies indicate that the two UIMs
of the human RPN10 greatly enhance its affinity for a Lys48-linked ubiquitin chain
(Zhang et al. 2009d). Although not observed in the context of the proteasome, there
is a preference for UIM1 on recognizing the distal ubiquitin and for UIM2 binding
the proximal one; when both RPN10 and RPN13 bind the same Lys48-linked polyu-
biquitin chain, RPN13 seems to recognize the distal ubiquitin whereas the UIMs
compete for the proximal ones (Zhang et al. 2009d). This observation is consistent
with the spatial arrangement of RPN10 being much closer to the DUB RPN11 and
OB ring than RPN13 in the proteasome.
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The UIMs are highly dynamic and appear as a poorly resolved diffuse density in
cryo-EM structures of the proteasome (Dong et al. 2019). In contrast, the N-terminal
VWA domain of RPN10 is tightly folded and well resolved in the cryo-EM struc-
tures (Dong et al. 2019; Riedinger et al. 2010). The VWA domain makes extensive
contactwith the lid subunitsRPN8 andRPN9, suggesting that it structurally stabilizes
the quaternary architecture of the lid and thus of the RP. Disruption of the RPN10
VWA domain or loss of RPN10 destabilizes the lid-base interaction (Glickman
et al. 1998; Fu et al. 2001; Tomko and Hochstrasser 2011). RPN10 also provides
primary binding sites to recruit extrinsic ubiquitin receptors like DSK2/Ubiquilin
(Matiuhin et al. 2008; Zhang et al. 2009a; Chen et al. 2019) and certain E3 ligases like
E6AP/UBE3A (Buel et al. 2020).Binding of theE6APAZUL (Amino-terminal Zinc-
binding domain of Ubiquitin E3a Ligase) domain induces refolding of an unstruc-
tured C-terminal segment in RPN10 into a helical bundle (Buel et al. 2020). The
yeast Rpn10 is monoubiquitylated in vivo, at Lys71, Lys84 and Lys99 in the VWA
domain, which regulates its interactions with substrates by inhibiting the UIM (Isasa
et al. 2010). The levels of Rpn10 monoubiquitylation are reversibly controlled by
Rsp5, an E3 in the NEDD4 ubiquitin ligase family, and a DUB Ubp2. Interestingly,
cold shock, heat shock and cadmium all seem to reduce Rpn10 monoubiquitylation,
suggesting that this modification is likely a mechanism of proteasome regulation in
response to proteotoxic stress (Isasa et al. 2010).

Although the RPN10 UIMs are poorly resolved in the cryo-EM reconstructions
of the human proteasome, there appears to be multiple ubiquitin densities in states
EA1, EA2 and EB near RPN10 (Fig. 1.16). The low-resolution density of RPN10
UIMs in state EA1 appears to connect with the N-terminal helices of RPT4-RPT5 CC
presumably via the polyubiquitin chains bound to theUIMs. Twoubiquitinmolecules
likely connected within the same chain are attached to the near and far sides of RPT4-
RPT5 CC immediately next to the RPN10UIMs (Dong et al. 2019; Chen et al. 2020).
Consistently, in state EA2, one ubiquitin is transferred to the ubiquitin-binding site
of RPN11, whereas the density between RPN10 UIMs and RPT4-PRT5 CC appears
to be broken (Fig. 1.16b). As the step of substrate deubiquitylation is presumably
represented by state EB, these structural observations suggest that multiple steps of
ubiquitin transfer and repositioning or remodeling of substrate-conjugated polyubiq-
uitin chains are required for optimal deubiquitylation (Dong et al. 2019). A flexible
link of UIMs to the VWA domain of RPN10 would permit conformational adapt-
ability of the receptor sites in recognizing and delivering polyubiquitin chains of
diverse geometries to the deubiquitylation site. In this context, the RPT4-RPT5 CC
provides auxiliary receptor sites for enhanced docking of RPN10 UIM-recognized
ubiquitin chains and assisting peptide-proximal ubiquitin transfer to theDUBRPN11
for efficient substrate deubiquitylation (Dong et al. 2019; Lam et al. 2002).

RPN13

RPN13 prefers the recognition of the canonical Lys48-linked ubiquitin signals. The
N-terminal region of RPN13 comprises the Pleckstrin-like Receptor for Ubiquitin
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(PRU) domain that structurally resembles a pleckstrin homology fold (Schreiner et al.
2008; Husnjak et al. 2008). The PRU domain of RPN13 selectively recognizes a
dynamic, extended conformation of Lys48-linked diubiquitin via loops extending
from the β-strands in the PRU domain and exhibits ∼90 nM KD for Lys48-linked
diubiquitin. In the proteasome, the PRU domain binds a flexible C-terminal region of
RPN2, which emanates from its LRR-like toroidal domain (Chen et al. 2010; Sakata
et al. 2012; Lu et al. 2017a, 2020). The recruitment of RPN13 near the toroid apex
of RPN2 positions its PRU domain about four-ubiquitin away from the entrance of
the ATPase ring, which is comparable to the distance from the ubiquitin-binding
sites in RPN1 and RPN10 (Lu et al. 2020). The PRU domain of human RPN13 is
connected by a flexible linker to a C-terminal helical DEUBAD (DEUBiquitinase
ADaptor) domain that recruits and activates the DUB UCH37 (Lu et al. 2017a;
Sahtoe et al. 2015; Hamazaki et al. 2006; Qiu et al. 2006; Yao et al. 2006). In
contrast to the occupancy of the intrinsic receptors typically at more than 50% in the
yeast proteasome (Sakata et al. 2012), RPN13 seems to be either substoichiometric
or flexibly bound in the endogenously purified human proteasome (Dong et al. 2019).

NMR studies have shown that in the absence of the proteasome, multiple binding
modes are feasible for RPN10 and RPN13 in recognition of Lys48-linked tetraubiq-
uitin chains (Zhang et al. 2009d). This prompts the possibility of promiscuous modes
of polyubiquitin chain recognition by the intrinsic ubiquitin receptors in the context of
the proteasome. It is conceivable that RPN1, RPN10 andRPN13 simultaneously bind
polyubiquitin chains to orient substrates for optimal engagement and deubiquityla-
tion (Zhang et al. 2009d; Liu et al. 2019; Lu et al. 2020). This multi-site recognition
is both kinetically and enthalpically favored and could be functionally adapted to
tackle the vast conformational diversity of the polyubiquitin chains conjugated on
protein substrates. Although substrates with multiple short ubiquitin chains can be
targeted by any of the known receptors for proteasomal degradation, those delivered
to the proteasome via a UBL domain were observed to be degraded more efficiently
byRPN13 andRPN1 (Martinez-Fonts et al. 2020). It remains to be clarified if RPN10
and RPN13 can partly function as a substrate shuttle like those extrinsic receptors to
some extent.

Delivery of Substrates to the Proteasome

Shuttle Proteins

The extrinsic ubiquitin receptors share common domain organizations. The N-
terminal UBL domain that can be recognized by an intrinsic ubiquitin receptor in
the proteasome is integrated in a single fold with C-terminal UBA domains that
recognize ubiquitin signals (Elsasser et al. 2002; Funakoshi et al. 2002; Schauber
et al. 1998; Kaplun et al. 2005; Hofmann and Bucher 1996). Whereas Saccha-
romyces cerevisiae contains one shuttle receptor in each family of Rad23, Dsk2 and
Ddi1, higher eukaryotes contain many more paralogs, such as RAD23A/hHR23A,
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RAD23B/hHR23B, UBQLN1/2/3/4 and DDI1/2, and other additional UBL-UBA
proteins, such as UBAC1, UBL7 and NUB1L. Different paralogs of shuttle-receptor
have distinct binding preferences for specific intrinsic ubiquitin receptors owing to
differences in their individual UBL interfaces (Chen et al. 2016b). The associations
between intrinsic and extrinsic ubiquitin receptors are highly dynamic and compli-
cate their structural analysis. Some UBL-containing proteins can support protea-
some delivery in vitro but fail in vivo (Yu et al. 2016a; Gomez et al. 2011; Walters
et al. 2002). Differences in the number of UIMs of RPN10 create another level of
complexity in the preferential proteasomal binding sites for the UBL domains of
the extrinsic receptors. The N-terminal UIM1 of human RPN10 exhibits 25-fold
stronger affinity over UIM2 for binding the UBL domain of UBQLN2 (Chen et al.
2019). Recent NMR structural studies on RAD23 and UBQLN2/hPLIC2 examined
the structural basis for their preferences to bind the RPN1 and RPN13, respectively
(Fig. 1.17) (Chen et al. 2016b; Shi et al. 2016; Chen et al. 2019).

Besides the ubiquitin receptors in the UBL-UBA family, other proteins not in
this family have also been found to function as a shuttle factor (Saeki 2017; Finley
and Prado 2019). Several members in the ZFAND family of zinc-finger proteins,
including ZFAND1, ZFAND2A/B and ZFAND5, are among such candidates (Stan-
hill et al. 2006; Yun et al. 2008; Osorio et al. 2016; Rahighi et al. 2016; Turakhiya
et al. 2018; Hishiya et al. 2006; Lee et al. 2018). Recruiting extrinsic ubiquitin recep-
tors with a flexible domain architecture may allow the proteasome to accommodate a
greater variety of ubiquitin signals and substrate structures than those readily recog-
nized by the intrinsic ubiquitin receptors alone. They can also offer substrate selec-
tivity and specificity upstream of ubiquitylation by binding disordered regions in
substrates. Using their UBL domains to bind both E4 ubiquitin ligases and intrinsic
ubiquitin receptors allows them to ferry ubiquitylated proteins into the proteasome
for degradation (Elsasser et al. 2004; Chen and Madura 2002; Kim et al. 2004;
Hanzelmann et al. 2010; Tsuchiya et al. 2017). As a result, mistargeted or misfolded
proteins that can not be directly recognized by the proteasome due to lack of ubiquitin
chains or deficiency of an unstructured initiation region can still be delivered to the
proteasome for breakdown (Hanzelmann et al. 2010).

RAD23

RAD23 contains four domains: UBL, UBA1, STI1/XPCB and UBA2 (Walters
et al. 2003). TheUBA1 andC-terminalUBA2 are separated by the STI1/XPCB (heat-
shock chaperone-binding) domain (Yokoi and Hanaoka 2017). UBA1 and UBA2
preferentially bind Lys63-linked and Lys48-linked polyubiquitin chains, respec-
tively, although both can recognize Lys48-linked chains (Raasi et al. 2005). RAD23
UBL domain binds the T1 and T2 sites on the toroidal domain of RPN1 (Elsasser
et al. 2002; Shi et al. 2016), positioning it near the entrance of the central channel of
the base leading to the CP gate (Rosenzweig et al. 2008). RAD23 may also interact
with RPN10 and presumably other ubiquitin receptors via its UBLdomain (Ishii et al.
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Fig. 1.17 The architecture of ubiquitin receptors and their interactions with ubiquitin. a Domain
organization of the ubiquitin receptors RPN10, RPN13, RAD23, DSK2 and DDI1. b Distinct
modes of interaction with ubiquitin are shown for each receptor. Amino acids of each ubiquitin-
binding domain that contact ubiquitin are highlighted. The structures correspond to PDB IDs as
follows: Ly48-linked diubiquitin-bound yeast RPN1 toroid segment (2N3V) (Shi et al. 2016),
Lys48-linked diubiquitin-bound human RPN10 UIM (2KDE) (Zhang et al. 2009d), Lys48-linked
diubiquitin-bound human RPN13 PRU (5YMY) (Liu et al. 2019), Lys48-diubiquitin-bound human
RAD23A/hHR23A UBA (1ZO6) (Varadan et al. 2005), and ubiquitin-bound yeast Dsk2 UBA
(1WR1) (Ohno et al. 2005). PRU, Pleckstrin-like receptor for ubiquitin domain; UBA, ubiquitin-
associated domain; UBL, ubiquitin-like domain; UIM, ubiquitin-interacting motif; VWA, von
Willebrand factor A domain; UBA, ubiquitin-associated domain

2006). Phosphorylation of its UBL domain inhibits RAD23 interactionwith the ubiq-
uitin receptors in the proteasome (Liang et al. 2014). The RAD23 UBL domain can
also bind other proteins that can recognize ubiquitin-like structures. For example, it
is recognized by the yeast E4 enzyme Ufd2 to facilitate proteasomal degradation of
ubiquitin-fusion degradation (UFD) substrates (Kim et al. 2004; Hanzelmann et al.
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2010). The peptidyl tRNA hydrolase Pth2 binds the RAD23 UBL, which antago-
nizes ubiquitin-dependent proteolysis by inhibiting the RAD23 association with the
proteasome (Ishii et al. 2006).

The roles of RAD23 in degradation appear to be adaptive and dynamically regu-
lated. Several studies suggest that it suppresses proteasomal degradationunder certain
conditions (Ortolan et al. 2000; Raasi and Pickart 2003), whereas others have found
that it promotes degradation by shuttling protein substrates to the proteasome (Shi
et al. 2016; Verma et al. 2004; Elsasser et al. 2004). RAD23 delivers substrates
preprocessed by p97/Cdc48 (Olszewski et al. 2019) to the proteasome by protecting
the substrates from further processing of their ubiquitin chains, including chain elon-
gation by E4 ligases and deubiquitylation by cytosolic DUBs (Tsuchiya et al. 2017).
This is expected to efficiently escort the substrates to the proteasome by preventing
premature processing of the ubiquitin signals (Richly et al. 2005). Interestingly,
RAD23 is found to be necessary for the formation of nuclear proteasome foci,
the transient structures that contain p97/VCP and multiple proteasome-interacting
proteins and collectively constitute a proteolytic entre in the nucleus (Yasuda et al.
2020). A liquid-liquid phase separation can be triggered by multivalent interactions
of two UBA domains of RAD23 and polyubiquitin chains (Yasuda et al. 2020).
RAD23 also functions in the pathway of endoplasmic reticulum-associated degra-
dation (ERAD) by binding of its Rad4-binding STI1/XPCB domain to the deglyco-
sylase Png1, forming a complex that mediates proteasomal degradation of a subset
of glycosylated ERAD substrates (Kim et al. 2006). Knockdown of RAD23 genes
in mouse models and human cells demonstrated their importance in mammalian
development, cell cycle control and apoptosis (Yokoi and Hanaoka 2017).

Ubiquilins/Dsk2

Ubiquilins, the mammalian orthologs of the yeast Dsk2, are a conserved family of
four ubiquitin-like proteins (ubiquilin-1-4 or UBQLN1-4) that function as shuttle
proteins and deliver ubiquitylated substrates to the proteasome. Similar to RAD23,
ubiquilins harbor an N-terminal UBL domain that binds the intrinsic ubiquitin recep-
tors in the proteasome and a C-terminal UBA domain that recruits a substrate (Ko
et al. 2004; Hamazaki et al. 2015). Mutations in ubiquilins that compromise their
ability to bind the intrinsic ubiquitin receptors were linked to elevated cellular levels
of ubiquitylated proteins and aggregate formation, which are implicated in the patho-
genesis of several neurodegenerative diseases, such as Huntington’s and Alzheimer’s
diseases, and amyotrophic lateral sclerosis (ALS) (Wang and Monteiro 2007; Wang
et al. 2006; Haapasalo et al. 2011; Hjerpe et al. 2016). In yeast, overexpression of
Dsk2 impairs proteolysis and exerts a cytotoxic effect (Funakoshi et al. 2002; Biggins
et al. 1996; Matiuhin et al. 2008). This effect seems to be attenuated by binding of
the Dsk2 UBL to the extraproteasomal Rpn10 UIM that restricts Dsk2 access to
the proteasome and alleviates the cellular stress associated with Dsk2 (Matiuhin
et al. 2008). This interaction may be regulated by Rpn10 monoubiquitylation (Zuin
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et al. 2015), which primarily regulates Rpn10 UIM binding with polyubiquitylated
substrates (Isasa et al. 2010; Woelk et al. 2006; Di Fiore et al. 2003).

Ubiquilins have been demonstrated to mediate the degradation of damaged
proteins in response to oxidative stress (Liu et al. 2014). Recent studies have revealed
a pathway for maintaining protein homeostasis mediated by UBQLN2 (Hjerpe et al.
2016) and a similar role of yeast Dsk2 (Samant et al. 2018) in the breakdown of
misfolded or damaged proteins in the nucleus generated by heat shock. TheUBQLN2
protein is found to cooperate withHSP70-HSP10 disaggregase chaperonemachinery
to clear protein aggregates, such as polyglutamine-expanded Huntingtin, via the
proteasome (Hjerpe et al. 2016). UBQLN2 recognizes substrate-bound HSP70 and
delivers it to the proteasome to enable the degradation of damaged, misfolded or
aggregated proteins in the nucleus. The absence of autophagy in the nucleus under-
scores the importance of this substrate-targeting pathway to the nuclear proteasome.
Further studies of similar pathways in yeast suggest that nuclearDsk2 shuttles Lys48-
linked polyubiquitylated substrates to the nuclear proteasome, whereas in the cyto-
plasm, hybrid Lys11/Lys48 chains enhance the affinity of misfolded proteins by
the cytoplasmic proteasome, presumably by engaging multiple ubiquitin receptors
at the same time (Samant et al. 2018).

P97/Cdc48

In addition to the extrinsic ubiquitin receptors, other proteins may also participate in
shuttling of substrates to the proteasome. The double-ring-shaped hexameric AAA+
ATPase unfoldase p97 or valosin-containing protein (VCP) in mammalian cells, and
its yeast ortholog Cdc48, remodel or segregate ubiquitylated substrates for ubiquitin-
dependent degradation (Stolz et al. 2011; Xia et al. 2016; van den Boom and Meyer
2018; Meyer et al. 2012). They play an important role in the UPS and protein quality
control (Godderz et al. 2015), especially inERAD(Wolf andStolz 2012;Christianson
and Ye 2014; Wu and Rapoport 2018; Stein et al. 2014) and outer mitochondrial
membrane associated degradation (OMMAD) (Taylor and Rutter 2011; Heo et al.
2010; Xu et al. 2011). Although archaeal Cdc48 can assemble with the CP in vitro
through artificial crosslinking (Barthelme et al. 2014), similar assembly has not been
observed in eukaryotic cells. Since the proteasome requires an unstructured segment
in its substrate to initiate substrate processing (Prakash et al. 2004; Fishbain et al.
2011; Inobe et al. 2011), p97/Cdc48 can act upstreamof the proteasome to preprocess
those substrates that are well-folded without a flexible initiation region or located
in membranes (Beskow et al. 2009; Olszewski et al. 2019). p97/Cdc48 can partially
unfold the substrate to create an unstructured initiation loop and transfer it to the
UBL-UBA proteins like RAD23 and DSK2 that ultimately deliver the substrate
to the proteasome for degradation (Itakura et al. 2016; Baek et al. 2011; Richly
et al. 2005). Alternatively, p97/Cdc48 might completely unfold the substrate that is
directly translocated into the free CP for breakdown (Barthelme and Sauer 2012,
2013). Furthermore, p97/Cdc48 is also involved in other cellular processes, such
as ribosomal quality control (Verma et al. 2013; Brandman et al. 2012), extraction
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of chromatin-bound proteins (Ramadan et al. 2007; Franz et al. 2016; Dantuma and
Hoppe 2012), membrane fusion and vesicular trafficking (Bug andMeyer 2012; Patel
et al. 1998), and autophagy (Ju et al. 2009; Papadopoulos et al. 2017).

The p97/Cdc48 complex functions as a molecular motor that mechanically
unfolds a substrate translocating across its axial channel. Each p97/Cdc48 protomer
comprises two tandem ATPase domains (D1 and D2) that are homologous to the
proteasomal RPT subunits, and couple ATP hydrolysis to its pore-1/2 loops that
can translocate substrates across the axial channel of the p97/Cdc4 homohexamer
(Sauer and Baker 2011; Ogura and Wilkinson 2001; Lupas and Martin 2002; Iyer
et al. 2004; Hanson andWhiteheart 2005; Erzberger and Berger 2006; Pamnani et al.
1997). The N domains are not fixed with respect to the double ring (Zhang et al.
2000; Davies et al. 2008). Upon ATP binding to the D1 ATPases, the N domains
change from a “down conformation” coplanar with the D1 ring to an “up confor-
mation” above the D1 plane (Banerjee et al. 2016; Tang et al. 2010). To engage a
substrate, p97/Cdc48 uses other cofactors such as the Ufd1-Npl4 (UN) heterodimer,
which binds the N domains and acts as the ubiquitin receptor (Hanzelmann and
Schindelin 2017; Buchberger et al. 2015). To achieve optimal substrate binding, at
least five ubiquitin moieties are required in a ubiquitin chain on a substrate (Bodnar
et al. 2018; Bodnar and Rapoport 2017). These cofactors endow p97/Cdc48 with the
substrate selectivity.

Cryo-EM structures of the yeast Cdc48 in a complex with UN and a ubiquity-
lated substrate establish the molecular basis for its substrate processing (Cooney
et al. 2019; Twomey et al. 2019). Interestingly, a ubiquitin molecule is partially
unfolded and the unfolded segment binds a conserved groove of Npl4 leading to the
axial channel of the double ATPase rings (Twomey et al. 2019). It is still unclear
how the Cdc48-UN unfoldase complex initiates its substrate processing. But the
current hypothesis is that the substrate engagement starts on a segment of the ubiq-
uitin molecule proximal to the substrate that can subsequently lead to substrate
unfolding. The D1 domains instead of the D2 are suggested to drive the transloca-
tion of ubiquitin-substrate adducts after ATP-independent insertion of the ubiquitin
N-terminal segment into the axial channel (Bodnar and Rapoport 2017; Olszewski
et al. 2019; Twomey et al. 2019). Importantly, this model explains why p97/Cdc48
does not need an unstructured initiation region in the substrate to start on substrate
processing.

Proteasome-Associated Ubiquitin Ligases

The proteasome exhibits not only deubiquitylating activity, but in certain condition
is also associated with ubiquitin ligase activity. Many ubiquitin ligases have been
found to be potentially complexed with the proteasome in a transient fashion, which
can impact how a substrate is recognized and processed by the proteasome (Verma
et al. 2000; Xie and Varshavsky 2000, 2002; Crosas et al. 2006; Leggett et al. 2002;
Besche et al. 2009; Martinez-Noel et al. 2012; Kuhnle et al. 2018). One hypoth-
esis is that there is a mutual regulation between the proteasome and its associated



1 Structure, Dynamics and Function of the 26S Proteasome 71

ubiquitin ligases. The ubiquitylation activity of a ligase could be enhanced once it
associates with both a substrate and the proteasome, as the temporal delay between
ubiquitylation and deubiquitylation at the proteasome is reduced (Xie andVarshavsky
2000). Ubiquitin-conjugating activity of the yeast Hul5 ligase was proposed to act
specifically on proteasome-bound substrates that have already been ubiquitylated by
another E3 ligase. Essentially, Hul5 functions as a ubiquitin chain-elongation E4
enzyme regulating the proteasome activity (Crosas et al. 2006). In vitro, Hul5 does
not take unmodified cyclin B as a substrate and efficiently adds ubiquitin to cyclin
B only if it had already been ubiquitylated (Crosas et al. 2006).

Mechanism of Substrate Deubiquitylation

Once ubiquitin receptors deliver a polyubiquitylated substrate to the proteasome,
the ubiquitin signal must be removed from the substrate by the DUBs in the protea-
some to enable transport of the unfolded substrate to the proteolytic sites in the CP
chamber. Although there are about a hundred distinct DUBs encoded in the human
genome, which govern a vast diversity of ubiquitylation pathways (Leznicki and
Kulathu 2017), only a few DUBs were found to physically associate with the protea-
some. By recycling ubiquitin from substrates, DUBs positively regulate the cellular
level of free ubiquitin available for ubiquitylation and, by dynamically reversing
ubiquitylation, decide the fate of protein substrates in myriad cellar processes. The
isopeptidase activity of proteasome-associated DUBs is often quite low in their
isolated form and is prominently enhanced upon their incorporation into the protea-
some. The allosteric regulation is reciprocal or bidirectional between the DUBs
and the proteasome, since multiple catalytic activities of the proteasome such as
the ATPase activity and substrate proteolysis are either stimulated or suppressed in
the presence of DUBs. Cryo-EM structure of the proteasome in the act of substrate
deubiquitylation and crystal structures of ubiquitin-DUBcomplexes, alongwith other
cryo-EM studies of DUB in either proteasome subcomplexes or in the absence of
substrates, have provided mechanistic insights into DUB activation and regulation
by the substrate-proteasome interactions.

Intrinsic Deubiquitinase RPN11

RPN11, a JAMMmetalloprotease, is the only intrinsicDUBstably associatedwith the
proteasome and guarding the entrance of the central substrate-translocation channel
in the base (Verma et al. 2002). RPN11 is an essential subunit of a functional protea-
some and is crucial for cell viability (Maytal-Kivity et al. 2002; Guterman and
Glickman 2004). Its role in the proteasome closely resembles the NEDD8 isopepti-
dase CSN5 in the COP9 signalosome (Cope et al. 2002). RPN11 resides immediately
above the OB-ring of the AAA-ATPase motor and is intimately surrounded by the
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ubiquitin receptors RPN1 and RPN10. Its ubiquitin-binding site and the auxiliary
ubiquitin-binding sites in the RPT4-RPT5 CC domain constitutes a concaved surface
resembling a “hook”, which is structurally poised for capturing polyubiquitin chains
(Dong et al. 2019; Chen et al. 2020). Proximity of RPN11 to the OB-ring and its
geometric relationship to the surrounding ubiquitin receptor sites sterically preclude
cleavage between ubiquitin moieties within polyubiquitin chains (Dong et al. 2019).
Instead, it cleaves ubiquitin chains en bloc by hydrolyzing the isopeptide bond linking
the C terminus of the first ubiquitin moiety to the substrate lysine (Yao and Cohen
2002).

TheMPN domain of DUBRPN11 features three key regulatory regions: Insertion
1 (Ins-1), Insertion 2 (Ins-2) and a catalytic loop. The catalytic Zn2+ ion is coordinated
with a metal-binding motif (EXnHXHX10D) and is surrounded by the Ins-1 region
and the catalytic loop (Verma et al. 2002; Yao and Cohen 2002). The mutations
His109Ala andHis111Ala at the catalytic site do not impair the proteasome assembly,
but inhibit substrate degradation and are cytotoxic in yeast (Verma et al. 2002). The
Ins-1 region is located in the vicinity of the RPT4-RPT5 CC domain but does not
make direct contact in the resting state of the proteasome. Ins-2 is notably flexible
and is not well resolved in the crystal structures of the RPN11-RPN8 MPN-domain
dimer (Pathare et al. 2014;Worden et al. 2014). By contrast, Ins-2 assumes an ordered
structure and interacts with the toroidal domain of RPN2 in the proteasome (Dong
et al. 2019). The catalytic loop of RPN11 contacts RPT4, forming hydrophobic
interactions with an OB domain pore loop. These two inter-subunit interactions are
critical to stabilize the conformations of Ins-2 and the catalytic loop in the pre-
engaged state of the proteasome.

The lid subunit RPN8 and RPN11 form a heterodimer in the proteasome andwhen
purified in isolation. In the free RPN11-RPN8 dimer, the Ins-1 region of RPN11
adopts a loop conformation that blocks the catalytic active site and self-inhibits the
DUB activity (Worden et al. 2014; Pathare et al. 2014). In the free lid subcomplex,
RPN5 further stabilizes the Ins-1 loop in the inhibited state, preventing RPN11 acti-
vation until it is assembled into the proteasome (Dambacher et al. 2016). In contrast,
several related DUBs, such as Sst2 and AMSH-LP, remain active in isolation and
their Ins-1 regions adopt a β-hairpin conformation, making the active site accessible
(Sato et al. 2008; Davies et al. 2011; Shrestha et al. 2014). RPN11 retains a basal
level of DUB activity in the context of the free RP subassembly (Lu et al. 2017b). In
the free RP, RPN11 blocks the substrate entrance of the OB ring similar to its confor-
mation in state ED of the proteasome, which prevents the OB ring from accepting
substrates. The free RP exhibits a moderate ATP-independent DUB activity and its
lack of any substrate-unfolding activity (Lu et al. 2017b). The ‘closed’ OB-ring in the
free RP minimizes this risk of premature substrate deubiquitylation and unfolding
prior to incorporation of the free RP into the mature proteasome. It remains to be
clarified what cellular roles the basal DUB activity of RPN11 will play in the free
RP.
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Mechanism of Substrate Deubiquitylation by RPN11

The atomic structure of the substrate-bound proteasome in state EB reveals how the
DUB activity of RPN11 is dependent on ATP hydrolysis and is coupled to substrate
unfolding (Fig. 1.18) (Dong et al. 2019). In state EB, the ubiquitin-bound RPN11
interacts with both RPN8 and RPT5, which forms a subcomplex. This quaternary
interface already starts to form in state EA2, when the substrate is not yet captured by
the ATPase ring. Comparison of ubiquitin densities between states EA1, EA2 and EB

suggests that the ubiquitin directly linked to the substrate is transferred from RPT4-
RPT5 CC to RPN11 (Dong et al. 2019). In both states EA2 and EB, RPN11 does not
interactwith the substrate on the peptide-proximal side of the scissile isopeptide bond,
explaining its non-specificity of removing ubiquitin chains from any ubiquitylated
substrates.

The ubiquitin-binding interface is located at a hydrophobic pocket around Trp111
and Phe133 of RPN11 (Worden et al. 2014; Pathare et al. 2014; Dong et al. 2019).
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The Ins-1 loop adopts a β-hairpin conformation, and pairs from one side with the
C-terminal strand of ubiquitin and from the other side with a segment of the RPT5
N-loop (residues 99–119) emanating from the OB ring. Together they form a four-
stranded β-sheet. This β-sheet places the isopeptide bond right next to the zinc ion in
the RPN11 active site (Dong et al. 2019). The Ins-1 β-hairpin is rotated outward in
state EB relative to its conformation in the crystal structure of ubiquitin-boundRPN11
and is better aligned with the zinc-binding site in the proteasome (Worden et al.
2017). The conserved RPT5 N-loop stabilizes the ubiquitin contact with RPN11 and
adjusts the orientation of the isopeptide bond for efficient deubiquitylation, whereas
it is unstructured in most other states (EA1, EC1, EC2, ED1 and ED2).

The Ins-1 region of RPN11 keeps changing its conformation with different
states of the proteasome (Fig. 1.19). The Ins-1 remains as a β-hairpin conforma-
tion throughout states EA2, EB and EC1, whenever ubiquitin is bound. It becomes a
large open loop in state EA1 and refolds into a closed, tighter loop in states EC2, ED1,
and ED2 whenever ubiquitin is released. The quaternary organization surrounding
the zinc-binding site of RPN11 appear to explain why the DUB activity of RPN11 is
prominently upregulated in the proteasome than in its non-proteasome forms, such
as the free RP assembly (Lu et al. 2017b), the free lid subcomplex (Dambacher et al.
2016) and the heterodimeric RPN8-RPN11 form (Pathare et al. 2014; Worden et al.
2014). The dynamic regulation of Ins-1 conformations allows allosteric coordina-
tion and timing between substrate commitment, deubiquitylation and degradation.
Initial substrate engagement with the AAA-ATPasemotor allosterically regulates the
conformational changes of RPN11 and RPT5 N-loop and enables deubiquitylation
only for committed substrates. Indeed, disrupting the closed state of Ins-1 stimu-
lates the RPN11 DUB activity but also causes degradation failure, because ubiquitin
chains are prematurely removed, allowing substrates to escape from the proteasome
prior to translocation and degradation (Worden et al. 2017).

The structural revelation of state EB fills up a fundamentally critical intermediate,
allowing the observation of stepwise activation of the CP by docking of the RPT
C-termini into the α-pockets one at a time (Dong et al. 2019). During the process of
CP gate opening, the relative positions of the RPN11 catalytic site, the central pore
of the ATPase ring, and the CP gate are coaxially aligned (Matyskiela et al. 2013;
Sledz et al. 2013; de la Pena et al. 2018; Dong et al. 2019), preparing the proteasome
for processive substrate translocation into the CP chamber.

Deubiquitinase USP14

USP14or its yeast orthologUbp6 is a cysteine-dependentDUB that is reversibly asso-
ciated with the proteasome (Borodovsky et al. 2001). The N-terminal UBL domain
of USP14 binds RPN1, whereas its catalytic USP domain contacts the exterior of the
OB andAAA rings opposite RPN11 (Bashore et al. 2015; Shi et al. 2016; Huang et al.
2016; Aufderheide et al. 2015; Leggett et al. 2002). Such multivalent interactions
facilitate stimulation of its DUB activity by lifting off the inhibitory loops blocking
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Fig. 1.19 Conformational dynamics of the RPN11 associated with an enhanced isopeptidase
activity in the proteasome (PDB IDs: 6MSB, 6MSD, 6MSE, 6MSG, 6MSH, 6MSJ, 6MSK) (Dong
et al. 2019). a Overview showing the inter-subunit relationship between RPN2-RPN11-RPN8 and
the CC-OB domains of the ATPases in state SA. Black box indicates the location to which the
close-up view in panel (b) is zoomed. b Close-up view of Rpn11 in cartoon representation. The
adjacent RPT subunits and RPN2 are shown in surface representation. c Close-up view of the Zn2+

active site of Rpn11. The viewing angle is rotated clockwise ~90° relative to that of panel (E).
d Comparison of the Ins-1 loop of RPN11 in different states. e Comparison of the RPN11 structures
in states EA2, EB and EC1 around the zinc-binding site and Ins1 region with that in the crystal struc-
ture (PDB ID: 5U4P) of ubiquitin-bound RPN11-RPN8 complex from yeast (Worden et al. 2017).
f Closeup comparison of the RPN11 Ins1 structure between state EB and 5U4P (left two panels)
and between state EC1 and 5U4P in two orthogonal perspectives, showing a 5-Å displacement of
the Ins-1 β-hairpin in EB relative to 5U4P or EC1. This displacement is not observed between EC1
and 5U4P, suggesting that the Ins-1 β-hairpin tilt in EB is mostly to optimize the coordination of
isopeptide bond with the zinc ion

the active site. Thus, the DUB activity of USP14 is allosterically regulated by its
interaction with the proteasome and is tightly coupled with the conformational state
of the proteasome (Bashore et al. 2015; Hanna et al. 2006). Association with the
proteasome activates USP14/Ubp6 ∼300- to 800-fold when assayed with the model
substrate ubiquitin-AMC (Leggett et al. 2002; Lee et al. 2010). Re-equilibrating
the yeast proteasome conformation toward the open-gate states with ATPγS further
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increases the activity of Ubp6 by a couple of folds in cleaving the ubiquitin-AMC
substrate (Bashore et al. 2015). The active sites of USP14 and RPN11 are only
35 Å apart in the base, allowing USP14 to antagonize ubiquitin binding to RPN11
(Bashore et al. 2015;Hanna et al. 2006).Ubiquitin-boundUSP14 appears to stimulate
the proteasomal ATPase activity and CP gate opening, suppress substrate degrada-
tion by destabilizing the resting state of the proteasome, inhibit deubiquitylation by
RPN11 and the basal peptide hydrolysis, and surprisingly enhance the E4 ligase
UBE3C/Hul5 association with the proteasome (Bashore et al. 2015; Aufderheide
et al. 2015; Peth et al. 2009; Leggett et al. 2002; Kuo and Goldberg 2017; Kim
and Goldberg 2017). Curiously, the UBL domain of USP14 alone can stimulate the
proteasome activation (Kim and Goldberg 2018). Hence, USP14/Ubp6 may alloster-
ically regulate the proteasome activities at multiple levels, including the recognition
of ubiquitin or substrate, timing of deubiquitylation and processivity of substrate
proteolysis.

When the USP domain is recruited to the base of the RP, the OB-ring is adjacent to
the proximal ubiquitin binding site of USP14 (Huang et al. 2016). This resembles the
quaternary structural relationship between the OB-ring and, in its immediate vicinity,
the proximal ubiquitin-binding site onRPN11 (Dong et al. 2019). Thus, the biochem-
ical behaviors of RPN11 and USP14 with respect to an incoming substrate might be
comparable and somewhat competitive to each other. With a preference for cleavage
at the substrate-linked isopeptide of ubiquitin chains, they both could reverse ubiq-
uitinmodifications enbloc on a time scale ofmilliseconds to seconds (Lee et al. 2016).
Interestingly, USP14 can rapidly cleave ubiquitin from a substrate that is conjugated
to multiple polyubiquitin chains, whereas deubiquitylation of single-chain conju-
gates or disassembly of free polyubiquitin chains by USP14 is very slow (Lee et al.
2016). Curiously, USP14 can cleave long, unbound Lys48-linked chains better than
does RPN11 for certain substrates (Mansour et al. 2015). Thus, USP14 seems to be
specialized in removing supernumerary ubiquitin chains and cannot replace RPN11
in thorough deubiquitylation of substrates (Lee et al. 2016). In contrast to the essen-
tial role of RPN11 in proteasomal activities, inhibition or absence of USP14/Ubp6
in the proteasome accelerates substrate degradation in vitro (Hanna et al. 2006) and
is tolerable for yeast cells (Guterman and Glickman 2004). However, the absence
of Ubp6 causes a growth deficiency due to enhanced proteasomal degradation and
depletion of free ubiquitin (Leggett et al. 2002). USP14 deficiency in mouse embry-
onic fibroblasts increased the abundance of UCH37 and RPN13 in the proteasome,
suggesting that UCH37 may compensate the loss of USP14 (Kim and Goldberg
2017).

Deubiquitinase UCH37

UCH37 is another cysteine-dependent DUB reversibly associated with the protea-
some in higher eukaryotes, such as Homo sapiens and Drosophila melanogaster. Its
ortholog Uch2 was found in Schizosaccharomyces pombe but not Saccharomyces
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cerevisiae (Lam et al. 1997; Holzl et al. 2000). UCH37 consists of two domains,
an N-terminal catalytic domain representative of the UCH family and a fibrous C-
terminal tail (Burgie et al. 2012). UCH37 is activated by binding of its C-terminal
tail to the N-terminal DEUBAD domain of RPN13 in the proteasome but not in a
free UCH37/RPN13 complex (Yao et al. 2006; Sahtoe et al. 2015; Vander Linden
et al. 2015). A loop sequesters the catalytic cysteine (Cys88) in the free UCH37
(Burgie et al. 2012). Upon association with RPN13, this loop is remodeled to open
the access to the catalytic triad residues (Cys88, His164 and Asp179), which gives
rise to an approximately five-fold increase in its affinity for ubiquitin (Yao et al.
2006; Hamazaki et al. 2006; Qiu et al. 2006; Sahtoe et al. 2015; Vander Linden et al.
2015). Within the free RPN13, the DEUBAD domain interacts with the PRU domain
and sterically occludes its ubiquitin-binding site. Association of RPN13 with RPN2
in the proteasome modifies this inter-domain interaction and makes the PRU domain
to become accessible for ubiquitin binding, leading to activation of UCH37 (Chen
et al. 2010; Lu et al. 2017a).

Once activated in the proteasome, UCH37 can catalyze the removal of distal
Lys48-, Lys11-, and Lys6-linked ubiquitin chains conjugated to substrates (Lam
et al. 1997). Inadequately ubiquitylated proteins could be released by UCH37 from
the proteasome. UCH37 may also reverse regulatory ubiquitylation modifications
from certain proteasome subunits (Jacobson et al. 2014). It might trim distal ubiquitin
moieties, release them from the ubiquitin receptors and vacate the ubiquitin-binding
sites in the proteasome (Zhang et al. 2011). Despite its putative location that is
about the length of tetraubiquitin away from the OB ring of the AAA-ATPase motor
(Holzl et al. 2000; Dong et al. 2019; Lu et al. 2020), UCH37 association with the
proteasome can allosterically stimulate the proteasomal ATPase activity and CP gate
opening (Peth et al. 2013a). These allosteric effects are in line with those seen in
the USP14-bound proteasome and further underscore the global allosteric coupling
between all components of the proteasome. In addition to its role in the proteasome,
UCH37 also appears as a subunit of the chromatin-remodeling complex INO80 (Yao
et al. 2008). It remains to be clarified what substrate specificities of UCH37 are and
how UCH37 acts on its substrates in the proteasome. How the three DUBs, RPN11,
USP14 and UCH37, are coordinated and collectively regulated in the context of the
proteasome will be an intriguing open question awaiting answers.

Operating Principles of Proteasomal AAA-ATPase Motor

Proteasomal AAA-ATPase Motor

Theproteasomeutilizes itsATPasemotormodule tomechanically unfold the globular
domains of substrates and deliver them into the CP for their breakdown into short
polypeptides. The proteasomal ATPases are members of the classic AAA clade in
the AAA+ superfamily (Fig. 1.20) (Vale 2000; Smith et al. 2006). Other members in
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Fig. 1.20 Asymmetric structure of the ATPase heterohexamer in the SA/EA state (PDB ID: 6MSB)
(Chen et al. 2016a; Dong et al. 2019). a The OB-AAA domain structures of RPT subunits in a
cartoon representation from a perspective showing an L-shape. The leftmost panel shows the six
RPT structures superimposed, with each structure separately shown on the right. b The dimeric
AAA domain structure of two adjacent RPT subunits. The leftmost panel shows the six AAA
dimer structures superimposed together, with each structure separately shown on the right. c The
electrostatic structure of the OB ring (left), AAA ring (middle), and ATPase channel (right). d The
inter-subunit interfacial areas between two adjacent RPT subunits. The black numbers show the
total inter-subunit interfacial areas, whereas the red numbers show the interfacial areas between the
adjacent AAA domains. e A table shows the inter-subunit interfacial areas between the large and
small AAA subdomains from two adjacent RPT subunits. Note that the two adjacent small AAA
subdomains do not contact each other

this clade include FtsH family, Cdc48 family, and ClpA/B/C-Domain 1 (D1) family
(Ogura andWilkinson 2001; Lupas and Martin 2002; Iyer et al. 2004; Erzberger and
Berger 2006; Hanson and Whiteheart 2005). The HCLR clade, which includes the
HslU/ClpX family, ClpA/B/C-Domain 2 (D2) family, and Lon family, and features
a pre-sensor 1 insertion residing in at least one AAA+ module, is found in many
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protease complexes and functions as substrate unfolding machinery resembling the
proteasomal AAA-ATPase motor (Sauer and Baker 2011).

The AAA domain of RPT contains highly conserved motifs commonly observed
in the AAA+ superfamily proteins, including Walker A, Walker B, inter-subunit
signaling (ISS) motif, sensor 1, arginine finger (R-finger), sensor 2, and pore-1/2
loops (Fig. 1.21) (Sauer and Baker 2011; Ogura and Wilkinson 2001; Lupas and
Martin 2002; Iyer et al. 2004; Hanson and Whiteheart 2005; Erzberger and Berger
2006; Chang et al. 2017; Zhang andMao 2020; Puchades et al. 2020). The nucleotide-
binding pocket is intimately surrounded in “cis” by Walker A, Walker B, sensor 1,
and sensor 2 within the same AAA domain, and two R-fingers and ISS motif in
“trans” from the large AAA subdomain of the clockwise adjacent ATPase subunit
(Wendler et al. 2012). With these structural motifs, ATP hydrolysis is coupled to
conformational changes of the ATPases that apply mechanical work on a substrate
through the axial channel-aligning pore loops.

Conformational Dynamics of the AAA-ATPase Motor

The Substrate Translocation Pathway

The substrate-translocation pathway in the proteasomalATPasemotor is narrowed by
the inward-facing pore loops that are common to the classic cladeATPases (Fig. 1.22)
(Erales et al. 2012; Beckwith et al. 2013; Hinnerwisch et al. 2005; Martin et al. 2008;
Dong et al. 2019). TheAAA channel exhibits a right-handed helical architecture with
a much narrower constriction compared to the OB channel in the resting state (SA)
of the proteasome. The interior of the AAA channel is largely negatively charged, in
contrast to the positively charged interior of OB channel (Chen et al. 2016a; Dong
et al. 2019). This may reflect distinct roles of the OB and AAA domains in priming
and mechanically translocating substrates. Despite this difference, the OB and AAA
channels share a dramatic enrichment of tyrosine residues. The OB channel features
six tyrosine residues (Tyr147 in RPT1, Tyr72 and Tyr121 in RPT6, Tyr111 in RPT3,
Tyr79 in RPT4, and Tyr158 in RPT5), whose sidechain oxygen atoms point towards
the substrate-translocation pathway. Likewise, the AAA channel is also decorated
with five tyrosine residues in the resting state. These tyrosine residues may facilitate
substrate engagement and translocation via cation-π orπ-π interactions (Glynn et al.
2009).

The pore-1 loops of the RPT subunits feature the conserved ‘[Tyr/Phe]-
[Val/Leu/Ile]-Gly’ sequence pattern and arrange into a super-helical staircase. In
many ATP-dependent AAA unfoldases, such as ClpX, HslU, LonA, FtsH and PAN
(Glynn et al. 2009; Iosefson et al. 2015), their homologous pore-1 loops drive
substrate translocation. The pore-2 loops constitute a second super-helical staircase
running in the opposite of the pore-1 loop staircase (Fig. 1.22), which may function a
‘sensor’ for the state of the substrate translocation as these pore-2 loops are directly
extended from the Walker B motif and can translate the presence of substrate in the
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Fig. 1.21 Structure-based sequence alignment. Sequences from the yeast and human proteasomal
ATPases are aligned with each other and with that of the archaeal PAN ATPase, based on their
structures. The structure of human proteasomal ATPase in state EA is used as the reference for the
sequence alignment
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Fig. 1.22 Architecture of the substrate-translocation channel in the human proteasome at a resting
state (PDB ID: 6MSB) (Chen et al. 2016a; Dong et al. 2019). a Top view of the pore loops aligning
along the channel axis from the perspective of the OB domain. The solvent-accessible surface of
the channel calculated by the HOLE program is rendered by surface dots. b Side views of the pore-
1 loops from six RPT subunits decorating the channel, which align along the channel in a spiral
staircase formed from RPT1-RPT5, with a backward recession in RPT6 pore-1 loop that is slightly
away from themajor channel pathway. The pore-1 loops form a helical part of the channel interior as
illustrated by the dashed green line. c Side view of the pore-2 loops from sixRPT subunits decorating
the channel, which form another spiral staircase. These pore-2 loops form another helical part of
the channel interior, illustrated by the red dashed line. d Side view of the complete ATPase channel
including components from both the OB and AAA domains, calculated by the HOLE program
(Smart et al. 1996). Side-chain patterns observed along the substrate-translocation pathway are
highlighted. The five tyrosine residues, highlighted by transparent sphere representation, and a
number of hydrophobic and negatively charged residues decorate the AAA channel; color codes for
ATPase protomers match those shown in (a). Lower left inset, a schematic cartoon showing that the
pore-2 loops of RPT3, RPT4, RPT5 pair laterally with the pore-1 loops of RPT4, RPT5 and RPT1,
respectively, to form the three narrowest constrictions in the AAA channel in the resting state of
the proteasome
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channel into the activation ofATPhydrolysis, bymodulating the distance between the
γ-phosphate of ATP and the Walker B motif (Zhang and Wigley 2008). In contrast
to the hydrophobicity of the pore-1 loops, the pore-2 loops are heavily decorated
with negatively charged residues, including seven glutamates and two aspartates.
The markedly contrasting side-chain patterns in the two complementary parts of
the channel surfaces indicate that they play somewhat different roles in substrate
translocation.

The AAA channel exhibits three constrictions in the resting state of the protea-
some, featuring the positional overlap along the channel axis between the two pore-
loop staircases. The aromatic and hydrophobic residues in the pore-1 loops from
RPT4, RPT5, and RPT1 are equilaterally paired with adjacent charged residues in
the pore-2 loops of RPT3, RPT4 and RPT5, respectively (Fig. 1.22d). Interestingly,
mutations in the pore loops resulted in similar phenotypic effects between each pore
loop pair. For pore-1 loop, RPT4 has the strongest phenotype, whereas for pore-
2 loop the partner RPT3 has the strongest phenotype (Beckwith et al. 2013). The
strength of phenotype is also similarly reduced with their distance along the pore
axis. In the resting state, the channel radius is constricted to as little as ~2 Å, which
must be opened up to allow the insertion of a substrate (Dong et al. 2019). The pore
loops of RPT6 is uniquely displaced from the channel axis and does not contribute
to these constrictions. Consistently, the pore-2 loop mutations of RPT6 were shown
to have little impact on substrate degradation rates (Beckwith et al. 2013).

Dynamic Substrate Interactions with the AAA Ring

The AAA channel formed by the pore loops is structurally plastic (Eisele et al. 2018;
Zhu et al. 2018). Even without a substrate, the pore-loop architecture in the states
with an open CP are dramatically reorganized between super-helical staircase and
saddle-shaped circles deviating from a rigorous staircase arrangement, as typically
characterized in state SD1, SD2 and SD3 (Zhu et al. 2018). While the substrate-free
conformation of the ATPase ring in state SD2 resembles that of the substrate-bound
one in state ED2, the pore-loop conformation is relaxed and less organized in the
absence of the substrate (Zhu et al. 2018; Dong et al. 2019). The plasticity of the
pore-loop conformation allows the AAA channel to not only accommodate a vast
diversity of substrate sequences, but also a hairpin-like polypeptide loop as typically
observed in the cryo-EM structure of AAA+ ATPase Vps4 bound with a circular
substrate (Han et al. 2019).

In state EB, the substrate density is approximately centered inside the OB ring
(Dong et al. 2019). By contrast, the substrate closely approaches Phe118 of RPT1
inside the OB ring in states EC1, EC2, ED1 and ED2. Within the AAA channel, the
substrate is gripped by the aromatic residues of pore-1 loops arranging into a right-
handed spiral staircase (Fig. 1.23). Either tyrosine or phenylalanine in the pore-
1 loops intercalates with the fully stretched main chain of the substrate through
hydrophobic interactions. The main chains of the pore-1 loops potentially form
hydrogen bonds with the substrate main chain. The adjacent pore-1 loops are spaced
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Fig. 1.23 Dynamic substrate-pore loop interactions (PDB IDs: 6MSE, 6MSG, 6MSH, 6MSJ,
6MSK) (Dong et al. 2019). a Varying architecture of pore-1 loop staircase interacting with
the substrate in five states (EB, EC1,2 and ED1,2). Aromatic residues in the pore-1 loops are labeled
and shown in stick representation superimposed with transparent sphere representation for high-
lighting. The distances from disengaged pore-1 loops to the substrate are marked. b Side view of
all substrate-bound ATPase-RPN11 structures superimposed together based on structural alignment
against the CP. cA diagram summarizing the axial stepping of the substrate-contacting pore-1 loops
and their correlations with nucleotide states. The vertical axis shows the relative location of pore-1
loops interacting the substrate, with the CP positioned at the bottom. The relative distance from the
lowest substrate-pore loop contact is labeled using the number of residues as a metric. State EC1
is omitted here as its AAA-ATPase structure is identical to that of EC2. The color code of subunits
used in all panels is shown in the upper right inset

by two amino acid residues of the substrate, thus evenly distributed along the substrate
(de la Pena et al. 2018; Dong et al. 2019). This “two-residue spacing” appears to
be a highly conserved structural “rule” for substrate-pore loop interactions among
many other AAA+ ATPases, such as p97/Cdc48 (Ripstein et al. 2017; Olszewski
et al. 2019), FtsH-like AAA proteases (Puchades et al. 2017, 2019) and Hsp104
disaggregase (Gates et al. 2017). This perhaps implies a common mechanism for the
force generation by nonspecific, intercalated stacking interactions between the pore
loop’s aromatic side chains and the stem of substrate side chains.

The architectural organizations of the substrate-pore loop staircase from states EB

to ED2 are all quite comparable, despite different subunit combination. The highest
positions in contact with the substrate in states EB, EC, ED1 and ED2 are occupied by
the pore-1 loops of RPT3, RPT6, RPT1 and RPT5, respectively. Notably, the pore-1
loop of RPT3 is translated from one end to the other end in the substrate-pore loop
staircase during state transitions from EB to ED2. Meanwhile, the pore-2 loops form
another shorter staircase and support the substrate from the opposite of the pore-1
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loop staircase (Chen et al. 2016a; Zhu et al. 2018; de la Pena et al. 2018; Dong
et al. 2019). In states EB, ED1 and ED2, the pore loops of only one ATPase subunit
(RPT6, RPT5 and RPT4, respectively) are dissociated from the substrate, whereas
the pore loops of two ATPase subunits (RPT1 and RPT2) are displaced from the
substrate in states EC1 and EC2. Thus, asymmetric substrate interactions with the
pore loops would inevitably exert an allosteric impact on the overall asymmetric
ATPase motor conformation. Consistently, functional asymmetry of the six ATPases
in substrate degradation has been observed in mutagenesis experiments (Beckwith
et al. 2013; Tian et al. 2011; Erales et al. 2012).

Nucleotide-Binding Sites

Three distinct nucleotide states in the proteasomal ATPase subunits have been
observed, i.e., ATP-bound, ADP-bound, and apo-like states. The apo-like state is
referred to the absence or a very weak density of nucleotide in the nucleotide-binding
pocket (Dong et al. 2019). The nucleotide-binding site is located at the Walker
A motif located near a short loop between the small and large AAA subdomains
(Fig. 1.24). The nucleotide state controls the ATPase conformation by modifying
the inter-domain and inter-subunit interactions (Sauer and Baker 2011; Ogura and
Wilkinson 2001; Sledz et al. 2013). The proteasome hydrolyzes ATP slowly in the
absence of substrate, on average only 27 ATPs per minute per complex (Hoffman and
Rechsteiner 1996; Kim et al. 2015; Smith et al. 2011; Benaroudj et al. 2003). ATP
hydrolysis inRPTsubunits requiresmagnesium ionbound to theβ- andγ-phosphates.
The pre-engaged proteasome, despite being saturated with ATP, stays in a basal
resting state of minimal ATPase activity (Benaroudj et al. 2003; Peth et al. 2013b;
Smith et al. 2011; Kim et al. 2015). Substrate engagement stimulates ATP hydrolysis
by tightening the overall ATPase ring structures, by initiating highly concerted inter-
subunit interactions and by coordinating conformational changes around the ring
(Dong et al. 2019).

The nucleotide states of RPT subunits in the substrate-engaged proteasome exhibit
common features reflecting a marked spatiotemporal continuity of the AAA-ATPase
motor (Fig. 1.24). Comparison of the pre-engaged structure with the substrate-
engaged ones suggests that ATP hydrolysis occurs first in RPT6, followed by
hydrolytic events in RPT5 (Dong et al. 2019; Schweitzer et al. 2016; Huang et al.
2016; Chen et al. 2016a). Notably, the ADP-bound states navigate counterclockwise
sequentially from RPT6 to RPT3 throughout all six ATPase subunits, indicating a
full cycle of coordinated ATP hydrolysis around the AAA-ATPase ring from state
EA to ED2. Magnesium ion density is evident next to ATP and, in fewer cases, also
to ADP as well in the cryo-EM density maps of several states (Dong et al. 2019).
Whenever the two adjacent ATPase subunits are both in contact with the substrate,
their intersubunit interface is stabilized by the insertion of a phenylalanine residue
from the ISS motif of the clockwise subunit into a phenylalanine-containing pocket
of the counterclockwise subunit near its nucleotide-binding site and pore-1 loop
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Fig. 1.24 Nucleotide-binding sites in the substrate-bound human proteasome in distinct states
(PDB IDs: 6MSB, 6MSD, 6MSE, 6MSG, 6MSH, 6MSJ, 6MSK) (Dong et al. 2019). Comparison
of the nucleotide-binding pockets of six ATPases in all states illustrates a common pattern in the
geometry of the nucleotide-binding sites. Each row shows the geometry of the nucleotide-binding
pocket of one ATPase in all six states. In each panel showing an ATP or ADP-bound state, one
red dashed line marks the distance from β/γ-phosphate of nucleotide to the arginine finger of the
adjacent ATPase, while the other line marks the distance from the same phosphate to the Walker B
motif. In the case of apo-like states, the red lines extend to the proline of the Walker A motif rather
than to the phosphate groups. These geometries indicate the potential reactivity of these sites (Zhang
andWigley 2008).When the ATPase is positioned in themiddle of pore-loop staircase, but not at the
lowest position, the nucleotide-binding pockets are tightly packed whenever ATP or ADP is bound.
By contrast, when the ATPase is either in the lowest position of the substrate-pore loop staircase
or disengaged from the substrate, the nucleotide-binding pocket is open regardless of whether it is
ADP-bound or free of nucleotide. The resolution of 2.8–3.6 Å in the cryo-EM maps of substrate-
bound human proteasome allows unambiguous assignment of nucleotide densities to ADP and ATP
in the nucleotide-binding pockets of the ATPases. Except for EA, at least one ATPase subunit in
each conformational state exhibits a very weak or partial density for a potential nucleotide in its
nucleotide-binding pocket, which precludes de novo atomicmodeling of nucleotide coordinates into
the density of that subunit. The nucleotide state of these ATPases has been referred to as an apo-like
state. It is not possible to differentiate between ATP and ATPγS at the present resolution. Because
the mixture of both in the particle population, the 3D classification is not supposed to differentiate
ATP against ATPγS at the present resolution. For simplicity, the potential nonhydrolyzed nucleotide
has been modelled with ATP
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(Chang et al. 2017; Puchades et al. 2017; Dong et al. 2019). This ISS-mediated inter-
action locks the substrate-bound ATPase subunits together into an approximate rigid
body, a mechanical property that is likely required to sustain the translocating force
applied by the pore loops on the substrate. It remains to be clarified how intersubunit
communications by the ISS motif help to order the timing of ATP hydrolytic events
around the ring during substrate translocation.

Substrate Interactions Coupled with ATP Hydrolysis

Key structuralmotifs of eachATPase subunit couple its interactionswith the substrate
with the ATP hydrolytic cycle (Ogura and Wilkinson 2001; Lupas and Martin 2002;
Iyer et al. 2004; Hanson and Whiteheart 2005; Erzberger and Berger 2006; Sauer
and Baker 2011). In other words, the nucleotide states determine the geometry of
the nucleotide-binding pockets and are strongly coupled with the substrate-pore loop
interactions (Dong et al. 2019). This coupling is reflected in several lines of structural
consensus. First, the apo-like state is always observed in the substrate-disengaged
ATPases. All apo-like subunits form prominent gaps at their inter-subunit interfaces
with their nearest neighbors on both sides. Specifically, the ISS motifs of these
apo-like subunits are in a retracted conformation and far away from its adjacent
subunit. Likewise, the arginine fingers from the adjacent subunit fall more than 10 Å
apart from the Walker A motif of the apo-like subunits, leaving an apparently open
nucleotide-binding pocket. Second, the substrate-engaged ATPase that is closest to
the CP is always found to be bound with ADP. The clockwise nearest neighbor of the
ADP-bound subunit is always found to be in an apo-like state. Third, whenever the
substrate-engaged ATPases resides in the middle or top registry in the substrate-pore
loop staircase, the nucleotide-binding pocket is always closed by the arginine fingers
of the adjacent ATPase. Except states EA and EB, these closed nucleotide-binding
sites are always occupied by ATP.

The AAA domain remains most stable when bound to ATP. Under this circum-
stance, the entire AAA domain may still rotate as a rigid body. Systematic struc-
tural comparison has revealed that ADP release is associated with the largest hinge-
like inter-domain rotation of 15–25° between its small and large AAA subdomains
(Fig. 1.25) (Dong et al. 2019). Release of γ-phosphate after ATP hydrolysis does
not immediately trigger inter-domain motion of the AAA domain, as the ATPase
conformation is also regulated by the inter-subunit interactions. The subsequent
disengagement of the ATPase from the substrate facilitates the ADP release, liber-
ates the potential energy that is converted into kinetic energy driving the hinge-like
inter-domain rotation. Dissociation from the substrate also allows the ATPase to flip
outward by 30–40° relative to the entire ATPase ring. The kinetic energy is liberated
and spread out to drive rigid-body rotation of four or five substrate-bound ATPase
subunits, propelling the substrate toward the CP (de la Pena et al. 2018; Dong et al.
2019). These structural findings are in line with a sequential model of ATP hydrolysis
around the ATPase ring (Smith et al. 2011; Kim et al. 2015; Olivares et al. 2018).
Notably, a common feature observed in most other substrate-bound ATPase hexamer
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Fig. 1.25 Asymmetric intramolecular dynamics of AAA domains driven by nucleotide exchange
(PDB IDs: 6MSB, 6MSD, 6MSE, 6MSG, 6MSH, 6MSJ, 6MSK) (Dong et al. 2019). Superposition
of the AAA domain conformations of the same subunit RPT6 (a), RPT1 (b), RPT2 (c), RPT3 (d),
RPT4 (e) or RPT5 (f) from distinct states aligned against their large AAA subdomains. Super-
position of the RPT6 AAA domain structures from five distinct states aligned against the large
AAA subdomain shows that RPT6 assumes three major conformations. As shown in the boxed
inset, transition from EA to EB involves both refolding of the pore-2 loop, shown in the right insert,
and a 20° rigid-body rotation between the large and small AAA subdomains. RPT1, RPT4, and
RPT5 assume two major conformations between apo-like and nucleotide-bound states, while RPT2
assumes three major conformations

structures is that at least one subunit is dissociated from the substrate for nucleotide
exchange (Gates et al. 2017; Puchades et al. 2017; Monroe et al. 2017; Ripstein et al.
2017; Deville et al. 2017; Alfieri et al. 2018; Thomsen and Berger 2009; Han et al.
2017; Puchades et al. 2019).

Principles of Coordinated ATP Hydrolysis in Functional
Regulation

The proteasomal ATPase motor bears a greater degree of inter-subcomplex inter-
actions than most of other AAA+ ATPase motors. On one side, the ATPase motor
interfaces with many RPN subunits in the lid and base. On the other side, it forms a
highly dynamic, multivalent interface with the α-ring. Such a structural complexity is
presumably evolved to achieve the functional complexity of the proteasome. Unex-
pectedly, three distinct modes of coordinated ATP hydrolysis in the proteasomal
ATPase ring appear to regulate the intermediate functional steps of the proteasome
(Fig. 1.26) (Dong et al. 2019). The capability of functioning in multiple modes
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Fig. 1.26 Principal modes of coordinated ATP hydrolysis in the functional regulation of the protea-
some (Dong et al. 2019). The cartoon summarizes the concept of three principal modes of coordi-
nated ATP hydrolysis observed in the seven states and the proposed model of how they regulate the
complete cycle of substrate processing by the proteasome holoenzyme. Coordinated ATP hydrol-
ysis in Modes 1, 2 and 3 features hydrolytic events in two oppositely positioned ATPases, in two
consecutiveATPases, and in only oneATPase at a time, respectively. Substrate processing undergoes
three major steps before CP gate opening for processive translocation: (1) ubiquitin recognition;
(2) simultaneous deubiquitylation and substrate engagement with the AAA-ATPase ring; and (3)
translocation initiation, which involves multiple simultaneous events, including ubiquitin release,
ATPase repositioning and switching of RPT C-tail insertion pattern. In some cases, the initiation
of translocation may precede deubiquitylation. In steps 1 and 2, the ATPases follow the Mode-1
ATP hydrolysis. In step 3, they follow the Mode-2 ATP hydrolysis. After the gate is open, the
AAA-ATPases hydrolyze ATP inMode 3, in which only one nucleotide is hydrolyzed at a time

implies the existence of multiple feasible pathways of conformational transitions in
the same AAA-ATPase hexamer induced by coordinated ATP hydrolysis.

Mode 1 Regulates Ubiquitin Recognition, Initial Substrate Engagement
and Deubiquitylation

Mode1 is observed in states EA1, EA2 andEB and features coordinatedATPhydrolysis
in a pair of oppositely positionedATPases, which is associatedwith the steps of initial
ubiquitin recognition and deubiquitylation (Peth et al. 2010; Worden et al. 2017;
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Dong et al. 2019). Before the proteasome gets ready to cleave the ubiquitin chain
conjugated to the substrate, the ADP in RPT6 is released and the ATP in both RPT2
and its opposite subunit RPT4 are hydrolyzed. These events trigger refolding of a
segment spanning residues 251–266 in RPT6 and drive a marked outward rotation
of the entire RPT6 AAA domain (Fig. 1.25). Regulated by this key conformational
change, the coordinated ATP hydrolysis in RPT5, and then in RPT4, is expected to
relax the conformational rigidity of the AAA ring to enable an iris-like movement
opening the AAA channel for substrate insertion (Fig. 1.27). The position of RPT6 at
the seam of the AAA ring endows it with certain energetic advantage in allosterically
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Fig. 1.27 Mechanism of initial substrate engagement with the proteasome (PDB IDs: 6MSB,
6MSD, 6MSE) (Dong et al. 2019). a Superposition of the AAA-ring structures of states EA (grey)
and EB (color). The insets show side-by-side comparison of RPT6 conformations in the four most
distant states. Interfacial gaps are marked by red dashed lines. b Pore-1 loop staircase before and
after engaging with the substrate in state EB as compared to that in state EA1
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triggering the AAA channel opening with little perturbation to the pore loop staircase
structure, which is poised to accept an unfolded segment of the substrate without
changing the overall ATPase architecture. This mode of coordinated ATP hydrolysis
is reminiscent of the nucleotide states in the crystal structure of the ClpX protease,
which drive different structural changes in the ATPase ring likely because of the
absence of a substrate (Glynn et al. 2009).

Mode 2 Regulates CP Gating, Ubiquitin Release and Initiation
of Substrate Translocation

Mode 2 is observed in states EC1 and EC2 and is characteristic of coordinated ATP
hydrolysis in at least two adjacent substrate-disengaged ATPases, which is linked
to the intermediate steps of CP gating, ubiquitin release and initiation of substrate
unfolding (Dong et al. 2019). Upon deubiquitylation, the proteasome must prepare
for substrate translocation and allosteric regulation of the CP gate opening. To this
end, ATP hydrolysis in two adjacent subunits, RPT1 and RPT5, is coupled with
disengagement of RPT2 and RPT1 from the substrate. As RPT6 acquires ATP again
and re-binds the substrate at the top of the substrate-pore loop staircase, forward
translocation of the substrate over a two-residue distance is driven by the confor-
mational changes of ATPases from state EB to EC. During the following EC2-to-ED1

transition, RPT1 and RPT2 both need to re-bind ATP and the substrate and return
to the top of the substrate-pore loop staircase, whereas RPT5 is about to release its
ADP. As multiple events occur during this process, it is anticipated that several key
intermediates were missed in cryo-EM analysis and it remains to be addressed how
the EC2-to-ED1 transition is accomplished. Recent cryo-EM structures of the yeast
Cdc48 and of FtsH-likemitochondrial protease AFG3L2 exhibited a substrate-bound
ATPase architecture highly comparable toMode 2 of the 26S proteasome (Twomey
et al. 2019; Puchades et al. 2019).

Mode 3 Regulates Processive Substrate Unfolding, Translocation
and Degradation

Mode 3 is observed in states ED1 and ED2 and features ATP hydrolysis in only one
ATPase at a time during processive substrate unfolding and translocation (Fig. 1.28)
(Dong et al. 2019). When the pore-1 loop of the substrate-engaged ATPase reaches
the CP-proximal bottom of the substrate-pore loop staircase, the nucleotide state
of the ATPase subunit is always ADP-bound. During the process of ADP release,
the inter-domain rotation within the AAA domain flips the AAA domain outwards
away from the rest of the ATPase ring and detaches its pore loops from the substrate.
Meanwhile, its counterclockwise adjacent substrate-engagedATPase is pushed to the
bottom of the ATPase ring, whereas its clockwise neighboring ATPase, which was an
apo-like detached seam earlier, now re-binds ATP and the substrate at the top of the
ATPase staircase. In concert with these motions, the other three substrate-engaged,
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Fig. 1.28 Mechanism of processive substrate translocation in the proteasome (PDB IDs: 6MSH,
6MSJ, 6MSK) (Dong et al. 2019). a Structural comparison between ED1 (color) and EC2 (grey),
by using the large AAA subdomain of RPT5 to align the AAA ring structures in distinct states. A
30° out-of-plane rotation is observed during RPT5 disengagement from substrate. The right panel,
viewed from a perspective rotated vertically against the left panel, shows that out-of-plane rotation
in RPT5 is more prominently amplified in its counterclockwise neighboring ATPases more than
its clockwise neighbors. Red arrows mark the center of the AAA ring. b Structural comparison
between ED2 (color) and ED1 (grey) in which the large AAA subdomain of RPT5 is used to align
the two AAA-ring structures together. A 7° out-of-plane rotation of RPT5 is observed during RPT5
re-association with the substrate. c Schematic illustrates the mechanism for processive substrate
translocation that involves synchronization of nucleotide processing in three adjacent ATPases, i.e.,
ATP binding, ADP release and ATP hydrolysis (left), creating vertical rotations in the ATPases that
cooperatively propel the substrate (right)

ATP-bound ATPases rotate downwards approximately as a rigid body driven by the
intrinsic conformational changes in the substrate-disengaged ATPase undergoing
nucleotide exchange. In support of coordinated ATP hydrolysis of Mode 3 in both
human and yeast proteasome (de la Pena et al. 2018; Dong et al. 2019), five distinct
conformations of the PAN ATPase ring in the archaeal PAN-CP complex in the
absence of a substrate all exhibits only one ATPase disengaged from the rest of the
ATPase ring, a key feature consistent with Mode 3 (Majumder et al. 2019). Both
the Mode-2 and Mode-3 hydrolysis models confer a unidirectional propagation of
conformational changes in the ATPase ring.

The aforementioned analysis postulates on a force generation model integrating
various structural observations that seem to suggest a high degree of conservation
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in the operating principle of many AAA-ATPase motors, unfoldases, translocases
and disaggregates (Fig. 1.28). To generate processive translocation of a substrate,
three adjacent ATPases appear to synchronize their nucleotide processing altogether.
When the first binds an ATP, the second releases an ADP and the third hydrolyzes
an ATP (Fig. 1.28). ATP binding and ADP release trigger a hinge-like rotation of
the AAA domain in opposite directions. Substrate disengagement from the second
ATPase provides its AAA domain with certain degrees of freedom to amplify the
inter-domain hinge-like rotations in both the first and second ATPases into a collec-
tive power-stroke-like motion. The largest out-of-plane rotation (~30°) occurs in the
substrate-disengaging ATPase. The power-stroke-like conformational change facili-
tates ATP hydrolysis in the counterclockwise neighboring ATPase, by repositioning
the arginine fingers coordinating the neighboring ATP (Zhang and Wigley 2008).

Coordinated ATP Hydrolysis Around the ATPase Ring

Because most substrate-bound AAA+ ATPase complexes were solved in only single
conformation per biochemical condition at high resolution, the sequential model of
coordinated ATP hydrolysis around the ATPase ring remains largely hypothetical
(Cooney et al. 2019; Puchades et al. 2017; Puchades et al. 2019; Monroe et al. 2017;
Ripstein et al. 2017). In few studies where several coexisting conformations were
obtained, there was often lack of unambiguous intrinsic features labeling the time
sequence of those conformations (de la Pena et al. 2018; Majumder et al. 2019;
Fei et al. 2020; Ripstein et al. 2020). Interestingly, two hypothetical interpretations
of very similar cryo-EM structures for the ClpXP complex, one proposing a strictly
sequential model and the other arguing a probabilistic model, illustrates the limit and
uncertainty of inferring biochemical mechanism solely from fewer structure snap-
shots that are lack of time labels or insufficiently represented in intermediate states
necessary to substantiate the hypothesized mechanism (Tsai and Hill 2020; Fei et al.
2020; Ripstein et al. 2020). This controversy underscores the importance of obtaining
cryo-EM structures that contain features labeling the temporal sequence, as well as
key intermediates unambiguously distinguishing between contradicting or alterna-
tive mechanistic models. Breaking such interpretive limits or reducing inference
ambiguity might require more structural snapshots along the path of conformational
changes. For instance, the seven cryo-EM structures of the substrate-bound human
26S proteasome obtained under a common buffer condition contain inherent features
of ubiquitin and substrate densities verifying the time sequence of the corresponding
states along the path of chemical reactions (Table 1.2) (Dong et al. 2019; Zhang and
Mao 2020). These structures establish themselves as a spatiotemporal continuum
and provide direct evidence for sequential ATP hydrolysis around the proteasomal
ATPase ring with a mixture of Modes 1, 2 and 3 (Dong et al. 2019). A rigorously
sequential Mode-3 hydrolysis around the ring still awaits further evidence.

It is anticipated that the proteasome ATPase motor and other similar systems
should be versatile enough to allow for the coexistence of multiple pathways of
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coordinated ATP hydrolysis. In other words, a rigorously sequentialMode-3 hydrol-
ysis does not necessarily exclude the possible occurrences of ATP hydrolysis that
are less sequential or more stochastic. Indeed, recent cryo-EM structures of the yeast
substrate-bound Cdc48-Ufd1-Npl4 complex revealed a nearly planar D1 ATPase
ring and a spiral-shaped D2 ATPase ring inMode 2 (Twomey et al. 2019). However,
the use of ADP/BeFx resulted in a spiral D1 ring with the D2 ring turning into
Mode 3. Similarly, cryo-EM structures of two FtsH-like mitochondrial proteases,
the engineered soluble Yme1 and AFG3L2 complexes, revealed conformations of
substrate-bound ATPase ring highly resembling Modes 3 and 2 of the 26S protea-
some, respectively (Puchades et al. 2017; Puchades et al. 2019). Thus, the fate of the
ATP hydrolysis pathway in the hexameric ATPase ring is energetically dependent of
its interactions with substrates and regulatory proteins, such as chaperones, shuttle
proteins or cofactors.

Summary of Mechanism of the Proteasomal AAA-ATPase
Motor

The proteasomal AAA-ATPase motor distinguishes itself from other homohexam-
eric ATPase complexes in several unique ways. First, its pre-engaged conformation
is poised to start highly coordinated ATP hydrolysis from RPT6. This role of RPT6
is already encoded in the proteasome structure in the resting state. Second, the mode
of coordinated ATP hydrolysis is tightly timed to switch for regulating the necessary
intermediate steps of substrate processing. Third, the conformation of the ATPase
ring during processive substrate translocation favors fewer major conformational
states like ED1 and ED2 other than six major states (Fig. 1.26) that are expected for
a rigorous sequential model, indicating a broken symmetry for the kinetic role of
each RPT in substrate translocation (Dong et al. 2019; de la Pena et al. 2018). This
also prompts the possibility that the sequential hydrolysis model may neither neces-
sarily nor sufficiently account for all translocation activities. To date, the differential
appearances of ubiquitin-substrate densities intrinsic to these structures are the only
pieces of evidence for labeling the time sequence of the corresponding conformations
along the pathway of chemical reactions (Dong et al. 2019). At least three modes
of coordinated ATP hydrolysis have been observed to regulate intermediate steps of
substrate processing in the functional proteasome (Dong et al. 2019). Remarkably,
each mode of coordinated ATP hydrolysis was comparably observed in separate
structural snapshots of various AAA+ ATPases under specific biochemical condi-
tions by independent studies (Glynn et al. 2009; Puchades et al. 2019; Cooney et al.
2019; Twomey et al. 2019; Puchades et al. 2017; de la Pena et al. 2018; Yu et al.
2018; Gao et al. 2019; Ripstein et al. 2020; Deville et al. 2019; Puchades et al.
2020; Zhang and Mao 2020). These studies collectively suggest highly conserved
dynamic patterns in the structure-function relationships of AAA+ ATPase hexamers
that appear to coexist in the proteasome (Dong et al. 2019; Zhang and Mao 2020).
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Mechanism of Substrate Degradation in the CP

Structural Mechanism of Substrate Proteolysis

The α- and β-type subunits of the proteasome are typical members in the superfamily
of N-terminal nucleophile (Ntn) hydrolases (Brannigan et al. 1995; Dodson and
Wlodawer 1998). Consistent with their sequence similarity, the α- and β-subunits
exhibit homologous folds (Lowe et al. 1995; Groll et al. 1997). The N-terminal
regions (~ 35 residues) of the α-subunits partly fold into a helix (H0) blocking a
groove in the β-stranded sandwich. Due to lack of H0, this cleft is left open in the β-
subunits, is referred to as S1 (“specificity”) pocket and harbors the active site at Thr1
(Groll et al. 1997). A catalytic triad formed at the N-terminal threonine nucleophile
constitutes the active site and is activated upon CPmaturation by proteolytic removal
of a proximal propeptide occluding the active site (Chen and Hochstrasser 1996;
Schmidtke et al. 1996; Seemuller et al. 1996; Huber et al. 2016; Li et al. 2016b). The
sidechain Oγ of the N-terminal residue Thr1 of the β-subunits provides the catalytic
nucleophile attack of the carbonyl carbon in a peptide bond (Fig. 1.29) (Seemuller
et al. 1995a; Lowe et al. 1995). Similar to the proposed hydrolytic mechanism in
penicillin acylase (Duggleby et al. 1995), the amino group of Thr1 might be the
proton acceptor when Thr1 Oγ adds to an electrophilic entre (Lupas et al. 1995;
Seemuller et al. 1995a; Lowe et al. 1995; Groll et al. 1997). Crystal structure of
the human CP at 1.8 Å identified a chloride ion, which was previously assigned as
catalytic water (NUK), in all active sites, which might aid the nucleophilic attack
(Fig. 1.29) (Schrader et al. 2016). The properties of the S1 pocket with respect to
substrates are also regulated by other residues of the same subunit and of adjacent
subunits β2, β3, and β6, respectively (Groll et al. 1997). Conserved residues essential
for the catalytic activity at Thr1 are Glu17 and Lys33 (Seemuller et al. 1995a; Lowe
et al. 1995; Arendt and Hochstrasser 1997; Heinemeyer et al. 1997; Seemuller et al.
1996). Other conserved residues, including Ser129, Ser169, and Asp166, seem to
be required for structural integrity (Lowe et al. 1995) or β-precursor processing
(Seemuller et al. 1995b).

Three β-subunits, β1, β2, and β5, in each β-ring of the eukaryotic CP are proteolyt-
ically active. Mutating the Thr1 residues of any of the three β-subunits can disrupt
the peptidase activities of the CP (Dick et al. 1998). Similar to classic proteases, the
binding pockets are formed at the active sites by specific inter-subunit interactions
of the catalytic subunit with its neighboring β-subunit (Borissenko and Groll 2007).
The proteasome should not be understood as a simple collection of functionally inde-
pendent, separated proteases or enzymes but an integral, coherent holoenzyme with
multifunctional activities allosterically coupled. Its distributed catalytic activities are
spatiotemporally coordinated, andonlywork properlywhen theCP is fully assembled
and activated. Cleavage of a substrate occurs favorably at the peptide bond located at
C-terminal of the P1 residue that is acidic, basic, or hydrophobic (aromatic). Thus,
the proteasome displays caspase-like, trypsin-like, and chymotrypsin-like peptide
hydrolytic activities (Arendt and Hochstrasser 1997; Voges et al. 1999). These types
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Fig. 1.29 The proteolytically active sites in the 1.8-Å crystal structure of the human CP (PDB ID:
5LE5) (Schrader et al. 2016). a Overview of the proteolytically active site of the β-type subunit of
the humanCP. Thr1 residues in the β1, β2, and β5 subunits are highlighted as sphere representations,
whereas the overall CP is rendered as transparent surface. b–d The close-up view of the residues
essential for catalysis around theThr1 residues inβ1 (panelb),β2 (panel c), andβ5 (paneld) subunits
are shown as stick representations. The chloride ion and water molecules are rendered as green and
red spheres, respectively. The distances of the closest water molecules to the side-chain hydroxyl
oxygen of Thr1 residue are marked in unit of angstrom

of activity have been thought to associate with specific β1, β2, and β5 subunits,
respectively (Wilk and Orlowski 1983; Heinemeyer et al. 1997; Orlowski 1990;
Heinemeyer et al. 1991, 1993; Hilt et al. 1993; Enenkel et al. 1994; Dick et al. 1998).
Although the three types of active sites exhibit different but weak preference for
substrate sequences, they do not have definite sequence specificity and can cleave
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peptide bonds at arbitrary positions in an unfolded substrate (Kisselev and Gold-
berg 2001). Multiple catalytic sites with weak substrate preference offer a unique
advantage in concerted processive degradation of diverse cellular proteins by the
proteasome (Dick et al. 1991; Bogyo et al. 1998; Wenzel et al. 1994; Ehring et al.
1996; Dolenc et al. 1998; Nussbaum et al. 1998; Arendt and Hochstrasser 1997;
Heinemeyer et al. 1997; Groll et al. 1999; Kisselev et al. 1999).

The propeptides of immature β-subunits may play a role in promoting the CP
assembly (Chen and Hochstrasser 1996; Mayr et al. 1998; Zuhl et al. 1997). In the
newly assembled CP, the propeptides are covalently linked to and bind the Thr1
catalytic sites of the same β-subunits for intramolecular autolysis (Schmidtke et al.
1996;Ditzel et al. 1998).Gly(-1) in the propeptide region is critical for intramolecular
processing of the precursor propeptides to activate the β-subunits (Seemuller et al.
1996;Ditzel et al. 1998).Because the catalytic sites also comprise residues of adjacent
β-subunits, autolytic activation requires the CP assembly at least in part (Groll et al.
1997). Autolyzed β-subunits (β1, β2, and β5) that are activated may also process the
propeptides of other β-subunit precursors (Schmidtke et al. 1996; Ditzel et al. 1998).
The propeptides (residues -8 to 1) of the partially processed inactive β-subunits (β3,
β6, and β7) are still covalently linked to and shield their Thr1 sites to prevent substrate
binding and to inhibit their catalytic activities.

Proteolytic Products by the Proteasome

TheCP is thought to degrade substrates in a processive fashionmostlywithout release
of partially degraded intermediates (Dick et al. 1991; Nussbaum et al. 1998; Akopian
et al. 1997), although partial degradation by the 26S proteasome has been observed
in the activation of many cellular proteins and is likelymediated by the recognition of
degradation-stop signal (Saeki et al. 2009a; Zhang et al. 2013; Sandstrom et al. 2019;
Chui et al. 2019). The proteolytic chamber efficiently traps unfolded substrates and
degrades them into short polypeptides below a certain length limit. The length distri-
bution of released peptide products is broad and ranges from 4 to 25 residues with a
length average of 7 to 9 residues (Wenzel et al. 1994; Ehring et al. 1996; Nussbaum
et al. 1998;Kisselev et al. 1998). How theCP regulates the product length of degraded
substrates has remained enigmatic. One early reasoning attributes to the distance
between the active sites that can potentially act in concert (Wenzel et al. 1994). A
diffusion-controlled mechanism has been hypothesized (Wenzel et al. 1994; Voges
et al. 1999). In the prokaryotic CP, the distance of 2.8 nm between adjacent active
sites corresponds to the length of an octa- or nonapeptide in extended conformations
(Lowe et al. 1995). However, quantitative analysis of the product length showed a size
variation that cannot be reconciledwith a solely geometry-based rulermodel (Dolenc
et al. 1998; Nussbaum et al. 1998; Kisselev et al. 1998). Moreover, these models did
not explain why the prokaryotic and eukaryotic proteasomes, which include 14 and 6
active sites, respectively, generate peptides with similar length distributions (Dolenc
et al. 1998; Nussbaum et al. 1998; Kisselev et al. 1998).



1 Structure, Dynamics and Function of the 26S Proteasome 97

The possible mechanism of product length regulation by the CP became more
comprehensible when more than a dozen non-catalytic substrate-binding sites inside
the CP chamber had been observed in the cryo-EM reconstructions of the substrate-
engaged human proteasome (Table 1.3) (Dong et al. 2019). Strikingly, all these
substrate-binding sites are heavily decorated with aromatic residues, which are also
the hallmark of substrate-interacting sites inside the OB and AAA channel. These
sites seem to generally stabilize an unfolded peptide segment with a length ranging
from 3 to 10 residues and are located in proximity to the three catalytic sites in β1,
β2, and β5 (Dong et al. 2019). Their distances to the catalytic sites range from 4
to 25 residues in length, well consistent with the experimental observation of the
product length variation. These auxiliary non-catalytic substrate-binding sites may
anchor the unstructured substrates during their proteolysis, prohibit refolding of the
substrates and prevent the short peptide products from further hydrolytic breakdown.
In strong support of this mechanism, long peptides have been observed to degrade
faster than short peptides (Dolenc et al. 1998) and NMR studies have shown that the
interior of the CP stabilizes unstructured conformations of translocated substrates,

Table 1.3 Substrate interactions with the CP

State Key contacts at the
binding site

Features Number of substrate
residues

EA, EB, EC1,2, ED1,2 Thr1, Cys31 of β2,
Cys129 of β3

C2 Symmetric 6

EA Asn24, Tyr134, Phe137
of β4

At the seam between
two β4 subunits

10

EA Tyr103 of α1, Tyr61,
Tyr90 of β1, and Phe88
of β2

C2 Symmetric, at the
inter-subunit interface

5

EA Asn90 of α5, Tyr90 of
β5, Phe101 of β6

C2 Symmetric, at the
inter-subunit interface

3

EA, EB, EC1,2, ED1,2 Tyr105, Arg117 of α1,
His88 of α2

C2 Symmetric 3

EA, EB, EC1,2, ED1,2 Tyr59, Cys91, Tyr98 of
β4

C2 Symmetric 3

EA Phe69, Cys91 and
Tyr98 of β3

Asymmetric, only
present in the chamber
with the CP gate open

3

EA Ile3, Tyr6, Tyr104 of
β3, Tyr120 of β4

Asymmetric, only
present in the chamber
with the CP gate open

3

EB, EC1,2, ED1,2 Tyr30 of β7 C2 Symmetric 4

The CP residues that are observed to contact the substrates are recorded and compared, showing a
high content of aromatic residues mediating substrate interactions in the interior of the CP. These
auxiliary, non-catalytic substrate-binding sites may help regulate the product length distribution of
the substrates after proteasomal degradation



98 Y. Mao

which prevents refolding of substrates inside the CP that would sterically hinder their
degradation (Ruschak et al. 2010).

Actions of the CP Inhibitors

Structural studies using enzyme inhibitor and site-directed mutagenesis have
provided insights into the catalytic mechanism of the CP (Groll and Huber 2004).
A crystal structure of the CP inhibited by the peptide aldehyde Ac-Leu-Leu-nLeu-al
(ALLN) reveals a hemiacetyl bond with the N-terminal threonine (Thr1) hydroxyl
groups of β-subunits (Groll and Huber 2004; Vinitsky et al. 1992; Rock et al. 1994;
Figueiredo-Pereira et al. 1994; Vinitsky et al. 1994; Harding et al. 1995). Indeed,
mutation of Thr1 to serine retains proteolytic activity, whereas mutation to alanine
completely abolishes the proteolytic activity (Groll and Huber 2004). Covalent
attachment of a Streptomyces metabolite lactacystin to Thr1 irreversibly inhibits
their proteolytic activity (Fenteany et al. 1995). Lactacystin hydrolysis produces
clasto-lactacystin beta-lactone that covalently reacts with the active sites (Dick et al.
1996). Other covalent inhibitors have also been investigated, including peptidyl vinyl
sulfones (Bogyo et al. 1997b, 1998), dipeptidyl boronic acids (Mc Cormack et al.
1997; Adams et al. 1998) and epoxyketones (Groll and Huber 2004). Most of the
covalent inhibitors share a common mechanism of action via reaction with Thr1 Oγ

in the β-subunits (Mc Cormack et al. 1997). These CP inhibitors have been exten-
sively used for dissecting the cellular functions of the proteasomes (Bogyo et al.
1997a; Lee and Goldberg 1998; Fenteany and Schreiber 1998).

Since the CP inhibition is an approved approach for cancer therapy, numerous
crystal structures of the inhibitor-bound CP complexes have been determined (Huber
andGroll 2012; Schrader et al. 2016). The crystal structure of the immunoproteasome
CP demonstrates that the active site architecture of the inducible subtype β-subunits
(β1i, β2i, and β5i) differs from that of the constitutive CP (Huber et al. 2012). The
variation in specificity largely occurs through changes in the S1 pocket and explains
why the inhibitor PR-957 specifically binds the β5i subunit. Since the immuno-
proteasome represents a minor fraction of the proteasome population and is found
predominantly in cells involved in the immune response, it is expected that treat-
ment with immunoproteasome-specific inhibitors could result in reduced toxicity
(Huber and Groll 2012). Higher resolution (1.9 Å) crystal structure of the human
CP in complex with the inhibitor Oprozomib revealed a ring-shaped electron density
in the inhibitor-Thr1 conjugate, which was modeled as a heptagonal 1,4-oxazepane
ring structure with the C6-methyl group pointed to the inner, solvent-inaccessible
side of the ring (Schrader et al. 2016). Thus, the inhibition reaction is mediated via
nucleophile attack by the N-terminal amine of the epoxide β carbon (Schrader et al.
2016).

It is also of great clinical merit in developing inhibitors against the proteasomes
of infectious pathogens, such as Mycobacterium tuberculosis that causes tuber-
culosis (Lin et al. 2009), the malaria parasite Plasmodium falciparum (Li et al.
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2016a) and the kinetoplastid parasites Trypanosoma cruzi, Leishmania donovani and
Trypanosoma brucei (Khare et al. 2016). Interestingly, binding of oxathiazole-2-one
inhibitors induces conformational changes of the M. tuberculosis CP, whereas no
comparable conformational changes are induced in the human proteasome (Lin et al.
2009). The comparative studies explain why these compounds exhibit specificity for
the pathogen proteasome, which provides an important mechanistic guidance for
structure-based design of other proteasome inhibitors targeting parasite pathogens
(Li et al. 2016a; Khare et al. 2016). Cryo-EM structure of the inhibitor-bound P.
falciparum proteasome CP provides information of the active-site conformation that
can be used for further refinement of inhibitor design (Li et al. 2016a). Furthermore,
NMR studies have demonstrated that CP inhibition can also be achieved by binding
near the interface between α and β subunits instead of binding directly to the active
sites (Sprangers et al. 2008). The novel structural determination tools in cryo-EM
and NMR are expected to offer new approaches of developing proteasome inhibitors
(Renaud et al. 2018; Scapin et al. 2018).

Proteasome in Health and Disease

Cancer

The proteasome plays a central role in regulating cellular proteostasis, and is recog-
nized as an important regulator of carcinogenesis (Voutsadakis 2017). The protea-
some controls the fate of many short-lived proteins regulating cell cycle and tumor
suppressors promoting cycle progression, such as cyclin B1, p21, p27 and p53 (Diet-
rich et al. 1996; Machiels et al. 1997; Adams et al. 1999; Wu et al. 2000; Shah
et al. 2001). Dysregulation of these regulatory proteins is associated with malig-
nancies and carcinogenesis. Most cancer cells survive on a considerable level of
proteasome activity and are more susceptible to inhibition of proteasome function
than are normal cells (Dulic et al. 1994; Pagano et al. 1995; King et al. 1996; Delic
et al. 1998; Orlowski et al. 1998). Many cancer types show aberrant functions in
their UPS (Hoeller and Dikic 2009; Chen and Madura 2005). A decreased activity
of the proteasome has been found in cancer stem cells compared to the rest of cancer
cells (Voutsadakis 2017). Proteasome inhibition disrupts cellular protein homeostasis
and cell cycle, and potentially activates programmed cell death and apoptosis. The
growth of multiple myeloma cell lines is inhibited by several proteasome inhibitors
and exhibits anti-inflammatory and immunosuppressive effects (Muchamuel et al.
2009; Basler et al. 2010; Voorhees and Orlowski 2006). Treatment with proteasome
inhibitors has been proven beneficiary for patientswithmultiplemyeloma andmantle
cell lymphoma in human clinical trials (Orlowski et al. 2002; Jagannath et al. 2004;
Roeten et al. 2018). Upstream of the ubiquitin recognition by the proteasome, many
E3 ligases and the ATPase p97/VCP that contribute to substrate selectivity for the
proteasome are also implicated in cancers (Tang and Xia 2016; Chapman et al. 2011;
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Kimonis et al. 2008), and have been considered as potential anti-cancer drug targets
due to their crucial roles in proteostasis, protein quality control and cell viability
(Anderson et al. 2015; Vekaria et al. 2016; Magnaghi et al. 2013; Skrott et al. 2017).

In clinical trials, the proteasome inhibitor Bortezomib or Velcade (initially called
PS-341) exhibited inhibitory efficacy specifically toward hematologic malignancies
(Orlowski et al. 2002; Jagannath et al. 2004). Bortezomib is a reversible peptide
boronate inhibitor, which preferentially inhibits the chymotrypsin-like activity of
the β5 subunit (Huber and Groll 2012). Bortezomib was approved by the US Food
and Drug Administration (FDA) for the treatment of refractory multiple myeloma
and mantle cell lymphoma (Ruggeri et al. 2009). It also exhibits certain efficacy in
treatment of non-small cell lung cancer and pancreatic cancer (Frankland-Searby
and Bhaumik 2012). However, Bortezomib treatment gives rise to the develop-
ment of drug resistance and causes adverse side effects, including asthenia, pain,
peripheral neuropathy, disorders, thrombocytopenia, and gastrointestinal, cardiac
and pulmonary disorders (Frankland-Searby and Bhaumik 2012).

Several next-generation proteasome inhibitors have been developed for the treat-
ment of hematologic malignancies and solid tumors (Roeten et al. 2018). Some of
these inhibitors also target the chymotrypsin-like activity of the β5 subunit, and
exhibit increased chemical stability and proteasome-binding affinities, as well as
altered toxicities in clinical trials (Huber and Groll 2012). The US FDA approved the
proteasome inhibitor Carfilzomib in 2012 for the treatment of patients with multiple
myeloma. In contrast to Bortezomib, Carfilzomib is an irreversible peptide epoxyke-
tone inhibitor of the CP (Wang et al. 2013). However, Carfilzomib has shown efficacy
in multiple myeloma patients who developed drug resistance against Bortezomib
(Wang et al. 2013).

In addition to the inhibitors targeting the CP, a bis-benzylidine piperidone RA190
and its derivatives like RA183 were developed as covalent inhibitors of RPN13 for
the treatment of ovarian cancer (Anchoori et al. 2013, 2018; Kisselev 2013; Lu et al.
2017a) and multiple myeloma (Song et al. 2016, 2019; Trader et al. 2015). NMR
structural studies found that RA190-binding site on RPN13 PRU domain coincides
with the interaction site of RPN13 with a proline-rich C-terminal extension of RPN2
(Lu et al. 2017a). PA190 is found to also directly bind and inactivate UCH37, causing
accumulation of substrates at the proteasome. Thus, it has been proposed that RA190
targets both RPN13 and UCH37 in a parallel fashion to effectively block substrate
degradation (Lu et al. 2017a).

Aging

Progressive aggregation of damaged or misfolded proteins is a hallmark of aging
cells, and is associated with decline in cellular proteostasis function and UPS impair-
ment, which is also implicated in aging-related disease likeAlzheimer’s disease (AD)
and dementia (Vilchez et al. 2014; Hegde et al. 2019; Fischer et al. 2009; Saez and
Vilchez 2014). The ability of the proteasome inmaintaining proteostatsis is generally
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challenged and prone to decline in aging cells, tissues and organisms, such as human
epidermal cells and lymphocytes, bovine eye lens and rat muscle, lung, liver, kidney,
hippocampus, spinal cord, cerebral cortex and heart (Baraibar et al. 2012; Saez and
Vilchez 2014). Age-related proteasome dysregulation may occur at multiple levels,
including suppressed expression of proteasome subunits (Lee et al. 1999), reduced
proteolytic activity caused by oxidative damage (Bulteau et al. 2001; Wang et al.
2010), and proteasome disassembly (Wang et al. 2010; Vernace et al. 2007; Bajorek
et al. 2003). Part of these is also reflected in altered function in ubiquitin ligases, such
as cytoplasmic E3 ligase mahogunin (MGRN1) that is found instead in nucleus in
aging hippocampal neurons (Benvegnu et al. 2017), and the reduced level of UBE3A
in the hippocampus of elderly rats (Fletcher et al. 2014).

Aggregated proteins might form non-productive, stalled complex with the protea-
some, deplete the intracellular proteasome reservoir and thus reduce their overall
cellular activity (Grune et al. 2004). When the constitutive β5 subunit was substi-
tuted with the thymus-specific subtype β5t subunit of reduced chymotrypsin-like
activity, the transgenic mice developed signs of early aging and suffered a much
shorter lifespan (Tomaru et al. 2012). Consistently, several studies on long-lived
humans (centenarians) and animals, such as the exceptionally long-lived naked mole
rat and a long-lived bat species and an exceptionally long-lived invertebrate called
giant clam, have found correlates with increased proteasome activity and capacity
(Chondrogianni et al. 2000; Perez et al. 2009; Salmon et al. 2009; Ungvari et al.
2013). These data suggest that the overall level of proteasome activity may be corre-
lated with the age of an organism. This hypothesis has been further supported by
genetic studies in several model organisms (Chen et al. 2006; Tonoki et al. 2009;
Kruegel et al. 2011).

Neurodegenerative Diseases

Aggregation of misfolded proteins compromises cellular proteostasis and is charac-
teristic of neurodegenerative diseases, such asAlzheimer’s disease (AD), Parkinson’s
disease (PD), Huntington’s disease (HD), Amyotrophic lateral sclerosis (ALS) and
spongiform encephalopathies (Selkoe 2003; Rubinsztein 2006; Brettschneider et al.
2015).Maintaining appropriate proteostasis in neurons is crucial due to their complex
organization, function and prolonged lifespan. Unchecked aggregation of misfolded
proteins can impair normal cellular function in the cytoplasm, nucleus or extracellular
space. More importantly, neurons are unable to dilute aggregate loads through cell
division (Tai and Schuman 2008). These underscore the critical function of the UPS
in neuronal synapses. For example, synaptic protein homeostasis, plasticity and long-
term memory formation rely on the proteome remodeling that is tightly regulated
by the UPS (Fonseca et al. 2006; Tai and Schuman 2008; Aso et al. 2012; Djakovic
et al. 2012). Themembrane-anchored proteasomemodulates neuronal function in the
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mammalian nervous system, degrades intracellular proteins and releases the polypep-
tide products into the synaptic cleft, where they trigger neuronal signaling via post-
synaptic N-methyl-D-aspartate receptor for synaptic regulation (Ramachandran and
Margolis 2017).

Neurodegenerative diseases are mostly associated with aging, and share many
traits in proteostasis, such as impaired UPS function and reduced proteasome activity
(Vilchez et al. 2014; Hegde et al. 2019; Fischer et al. 2009; Saez and Vilchez 2014;
Keller et al. 2000;McNaught et al. 2002;Ciechanover andBrundin 2003;Rubinsztein
2006; Ortega et al. 2007; Ortega and Lucas 2014). Aggregation of misfolded proteins
causes loss of proteostasis and is commonly accompanied with progressive death of
neurons (Selkoe 2003; Rubinsztein 2006; Brettschneider et al. 2015). Brain region-
specific proteasome inhibition is implicated in the neuropathology and is a clinical
hallmark of neurodegenerative diseases (McNaught et al. 2002, 2004; Bedford et al.
2008; Li et al. 2010). In themicemodel of ADwithmutant amyloid precursor protein
(APP) transgene (Tg2576), Aβ1-42 seems to inhibit proteasome activity and DUBs
and enhances amyloid and tau accumulation (Almeida et al. 2006; Oh et al. 2005;
Tseng et al. 2008), likely by stalling the proteasome in the Aβ aggregation body
(Guo et al. 2018). Interestingly, a higher level of immunoproteasome expression was
observed in the brain of AD patients compared to the brains of the non-demented
elderly (Mishto et al. 2006). Going forward beyond the “Aβ hypothesis” of AD
(Morris et al. 2018; Mullane and Williams 2019), it remains to be understood how
the proteasome andUPS are related to other factors contributing to neurodegenerative
diseases, such as inflammation and insulin resistance in the brain.

Secretory proteins and integral membrane proteins are synthesized and enter the
ER lumen for proper protein folding and post-translational modifications. Misfolded
proteins in the ER are removed by the pathway of endoplasmic reticulum-associated
protein degradation (ERAD), which prevents neurodegenerative diseases (Wu and
Rapoport 2018). Impaired ERAD and ER stress are associated with polyglutamine
(polyQ) toxicity commonly found in several neurodegenerative disorders (Duen-
nwald and Lindquist 2008; Remondelli and Renna 2017; Smith and Mallucci 2016).
There are three distinct ERAD pathways, ERAD-L, ERAD-M, and ERAD-C, in
which the misfolded protein domain is localized in the ER lumen, within the
membrane, or on the cytosolic side of the ER membrane, respectively (Huyer et al.
2004; Vashist andNg 2004; Carvalho et al. 2006). Another pathway is used to remove
misfolded protein from the inner nuclear membrane (Foresti et al. 2014; Khmelinskii
et al. 2014). Through ubiquitylation, the p97/Cdc48 ATPase extracts the substrates
from the membrane and delivers them to the proteasome for degradation (Bays et al.
2001; Braun et al. 2002; Jarosch et al. 2002; Rabinovich et al. 2002). Proteasome
inhibition impairs ERAD and allows misfolded proteins to aggregate in the ER,
which activates the unfolded protein response (UPR) (Tsai and Weissman 2010).
UPR regulates the gene expression controlling protein folding and ERAD to restore
ER homeostasis (Travers et al. 2000). However, prolonged ER stress that is out of
control by UPR activation eventually leads to cell death (Travers et al. 2000). Besides
neurodegenerative diseases, many other physiological conditions, such as hypoxia,
glucose deprivation, oxidative stress and certain mutations in proteins, can also cause
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aggregation of misfolded proteins in the ER and trigger UPR activation (Tsai and
Weissman 2010).

Immune Diseases

The proteasome is extensively involved in the regulation of the immune system,
including antigen presentation, NF-κB pathway, and NLRP1 inflammasome acti-
vation. The proteasome mediates antigenic protein degradation into short peptides
that are presented on the MHC-I complex (Ferrington and Gregerson 2012). The
NF-κB transcription factors (NF-κB and Rel proteins) regulate gene expression in
innate and adaptive immunity, inflammation, stress responses, B-cell development
and lymphoid organogenesis. NF-κB is a prosurvival pathway and is upregulated in
many inflammatory diseases and cancers (Wang et al. 1996). In cancer cells, NF-κB
is involved in the expression of the antiapoptotic IAP family of genes as well as
BCL-2 prosurvival genes (Wang et al. 1998; Zong et al. 1999; Chen et al. 2000). The
proteasome mediates degradation of regulatory elements for transcriptional activa-
tion in both canonical and noncanonical pathways ofNF-κBactivation. In the inactive
state, NF-κB/Rel is bound to and sequestered by the inhibitory IκB subunits in the
cytoplasm (Baldwin 2001). In the canonical pathway, proinflammmatory cytokines
activate the IκB kinase (IKK) complex that phosphorylates IκB and causes IκB
ubiquitiylation for proteasome-mediated degradation that activates the NF-κB/RelA
complex (Chen et al. 1995; Scherer et al. 1995; Spencer et al. 1999; Winston et al.
1999). In the noncanonical pathway, the NF-κB-inducing kinase activates IKKα that
phosphorylates the C-terminal residues of NF-κB2/p100. Phosphorylated NF-κB is
ubiquitylated and partially degraded by the proteasome into transcriptionally active
NF-κB2/p52.

Mammalian cells use a diverse spectrum of pattern-recognition receptors (PRRs)
to monitor cytoplasmic microbial activities and pathogen invasion for signaling
innate immune responses. Several PRRs form megadalton multiprotein complexes
named the inflammasome upon recognition of their cognate danger signals.
The inflammasome recruits and activates caspase-1, which then cleaves and acti-
vates inflammatory cytokines and gasdermin D (GSDMD), and triggers inflamma-
tory cell death called pyroptosis (Zhang et al. 2015; Broz and Dixit 2016; Sharif et al.
2019). NLRP1B is one of the inflammasome-forming PRRs and a crucial member
in the nucleotide-binding domain leucine-rich repeat (NLR) protein superfamily.
Several studies have found that proteasomal degradation of N-terminal domains of
the NLRP1B protein releases the C-terminal fragment of the NLRP1B containing
a caspase activation and recruitment domain (CARD) domain, which is sufficient
to self-assemble, recruit caspase-1 and active the inflammasome (Sandstrom et al.
2019; Chui et al. 2019). The degradation-dependent activation of inflammasome
likely underlies its ability to sense any pathogen effectors that can induce protea-
somal degradation of NLRP1B, such as IpaH7.8, an E3 ubiquitin ligase secreted by
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the pathogen Shigella flexneri that ubiquitylates NLRP1B and lead to inflammasome
activation in Shigella-infected macrophages (Sandstrom et al. 2019).

Proteasome inhibition can give rise to decreased inflammatory and immune
responses, as well as compromised cell migration and adhesion (Frankland-Searby
and Bhaumik 2012). These effects are also reflected in the proteasome function in
antigen presentation. Lymphopenia is a toxicity effect commonly observed in clin-
ical administration of Bortezomib (Jagannath et al. 2004). Proteasome inhibition
by Bortezomib induces suppressive effects on the T cell compartment, potentially
leading to T cell apoptosis inmonocyte-derived dendritic cells (Nencioni et al. 2006).
Activated T cells are more susceptible to proteasome inhibition than resting T cells
(Blanco et al. 2011). Proteasome inhibition by Bortezomib can deplete alloreac-
tive T cells in vitro, while preserving immune response against pathogens (Blanco
et al. 2011). These observations suggest that proteasome inhibition represents a
promising option for the treatment of diseases involving activated T cells. This
hypothesis is supported by several preclinical studies in mouse models for autoim-
mune encepahlomyelitis, arthritis, colitis, graft-versus-host disease, systemic lupus
erythematosus, myastenia gravis and allograft rejection (Moran et al. 2012).

Cardiovascular Diseases

TheUPSplays an important role in cardiac physiology and disease (Drews andTaegt-
meyer 2014; Li and Wang 2011; Pagan et al. 2013; Shukla and Rafiq 2019). Impair-
ment of UPS function may cause a number of cardiac diseases, such as heart failure,
cardiomyopathies, hypertrophy, atrophy, ischemia-reperfusion, and atherosclerosis.
Increased oxidative damage to proteins, elevated levels of ubiquitylated proteins and
proteasome dysfunction have been found in several cardiac diseases, such as hyper-
trophic, diabetic cardiomyopathies and ischemic heart diseases (Powell et al. 2012;
Shukla and Rafiq 2019). Reduced proteasome activity has been linked to myocardial
ischemia/reperfusion (I/R) injury (Bulteau et al. 2001; Tian et al. 2012; Li et al. 2011).
A transgenic mouse line that overexpresses PA28α in the heart exhibited increased
proteasome activity, which protected the animals against I/R injury (Li et al. 2011).
In a mouse model of desmin-related cardiomyopathy (DRC), cardiac PA28α overex-
pression suppressed cardiac hypertrophy and prolonged the animal lifespan (Li et al.
2011). Inmany forms of cardiomyopathies, such as I/R injury and diabetic cardiomy-
opathy, inducible immunoproteasome expression is significantly elevated (Cai et al.
2008; Gomes et al. 2006; Powell et al. 2008). Similar to neurological toxicity, protea-
some inhibition with Bortezomib seems to be associated with an increase in cardiac
dysfunction, such as congestive heart failure or arrythmia (Schlossarek and Carrier
2011). Short-term and low-dose local treatments with proteasome inhibitors have
produced contradictive results that await further clarification (Powell et al. 2012).
Although both the inhibition and enhancement of proteasome activity can poten-
tially confer cardioprotection under distinct conditions, concerns and controversies
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remain for the toxicity of impairing the proteasome in long-term therapies (Pagan
et al. 2013; Li and Wang 2011; Shukla and Rafiq 2019).

Perspective

In this chapter, I reviewed nearly five decades of studies on the structures and
functions of the proteasome. The past five years have seen a major culmination
of breakthrough studies in elucidation of the inner working of the proteasome in
both human and yeast. Progressive improvements on the biochemical and cryo-
EM methods have yielded atomic-level information critical for understanding the
functional dynamics of the proteasome. Not only have the conformational states of
the proteasome been extensively mapped, but also their correspondence to the inter-
mediate steps of substrate processing and a nearly complete degradation pathway
within the proteasome have been reconstructed at the atomic level. A breathtaking
picture of the “central dogma” of the proteasome is now emerging and lays an essen-
tial foundation for further understanding how the UPS decodes the ubiquitin signals
as well as for the development of proteasome-related therapeutics. Looking forward,
a major knowledge gap exists between numerous ubiquitylation pathways and the
intrinsic working machineries of the proteasome, the understanding of which poses
much greater technical challenges due to the transient nature of the interactions of the
proteasome with the extrinsic receptors, DUBs, the ubiquitin chain-elongating E4s,
and an expanding network of proteasome-related proteins. Another great challenge
is how we can best convert what we know about the proteasome into clinical tools
and therapeutics for combating human diseases and improving human wellbeing.
With further developments in chemical and biological methods, cryo-EM imaging
approaches and data science tools, addressing these challenges will soon become
possible in years to come.

Future Problems

• What are the missing key intermediate states necessary for unambiguously
defining the detailed mechanisms for the complete cycle of substrate processing
in the proteasome? And, how are these intermediate states associated with the
proteasome function in vivo?

• Are there alternative pathways of coordinated ATP hydrolysis in the protea-
somal AAA-ATPase motor? How are these hydrolytic pathways regulated at the
proteasome level?

• How do the intrinsic ubiquitin receptors recognize the polyubiquitin chains in the
proteasome? What are the conformational dynamics of RPN13 in the protea-
some? What are the unidentified intrinsic ubiquitin or UBL receptors in the
proteasome? How do they coordinate with one another? What are their functional
differences and specificities in recognizing ubiquitin signals and UBL proteins?

• How do the extrinsic ubiquitin receptors deliver substrates to the proteasome?
How do the extrinsic receptors coordinate their ubiquitin recognitions with
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the intrinsic receptors? What are the other cellular proteins involved in the
delivery of substrates by the extrinsic receptors? Are there any other unidentified
extrinsic ubiquitin receptors associated the proteasome? What are the differences
in substrate selectivity between the intrinsic and extrinsic ubiquitin receptors?

• How do those non-essential DUBs such as USP14 and UCH37 work with the
proteasome? How do their interactions regulate the proteasome structure and
function during substrate processing?Are they involved in the process of substrate
delivery by the shuttle receptors?

• How do the proteasome-associated E3 and E4 enzymes process substrates in
the proteasome? How do their interactions regulate the proteasome structure and
function? Are there also other E2s and E3s associated with the proteasome for
substrate processing? How do they work together?

• How do the proteasome-associated proteins function in the proteasome in the
presence of substrates? How do their interactions with the proteasome regulate
the proteasome structure and function?

• Howdo those post-translationalmodifications of the proteasome regulate theways
the proteasome processes substrates? What are their cellular functions?

• What are the assembly pathways of the RP in mammalian cells? How does the
dynamic assembly of the RP affect or regulate the proteasome function?

• Are there inhibitors of the proteasome specifically interacting with the RP instead
of the CP? If any, how do these inhibitors contribute to the improvement of human
health?

• What are the exact underlyingmechanisms of proteasome inhibitors in vivo?Why
is the same proteasome inhibitor beneficiary for certain diseases but detrimental
for others?

• How can we best harvest the proteasomes or UPS for combating neurodegen-
erative diseases, and of course, other closely related human diseases in general,
including cancer and immune diseases?
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